xref: /freebsd/sys/dev/vte/if_vte.c (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/rman.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/if_vlan_var.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 
72 #include <dev/vte/if_vtereg.h>
73 #include <dev/vte/if_vtevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 MODULE_DEPEND(vte, pci, 1, 1, 1);
79 MODULE_DEPEND(vte, ether, 1, 1, 1);
80 MODULE_DEPEND(vte, miibus, 1, 1, 1);
81 
82 /* Tunables. */
83 static int tx_deep_copy = 1;
84 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
85 
86 /*
87  * Devices supported by this driver.
88  */
89 static const struct vte_ident vte_ident_table[] = {
90 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
91 	{ 0, 0, NULL}
92 };
93 
94 static int	vte_attach(device_t);
95 static int	vte_detach(device_t);
96 static int	vte_dma_alloc(struct vte_softc *);
97 static void	vte_dma_free(struct vte_softc *);
98 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
99 static struct vte_txdesc *
100 		vte_encap(struct vte_softc *, struct mbuf **);
101 static const struct vte_ident *
102 		vte_find_ident(device_t);
103 #ifndef __NO_STRICT_ALIGNMENT
104 static struct mbuf *
105 		vte_fixup_rx(struct ifnet *, struct mbuf *);
106 #endif
107 static void	vte_get_macaddr(struct vte_softc *);
108 static void	vte_init(void *);
109 static void	vte_init_locked(struct vte_softc *);
110 static int	vte_init_rx_ring(struct vte_softc *);
111 static int	vte_init_tx_ring(struct vte_softc *);
112 static void	vte_intr(void *);
113 static int	vte_ioctl(struct ifnet *, u_long, caddr_t);
114 static uint64_t	vte_get_counter(struct ifnet *, ift_counter);
115 static void	vte_mac_config(struct vte_softc *);
116 static int	vte_miibus_readreg(device_t, int, int);
117 static void	vte_miibus_statchg(device_t);
118 static int	vte_miibus_writereg(device_t, int, int, int);
119 static int	vte_mediachange(struct ifnet *);
120 static int	vte_mediachange_locked(struct ifnet *);
121 static void	vte_mediastatus(struct ifnet *, struct ifmediareq *);
122 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
123 static int	vte_probe(device_t);
124 static void	vte_reset(struct vte_softc *);
125 static int	vte_resume(device_t);
126 static void	vte_rxeof(struct vte_softc *);
127 static void	vte_rxfilter(struct vte_softc *);
128 static int	vte_shutdown(device_t);
129 static void	vte_start(struct ifnet *);
130 static void	vte_start_locked(struct vte_softc *);
131 static void	vte_start_mac(struct vte_softc *);
132 static void	vte_stats_clear(struct vte_softc *);
133 static void	vte_stats_update(struct vte_softc *);
134 static void	vte_stop(struct vte_softc *);
135 static void	vte_stop_mac(struct vte_softc *);
136 static int	vte_suspend(device_t);
137 static void	vte_sysctl_node(struct vte_softc *);
138 static void	vte_tick(void *);
139 static void	vte_txeof(struct vte_softc *);
140 static void	vte_watchdog(struct vte_softc *);
141 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
142 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
143 
144 static device_method_t vte_methods[] = {
145 	/* Device interface. */
146 	DEVMETHOD(device_probe,		vte_probe),
147 	DEVMETHOD(device_attach,	vte_attach),
148 	DEVMETHOD(device_detach,	vte_detach),
149 	DEVMETHOD(device_shutdown,	vte_shutdown),
150 	DEVMETHOD(device_suspend,	vte_suspend),
151 	DEVMETHOD(device_resume,	vte_resume),
152 
153 	/* MII interface. */
154 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
155 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
156 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
157 
158 	DEVMETHOD_END
159 };
160 
161 static driver_t vte_driver = {
162 	"vte",
163 	vte_methods,
164 	sizeof(struct vte_softc)
165 };
166 
167 static devclass_t vte_devclass;
168 
169 DRIVER_MODULE(vte, pci, vte_driver, vte_devclass, 0, 0);
170 DRIVER_MODULE(miibus, vte, miibus_driver, miibus_devclass, 0, 0);
171 
172 static int
173 vte_miibus_readreg(device_t dev, int phy, int reg)
174 {
175 	struct vte_softc *sc;
176 	int i;
177 
178 	sc = device_get_softc(dev);
179 
180 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
181 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
182 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
183 		DELAY(5);
184 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
185 			break;
186 	}
187 
188 	if (i == 0) {
189 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
190 		return (0);
191 	}
192 
193 	return (CSR_READ_2(sc, VTE_MMRD));
194 }
195 
196 static int
197 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
198 {
199 	struct vte_softc *sc;
200 	int i;
201 
202 	sc = device_get_softc(dev);
203 
204 	CSR_WRITE_2(sc, VTE_MMWD, val);
205 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
206 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
207 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
208 		DELAY(5);
209 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
210 			break;
211 	}
212 
213 	if (i == 0)
214 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
215 
216 	return (0);
217 }
218 
219 static void
220 vte_miibus_statchg(device_t dev)
221 {
222 	struct vte_softc *sc;
223 	struct mii_data *mii;
224 	struct ifnet *ifp;
225 	uint16_t val;
226 
227 	sc = device_get_softc(dev);
228 
229 	mii = device_get_softc(sc->vte_miibus);
230 	ifp = sc->vte_ifp;
231 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
232 		return;
233 
234 	sc->vte_flags &= ~VTE_FLAG_LINK;
235 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
236 	    (IFM_ACTIVE | IFM_AVALID)) {
237 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
238 		case IFM_10_T:
239 		case IFM_100_TX:
240 			sc->vte_flags |= VTE_FLAG_LINK;
241 			break;
242 		default:
243 			break;
244 		}
245 	}
246 
247 	/* Stop RX/TX MACs. */
248 	vte_stop_mac(sc);
249 	/* Program MACs with resolved duplex and flow control. */
250 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
251 		/*
252 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
253 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
254 		 */
255 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
256 			val = 18 << VTE_IM_TIMER_SHIFT;
257 		else
258 			val = 1 << VTE_IM_TIMER_SHIFT;
259 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
260 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
261 		CSR_WRITE_2(sc, VTE_MRICR, val);
262 
263 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
264 			val = 18 << VTE_IM_TIMER_SHIFT;
265 		else
266 			val = 1 << VTE_IM_TIMER_SHIFT;
267 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
268 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
269 		CSR_WRITE_2(sc, VTE_MTICR, val);
270 
271 		vte_mac_config(sc);
272 		vte_start_mac(sc);
273 	}
274 }
275 
276 static void
277 vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
278 {
279 	struct vte_softc *sc;
280 	struct mii_data *mii;
281 
282 	sc = ifp->if_softc;
283 	VTE_LOCK(sc);
284 	if ((ifp->if_flags & IFF_UP) == 0) {
285 		VTE_UNLOCK(sc);
286 		return;
287 	}
288 	mii = device_get_softc(sc->vte_miibus);
289 
290 	mii_pollstat(mii);
291 	ifmr->ifm_status = mii->mii_media_status;
292 	ifmr->ifm_active = mii->mii_media_active;
293 	VTE_UNLOCK(sc);
294 }
295 
296 static int
297 vte_mediachange(struct ifnet *ifp)
298 {
299 	struct vte_softc *sc;
300 	int error;
301 
302 	sc = ifp->if_softc;
303 	VTE_LOCK(sc);
304 	error = vte_mediachange_locked(ifp);
305 	VTE_UNLOCK(sc);
306 	return (error);
307 }
308 
309 static int
310 vte_mediachange_locked(struct ifnet *ifp)
311 {
312 	struct vte_softc *sc;
313 	struct mii_data *mii;
314 	struct mii_softc *miisc;
315 	int error;
316 
317 	sc = ifp->if_softc;
318 	mii = device_get_softc(sc->vte_miibus);
319 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
320 		PHY_RESET(miisc);
321 	error = mii_mediachg(mii);
322 
323 	return (error);
324 }
325 
326 static const struct vte_ident *
327 vte_find_ident(device_t dev)
328 {
329 	const struct vte_ident *ident;
330 	uint16_t vendor, devid;
331 
332 	vendor = pci_get_vendor(dev);
333 	devid = pci_get_device(dev);
334 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
335 		if (vendor == ident->vendorid && devid == ident->deviceid)
336 			return (ident);
337 	}
338 
339 	return (NULL);
340 }
341 
342 static int
343 vte_probe(device_t dev)
344 {
345 	const struct vte_ident *ident;
346 
347 	ident = vte_find_ident(dev);
348 	if (ident != NULL) {
349 		device_set_desc(dev, ident->name);
350 		return (BUS_PROBE_DEFAULT);
351 	}
352 
353 	return (ENXIO);
354 }
355 
356 static void
357 vte_get_macaddr(struct vte_softc *sc)
358 {
359 	uint16_t mid;
360 
361 	/*
362 	 * It seems there is no way to reload station address and
363 	 * it is supposed to be set by BIOS.
364 	 */
365 	mid = CSR_READ_2(sc, VTE_MID0L);
366 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
367 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
368 	mid = CSR_READ_2(sc, VTE_MID0M);
369 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
370 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
371 	mid = CSR_READ_2(sc, VTE_MID0H);
372 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
373 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
374 }
375 
376 static int
377 vte_attach(device_t dev)
378 {
379 	struct vte_softc *sc;
380 	struct ifnet *ifp;
381 	uint16_t macid;
382 	int error, rid;
383 
384 	error = 0;
385 	sc = device_get_softc(dev);
386 	sc->vte_dev = dev;
387 
388 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
389 	    MTX_DEF);
390 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
391 	sc->vte_ident = vte_find_ident(dev);
392 
393 	/* Map the device. */
394 	pci_enable_busmaster(dev);
395 	sc->vte_res_id = PCIR_BAR(1);
396 	sc->vte_res_type = SYS_RES_MEMORY;
397 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
398 	    &sc->vte_res_id, RF_ACTIVE);
399 	if (sc->vte_res == NULL) {
400 		sc->vte_res_id = PCIR_BAR(0);
401 		sc->vte_res_type = SYS_RES_IOPORT;
402 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
403 		    &sc->vte_res_id, RF_ACTIVE);
404 		if (sc->vte_res == NULL) {
405 			device_printf(dev, "cannot map memory/ports.\n");
406 			mtx_destroy(&sc->vte_mtx);
407 			return (ENXIO);
408 		}
409 	}
410 	if (bootverbose) {
411 		device_printf(dev, "using %s space register mapping\n",
412 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
413 		device_printf(dev, "MAC Identifier : 0x%04x\n",
414 		    CSR_READ_2(sc, VTE_MACID));
415 		macid = CSR_READ_2(sc, VTE_MACID_REV);
416 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
417 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
418 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
419 	}
420 
421 	rid = 0;
422 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
423 	    RF_SHAREABLE | RF_ACTIVE);
424 	if (sc->vte_irq == NULL) {
425 		device_printf(dev, "cannot allocate IRQ resources.\n");
426 		error = ENXIO;
427 		goto fail;
428 	}
429 
430 	/* Reset the ethernet controller. */
431 	vte_reset(sc);
432 
433 	if ((error = vte_dma_alloc(sc)) != 0)
434 		goto fail;
435 
436 	/* Create device sysctl node. */
437 	vte_sysctl_node(sc);
438 
439 	/* Load station address. */
440 	vte_get_macaddr(sc);
441 
442 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
443 	if (ifp == NULL) {
444 		device_printf(dev, "cannot allocate ifnet structure.\n");
445 		error = ENXIO;
446 		goto fail;
447 	}
448 
449 	ifp->if_softc = sc;
450 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
451 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
452 	ifp->if_ioctl = vte_ioctl;
453 	ifp->if_start = vte_start;
454 	ifp->if_init = vte_init;
455 	ifp->if_get_counter = vte_get_counter;
456 	ifp->if_snd.ifq_drv_maxlen = VTE_TX_RING_CNT - 1;
457 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
458 	IFQ_SET_READY(&ifp->if_snd);
459 
460 	/*
461 	 * Set up MII bus.
462 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
463 	 * status changes so driver may be able to extract
464 	 * configured PHY address.  Since it's common to see BIOS
465 	 * fails to initialize the register(including the sample
466 	 * board I have), let mii(4) probe it.  This is more
467 	 * reliable than relying on BIOS's initialization.
468 	 *
469 	 * Advertising flow control capability to mii(4) was
470 	 * intentionally disabled due to severe problems in TX
471 	 * pause frame generation.  See vte_rxeof() for more
472 	 * details.
473 	 */
474 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
475 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
476 	if (error != 0) {
477 		device_printf(dev, "attaching PHYs failed\n");
478 		goto fail;
479 	}
480 
481 	ether_ifattach(ifp, sc->vte_eaddr);
482 
483 	/* VLAN capability setup. */
484 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
485 	ifp->if_capenable = ifp->if_capabilities;
486 	/* Tell the upper layer we support VLAN over-sized frames. */
487 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
488 
489 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
490 	    NULL, vte_intr, sc, &sc->vte_intrhand);
491 	if (error != 0) {
492 		device_printf(dev, "could not set up interrupt handler.\n");
493 		ether_ifdetach(ifp);
494 		goto fail;
495 	}
496 
497 fail:
498 	if (error != 0)
499 		vte_detach(dev);
500 
501 	return (error);
502 }
503 
504 static int
505 vte_detach(device_t dev)
506 {
507 	struct vte_softc *sc;
508 	struct ifnet *ifp;
509 
510 	sc = device_get_softc(dev);
511 
512 	ifp = sc->vte_ifp;
513 	if (device_is_attached(dev)) {
514 		VTE_LOCK(sc);
515 		vte_stop(sc);
516 		VTE_UNLOCK(sc);
517 		callout_drain(&sc->vte_tick_ch);
518 		ether_ifdetach(ifp);
519 	}
520 
521 	if (sc->vte_miibus != NULL) {
522 		device_delete_child(dev, sc->vte_miibus);
523 		sc->vte_miibus = NULL;
524 	}
525 	bus_generic_detach(dev);
526 
527 	if (sc->vte_intrhand != NULL) {
528 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
529 		sc->vte_intrhand = NULL;
530 	}
531 	if (sc->vte_irq != NULL) {
532 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
533 		sc->vte_irq = NULL;
534 	}
535 	if (sc->vte_res != NULL) {
536 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
537 		    sc->vte_res);
538 		sc->vte_res = NULL;
539 	}
540 	if (ifp != NULL) {
541 		if_free(ifp);
542 		sc->vte_ifp = NULL;
543 	}
544 	vte_dma_free(sc);
545 	mtx_destroy(&sc->vte_mtx);
546 
547 	return (0);
548 }
549 
550 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
551 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
552 
553 static void
554 vte_sysctl_node(struct vte_softc *sc)
555 {
556 	struct sysctl_ctx_list *ctx;
557 	struct sysctl_oid_list *child, *parent;
558 	struct sysctl_oid *tree;
559 	struct vte_hw_stats *stats;
560 	int error;
561 
562 	stats = &sc->vte_stats;
563 	ctx = device_get_sysctl_ctx(sc->vte_dev);
564 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
565 
566 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
567 	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_rx_mod, 0,
568 	    sysctl_hw_vte_int_mod, "I", "vte RX interrupt moderation");
569 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
570 	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_tx_mod, 0,
571 	    sysctl_hw_vte_int_mod, "I", "vte TX interrupt moderation");
572 	/* Pull in device tunables. */
573 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
574 	error = resource_int_value(device_get_name(sc->vte_dev),
575 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
576 	if (error == 0) {
577 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
578 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
579 			device_printf(sc->vte_dev, "int_rx_mod value out of "
580 			    "range; using default: %d\n",
581 			    VTE_IM_RX_BUNDLE_DEFAULT);
582 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
583 		}
584 	}
585 
586 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
587 	error = resource_int_value(device_get_name(sc->vte_dev),
588 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
589 	if (error == 0) {
590 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
591 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
592 			device_printf(sc->vte_dev, "int_tx_mod value out of "
593 			    "range; using default: %d\n",
594 			    VTE_IM_TX_BUNDLE_DEFAULT);
595 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
596 		}
597 	}
598 
599 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
600 	    NULL, "VTE statistics");
601 	parent = SYSCTL_CHILDREN(tree);
602 
603 	/* RX statistics. */
604 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
605 	    NULL, "RX MAC statistics");
606 	child = SYSCTL_CHILDREN(tree);
607 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
608 	    &stats->rx_frames, "Good frames");
609 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
610 	    &stats->rx_bcast_frames, "Good broadcast frames");
611 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
612 	    &stats->rx_mcast_frames, "Good multicast frames");
613 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
614 	    &stats->rx_runts, "Too short frames");
615 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
616 	    &stats->rx_crcerrs, "CRC errors");
617 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
618 	    &stats->rx_long_frames,
619 	    "Frames that have longer length than maximum packet length");
620 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
621 	    &stats->rx_fifo_full, "FIFO full");
622 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
623 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
624 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
625 	    &stats->rx_pause_frames, "Pause control frames");
626 
627 	/* TX statistics. */
628 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
629 	    NULL, "TX MAC statistics");
630 	child = SYSCTL_CHILDREN(tree);
631 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
632 	    &stats->tx_frames, "Good frames");
633 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
634 	    &stats->tx_underruns, "FIFO underruns");
635 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
636 	    &stats->tx_late_colls, "Late collisions");
637 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
638 	    &stats->tx_pause_frames, "Pause control frames");
639 }
640 
641 #undef VTE_SYSCTL_STAT_ADD32
642 
643 struct vte_dmamap_arg {
644 	bus_addr_t	vte_busaddr;
645 };
646 
647 static void
648 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
649 {
650 	struct vte_dmamap_arg *ctx;
651 
652 	if (error != 0)
653 		return;
654 
655 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
656 
657 	ctx = (struct vte_dmamap_arg *)arg;
658 	ctx->vte_busaddr = segs[0].ds_addr;
659 }
660 
661 static int
662 vte_dma_alloc(struct vte_softc *sc)
663 {
664 	struct vte_txdesc *txd;
665 	struct vte_rxdesc *rxd;
666 	struct vte_dmamap_arg ctx;
667 	int error, i;
668 
669 	/* Create parent DMA tag. */
670 	error = bus_dma_tag_create(
671 	    bus_get_dma_tag(sc->vte_dev), /* parent */
672 	    1, 0,			/* alignment, boundary */
673 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
674 	    BUS_SPACE_MAXADDR,		/* highaddr */
675 	    NULL, NULL,			/* filter, filterarg */
676 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
677 	    0,				/* nsegments */
678 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
679 	    0,				/* flags */
680 	    NULL, NULL,			/* lockfunc, lockarg */
681 	    &sc->vte_cdata.vte_parent_tag);
682 	if (error != 0) {
683 		device_printf(sc->vte_dev,
684 		    "could not create parent DMA tag.\n");
685 		goto fail;
686 	}
687 
688 	/* Create DMA tag for TX descriptor ring. */
689 	error = bus_dma_tag_create(
690 	    sc->vte_cdata.vte_parent_tag, /* parent */
691 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
692 	    BUS_SPACE_MAXADDR,		/* lowaddr */
693 	    BUS_SPACE_MAXADDR,		/* highaddr */
694 	    NULL, NULL,			/* filter, filterarg */
695 	    VTE_TX_RING_SZ,		/* maxsize */
696 	    1,				/* nsegments */
697 	    VTE_TX_RING_SZ,		/* maxsegsize */
698 	    0,				/* flags */
699 	    NULL, NULL,			/* lockfunc, lockarg */
700 	    &sc->vte_cdata.vte_tx_ring_tag);
701 	if (error != 0) {
702 		device_printf(sc->vte_dev,
703 		    "could not create TX ring DMA tag.\n");
704 		goto fail;
705 	}
706 
707 	/* Create DMA tag for RX free descriptor ring. */
708 	error = bus_dma_tag_create(
709 	    sc->vte_cdata.vte_parent_tag, /* parent */
710 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
711 	    BUS_SPACE_MAXADDR,		/* lowaddr */
712 	    BUS_SPACE_MAXADDR,		/* highaddr */
713 	    NULL, NULL,			/* filter, filterarg */
714 	    VTE_RX_RING_SZ,		/* maxsize */
715 	    1,				/* nsegments */
716 	    VTE_RX_RING_SZ,		/* maxsegsize */
717 	    0,				/* flags */
718 	    NULL, NULL,			/* lockfunc, lockarg */
719 	    &sc->vte_cdata.vte_rx_ring_tag);
720 	if (error != 0) {
721 		device_printf(sc->vte_dev,
722 		    "could not create RX ring DMA tag.\n");
723 		goto fail;
724 	}
725 
726 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
727 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
728 	    (void **)&sc->vte_cdata.vte_tx_ring,
729 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
730 	    &sc->vte_cdata.vte_tx_ring_map);
731 	if (error != 0) {
732 		device_printf(sc->vte_dev,
733 		    "could not allocate DMA'able memory for TX ring.\n");
734 		goto fail;
735 	}
736 	ctx.vte_busaddr = 0;
737 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
738 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
739 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
740 	if (error != 0 || ctx.vte_busaddr == 0) {
741 		device_printf(sc->vte_dev,
742 		    "could not load DMA'able memory for TX ring.\n");
743 		goto fail;
744 	}
745 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
746 
747 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
748 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
749 	    (void **)&sc->vte_cdata.vte_rx_ring,
750 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
751 	    &sc->vte_cdata.vte_rx_ring_map);
752 	if (error != 0) {
753 		device_printf(sc->vte_dev,
754 		    "could not allocate DMA'able memory for RX ring.\n");
755 		goto fail;
756 	}
757 	ctx.vte_busaddr = 0;
758 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
759 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
760 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
761 	if (error != 0 || ctx.vte_busaddr == 0) {
762 		device_printf(sc->vte_dev,
763 		    "could not load DMA'able memory for RX ring.\n");
764 		goto fail;
765 	}
766 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
767 
768 	/* Create TX buffer parent tag. */
769 	error = bus_dma_tag_create(
770 	    bus_get_dma_tag(sc->vte_dev), /* parent */
771 	    1, 0,			/* alignment, boundary */
772 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
773 	    BUS_SPACE_MAXADDR,		/* highaddr */
774 	    NULL, NULL,			/* filter, filterarg */
775 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
776 	    0,				/* nsegments */
777 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
778 	    0,				/* flags */
779 	    NULL, NULL,			/* lockfunc, lockarg */
780 	    &sc->vte_cdata.vte_buffer_tag);
781 	if (error != 0) {
782 		device_printf(sc->vte_dev,
783 		    "could not create parent buffer DMA tag.\n");
784 		goto fail;
785 	}
786 
787 	/* Create DMA tag for TX buffers. */
788 	error = bus_dma_tag_create(
789 	    sc->vte_cdata.vte_buffer_tag, /* parent */
790 	    1, 0,			/* alignment, boundary */
791 	    BUS_SPACE_MAXADDR,		/* lowaddr */
792 	    BUS_SPACE_MAXADDR,		/* highaddr */
793 	    NULL, NULL,			/* filter, filterarg */
794 	    MCLBYTES,			/* maxsize */
795 	    1,				/* nsegments */
796 	    MCLBYTES,			/* maxsegsize */
797 	    0,				/* flags */
798 	    NULL, NULL,			/* lockfunc, lockarg */
799 	    &sc->vte_cdata.vte_tx_tag);
800 	if (error != 0) {
801 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
802 		goto fail;
803 	}
804 
805 	/* Create DMA tag for RX buffers. */
806 	error = bus_dma_tag_create(
807 	    sc->vte_cdata.vte_buffer_tag, /* parent */
808 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
809 	    BUS_SPACE_MAXADDR,		/* lowaddr */
810 	    BUS_SPACE_MAXADDR,		/* highaddr */
811 	    NULL, NULL,			/* filter, filterarg */
812 	    MCLBYTES,			/* maxsize */
813 	    1,				/* nsegments */
814 	    MCLBYTES,			/* maxsegsize */
815 	    0,				/* flags */
816 	    NULL, NULL,			/* lockfunc, lockarg */
817 	    &sc->vte_cdata.vte_rx_tag);
818 	if (error != 0) {
819 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
820 		goto fail;
821 	}
822 	/* Create DMA maps for TX buffers. */
823 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
824 		txd = &sc->vte_cdata.vte_txdesc[i];
825 		txd->tx_m = NULL;
826 		txd->tx_dmamap = NULL;
827 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
828 		    &txd->tx_dmamap);
829 		if (error != 0) {
830 			device_printf(sc->vte_dev,
831 			    "could not create TX dmamap.\n");
832 			goto fail;
833 		}
834 	}
835 	/* Create DMA maps for RX buffers. */
836 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
837 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
838 		device_printf(sc->vte_dev,
839 		    "could not create spare RX dmamap.\n");
840 		goto fail;
841 	}
842 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
843 		rxd = &sc->vte_cdata.vte_rxdesc[i];
844 		rxd->rx_m = NULL;
845 		rxd->rx_dmamap = NULL;
846 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
847 		    &rxd->rx_dmamap);
848 		if (error != 0) {
849 			device_printf(sc->vte_dev,
850 			    "could not create RX dmamap.\n");
851 			goto fail;
852 		}
853 	}
854 
855 fail:
856 	return (error);
857 }
858 
859 static void
860 vte_dma_free(struct vte_softc *sc)
861 {
862 	struct vte_txdesc *txd;
863 	struct vte_rxdesc *rxd;
864 	int i;
865 
866 	/* TX buffers. */
867 	if (sc->vte_cdata.vte_tx_tag != NULL) {
868 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
869 			txd = &sc->vte_cdata.vte_txdesc[i];
870 			if (txd->tx_dmamap != NULL) {
871 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
872 				    txd->tx_dmamap);
873 				txd->tx_dmamap = NULL;
874 			}
875 		}
876 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
877 		sc->vte_cdata.vte_tx_tag = NULL;
878 	}
879 	/* RX buffers */
880 	if (sc->vte_cdata.vte_rx_tag != NULL) {
881 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
882 			rxd = &sc->vte_cdata.vte_rxdesc[i];
883 			if (rxd->rx_dmamap != NULL) {
884 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
885 				    rxd->rx_dmamap);
886 				rxd->rx_dmamap = NULL;
887 			}
888 		}
889 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
890 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
891 			    sc->vte_cdata.vte_rx_sparemap);
892 			sc->vte_cdata.vte_rx_sparemap = NULL;
893 		}
894 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
895 		sc->vte_cdata.vte_rx_tag = NULL;
896 	}
897 	/* TX descriptor ring. */
898 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
899 		if (sc->vte_cdata.vte_tx_ring_paddr != 0)
900 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
901 			    sc->vte_cdata.vte_tx_ring_map);
902 		if (sc->vte_cdata.vte_tx_ring != NULL)
903 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
904 			    sc->vte_cdata.vte_tx_ring,
905 			    sc->vte_cdata.vte_tx_ring_map);
906 		sc->vte_cdata.vte_tx_ring = NULL;
907 		sc->vte_cdata.vte_tx_ring_paddr = 0;
908 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
909 		sc->vte_cdata.vte_tx_ring_tag = NULL;
910 	}
911 	/* RX ring. */
912 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
913 		if (sc->vte_cdata.vte_rx_ring_paddr != 0)
914 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
915 			    sc->vte_cdata.vte_rx_ring_map);
916 		if (sc->vte_cdata.vte_rx_ring != NULL)
917 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
918 			    sc->vte_cdata.vte_rx_ring,
919 			    sc->vte_cdata.vte_rx_ring_map);
920 		sc->vte_cdata.vte_rx_ring = NULL;
921 		sc->vte_cdata.vte_rx_ring_paddr = 0;
922 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
923 		sc->vte_cdata.vte_rx_ring_tag = NULL;
924 	}
925 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
926 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
927 		sc->vte_cdata.vte_buffer_tag = NULL;
928 	}
929 	if (sc->vte_cdata.vte_parent_tag != NULL) {
930 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
931 		sc->vte_cdata.vte_parent_tag = NULL;
932 	}
933 }
934 
935 static int
936 vte_shutdown(device_t dev)
937 {
938 
939 	return (vte_suspend(dev));
940 }
941 
942 static int
943 vte_suspend(device_t dev)
944 {
945 	struct vte_softc *sc;
946 	struct ifnet *ifp;
947 
948 	sc = device_get_softc(dev);
949 
950 	VTE_LOCK(sc);
951 	ifp = sc->vte_ifp;
952 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
953 		vte_stop(sc);
954 	VTE_UNLOCK(sc);
955 
956 	return (0);
957 }
958 
959 static int
960 vte_resume(device_t dev)
961 {
962 	struct vte_softc *sc;
963 	struct ifnet *ifp;
964 
965 	sc = device_get_softc(dev);
966 
967 	VTE_LOCK(sc);
968 	ifp = sc->vte_ifp;
969 	if ((ifp->if_flags & IFF_UP) != 0) {
970 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
971 		vte_init_locked(sc);
972 	}
973 	VTE_UNLOCK(sc);
974 
975 	return (0);
976 }
977 
978 static struct vte_txdesc *
979 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
980 {
981 	struct vte_txdesc *txd;
982 	struct mbuf *m, *n;
983 	bus_dma_segment_t txsegs[1];
984 	int copy, error, nsegs, padlen;
985 
986 	VTE_LOCK_ASSERT(sc);
987 
988 	M_ASSERTPKTHDR((*m_head));
989 
990 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
991 	m = *m_head;
992 	/*
993 	 * Controller doesn't auto-pad, so we have to make sure pad
994 	 * short frames out to the minimum frame length.
995 	 */
996 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
997 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
998 	else
999 		padlen = 0;
1000 
1001 	/*
1002 	 * Controller does not support multi-fragmented TX buffers.
1003 	 * Controller spends most of its TX processing time in
1004 	 * de-fragmenting TX buffers.  Either faster CPU or more
1005 	 * advanced controller DMA engine is required to speed up
1006 	 * TX path processing.
1007 	 * To mitigate the de-fragmenting issue, perform deep copy
1008 	 * from fragmented mbuf chains to a pre-allocated mbuf
1009 	 * cluster with extra cost of kernel memory.  For frames
1010 	 * that is composed of single TX buffer, the deep copy is
1011 	 * bypassed.
1012 	 */
1013 	if (tx_deep_copy != 0) {
1014 		copy = 0;
1015 		if (m->m_next != NULL)
1016 			copy++;
1017 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1018 		    padlen > M_TRAILINGSPACE(m)))
1019 			copy++;
1020 		if (copy != 0) {
1021 			/* Avoid expensive m_defrag(9) and do deep copy. */
1022 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1023 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1024 			n->m_pkthdr.len = m->m_pkthdr.len;
1025 			n->m_len = m->m_pkthdr.len;
1026 			m = n;
1027 			txd->tx_flags |= VTE_TXMBUF;
1028 		}
1029 
1030 		if (padlen > 0) {
1031 			/* Zero out the bytes in the pad area. */
1032 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1033 			m->m_pkthdr.len += padlen;
1034 			m->m_len = m->m_pkthdr.len;
1035 		}
1036 	} else {
1037 		if (M_WRITABLE(m) == 0) {
1038 			if (m->m_next != NULL || padlen > 0) {
1039 				/* Get a writable copy. */
1040 				m = m_dup(*m_head, M_NOWAIT);
1041 				/* Release original mbuf chains. */
1042 				m_freem(*m_head);
1043 				if (m == NULL) {
1044 					*m_head = NULL;
1045 					return (NULL);
1046 				}
1047 				*m_head = m;
1048 			}
1049 		}
1050 
1051 		if (m->m_next != NULL) {
1052 			m = m_defrag(*m_head, M_NOWAIT);
1053 			if (m == NULL) {
1054 				m_freem(*m_head);
1055 				*m_head = NULL;
1056 				return (NULL);
1057 			}
1058 			*m_head = m;
1059 		}
1060 
1061 		if (padlen > 0) {
1062 			if (M_TRAILINGSPACE(m) < padlen) {
1063 				m = m_defrag(*m_head, M_NOWAIT);
1064 				if (m == NULL) {
1065 					m_freem(*m_head);
1066 					*m_head = NULL;
1067 					return (NULL);
1068 				}
1069 				*m_head = m;
1070 			}
1071 			/* Zero out the bytes in the pad area. */
1072 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1073 			m->m_pkthdr.len += padlen;
1074 			m->m_len = m->m_pkthdr.len;
1075 		}
1076 	}
1077 
1078 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1079 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1080 	if (error != 0) {
1081 		txd->tx_flags &= ~VTE_TXMBUF;
1082 		return (NULL);
1083 	}
1084 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1085 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1086 	    BUS_DMASYNC_PREWRITE);
1087 
1088 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1089 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1090 	sc->vte_cdata.vte_tx_cnt++;
1091 	/* Update producer index. */
1092 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1093 
1094 	/* Finally hand over ownership to controller. */
1095 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1096 	txd->tx_m = m;
1097 
1098 	return (txd);
1099 }
1100 
1101 static void
1102 vte_start(struct ifnet *ifp)
1103 {
1104 	struct vte_softc *sc;
1105 
1106 	sc = ifp->if_softc;
1107 	VTE_LOCK(sc);
1108 	vte_start_locked(sc);
1109 	VTE_UNLOCK(sc);
1110 }
1111 
1112 static void
1113 vte_start_locked(struct vte_softc *sc)
1114 {
1115 	struct ifnet *ifp;
1116 	struct vte_txdesc *txd;
1117 	struct mbuf *m_head;
1118 	int enq;
1119 
1120 	ifp = sc->vte_ifp;
1121 
1122 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1123 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1124 		return;
1125 
1126 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1127 		/* Reserve one free TX descriptor. */
1128 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1129 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1130 			break;
1131 		}
1132 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1133 		if (m_head == NULL)
1134 			break;
1135 		/*
1136 		 * Pack the data into the transmit ring. If we
1137 		 * don't have room, set the OACTIVE flag and wait
1138 		 * for the NIC to drain the ring.
1139 		 */
1140 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1141 			if (m_head != NULL)
1142 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1143 			break;
1144 		}
1145 
1146 		enq++;
1147 		/*
1148 		 * If there's a BPF listener, bounce a copy of this frame
1149 		 * to him.
1150 		 */
1151 		ETHER_BPF_MTAP(ifp, m_head);
1152 		/* Free consumed TX frame. */
1153 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1154 			m_freem(m_head);
1155 	}
1156 
1157 	if (enq > 0) {
1158 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1159 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1160 		    BUS_DMASYNC_PREWRITE);
1161 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1162 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1163 	}
1164 }
1165 
1166 static void
1167 vte_watchdog(struct vte_softc *sc)
1168 {
1169 	struct ifnet *ifp;
1170 
1171 	VTE_LOCK_ASSERT(sc);
1172 
1173 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1174 		return;
1175 
1176 	ifp = sc->vte_ifp;
1177 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1178 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1179 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1180 	vte_init_locked(sc);
1181 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1182 		vte_start_locked(sc);
1183 }
1184 
1185 static int
1186 vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1187 {
1188 	struct vte_softc *sc;
1189 	struct ifreq *ifr;
1190 	struct mii_data *mii;
1191 	int error;
1192 
1193 	sc = ifp->if_softc;
1194 	ifr = (struct ifreq *)data;
1195 	error = 0;
1196 	switch (cmd) {
1197 	case SIOCSIFFLAGS:
1198 		VTE_LOCK(sc);
1199 		if ((ifp->if_flags & IFF_UP) != 0) {
1200 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1201 			    ((ifp->if_flags ^ sc->vte_if_flags) &
1202 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1203 				vte_rxfilter(sc);
1204 			else
1205 				vte_init_locked(sc);
1206 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1207 			vte_stop(sc);
1208 		sc->vte_if_flags = ifp->if_flags;
1209 		VTE_UNLOCK(sc);
1210 		break;
1211 	case SIOCADDMULTI:
1212 	case SIOCDELMULTI:
1213 		VTE_LOCK(sc);
1214 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1215 			vte_rxfilter(sc);
1216 		VTE_UNLOCK(sc);
1217 		break;
1218 	case SIOCSIFMEDIA:
1219 	case SIOCGIFMEDIA:
1220 		mii = device_get_softc(sc->vte_miibus);
1221 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1222 		break;
1223 	default:
1224 		error = ether_ioctl(ifp, cmd, data);
1225 		break;
1226 	}
1227 
1228 	return (error);
1229 }
1230 
1231 static void
1232 vte_mac_config(struct vte_softc *sc)
1233 {
1234 	struct mii_data *mii;
1235 	uint16_t mcr;
1236 
1237 	VTE_LOCK_ASSERT(sc);
1238 
1239 	mii = device_get_softc(sc->vte_miibus);
1240 	mcr = CSR_READ_2(sc, VTE_MCR0);
1241 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1242 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1243 		mcr |= MCR0_FULL_DUPLEX;
1244 #ifdef notyet
1245 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1246 			mcr |= MCR0_FC_ENB;
1247 		/*
1248 		 * The data sheet is not clear whether the controller
1249 		 * honors received pause frames or not.  The is no
1250 		 * separate control bit for RX pause frame so just
1251 		 * enable MCR0_FC_ENB bit.
1252 		 */
1253 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1254 			mcr |= MCR0_FC_ENB;
1255 #endif
1256 	}
1257 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1258 }
1259 
1260 static void
1261 vte_stats_clear(struct vte_softc *sc)
1262 {
1263 
1264 	/* Reading counter registers clears its contents. */
1265 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1266 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1267 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1268 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1269 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1270 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1271 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1272 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1273 }
1274 
1275 static void
1276 vte_stats_update(struct vte_softc *sc)
1277 {
1278 	struct vte_hw_stats *stat;
1279 	uint16_t value;
1280 
1281 	VTE_LOCK_ASSERT(sc);
1282 
1283 	stat = &sc->vte_stats;
1284 
1285 	CSR_READ_2(sc, VTE_MECISR);
1286 	/* RX stats. */
1287 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1288 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1289 	stat->rx_bcast_frames += (value >> 8);
1290 	stat->rx_mcast_frames += (value & 0xFF);
1291 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1292 	stat->rx_runts += (value >> 8);
1293 	stat->rx_crcerrs += (value & 0xFF);
1294 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1295 	stat->rx_long_frames += (value & 0xFF);
1296 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1297 	stat->rx_fifo_full += (value >> 8);
1298 	stat->rx_desc_unavail += (value & 0xFF);
1299 
1300 	/* TX stats. */
1301 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1302 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1303 	stat->tx_underruns += (value >> 8);
1304 	stat->tx_late_colls += (value & 0xFF);
1305 
1306 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1307 	stat->tx_pause_frames += (value >> 8);
1308 	stat->rx_pause_frames += (value & 0xFF);
1309 }
1310 
1311 static uint64_t
1312 vte_get_counter(struct ifnet *ifp, ift_counter cnt)
1313 {
1314 	struct vte_softc *sc;
1315 	struct vte_hw_stats *stat;
1316 
1317 	sc = if_getsoftc(ifp);
1318 	stat = &sc->vte_stats;
1319 
1320 	switch (cnt) {
1321 	case IFCOUNTER_OPACKETS:
1322 		return (stat->tx_frames);
1323 	case IFCOUNTER_COLLISIONS:
1324 		return (stat->tx_late_colls);
1325 	case IFCOUNTER_OERRORS:
1326 		return (stat->tx_late_colls + stat->tx_underruns);
1327 	case IFCOUNTER_IPACKETS:
1328 		return (stat->rx_frames);
1329 	case IFCOUNTER_IERRORS:
1330 		return (stat->rx_crcerrs + stat->rx_runts +
1331 		    stat->rx_long_frames + stat->rx_fifo_full);
1332 	default:
1333 		return (if_get_counter_default(ifp, cnt));
1334 	}
1335 }
1336 
1337 static void
1338 vte_intr(void *arg)
1339 {
1340 	struct vte_softc *sc;
1341 	struct ifnet *ifp;
1342 	uint16_t status;
1343 	int n;
1344 
1345 	sc = (struct vte_softc *)arg;
1346 	VTE_LOCK(sc);
1347 
1348 	ifp = sc->vte_ifp;
1349 	/* Reading VTE_MISR acknowledges interrupts. */
1350 	status = CSR_READ_2(sc, VTE_MISR);
1351 	if ((status & VTE_INTRS) == 0) {
1352 		/* Not ours. */
1353 		VTE_UNLOCK(sc);
1354 		return;
1355 	}
1356 
1357 	/* Disable interrupts. */
1358 	CSR_WRITE_2(sc, VTE_MIER, 0);
1359 	for (n = 8; (status & VTE_INTRS) != 0;) {
1360 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1361 			break;
1362 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1363 		    MISR_RX_FIFO_FULL)) != 0)
1364 			vte_rxeof(sc);
1365 		if ((status & MISR_TX_DONE) != 0)
1366 			vte_txeof(sc);
1367 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1368 			vte_stats_update(sc);
1369 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1370 			vte_start_locked(sc);
1371 		if (--n > 0)
1372 			status = CSR_READ_2(sc, VTE_MISR);
1373 		else
1374 			break;
1375 	}
1376 
1377 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1378 		/* Re-enable interrupts. */
1379 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1380 	}
1381 	VTE_UNLOCK(sc);
1382 }
1383 
1384 static void
1385 vte_txeof(struct vte_softc *sc)
1386 {
1387 	struct ifnet *ifp;
1388 	struct vte_txdesc *txd;
1389 	uint16_t status;
1390 	int cons, prog;
1391 
1392 	VTE_LOCK_ASSERT(sc);
1393 
1394 	ifp = sc->vte_ifp;
1395 
1396 	if (sc->vte_cdata.vte_tx_cnt == 0)
1397 		return;
1398 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1399 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1400 	    BUS_DMASYNC_POSTWRITE);
1401 	cons = sc->vte_cdata.vte_tx_cons;
1402 	/*
1403 	 * Go through our TX list and free mbufs for those
1404 	 * frames which have been transmitted.
1405 	 */
1406 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1407 		txd = &sc->vte_cdata.vte_txdesc[cons];
1408 		status = le16toh(txd->tx_desc->dtst);
1409 		if ((status & VTE_DTST_TX_OWN) != 0)
1410 			break;
1411 		sc->vte_cdata.vte_tx_cnt--;
1412 		/* Reclaim transmitted mbufs. */
1413 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1414 		    BUS_DMASYNC_POSTWRITE);
1415 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1416 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1417 			m_freem(txd->tx_m);
1418 		txd->tx_flags &= ~VTE_TXMBUF;
1419 		txd->tx_m = NULL;
1420 		prog++;
1421 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1422 	}
1423 
1424 	if (prog > 0) {
1425 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1426 		sc->vte_cdata.vte_tx_cons = cons;
1427 		/*
1428 		 * Unarm watchdog timer only when there is no pending
1429 		 * frames in TX queue.
1430 		 */
1431 		if (sc->vte_cdata.vte_tx_cnt == 0)
1432 			sc->vte_watchdog_timer = 0;
1433 	}
1434 }
1435 
1436 static int
1437 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1438 {
1439 	struct mbuf *m;
1440 	bus_dma_segment_t segs[1];
1441 	bus_dmamap_t map;
1442 	int nsegs;
1443 
1444 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1445 	if (m == NULL)
1446 		return (ENOBUFS);
1447 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1448 	m_adj(m, sizeof(uint32_t));
1449 
1450 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1451 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1452 		m_freem(m);
1453 		return (ENOBUFS);
1454 	}
1455 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1456 
1457 	if (rxd->rx_m != NULL) {
1458 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1459 		    BUS_DMASYNC_POSTREAD);
1460 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1461 	}
1462 	map = rxd->rx_dmamap;
1463 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1464 	sc->vte_cdata.vte_rx_sparemap = map;
1465 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1466 	    BUS_DMASYNC_PREREAD);
1467 	rxd->rx_m = m;
1468 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1469 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1470 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1471 
1472 	return (0);
1473 }
1474 
1475 /*
1476  * It's not supposed to see this controller on strict-alignment
1477  * architectures but make it work for completeness.
1478  */
1479 #ifndef __NO_STRICT_ALIGNMENT
1480 static struct mbuf *
1481 vte_fixup_rx(struct ifnet *ifp, struct mbuf *m)
1482 {
1483         uint16_t *src, *dst;
1484         int i;
1485 
1486 	src = mtod(m, uint16_t *);
1487 	dst = src - 1;
1488 
1489 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1490 		*dst++ = *src++;
1491 	m->m_data -= ETHER_ALIGN;
1492 	return (m);
1493 }
1494 #endif
1495 
1496 static void
1497 vte_rxeof(struct vte_softc *sc)
1498 {
1499 	struct ifnet *ifp;
1500 	struct vte_rxdesc *rxd;
1501 	struct mbuf *m;
1502 	uint16_t status, total_len;
1503 	int cons, prog;
1504 
1505 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1506 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1507 	    BUS_DMASYNC_POSTWRITE);
1508 	cons = sc->vte_cdata.vte_rx_cons;
1509 	ifp = sc->vte_ifp;
1510 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; prog++,
1511 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1512 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1513 		status = le16toh(rxd->rx_desc->drst);
1514 		if ((status & VTE_DRST_RX_OWN) != 0)
1515 			break;
1516 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1517 		m = rxd->rx_m;
1518 		if ((status & VTE_DRST_RX_OK) == 0) {
1519 			/* Discard errored frame. */
1520 			rxd->rx_desc->drlen =
1521 			    htole16(MCLBYTES - sizeof(uint32_t));
1522 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1523 			continue;
1524 		}
1525 		if (vte_newbuf(sc, rxd) != 0) {
1526 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1527 			rxd->rx_desc->drlen =
1528 			    htole16(MCLBYTES - sizeof(uint32_t));
1529 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1530 			continue;
1531 		}
1532 
1533 		/*
1534 		 * It seems there is no way to strip FCS bytes.
1535 		 */
1536 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1537 		m->m_pkthdr.rcvif = ifp;
1538 #ifndef __NO_STRICT_ALIGNMENT
1539 		vte_fixup_rx(ifp, m);
1540 #endif
1541 		VTE_UNLOCK(sc);
1542 		(*ifp->if_input)(ifp, m);
1543 		VTE_LOCK(sc);
1544 	}
1545 
1546 	if (prog > 0) {
1547 		/* Update the consumer index. */
1548 		sc->vte_cdata.vte_rx_cons = cons;
1549 		/*
1550 		 * Sync updated RX descriptors such that controller see
1551 		 * modified RX buffer addresses.
1552 		 */
1553 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1554 		    sc->vte_cdata.vte_rx_ring_map,
1555 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1556 #ifdef notyet
1557 		/*
1558 		 * Update residue counter.  Controller does not
1559 		 * keep track of number of available RX descriptors
1560 		 * such that driver should have to update VTE_MRDCR
1561 		 * to make controller know how many free RX
1562 		 * descriptors were added to controller.  This is
1563 		 * a similar mechanism used in VIA velocity
1564 		 * controllers and it indicates controller just
1565 		 * polls OWN bit of current RX descriptor pointer.
1566 		 * A couple of severe issues were seen on sample
1567 		 * board where the controller continuously emits TX
1568 		 * pause frames once RX pause threshold crossed.
1569 		 * Once triggered it never recovered form that
1570 		 * state, I couldn't find a way to make it back to
1571 		 * work at least.  This issue effectively
1572 		 * disconnected the system from network.  Also, the
1573 		 * controller used 00:00:00:00:00:00 as source
1574 		 * station address of TX pause frame. Probably this
1575 		 * is one of reason why vendor recommends not to
1576 		 * enable flow control on R6040 controller.
1577 		 */
1578 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1579 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1580 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1581 #endif
1582 	}
1583 }
1584 
1585 static void
1586 vte_tick(void *arg)
1587 {
1588 	struct vte_softc *sc;
1589 	struct mii_data *mii;
1590 
1591 	sc = (struct vte_softc *)arg;
1592 
1593 	VTE_LOCK_ASSERT(sc);
1594 
1595 	mii = device_get_softc(sc->vte_miibus);
1596 	mii_tick(mii);
1597 	vte_stats_update(sc);
1598 	vte_txeof(sc);
1599 	vte_watchdog(sc);
1600 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1601 }
1602 
1603 static void
1604 vte_reset(struct vte_softc *sc)
1605 {
1606 	uint16_t mcr;
1607 	int i;
1608 
1609 	mcr = CSR_READ_2(sc, VTE_MCR1);
1610 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1611 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1612 		DELAY(10);
1613 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1614 			break;
1615 	}
1616 	if (i == 0)
1617 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1618 	/*
1619 	 * Follow the guide of vendor recommended way to reset MAC.
1620 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1621 	 * not reliable so manually reset internal state machine.
1622 	 */
1623 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1624 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1625 	DELAY(5000);
1626 }
1627 
1628 static void
1629 vte_init(void *xsc)
1630 {
1631 	struct vte_softc *sc;
1632 
1633 	sc = (struct vte_softc *)xsc;
1634 	VTE_LOCK(sc);
1635 	vte_init_locked(sc);
1636 	VTE_UNLOCK(sc);
1637 }
1638 
1639 static void
1640 vte_init_locked(struct vte_softc *sc)
1641 {
1642 	struct ifnet *ifp;
1643 	bus_addr_t paddr;
1644 	uint8_t *eaddr;
1645 
1646 	VTE_LOCK_ASSERT(sc);
1647 
1648 	ifp = sc->vte_ifp;
1649 
1650 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1651 		return;
1652 	/*
1653 	 * Cancel any pending I/O.
1654 	 */
1655 	vte_stop(sc);
1656 	/*
1657 	 * Reset the chip to a known state.
1658 	 */
1659 	vte_reset(sc);
1660 
1661 	/* Initialize RX descriptors. */
1662 	if (vte_init_rx_ring(sc) != 0) {
1663 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1664 		vte_stop(sc);
1665 		return;
1666 	}
1667 	if (vte_init_tx_ring(sc) != 0) {
1668 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1669 		vte_stop(sc);
1670 		return;
1671 	}
1672 
1673 	/*
1674 	 * Reprogram the station address.  Controller supports up
1675 	 * to 4 different station addresses so driver programs the
1676 	 * first station address as its own ethernet address and
1677 	 * configure the remaining three addresses as perfect
1678 	 * multicast addresses.
1679 	 */
1680 	eaddr = IF_LLADDR(sc->vte_ifp);
1681 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1682 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1683 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1684 
1685 	/* Set TX descriptor base addresses. */
1686 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1687 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1688 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1689 	/* Set RX descriptor base addresses. */
1690 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1691 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1692 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1693 	/*
1694 	 * Initialize RX descriptor residue counter and set RX
1695 	 * pause threshold to 20% of available RX descriptors.
1696 	 * See comments on vte_rxeof() for details on flow control
1697 	 * issues.
1698 	 */
1699 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1700 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1701 
1702 	/*
1703 	 * Always use maximum frame size that controller can
1704 	 * support.  Otherwise received frames that has longer
1705 	 * frame length than vte(4) MTU would be silently dropped
1706 	 * in controller.  This would break path-MTU discovery as
1707 	 * sender wouldn't get any responses from receiver. The
1708 	 * RX buffer size should be multiple of 4.
1709 	 * Note, jumbo frames are silently ignored by controller
1710 	 * and even MAC counters do not detect them.
1711 	 */
1712 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1713 
1714 	/* Configure FIFO. */
1715 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1716 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1717 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1718 
1719 	/*
1720 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1721 	 * control configuration is done after detecting a valid
1722 	 * link.  Note, we don't generate early interrupt here
1723 	 * as well since FreeBSD does not have interrupt latency
1724 	 * problems like Windows.
1725 	 */
1726 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1727 	/*
1728 	 * We manually keep track of PHY status changes to
1729 	 * configure resolved duplex and flow control since only
1730 	 * duplex configuration can be automatically reflected to
1731 	 * MCR0.
1732 	 */
1733 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1734 	    MCR1_EXCESS_COL_RETRY_16);
1735 
1736 	/* Initialize RX filter. */
1737 	vte_rxfilter(sc);
1738 
1739 	/* Disable TX/RX interrupt moderation control. */
1740 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1741 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1742 
1743 	/* Enable MAC event counter interrupts. */
1744 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1745 	/* Clear MAC statistics. */
1746 	vte_stats_clear(sc);
1747 
1748 	/* Acknowledge all pending interrupts and clear it. */
1749 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1750 	CSR_WRITE_2(sc, VTE_MISR, 0);
1751 
1752 	sc->vte_flags &= ~VTE_FLAG_LINK;
1753 	/* Switch to the current media. */
1754 	vte_mediachange_locked(ifp);
1755 
1756 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1757 
1758 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1759 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1760 }
1761 
1762 static void
1763 vte_stop(struct vte_softc *sc)
1764 {
1765 	struct ifnet *ifp;
1766 	struct vte_txdesc *txd;
1767 	struct vte_rxdesc *rxd;
1768 	int i;
1769 
1770 	VTE_LOCK_ASSERT(sc);
1771 	/*
1772 	 * Mark the interface down and cancel the watchdog timer.
1773 	 */
1774 	ifp = sc->vte_ifp;
1775 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1776 	sc->vte_flags &= ~VTE_FLAG_LINK;
1777 	callout_stop(&sc->vte_tick_ch);
1778 	sc->vte_watchdog_timer = 0;
1779 	vte_stats_update(sc);
1780 	/* Disable interrupts. */
1781 	CSR_WRITE_2(sc, VTE_MIER, 0);
1782 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1783 	/* Stop RX/TX MACs. */
1784 	vte_stop_mac(sc);
1785 	/* Clear interrupts. */
1786 	CSR_READ_2(sc, VTE_MISR);
1787 	/*
1788 	 * Free TX/RX mbufs still in the queues.
1789 	 */
1790 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1791 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1792 		if (rxd->rx_m != NULL) {
1793 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1794 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1795 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1796 			    rxd->rx_dmamap);
1797 			m_freem(rxd->rx_m);
1798 			rxd->rx_m = NULL;
1799 		}
1800 	}
1801 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1802 		txd = &sc->vte_cdata.vte_txdesc[i];
1803 		if (txd->tx_m != NULL) {
1804 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1805 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1806 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1807 			    txd->tx_dmamap);
1808 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1809 				m_freem(txd->tx_m);
1810 			txd->tx_m = NULL;
1811 			txd->tx_flags &= ~VTE_TXMBUF;
1812 		}
1813 	}
1814 	/* Free TX mbuf pools used for deep copy. */
1815 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1816 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1817 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1818 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1819 		}
1820 	}
1821 }
1822 
1823 static void
1824 vte_start_mac(struct vte_softc *sc)
1825 {
1826 	uint16_t mcr;
1827 	int i;
1828 
1829 	VTE_LOCK_ASSERT(sc);
1830 
1831 	/* Enable RX/TX MACs. */
1832 	mcr = CSR_READ_2(sc, VTE_MCR0);
1833 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1834 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1835 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1836 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1837 		for (i = VTE_TIMEOUT; i > 0; i--) {
1838 			mcr = CSR_READ_2(sc, VTE_MCR0);
1839 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1840 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1841 				break;
1842 			DELAY(10);
1843 		}
1844 		if (i == 0)
1845 			device_printf(sc->vte_dev,
1846 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1847 	}
1848 }
1849 
1850 static void
1851 vte_stop_mac(struct vte_softc *sc)
1852 {
1853 	uint16_t mcr;
1854 	int i;
1855 
1856 	VTE_LOCK_ASSERT(sc);
1857 
1858 	/* Disable RX/TX MACs. */
1859 	mcr = CSR_READ_2(sc, VTE_MCR0);
1860 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1861 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1862 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1863 		for (i = VTE_TIMEOUT; i > 0; i--) {
1864 			mcr = CSR_READ_2(sc, VTE_MCR0);
1865 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1866 				break;
1867 			DELAY(10);
1868 		}
1869 		if (i == 0)
1870 			device_printf(sc->vte_dev,
1871 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1872 	}
1873 }
1874 
1875 static int
1876 vte_init_tx_ring(struct vte_softc *sc)
1877 {
1878 	struct vte_tx_desc *desc;
1879 	struct vte_txdesc *txd;
1880 	bus_addr_t addr;
1881 	int i;
1882 
1883 	VTE_LOCK_ASSERT(sc);
1884 
1885 	sc->vte_cdata.vte_tx_prod = 0;
1886 	sc->vte_cdata.vte_tx_cons = 0;
1887 	sc->vte_cdata.vte_tx_cnt = 0;
1888 
1889 	/* Pre-allocate TX mbufs for deep copy. */
1890 	if (tx_deep_copy != 0) {
1891 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1892 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1893 			    MT_DATA, M_PKTHDR);
1894 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1895 				return (ENOBUFS);
1896 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1897 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1898 		}
1899 	}
1900 	desc = sc->vte_cdata.vte_tx_ring;
1901 	bzero(desc, VTE_TX_RING_SZ);
1902 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1903 		txd = &sc->vte_cdata.vte_txdesc[i];
1904 		txd->tx_m = NULL;
1905 		if (i != VTE_TX_RING_CNT - 1)
1906 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1907 			    sizeof(struct vte_tx_desc) * (i + 1);
1908 		else
1909 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1910 			    sizeof(struct vte_tx_desc) * 0;
1911 		desc = &sc->vte_cdata.vte_tx_ring[i];
1912 		desc->dtnp = htole32(addr);
1913 		txd->tx_desc = desc;
1914 	}
1915 
1916 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1917 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1918 	    BUS_DMASYNC_PREWRITE);
1919 	return (0);
1920 }
1921 
1922 static int
1923 vte_init_rx_ring(struct vte_softc *sc)
1924 {
1925 	struct vte_rx_desc *desc;
1926 	struct vte_rxdesc *rxd;
1927 	bus_addr_t addr;
1928 	int i;
1929 
1930 	VTE_LOCK_ASSERT(sc);
1931 
1932 	sc->vte_cdata.vte_rx_cons = 0;
1933 	desc = sc->vte_cdata.vte_rx_ring;
1934 	bzero(desc, VTE_RX_RING_SZ);
1935 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1936 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1937 		rxd->rx_m = NULL;
1938 		if (i != VTE_RX_RING_CNT - 1)
1939 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1940 			    sizeof(struct vte_rx_desc) * (i + 1);
1941 		else
1942 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1943 			    sizeof(struct vte_rx_desc) * 0;
1944 		desc = &sc->vte_cdata.vte_rx_ring[i];
1945 		desc->drnp = htole32(addr);
1946 		rxd->rx_desc = desc;
1947 		if (vte_newbuf(sc, rxd) != 0)
1948 			return (ENOBUFS);
1949 	}
1950 
1951 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1952 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1953 	    BUS_DMASYNC_PREWRITE);
1954 
1955 	return (0);
1956 }
1957 
1958 static void
1959 vte_rxfilter(struct vte_softc *sc)
1960 {
1961 	struct ifnet *ifp;
1962 	struct ifmultiaddr *ifma;
1963 	uint8_t *eaddr;
1964 	uint32_t crc;
1965 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1966 	uint16_t mchash[4], mcr;
1967 	int i, nperf;
1968 
1969 	VTE_LOCK_ASSERT(sc);
1970 
1971 	ifp = sc->vte_ifp;
1972 
1973 	bzero(mchash, sizeof(mchash));
1974 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1975 		rxfilt_perf[i][0] = 0xFFFF;
1976 		rxfilt_perf[i][1] = 0xFFFF;
1977 		rxfilt_perf[i][2] = 0xFFFF;
1978 	}
1979 
1980 	mcr = CSR_READ_2(sc, VTE_MCR0);
1981 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
1982 	mcr |= MCR0_BROADCAST_DIS;
1983 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1984 		mcr &= ~MCR0_BROADCAST_DIS;
1985 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1986 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1987 			mcr |= MCR0_PROMISC;
1988 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1989 			mcr |= MCR0_MULTICAST;
1990 		mchash[0] = 0xFFFF;
1991 		mchash[1] = 0xFFFF;
1992 		mchash[2] = 0xFFFF;
1993 		mchash[3] = 0xFFFF;
1994 		goto chipit;
1995 	}
1996 
1997 	nperf = 0;
1998 	if_maddr_rlock(ifp);
1999 	TAILQ_FOREACH(ifma, &sc->vte_ifp->if_multiaddrs, ifma_link) {
2000 		if (ifma->ifma_addr->sa_family != AF_LINK)
2001 			continue;
2002 		/*
2003 		 * Program the first 3 multicast groups into
2004 		 * the perfect filter.  For all others, use the
2005 		 * hash table.
2006 		 */
2007 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
2008 			eaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
2009 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
2010 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
2011 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
2012 			nperf++;
2013 			continue;
2014 		}
2015 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2016 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2017 		mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
2018 	}
2019 	if_maddr_runlock(ifp);
2020 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
2021 	    mchash[3] != 0)
2022 		mcr |= MCR0_MULTICAST;
2023 
2024 chipit:
2025 	/* Program multicast hash table. */
2026 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
2027 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
2028 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
2029 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
2030 	/* Program perfect filter table. */
2031 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2032 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2033 		    rxfilt_perf[i][0]);
2034 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2035 		    rxfilt_perf[i][1]);
2036 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2037 		    rxfilt_perf[i][2]);
2038 	}
2039 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2040 	CSR_READ_2(sc, VTE_MCR0);
2041 }
2042 
2043 static int
2044 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2045 {
2046 	int error, value;
2047 
2048 	if (arg1 == NULL)
2049 		return (EINVAL);
2050 	value = *(int *)arg1;
2051 	error = sysctl_handle_int(oidp, &value, 0, req);
2052 	if (error || req->newptr == NULL)
2053 		return (error);
2054 	if (value < low || value > high)
2055 		return (EINVAL);
2056 	*(int *)arg1 = value;
2057 
2058 	return (0);
2059 }
2060 
2061 static int
2062 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2063 {
2064 
2065 	return (sysctl_int_range(oidp, arg1, arg2, req,
2066 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2067 }
2068