1 /*- 2 * Copyright (c) 2005 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Copyright (c) 2009 The FreeBSD Foundation 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Ed Schouten 9 * under sponsorship from the FreeBSD Foundation. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_acpi.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/systm.h> 38 #include <sys/bus.h> 39 #include <sys/module.h> 40 #include <sys/rman.h> 41 42 #include <dev/vt/vt.h> 43 #include <dev/vt/colors/vt_termcolors.h> 44 #include <dev/vt/hw/vga/vt_vga_reg.h> 45 #include <dev/pci/pcivar.h> 46 47 #include <machine/bus.h> 48 #if defined(__amd64__) || defined(__i386__) 49 #include <contrib/dev/acpica/include/acpi.h> 50 #include <machine/md_var.h> 51 #endif 52 53 struct vga_softc { 54 bus_space_tag_t vga_fb_tag; 55 bus_space_handle_t vga_fb_handle; 56 bus_space_tag_t vga_reg_tag; 57 bus_space_handle_t vga_reg_handle; 58 int vga_wmode; 59 term_color_t vga_curfg, vga_curbg; 60 boolean_t vga_enabled; 61 }; 62 63 /* Convenience macros. */ 64 #define MEM_READ1(sc, ofs) \ 65 bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs) 66 #define MEM_WRITE1(sc, ofs, val) \ 67 bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val) 68 #define MEM_WRITE2(sc, ofs, val) \ 69 bus_space_write_2(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val) 70 #define REG_READ1(sc, reg) \ 71 bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg) 72 #define REG_WRITE1(sc, reg, val) \ 73 bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val) 74 75 #define VT_VGA_WIDTH 640 76 #define VT_VGA_HEIGHT 480 77 #define VT_VGA_MEMSIZE (VT_VGA_WIDTH * VT_VGA_HEIGHT / 8) 78 79 /* 80 * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of 81 * memory). 82 */ 83 #define VT_VGA_PIXELS_BLOCK 8 84 85 /* 86 * We use an off-screen addresses to: 87 * o store the background color; 88 * o store pixels pattern. 89 * Those addresses are then loaded in the latches once. 90 */ 91 #define VT_VGA_BGCOLOR_OFFSET VT_VGA_MEMSIZE 92 93 static vd_probe_t vga_probe; 94 static vd_init_t vga_init; 95 static vd_blank_t vga_blank; 96 static vd_bitblt_text_t vga_bitblt_text; 97 static vd_invalidate_text_t vga_invalidate_text; 98 static vd_bitblt_bmp_t vga_bitblt_bitmap; 99 static vd_drawrect_t vga_drawrect; 100 static vd_setpixel_t vga_setpixel; 101 static vd_postswitch_t vga_postswitch; 102 103 static const struct vt_driver vt_vga_driver = { 104 .vd_name = "vga", 105 .vd_probe = vga_probe, 106 .vd_init = vga_init, 107 .vd_blank = vga_blank, 108 .vd_bitblt_text = vga_bitblt_text, 109 .vd_invalidate_text = vga_invalidate_text, 110 .vd_bitblt_bmp = vga_bitblt_bitmap, 111 .vd_drawrect = vga_drawrect, 112 .vd_setpixel = vga_setpixel, 113 .vd_postswitch = vga_postswitch, 114 .vd_priority = VD_PRIORITY_GENERIC, 115 }; 116 117 /* 118 * Driver supports both text mode and graphics mode. Make sure the 119 * buffer is always big enough to support both. 120 */ 121 static struct vga_softc vga_conssoftc; 122 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver); 123 124 static inline void 125 vga_setwmode(struct vt_device *vd, int wmode) 126 { 127 struct vga_softc *sc = vd->vd_softc; 128 129 if (sc->vga_wmode == wmode) 130 return; 131 132 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 133 REG_WRITE1(sc, VGA_GC_DATA, wmode); 134 sc->vga_wmode = wmode; 135 136 switch (wmode) { 137 case 3: 138 /* Re-enable all planes. */ 139 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 140 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | 141 VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); 142 break; 143 } 144 } 145 146 static inline void 147 vga_setfg(struct vt_device *vd, term_color_t color) 148 { 149 struct vga_softc *sc = vd->vd_softc; 150 151 vga_setwmode(vd, 3); 152 153 if (sc->vga_curfg == color) 154 return; 155 156 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 157 REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]); 158 sc->vga_curfg = color; 159 } 160 161 static inline void 162 vga_setbg(struct vt_device *vd, term_color_t color) 163 { 164 struct vga_softc *sc = vd->vd_softc; 165 166 vga_setwmode(vd, 3); 167 168 if (sc->vga_curbg == color) 169 return; 170 171 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 172 REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]); 173 174 /* 175 * Write 8 pixels using the background color to an off-screen 176 * byte in the video memory. 177 */ 178 MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff); 179 180 /* 181 * Read those 8 pixels back to load the background color in the 182 * latches register. 183 */ 184 MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET); 185 186 sc->vga_curbg = color; 187 188 /* 189 * The Set/Reset register doesn't contain the fg color anymore, 190 * store an invalid color. 191 */ 192 sc->vga_curfg = 0xff; 193 } 194 195 /* 196 * Binary searchable table for Unicode to CP437 conversion. 197 */ 198 199 struct unicp437 { 200 uint16_t unicode_base; 201 uint8_t cp437_base; 202 uint8_t length; 203 }; 204 205 static const struct unicp437 cp437table[] = { 206 { 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 }, 207 { 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 }, 208 { 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 }, 209 { 0x00a6, 0x7c, 0x00 }, 210 { 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 }, 211 { 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 }, 212 { 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 }, 213 { 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 }, 214 { 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 }, 215 { 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 }, 216 { 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 }, 217 { 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 }, 218 { 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 }, 219 { 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 }, 220 { 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 }, 221 { 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 }, 222 { 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 }, 223 { 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 }, 224 { 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 }, 225 { 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 }, 226 { 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 }, 227 { 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 }, 228 { 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 }, 229 { 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 }, 230 { 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 }, 231 { 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 }, 232 { 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 }, 233 { 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 }, 234 { 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 }, 235 { 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 }, 236 { 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 }, 237 { 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 }, 238 { 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 }, 239 { 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 }, 240 { 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 }, 241 { 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 }, 242 { 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 }, 243 { 0x2013, 0x2d, 0x00 }, 244 { 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 }, 245 { 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 }, 246 { 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 }, 247 { 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 }, 248 { 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 }, 249 { 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 }, 250 { 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 }, 251 { 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 }, 252 { 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 }, 253 { 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 }, 254 { 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 }, 255 { 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 }, 256 { 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 }, 257 { 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 }, 258 { 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 }, 259 { 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 }, 260 { 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 }, 261 { 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 }, 262 { 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 }, 263 { 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 }, 264 { 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 }, 265 { 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 }, 266 { 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 }, 267 { 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 }, 268 { 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 }, 269 { 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 }, 270 { 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 }, 271 { 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 }, 272 { 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 }, 273 { 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 }, 274 { 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 }, 275 { 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 }, 276 { 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 }, 277 { 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 }, 278 { 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 }, 279 { 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 }, 280 { 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 }, 281 { 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 }, 282 { 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 }, 283 { 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 }, 284 { 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 }, 285 { 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 }, 286 { 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 }, 287 { 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 }, 288 { 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 }, 289 { 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 }, 290 { 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 }, 291 { 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 }, 292 { 0x266c, 0x0e, 0x00 }, { 0x2713, 0xfb, 0x00 }, 293 { 0x27e8, 0x3c, 0x00 }, { 0x27e9, 0x3e, 0x00 }, 294 }; 295 296 static uint8_t 297 vga_get_cp437(term_char_t c) 298 { 299 int min, mid, max; 300 301 min = 0; 302 max = nitems(cp437table) - 1; 303 304 if (c < cp437table[0].unicode_base || 305 c > cp437table[max].unicode_base + cp437table[max].length) 306 return '?'; 307 308 while (max >= min) { 309 mid = (min + max) / 2; 310 if (c < cp437table[mid].unicode_base) 311 max = mid - 1; 312 else if (c > cp437table[mid].unicode_base + 313 cp437table[mid].length) 314 min = mid + 1; 315 else 316 return (c - cp437table[mid].unicode_base + 317 cp437table[mid].cp437_base); 318 } 319 320 return '?'; 321 } 322 323 static void 324 vga_blank(struct vt_device *vd, term_color_t color) 325 { 326 struct vga_softc *sc = vd->vd_softc; 327 u_int ofs; 328 329 vga_setfg(vd, color); 330 for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) 331 MEM_WRITE1(sc, ofs, 0xff); 332 } 333 334 static inline void 335 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color, 336 uint8_t v) 337 { 338 struct vga_softc *sc = vd->vd_softc; 339 340 /* Skip empty writes, in order to avoid palette changes. */ 341 if (v != 0x00) { 342 vga_setfg(vd, color); 343 /* 344 * When this MEM_READ1() gets disabled, all sorts of 345 * artifacts occur. This is because this read loads the 346 * set of 8 pixels that are about to be changed. There 347 * is one scenario where we can avoid the read, namely 348 * if all pixels are about to be overwritten anyway. 349 */ 350 if (v != 0xff) { 351 MEM_READ1(sc, dst); 352 353 /* The bg color was trashed by the reads. */ 354 sc->vga_curbg = 0xff; 355 } 356 MEM_WRITE1(sc, dst, v); 357 } 358 } 359 360 static void 361 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color) 362 { 363 364 if (vd->vd_flags & VDF_TEXTMODE) 365 return; 366 367 vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color, 368 0x80 >> (x % 8)); 369 } 370 371 static void 372 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill, 373 term_color_t color) 374 { 375 int x, y; 376 377 if (vd->vd_flags & VDF_TEXTMODE) 378 return; 379 380 for (y = y1; y <= y2; y++) { 381 if (fill || (y == y1) || (y == y2)) { 382 for (x = x1; x <= x2; x++) 383 vga_setpixel(vd, x, y, color); 384 } else { 385 vga_setpixel(vd, x1, y, color); 386 vga_setpixel(vd, x2, y, color); 387 } 388 } 389 } 390 391 static void 392 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes, 393 unsigned int src_x, unsigned int x_count, unsigned int dst_x, 394 uint8_t *pattern, uint8_t *mask) 395 { 396 unsigned int n; 397 398 n = src_x / 8; 399 400 /* 401 * This mask has bits set, where a pixel (ether 0 or 1) 402 * comes from the source bitmap. 403 */ 404 if (mask != NULL) { 405 *mask = (0xff 406 >> (8 - x_count)) 407 << (8 - x_count - dst_x); 408 } 409 410 if (n == (src_x + x_count - 1) / 8) { 411 /* All the pixels we want are in the same byte. */ 412 *pattern = src[n]; 413 if (dst_x >= src_x) 414 *pattern >>= (dst_x - src_x % 8); 415 else 416 *pattern <<= (src_x % 8 - dst_x); 417 } else { 418 /* The pixels we want are split into two bytes. */ 419 if (dst_x >= src_x % 8) { 420 *pattern = 421 src[n] << (8 - dst_x - src_x % 8) | 422 src[n + 1] >> (dst_x - src_x % 8); 423 } else { 424 *pattern = 425 src[n] << (src_x % 8 - dst_x) | 426 src[n + 1] >> (8 - src_x % 8 - dst_x); 427 } 428 } 429 } 430 431 static void 432 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors, 433 const uint8_t *src, const uint8_t *src_mask, unsigned int src_width, 434 unsigned int src_x, unsigned int dst_x, unsigned int x_count, 435 unsigned int src_y, unsigned int dst_y, unsigned int y_count, 436 term_color_t fg, term_color_t bg, int overwrite) 437 { 438 unsigned int i, bytes; 439 uint8_t pattern, relevant_bits, mask; 440 441 bytes = (src_width + 7) / 8; 442 443 for (i = 0; i < y_count; ++i) { 444 vga_compute_shifted_pattern(src + (src_y + i) * bytes, 445 bytes, src_x, x_count, dst_x, &pattern, &relevant_bits); 446 447 if (src_mask == NULL) { 448 /* 449 * No src mask. Consider that all wanted bits 450 * from the source are "authoritative". 451 */ 452 mask = relevant_bits; 453 } else { 454 /* 455 * There's an src mask. We shift it the same way 456 * we shifted the source pattern. 457 */ 458 vga_compute_shifted_pattern( 459 src_mask + (src_y + i) * bytes, 460 bytes, src_x, x_count, dst_x, 461 &mask, NULL); 462 463 /* Now, only keep the wanted bits among them. */ 464 mask &= relevant_bits; 465 } 466 467 /* 468 * Clear bits from the pattern which must be 469 * transparent, according to the source mask. 470 */ 471 pattern &= mask; 472 473 /* Set the bits in the 2-colors array. */ 474 if (overwrite) 475 pattern_2colors[dst_y + i] &= ~mask; 476 pattern_2colors[dst_y + i] |= pattern; 477 478 if (pattern_ncolors == NULL) 479 continue; 480 481 /* 482 * Set the same bits in the n-colors array. This one 483 * supports transparency, when a given bit is cleared in 484 * all colors. 485 */ 486 if (overwrite) { 487 /* 488 * Ensure that the pixels used by this bitmap are 489 * cleared in other colors. 490 */ 491 for (int j = 0; j < 16; ++j) 492 pattern_ncolors[(dst_y + i) * 16 + j] &= 493 ~mask; 494 } 495 pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern; 496 pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask); 497 } 498 } 499 500 static void 501 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks, 502 term_color_t fg, term_color_t bg, 503 unsigned int x, unsigned int y, unsigned int height) 504 { 505 unsigned int i, offset; 506 struct vga_softc *sc; 507 508 /* 509 * The great advantage of Write Mode 3 is that we just need 510 * to load the foreground in the Set/Reset register, load the 511 * background color in the latches register (this is done 512 * through a write in offscreen memory followed by a read of 513 * that data), then write the pattern to video memory. This 514 * pattern indicates if the pixel should use the foreground 515 * color (bit set) or the background color (bit cleared). 516 */ 517 518 vga_setbg(vd, bg); 519 vga_setfg(vd, fg); 520 521 sc = vd->vd_softc; 522 offset = (VT_VGA_WIDTH * y + x) / 8; 523 524 for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) { 525 MEM_WRITE1(sc, offset, masks[i]); 526 } 527 } 528 529 static void 530 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks, 531 unsigned int x, unsigned int y, unsigned int height) 532 { 533 unsigned int i, j, plane, color, offset; 534 struct vga_softc *sc; 535 uint8_t mask, planes[height * 4]; 536 537 sc = vd->vd_softc; 538 539 memset(planes, 0, sizeof(planes)); 540 541 /* 542 * To write a group of pixels using 3 or more colors, we select 543 * Write Mode 0 and write one byte to each plane separately. 544 */ 545 546 /* 547 * We first compute each byte: each plane contains one bit of the 548 * color code for each of the 8 pixels. 549 * 550 * For example, if the 8 pixels are like this: 551 * GBBBBBBY 552 * where: 553 * G (gray) = 0b0111 554 * B (black) = 0b0000 555 * Y (yellow) = 0b0011 556 * 557 * The corresponding for bytes are: 558 * GBBBBBBY 559 * Plane 0: 10000001 = 0x81 560 * Plane 1: 10000001 = 0x81 561 * Plane 2: 10000000 = 0x80 562 * Plane 3: 00000000 = 0x00 563 * | | | 564 * | | +-> 0b0011 (Y) 565 * | +-----> 0b0000 (B) 566 * +--------> 0b0111 (G) 567 */ 568 569 for (i = 0; i < height; ++i) { 570 for (color = 0; color < 16; ++color) { 571 mask = masks[i * 16 + color]; 572 if (mask == 0x00) 573 continue; 574 575 for (j = 0; j < 8; ++j) { 576 if (!((mask >> (7 - j)) & 0x1)) 577 continue; 578 579 /* The pixel "j" uses color "color". */ 580 for (plane = 0; plane < 4; ++plane) 581 planes[i * 4 + plane] |= 582 ((cons_to_vga_colors[color] >> 583 plane) & 0x1) << (7 - j); 584 } 585 } 586 } 587 588 /* 589 * The bytes are ready: we now switch to Write Mode 0 and write 590 * all bytes, one plane at a time. 591 */ 592 vga_setwmode(vd, 0); 593 594 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 595 for (plane = 0; plane < 4; ++plane) { 596 /* Select plane. */ 597 REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plane); 598 599 /* Write all bytes for this plane, from Y to Y+height. */ 600 for (i = 0; i < height; ++i) { 601 offset = (VT_VGA_WIDTH * (y + i) + x) / 8; 602 MEM_WRITE1(sc, offset, planes[i * 4 + plane]); 603 } 604 } 605 } 606 607 static void 608 vga_bitblt_one_text_pixels_block(struct vt_device *vd, 609 const struct vt_window *vw, unsigned int x, unsigned int y) 610 { 611 const struct vt_buf *vb; 612 const struct vt_font *vf; 613 unsigned int i, col, row, src_x, x_count; 614 unsigned int used_colors_list[16], used_colors; 615 uint8_t pattern_2colors[vw->vw_font->vf_height]; 616 uint8_t pattern_ncolors[vw->vw_font->vf_height * 16]; 617 term_char_t c; 618 term_color_t fg, bg; 619 const uint8_t *src; 620 621 vb = &vw->vw_buf; 622 vf = vw->vw_font; 623 624 /* 625 * The current pixels block. 626 * 627 * We fill it with portions of characters, because both "grids" 628 * may not match. 629 * 630 * i is the index in this pixels block. 631 */ 632 633 i = x; 634 used_colors = 0; 635 memset(used_colors_list, 0, sizeof(used_colors_list)); 636 memset(pattern_2colors, 0, sizeof(pattern_2colors)); 637 memset(pattern_ncolors, 0, sizeof(pattern_ncolors)); 638 639 if (i < vw->vw_draw_area.tr_begin.tp_col) { 640 /* 641 * i is in the margin used to center the text area on 642 * the screen. 643 */ 644 645 i = vw->vw_draw_area.tr_begin.tp_col; 646 } 647 648 while (i < x + VT_VGA_PIXELS_BLOCK && 649 i < vw->vw_draw_area.tr_end.tp_col) { 650 /* 651 * Find which character is drawn on this pixel in the 652 * pixels block. 653 * 654 * While here, record what colors it uses. 655 */ 656 657 col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width; 658 row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height; 659 660 c = VTBUF_GET_FIELD(vb, row, col); 661 src = vtfont_lookup(vf, c); 662 663 vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg); 664 if ((used_colors_list[fg] & 0x1) != 0x1) 665 used_colors++; 666 if ((used_colors_list[bg] & 0x2) != 0x2) 667 used_colors++; 668 used_colors_list[fg] |= 0x1; 669 used_colors_list[bg] |= 0x2; 670 671 /* 672 * Compute the portion of the character we want to draw, 673 * because the pixels block may start in the middle of a 674 * character. 675 * 676 * The first pixel to draw in the character is 677 * the current position - 678 * the start position of the character 679 * 680 * The last pixel to draw is either 681 * - the last pixel of the character, or 682 * - the pixel of the character matching the end of 683 * the pixels block 684 * whichever comes first. This position is then 685 * changed to be relative to the start position of the 686 * character. 687 */ 688 689 src_x = i - 690 (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col); 691 x_count = min(min( 692 (col + 1) * vf->vf_width + 693 vw->vw_draw_area.tr_begin.tp_col, 694 x + VT_VGA_PIXELS_BLOCK), 695 vw->vw_draw_area.tr_end.tp_col); 696 x_count -= col * vf->vf_width + 697 vw->vw_draw_area.tr_begin.tp_col; 698 x_count -= src_x; 699 700 /* Copy a portion of the character. */ 701 vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, 702 src, NULL, vf->vf_width, 703 src_x, i % VT_VGA_PIXELS_BLOCK, x_count, 704 0, 0, vf->vf_height, fg, bg, 0); 705 706 /* We move to the next portion. */ 707 i += x_count; 708 } 709 710 #ifndef SC_NO_CUTPASTE 711 /* 712 * Copy the mouse pointer bitmap if it's over the current pixels 713 * block. 714 * 715 * We use the saved cursor position (saved in vt_flush()), because 716 * the current position could be different than the one used 717 * to mark the area dirty. 718 */ 719 term_rect_t drawn_area; 720 721 drawn_area.tr_begin.tp_col = x; 722 drawn_area.tr_begin.tp_row = y; 723 drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK; 724 drawn_area.tr_end.tp_row = y + vf->vf_height; 725 if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) { 726 struct vt_mouse_cursor *cursor; 727 unsigned int mx, my; 728 unsigned int dst_x, src_y, dst_y, y_count; 729 730 cursor = vd->vd_mcursor; 731 mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col; 732 my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row; 733 734 /* Compute the portion of the cursor we want to copy. */ 735 src_x = x > mx ? x - mx : 0; 736 dst_x = mx > x ? mx - x : 0; 737 x_count = min(min(min( 738 cursor->width - src_x, 739 x + VT_VGA_PIXELS_BLOCK - mx), 740 vw->vw_draw_area.tr_end.tp_col - mx), 741 VT_VGA_PIXELS_BLOCK); 742 743 /* 744 * The cursor isn't aligned on the Y-axis with 745 * characters, so we need to compute the vertical 746 * start/count. 747 */ 748 src_y = y > my ? y - my : 0; 749 dst_y = my > y ? my - y : 0; 750 y_count = min( 751 min(cursor->height - src_y, y + vf->vf_height - my), 752 vf->vf_height); 753 754 /* Copy the cursor portion. */ 755 vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, 756 cursor->map, cursor->mask, cursor->width, 757 src_x, dst_x, x_count, src_y, dst_y, y_count, 758 vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1); 759 760 if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1) 761 used_colors++; 762 if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2) 763 used_colors++; 764 } 765 #endif 766 767 /* 768 * The pixels block is completed, we can now draw it on the 769 * screen. 770 */ 771 if (used_colors == 2) 772 vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg, 773 x, y, vf->vf_height); 774 else 775 vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors, 776 x, y, vf->vf_height); 777 } 778 779 static void 780 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw, 781 const term_rect_t *area) 782 { 783 const struct vt_font *vf; 784 unsigned int col, row; 785 unsigned int x1, y1, x2, y2, x, y; 786 787 vf = vw->vw_font; 788 789 /* 790 * Compute the top-left pixel position aligned with the video 791 * adapter pixels block size. 792 * 793 * This is calculated from the top-left column of te dirty area: 794 * 795 * 1. Compute the top-left pixel of the character: 796 * col * font width + x offset 797 * 798 * NOTE: x offset is used to center the text area on the 799 * screen. It's expressed in pixels, not in characters 800 * col/row! 801 * 802 * 2. Find the pixel further on the left marking the start of 803 * an aligned pixels block (eg. chunk of 8 pixels): 804 * character's x / blocksize * blocksize 805 * 806 * The division, being made on integers, achieves the 807 * alignment. 808 * 809 * For the Y-axis, we need to compute the character's y 810 * coordinate, but we don't need to align it. 811 */ 812 813 col = area->tr_begin.tp_col; 814 row = area->tr_begin.tp_row; 815 x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col) 816 / VT_VGA_PIXELS_BLOCK) 817 * VT_VGA_PIXELS_BLOCK; 818 y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; 819 820 /* 821 * Compute the bottom right pixel position, again, aligned with 822 * the pixels block size. 823 * 824 * The same rules apply, we just add 1 to base the computation 825 * on the "right border" of the dirty area. 826 */ 827 828 col = area->tr_end.tp_col; 829 row = area->tr_end.tp_row; 830 x2 = (int)howmany(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col, 831 VT_VGA_PIXELS_BLOCK) 832 * VT_VGA_PIXELS_BLOCK; 833 y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; 834 835 /* Clip the area to the screen size. */ 836 x2 = min(x2, vw->vw_draw_area.tr_end.tp_col); 837 y2 = min(y2, vw->vw_draw_area.tr_end.tp_row); 838 839 /* 840 * Now, we take care of N pixels line at a time (the first for 841 * loop, N = font height), and for these lines, draw one pixels 842 * block at a time (the second for loop), not a character at a 843 * time. 844 * 845 * Therefore, on the X-axis, characters my be drawn partially if 846 * they are not aligned on 8-pixels boundary. 847 * 848 * However, the operation is repeated for the full height of the 849 * font before moving to the next character, because it allows 850 * to keep the color settings and write mode, before perhaps 851 * changing them with the next one. 852 */ 853 854 for (y = y1; y < y2; y += vf->vf_height) { 855 for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) { 856 vga_bitblt_one_text_pixels_block(vd, vw, x, y); 857 } 858 } 859 } 860 861 static void 862 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw, 863 const term_rect_t *area) 864 { 865 struct vga_softc *sc; 866 const struct vt_buf *vb; 867 unsigned int col, row; 868 term_char_t c; 869 term_color_t fg, bg; 870 uint8_t ch, attr; 871 size_t z; 872 873 sc = vd->vd_softc; 874 vb = &vw->vw_buf; 875 876 for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) { 877 for (col = area->tr_begin.tp_col; 878 col < area->tr_end.tp_col; 879 ++col) { 880 /* 881 * Get next character and its associated fg/bg 882 * colors. 883 */ 884 c = VTBUF_GET_FIELD(vb, row, col); 885 vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), 886 &fg, &bg); 887 888 z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col; 889 if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) * 890 PIXEL_WIDTH(VT_FB_MAX_WIDTH)) 891 continue; 892 if (vd->vd_drawn && (vd->vd_drawn[z] == c) && 893 vd->vd_drawnfg && (vd->vd_drawnfg[z] == fg) && 894 vd->vd_drawnbg && (vd->vd_drawnbg[z] == bg)) 895 continue; 896 897 /* 898 * Convert character to CP437, which is the 899 * character set used by the VGA hardware by 900 * default. 901 */ 902 ch = vga_get_cp437(TCHAR_CHARACTER(c)); 903 904 /* Convert colors to VGA attributes. */ 905 attr = 906 cons_to_vga_colors[bg] << 4 | 907 cons_to_vga_colors[fg]; 908 909 MEM_WRITE2(sc, (row * 80 + col) * 2 + 0, 910 ch + ((uint16_t)(attr) << 8)); 911 912 if (vd->vd_drawn) 913 vd->vd_drawn[z] = c; 914 if (vd->vd_drawnfg) 915 vd->vd_drawnfg[z] = fg; 916 if (vd->vd_drawnbg) 917 vd->vd_drawnbg[z] = bg; 918 } 919 } 920 } 921 922 static void 923 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw, 924 const term_rect_t *area) 925 { 926 927 if (!(vd->vd_flags & VDF_TEXTMODE)) { 928 vga_bitblt_text_gfxmode(vd, vw, area); 929 } else { 930 vga_bitblt_text_txtmode(vd, vw, area); 931 } 932 } 933 934 void 935 vga_invalidate_text(struct vt_device *vd, const term_rect_t *area) 936 { 937 unsigned int col, row; 938 size_t z; 939 940 for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) { 941 for (col = area->tr_begin.tp_col; 942 col < area->tr_end.tp_col; 943 ++col) { 944 z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col; 945 if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) * 946 PIXEL_WIDTH(VT_FB_MAX_WIDTH)) 947 continue; 948 if (vd->vd_drawn) 949 vd->vd_drawn[z] = 0; 950 if (vd->vd_drawnfg) 951 vd->vd_drawnfg[z] = 0; 952 if (vd->vd_drawnbg) 953 vd->vd_drawnbg[z] = 0; 954 } 955 } 956 } 957 958 static void 959 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw, 960 const uint8_t *pattern, const uint8_t *mask, 961 unsigned int width, unsigned int height, 962 unsigned int x, unsigned int y, term_color_t fg, term_color_t bg) 963 { 964 unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count; 965 uint8_t pattern_2colors; 966 967 /* Align coordinates with the 8-pxels grid. */ 968 x1 = rounddown(x, VT_VGA_PIXELS_BLOCK); 969 y1 = y; 970 971 x2 = roundup(x + width, VT_VGA_PIXELS_BLOCK); 972 y2 = y + height; 973 x2 = min(x2, vd->vd_width - 1); 974 y2 = min(y2, vd->vd_height - 1); 975 976 for (j = y1; j < y2; ++j) { 977 src_x = 0; 978 dst_x = x - x1; 979 x_count = VT_VGA_PIXELS_BLOCK - dst_x; 980 981 for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) { 982 pattern_2colors = 0; 983 984 vga_copy_bitmap_portion( 985 &pattern_2colors, NULL, 986 pattern, mask, width, 987 src_x, dst_x, x_count, 988 j - y1, 0, 1, fg, bg, 0); 989 990 vga_bitblt_pixels_block_2colors(vd, 991 &pattern_2colors, fg, bg, 992 i, j, 1); 993 994 src_x += x_count; 995 dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK; 996 x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK); 997 } 998 } 999 } 1000 1001 static void 1002 vga_initialize_graphics(struct vt_device *vd) 1003 { 1004 struct vga_softc *sc = vd->vd_softc; 1005 1006 /* Clock select. */ 1007 REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP | 1008 VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA); 1009 /* Set sequencer clocking and memory mode. */ 1010 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE); 1011 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89); 1012 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE); 1013 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM); 1014 1015 /* Set the graphics controller in graphics mode. */ 1016 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS); 1017 REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA); 1018 /* Program the CRT controller. */ 1019 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL); 1020 REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f); /* 760 */ 1021 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END); 1022 REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f); /* 640 - 8 */ 1023 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK); 1024 REG_WRITE1(sc, VGA_CRTC_DATA, 0x50); /* 640 */ 1025 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK); 1026 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2); 1027 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE); 1028 REG_WRITE1(sc, VGA_CRTC_DATA, 0x54); /* 672 */ 1029 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE); 1030 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0); 1031 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL); 1032 REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b); /* 523 */ 1033 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW); 1034 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 | 1035 VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8); 1036 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE); 1037 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9); 1038 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START); 1039 REG_WRITE1(sc, VGA_CRTC_DATA, 0xea); /* 480 + 10 */ 1040 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); 1041 REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c); 1042 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END); 1043 REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf); /* 480 - 1*/ 1044 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET); 1045 REG_WRITE1(sc, VGA_CRTC_DATA, 0x28); 1046 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK); 1047 REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7); /* 480 + 7 */ 1048 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK); 1049 REG_WRITE1(sc, VGA_CRTC_DATA, 0x04); 1050 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1051 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW | 1052 VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS); 1053 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE); 1054 REG_WRITE1(sc, VGA_CRTC_DATA, 0xff); /* 480 + 31 */ 1055 1056 REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0); 1057 1058 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 1059 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | 1060 VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); 1061 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT); 1062 REG_WRITE1(sc, VGA_SEQ_DATA, 0); 1063 1064 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 1065 REG_WRITE1(sc, VGA_GC_DATA, 0); 1066 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); 1067 REG_WRITE1(sc, VGA_GC_DATA, 0x0f); 1068 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE); 1069 REG_WRITE1(sc, VGA_GC_DATA, 0); 1070 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE); 1071 REG_WRITE1(sc, VGA_GC_DATA, 0); 1072 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT); 1073 REG_WRITE1(sc, VGA_GC_DATA, 0); 1074 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 1075 REG_WRITE1(sc, VGA_GC_DATA, 0); 1076 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE); 1077 REG_WRITE1(sc, VGA_GC_DATA, 0x0f); 1078 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK); 1079 REG_WRITE1(sc, VGA_GC_DATA, 0xff); 1080 } 1081 1082 static int 1083 vga_initialize(struct vt_device *vd, int textmode) 1084 { 1085 struct vga_softc *sc = vd->vd_softc; 1086 uint8_t x; 1087 int timeout; 1088 1089 /* Make sure the VGA adapter is not in monochrome emulation mode. */ 1090 x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R); 1091 REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA); 1092 1093 /* Unprotect CRTC registers 0-7. */ 1094 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); 1095 x = REG_READ1(sc, VGA_CRTC_DATA); 1096 REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR); 1097 1098 /* 1099 * Wait for the vertical retrace. 1100 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has 1101 * the side-effect of clearing the internal flip-flip of the attribute 1102 * controller's write register. This means that because this code is 1103 * here, we know for sure that the first write to the attribute 1104 * controller will be a write to the address register. Removing this 1105 * code therefore also removes that guarantee and appropriate measures 1106 * need to be taken. 1107 */ 1108 timeout = 10000; 1109 do { 1110 DELAY(10); 1111 x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1); 1112 x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE; 1113 } while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE) && --timeout != 0); 1114 if (timeout == 0) { 1115 printf("Timeout initializing vt_vga\n"); 1116 return (ENXIO); 1117 } 1118 1119 /* Now, disable the sync. signals. */ 1120 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1121 x = REG_READ1(sc, VGA_CRTC_DATA); 1122 REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR); 1123 1124 /* Asynchronous sequencer reset. */ 1125 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); 1126 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR); 1127 1128 if (!textmode) 1129 vga_initialize_graphics(vd); 1130 1131 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN); 1132 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1133 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START); 1134 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO); 1135 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END); 1136 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1137 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH); 1138 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1139 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW); 1140 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1141 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH); 1142 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1143 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW); 1144 REG_WRITE1(sc, VGA_CRTC_DATA, 0x59); 1145 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC); 1146 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL); 1147 1148 if (textmode) { 1149 /* Set the attribute controller to blink disable. */ 1150 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); 1151 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1152 } else { 1153 /* Set the attribute controller in graphics mode. */ 1154 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); 1155 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA); 1156 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING); 1157 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1158 } 1159 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0)); 1160 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1161 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1)); 1162 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B); 1163 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2)); 1164 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G); 1165 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3)); 1166 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B); 1167 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4)); 1168 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R); 1169 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5)); 1170 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B); 1171 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6)); 1172 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R); 1173 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7)); 1174 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); 1175 1176 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8)); 1177 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1178 VGA_AC_PAL_SB); 1179 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9)); 1180 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1181 VGA_AC_PAL_SB | VGA_AC_PAL_B); 1182 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10)); 1183 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1184 VGA_AC_PAL_SB | VGA_AC_PAL_G); 1185 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11)); 1186 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1187 VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B); 1188 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12)); 1189 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1190 VGA_AC_PAL_SB | VGA_AC_PAL_R); 1191 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13)); 1192 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1193 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B); 1194 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14)); 1195 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1196 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G); 1197 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15)); 1198 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1199 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); 1200 1201 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR); 1202 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1203 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE); 1204 REG_WRITE1(sc, VGA_AC_WRITE, 0x0f); 1205 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT); 1206 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1207 1208 if (!textmode) { 1209 u_int ofs; 1210 1211 /* 1212 * Done. Clear the frame buffer. All bit planes are 1213 * enabled, so a single-paged loop should clear all 1214 * planes. 1215 */ 1216 for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) { 1217 MEM_WRITE1(sc, ofs, 0); 1218 } 1219 } 1220 1221 /* Re-enable the sequencer. */ 1222 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); 1223 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR); 1224 /* Re-enable the sync signals. */ 1225 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1226 x = REG_READ1(sc, VGA_CRTC_DATA); 1227 REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR); 1228 1229 if (!textmode) { 1230 /* Switch to write mode 3, because we'll mainly do bitblt. */ 1231 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 1232 REG_WRITE1(sc, VGA_GC_DATA, 3); 1233 sc->vga_wmode = 3; 1234 1235 /* 1236 * In Write Mode 3, Enable Set/Reset is ignored, but we 1237 * use Write Mode 0 to write a group of 8 pixels using 1238 * 3 or more colors. In this case, we want to disable 1239 * Set/Reset: set Enable Set/Reset to 0. 1240 */ 1241 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); 1242 REG_WRITE1(sc, VGA_GC_DATA, 0x00); 1243 1244 /* 1245 * Clear the colors we think are loaded into Set/Reset or 1246 * the latches. 1247 */ 1248 sc->vga_curfg = sc->vga_curbg = 0xff; 1249 } 1250 1251 return (0); 1252 } 1253 1254 static bool 1255 vga_acpi_disabled(void) 1256 { 1257 #if defined(__amd64__) || defined(__i386__) 1258 uint16_t flags; 1259 int ignore; 1260 1261 /* 1262 * Ignore the flag on real hardware: there's a lot of buggy firmware 1263 * that will wrongly set it. 1264 */ 1265 ignore = (vm_guest == VM_GUEST_NO); 1266 TUNABLE_INT_FETCH("hw.vga.acpi_ignore_no_vga", &ignore); 1267 if (ignore || !acpi_get_fadt_bootflags(&flags)) 1268 return (false); 1269 return ((flags & ACPI_FADT_NO_VGA) != 0); 1270 #else 1271 return (false); 1272 #endif 1273 } 1274 1275 static int 1276 vga_probe(struct vt_device *vd) 1277 { 1278 1279 return (vga_acpi_disabled() ? CN_DEAD : CN_INTERNAL); 1280 } 1281 1282 static int 1283 vga_init(struct vt_device *vd) 1284 { 1285 struct vga_softc *sc; 1286 int textmode; 1287 1288 if (vd->vd_softc == NULL) 1289 vd->vd_softc = (void *)&vga_conssoftc; 1290 sc = vd->vd_softc; 1291 1292 if (vd->vd_flags & VDF_DOWNGRADE && vd->vd_video_dev != NULL) 1293 vga_pci_repost(vd->vd_video_dev); 1294 1295 #if defined(__amd64__) || defined(__i386__) 1296 sc->vga_fb_tag = X86_BUS_SPACE_MEM; 1297 sc->vga_reg_tag = X86_BUS_SPACE_IO; 1298 #else 1299 # error "Architecture not yet supported!" 1300 #endif 1301 1302 bus_space_map(sc->vga_reg_tag, VGA_REG_BASE, VGA_REG_SIZE, 0, 1303 &sc->vga_reg_handle); 1304 1305 /* 1306 * If "hw.vga.textmode" is not set and we're running on hypervisor, 1307 * we use text mode by default, this is because when we're on 1308 * hypervisor, vt(4) is usually much slower in graphics mode than 1309 * in text mode, especially when we're on Hyper-V. 1310 */ 1311 textmode = vm_guest != VM_GUEST_NO; 1312 TUNABLE_INT_FETCH("hw.vga.textmode", &textmode); 1313 if (textmode) { 1314 vd->vd_flags |= VDF_TEXTMODE; 1315 vd->vd_width = 80; 1316 vd->vd_height = 25; 1317 bus_space_map(sc->vga_fb_tag, VGA_TXT_BASE, VGA_TXT_SIZE, 0, 1318 &sc->vga_fb_handle); 1319 } else { 1320 vd->vd_width = VT_VGA_WIDTH; 1321 vd->vd_height = VT_VGA_HEIGHT; 1322 bus_space_map(sc->vga_fb_tag, VGA_MEM_BASE, VGA_MEM_SIZE, 0, 1323 &sc->vga_fb_handle); 1324 } 1325 if (vga_initialize(vd, textmode) != 0) 1326 return (CN_DEAD); 1327 sc->vga_enabled = true; 1328 1329 return (CN_INTERNAL); 1330 } 1331 1332 static void 1333 vga_postswitch(struct vt_device *vd) 1334 { 1335 1336 /* Reinit VGA mode, to restore view after app which change mode. */ 1337 vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE)); 1338 /* Ask vt(9) to update chars on visible area. */ 1339 vd->vd_flags |= VDF_INVALID; 1340 } 1341 1342 /* Dummy NewBus functions to reserve the resources used by the vt_vga driver */ 1343 static void 1344 vtvga_identify(driver_t *driver, device_t parent) 1345 { 1346 1347 if (!vga_conssoftc.vga_enabled) 1348 return; 1349 1350 if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL) 1351 panic("Unable to attach vt_vga console"); 1352 } 1353 1354 static int 1355 vtvga_probe(device_t dev) 1356 { 1357 1358 device_set_desc(dev, "VT VGA driver"); 1359 1360 return (BUS_PROBE_NOWILDCARD); 1361 } 1362 1363 static int 1364 vtvga_attach(device_t dev) 1365 { 1366 struct resource *pseudo_phys_res; 1367 int res_id; 1368 1369 res_id = 0; 1370 pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY, 1371 &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1, 1372 VGA_MEM_SIZE, RF_ACTIVE); 1373 if (pseudo_phys_res == NULL) 1374 panic("Unable to reserve vt_vga memory"); 1375 return (0); 1376 } 1377 1378 /*-------------------- Private Device Attachment Data -----------------------*/ 1379 static device_method_t vtvga_methods[] = { 1380 /* Device interface */ 1381 DEVMETHOD(device_identify, vtvga_identify), 1382 DEVMETHOD(device_probe, vtvga_probe), 1383 DEVMETHOD(device_attach, vtvga_attach), 1384 1385 DEVMETHOD_END 1386 }; 1387 1388 DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0); 1389 1390 DRIVER_MODULE(vtvga, nexus, vtvga_driver, NULL, NULL); 1391