xref: /freebsd/sys/dev/vr/if_vr.c (revision 4c8945a06b01a5c8122cdeb402af36bb46a06acc)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 #include <net/if_vlan_var.h>
88 
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 
95 #include <machine/bus.h>
96 
97 #include <dev/vr/if_vrreg.h>
98 
99 /* "device miibus" required.  See GENERIC if you get errors here. */
100 #include "miibus_if.h"
101 
102 MODULE_DEPEND(vr, pci, 1, 1, 1);
103 MODULE_DEPEND(vr, ether, 1, 1, 1);
104 MODULE_DEPEND(vr, miibus, 1, 1, 1);
105 
106 /* Define to show Rx/Tx error status. */
107 #undef	VR_SHOW_ERRORS
108 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
109 
110 /*
111  * Various supported device vendors/types, their names & quirks.
112  */
113 #define VR_Q_NEEDALIGN		(1<<0)
114 #define VR_Q_CSUM		(1<<1)
115 #define VR_Q_CAM		(1<<2)
116 
117 static struct vr_type {
118 	u_int16_t		vr_vid;
119 	u_int16_t		vr_did;
120 	int			vr_quirks;
121 	char			*vr_name;
122 } vr_devs[] = {
123 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
124 	    VR_Q_NEEDALIGN,
125 	    "VIA VT3043 Rhine I 10/100BaseTX" },
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
130 	    0,
131 	    "VIA VT6102 Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
133 	    0,
134 	    "VIA VT6105 Rhine III 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
136 	    VR_Q_CSUM,
137 	    "VIA VT6105M Rhine III 10/100BaseTX" },
138 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
139 	    VR_Q_NEEDALIGN,
140 	    "Delta Electronics Rhine II 10/100BaseTX" },
141 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Addtron Technology Rhine II 10/100BaseTX" },
144 	{ 0, 0, 0, NULL }
145 };
146 
147 static int vr_probe(device_t);
148 static int vr_attach(device_t);
149 static int vr_detach(device_t);
150 static int vr_shutdown(device_t);
151 static int vr_suspend(device_t);
152 static int vr_resume(device_t);
153 
154 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
155 static int vr_dma_alloc(struct vr_softc *);
156 static void vr_dma_free(struct vr_softc *);
157 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
158 static int vr_newbuf(struct vr_softc *, int);
159 
160 #ifndef __NO_STRICT_ALIGNMENT
161 static __inline void vr_fixup_rx(struct mbuf *);
162 #endif
163 static int vr_rxeof(struct vr_softc *);
164 static void vr_txeof(struct vr_softc *);
165 static void vr_tick(void *);
166 static int vr_error(struct vr_softc *, uint16_t);
167 static void vr_tx_underrun(struct vr_softc *);
168 static void vr_intr(void *);
169 static void vr_start(struct ifnet *);
170 static void vr_start_locked(struct ifnet *);
171 static int vr_encap(struct vr_softc *, struct mbuf **);
172 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
173 static void vr_init(void *);
174 static void vr_init_locked(struct vr_softc *);
175 static void vr_tx_start(struct vr_softc *);
176 static void vr_rx_start(struct vr_softc *);
177 static int vr_tx_stop(struct vr_softc *);
178 static int vr_rx_stop(struct vr_softc *);
179 static void vr_stop(struct vr_softc *);
180 static void vr_watchdog(struct vr_softc *);
181 static int vr_ifmedia_upd(struct ifnet *);
182 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
183 
184 static int vr_miibus_readreg(device_t, int, int);
185 static int vr_miibus_writereg(device_t, int, int, int);
186 static void vr_miibus_statchg(device_t);
187 
188 static void vr_link_task(void *, int);
189 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
190 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
191 static void vr_set_filter(struct vr_softc *);
192 static void vr_reset(const struct vr_softc *);
193 static int vr_tx_ring_init(struct vr_softc *);
194 static int vr_rx_ring_init(struct vr_softc *);
195 static void vr_setwol(struct vr_softc *);
196 static void vr_clrwol(struct vr_softc *);
197 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
198 
199 static struct vr_tx_threshold_table {
200 	int tx_cfg;
201 	int bcr_cfg;
202 	int value;
203 } vr_tx_threshold_tables[] = {
204 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
205 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
206 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
207 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
208 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
209 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
210 };
211 
212 static device_method_t vr_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		vr_probe),
215 	DEVMETHOD(device_attach,	vr_attach),
216 	DEVMETHOD(device_detach, 	vr_detach),
217 	DEVMETHOD(device_shutdown,	vr_shutdown),
218 	DEVMETHOD(device_suspend,	vr_suspend),
219 	DEVMETHOD(device_resume,	vr_resume),
220 
221 	/* bus interface */
222 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
223 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
224 
225 	/* MII interface */
226 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
227 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
228 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
229 	DEVMETHOD(miibus_linkchg,	vr_miibus_statchg),
230 
231 	{ NULL, NULL }
232 };
233 
234 static driver_t vr_driver = {
235 	"vr",
236 	vr_methods,
237 	sizeof(struct vr_softc)
238 };
239 
240 static devclass_t vr_devclass;
241 
242 DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
243 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
244 
245 static int
246 vr_miibus_readreg(device_t dev, int phy, int reg)
247 {
248 	struct vr_softc		*sc;
249 	int			i;
250 
251 	sc = device_get_softc(dev);
252 
253 	/* Set the register address. */
254 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
255 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
256 
257 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
258 		DELAY(1);
259 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
260 			break;
261 	}
262 	if (i == VR_MII_TIMEOUT)
263 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
264 
265 	return (CSR_READ_2(sc, VR_MIIDATA));
266 }
267 
268 static int
269 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
270 {
271 	struct vr_softc		*sc;
272 	int			i;
273 
274 	sc = device_get_softc(dev);
275 
276 	/* Set the register address and data to write. */
277 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
278 	CSR_WRITE_2(sc, VR_MIIDATA, data);
279 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
280 
281 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
282 		DELAY(1);
283 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
284 			break;
285 	}
286 	if (i == VR_MII_TIMEOUT)
287 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
288 		    reg);
289 
290 	return (0);
291 }
292 
293 static void
294 vr_miibus_statchg(device_t dev)
295 {
296 	struct vr_softc		*sc;
297 
298 	sc = device_get_softc(dev);
299 	taskqueue_enqueue(taskqueue_swi, &sc->vr_link_task);
300 }
301 
302 /*
303  * In order to fiddle with the
304  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
305  * first have to put the transmit and/or receive logic in the idle state.
306  */
307 static void
308 vr_link_task(void *arg, int pending)
309 {
310 	struct vr_softc		*sc;
311 	struct mii_data		*mii;
312 	struct ifnet		*ifp;
313 	int			lfdx, mfdx;
314 	uint8_t			cr0, cr1, fc;
315 
316 	sc = (struct vr_softc *)arg;
317 
318 	VR_LOCK(sc);
319 	mii = device_get_softc(sc->vr_miibus);
320 	ifp = sc->vr_ifp;
321 	if (mii == NULL || ifp == NULL ||
322 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
323 		VR_UNLOCK(sc);
324 		return;
325 	}
326 
327 	if (mii->mii_media_status & IFM_ACTIVE) {
328 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
329 			sc->vr_link = 1;
330 	} else
331 		sc->vr_link = 0;
332 
333 	if (sc->vr_link != 0) {
334 		cr0 = CSR_READ_1(sc, VR_CR0);
335 		cr1 = CSR_READ_1(sc, VR_CR1);
336 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
337 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
338 		if (mfdx != lfdx) {
339 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
340 				if (vr_tx_stop(sc) != 0 ||
341 				    vr_rx_stop(sc) != 0) {
342 					device_printf(sc->vr_dev,
343 					    "%s: Tx/Rx shutdown error -- "
344 					    "resetting\n", __func__);
345 					sc->vr_flags |= VR_F_RESTART;
346 					VR_UNLOCK(sc);
347 					return;
348 				}
349 			}
350 			if (lfdx)
351 				cr1 |= VR_CR1_FULLDUPLEX;
352 			else
353 				cr1 &= ~VR_CR1_FULLDUPLEX;
354 			CSR_WRITE_1(sc, VR_CR1, cr1);
355 		}
356 		fc = 0;
357 #ifdef notyet
358 		/* Configure flow-control. */
359 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
360 			fc = CSR_READ_1(sc, VR_FLOWCR1);
361 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
362 			if ((IFM_OPTIONS(mii->mii_media_active) &
363 			    IFM_ETH_RXPAUSE) != 0)
364 				fc |= VR_FLOWCR1_RXPAUSE;
365 			if ((IFM_OPTIONS(mii->mii_media_active) &
366 			    IFM_ETH_TXPAUSE) != 0)
367 				fc |= VR_FLOWCR1_TXPAUSE;
368 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
369 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
370 			/* No Tx puase capability available for Rhine II. */
371 			fc = CSR_READ_1(sc, VR_MISC_CR0);
372 			fc &= ~VR_MISCCR0_RXPAUSE;
373 			if ((IFM_OPTIONS(mii->mii_media_active) &
374 			    IFM_ETH_RXPAUSE) != 0)
375 				fc |= VR_MISCCR0_RXPAUSE;
376 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
377 		}
378 #endif
379 		vr_rx_start(sc);
380 		vr_tx_start(sc);
381 	} else {
382 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
383 			device_printf(sc->vr_dev,
384 			    "%s: Tx/Rx shutdown error -- resetting\n",
385 			    __func__);
386 			sc->vr_flags |= VR_F_RESTART;
387 			VR_UNLOCK(sc);
388 			return;
389 		}
390 	}
391 	VR_UNLOCK(sc);
392 }
393 
394 
395 static void
396 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
397 {
398 
399 	if (type == VR_MCAST_CAM)
400 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
401 	else
402 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
403 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
404 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
405 }
406 
407 static int
408 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
409 {
410 	int	i;
411 
412 	if (type == VR_MCAST_CAM) {
413 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
414 			return (EINVAL);
415 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
416 	} else
417 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
418 
419 	/* Set CAM entry address. */
420 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
421 	/* Set CAM entry data. */
422 	if (type == VR_MCAST_CAM) {
423 		for (i = 0; i < ETHER_ADDR_LEN; i++)
424 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
425 	} else {
426 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
427 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
428 	}
429 	DELAY(10);
430 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
431 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
432 	for (i = 0; i < VR_TIMEOUT; i++) {
433 		DELAY(1);
434 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
435 			break;
436 	}
437 
438 	if (i == VR_TIMEOUT)
439 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
440 		    __func__);
441 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
442 
443 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
444 }
445 
446 /*
447  * Program the 64-bit multicast hash filter.
448  */
449 static void
450 vr_set_filter(struct vr_softc *sc)
451 {
452 	struct ifnet		*ifp;
453 	int			h;
454 	uint32_t		hashes[2] = { 0, 0 };
455 	struct ifmultiaddr	*ifma;
456 	uint8_t			rxfilt;
457 	int			error, mcnt;
458 	uint32_t		cam_mask;
459 
460 	VR_LOCK_ASSERT(sc);
461 
462 	ifp = sc->vr_ifp;
463 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
464 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
465 	    VR_RXCFG_RX_MULTI);
466 	if (ifp->if_flags & IFF_BROADCAST)
467 		rxfilt |= VR_RXCFG_RX_BROAD;
468 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
469 		rxfilt |= VR_RXCFG_RX_MULTI;
470 		if (ifp->if_flags & IFF_PROMISC)
471 			rxfilt |= VR_RXCFG_RX_PROMISC;
472 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
473 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
474 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
475 		return;
476 	}
477 
478 	/* Now program new ones. */
479 	error = 0;
480 	mcnt = 0;
481 	if_maddr_rlock(ifp);
482 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
483 		/*
484 		 * For hardwares that have CAM capability, use
485 		 * 32 entries multicast perfect filter.
486 		 */
487 		cam_mask = 0;
488 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
489 			if (ifma->ifma_addr->sa_family != AF_LINK)
490 				continue;
491 			error = vr_cam_data(sc, VR_MCAST_CAM, mcnt,
492 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
493 			if (error != 0) {
494 				cam_mask = 0;
495 				break;
496 			}
497 			cam_mask |= 1 << mcnt;
498 			mcnt++;
499 		}
500 		vr_cam_mask(sc, VR_MCAST_CAM, cam_mask);
501 	}
502 
503 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
504 		/*
505 		 * If there are too many multicast addresses or
506 		 * setting multicast CAM filter failed, use hash
507 		 * table based filtering.
508 		 */
509 		mcnt = 0;
510 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
511 			if (ifma->ifma_addr->sa_family != AF_LINK)
512 				continue;
513 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
514 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
515 			if (h < 32)
516 				hashes[0] |= (1 << h);
517 			else
518 				hashes[1] |= (1 << (h - 32));
519 			mcnt++;
520 		}
521 	}
522 	if_maddr_runlock(ifp);
523 
524 	if (mcnt > 0)
525 		rxfilt |= VR_RXCFG_RX_MULTI;
526 
527 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
528 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
529 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
530 }
531 
532 static void
533 vr_reset(const struct vr_softc *sc)
534 {
535 	int		i;
536 
537 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
538 
539 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
540 	if (sc->vr_revid < REV_ID_VT6102_A) {
541 		/* VT86C100A needs more delay after reset. */
542 		DELAY(100);
543 	}
544 	for (i = 0; i < VR_TIMEOUT; i++) {
545 		DELAY(10);
546 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
547 			break;
548 	}
549 	if (i == VR_TIMEOUT) {
550 		if (sc->vr_revid < REV_ID_VT6102_A)
551 			device_printf(sc->vr_dev, "reset never completed!\n");
552 		else {
553 			/* Use newer force reset command. */
554 			device_printf(sc->vr_dev,
555 			    "Using force reset command.\n");
556 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
557 			/*
558 			 * Wait a little while for the chip to get its brains
559 			 * in order.
560 			 */
561 			DELAY(2000);
562 		}
563 	}
564 
565 }
566 
567 /*
568  * Probe for a VIA Rhine chip. Check the PCI vendor and device
569  * IDs against our list and return a match or NULL
570  */
571 static struct vr_type *
572 vr_match(device_t dev)
573 {
574 	struct vr_type	*t = vr_devs;
575 
576 	for (t = vr_devs; t->vr_name != NULL; t++)
577 		if ((pci_get_vendor(dev) == t->vr_vid) &&
578 		    (pci_get_device(dev) == t->vr_did))
579 			return (t);
580 	return (NULL);
581 }
582 
583 /*
584  * Probe for a VIA Rhine chip. Check the PCI vendor and device
585  * IDs against our list and return a device name if we find a match.
586  */
587 static int
588 vr_probe(device_t dev)
589 {
590 	struct vr_type	*t;
591 
592 	t = vr_match(dev);
593 	if (t != NULL) {
594 		device_set_desc(dev, t->vr_name);
595 		return (BUS_PROBE_DEFAULT);
596 	}
597 	return (ENXIO);
598 }
599 
600 /*
601  * Attach the interface. Allocate softc structures, do ifmedia
602  * setup and ethernet/BPF attach.
603  */
604 static int
605 vr_attach(device_t dev)
606 {
607 	struct vr_softc		*sc;
608 	struct ifnet		*ifp;
609 	struct vr_type		*t;
610 	uint8_t			eaddr[ETHER_ADDR_LEN];
611 	int			error, rid;
612 	int			i, phy, pmc;
613 
614 	sc = device_get_softc(dev);
615 	sc->vr_dev = dev;
616 	t = vr_match(dev);
617 	KASSERT(t != NULL, ("Lost if_vr device match"));
618 	sc->vr_quirks = t->vr_quirks;
619 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
620 
621 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
622 	    MTX_DEF);
623 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
624 	TASK_INIT(&sc->vr_link_task, 0, vr_link_task, sc);
625 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
626 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
627 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
628 	    vr_sysctl_stats, "I", "Statistics");
629 
630 	error = 0;
631 
632 	/*
633 	 * Map control/status registers.
634 	 */
635 	pci_enable_busmaster(dev);
636 	sc->vr_revid = pci_get_revid(dev);
637 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
638 
639 	sc->vr_res_id = PCIR_BAR(0);
640 	sc->vr_res_type = SYS_RES_IOPORT;
641 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
642 	    &sc->vr_res_id, RF_ACTIVE);
643 	if (sc->vr_res == NULL) {
644 		device_printf(dev, "couldn't map ports\n");
645 		error = ENXIO;
646 		goto fail;
647 	}
648 
649 	/* Allocate interrupt. */
650 	rid = 0;
651 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
652 	    RF_SHAREABLE | RF_ACTIVE);
653 
654 	if (sc->vr_irq == NULL) {
655 		device_printf(dev, "couldn't map interrupt\n");
656 		error = ENXIO;
657 		goto fail;
658 	}
659 
660 	/* Allocate ifnet structure. */
661 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
662 	if (ifp == NULL) {
663 		device_printf(dev, "couldn't allocate ifnet structure\n");
664 		error = ENOSPC;
665 		goto fail;
666 	}
667 	ifp->if_softc = sc;
668 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
670 	ifp->if_ioctl = vr_ioctl;
671 	ifp->if_start = vr_start;
672 	ifp->if_init = vr_init;
673 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
674 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
675 	IFQ_SET_READY(&ifp->if_snd);
676 
677 	/* Configure Tx FIFO threshold. */
678 	sc->vr_txthresh = VR_TXTHRESH_MIN;
679 	if (sc->vr_revid < REV_ID_VT6105_A0) {
680 		/*
681 		 * Use store and forward mode for Rhine I/II.
682 		 * Otherwise they produce a lot of Tx underruns and
683 		 * it would take a while to get working FIFO threshold
684 		 * value.
685 		 */
686 		sc->vr_txthresh = VR_TXTHRESH_MAX;
687 	}
688 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
689 		ifp->if_hwassist = VR_CSUM_FEATURES;
690 		ifp->if_capabilities |= IFCAP_HWCSUM;
691 		/*
692 		 * To update checksum field the hardware may need to
693 		 * store entire frames into FIFO before transmitting.
694 		 */
695 		sc->vr_txthresh = VR_TXTHRESH_MAX;
696 	}
697 
698 	if (sc->vr_revid >= REV_ID_VT6102_A &&
699 	    pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
700 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
701 
702 	/* Rhine supports oversized VLAN frame. */
703 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
704 	ifp->if_capenable = ifp->if_capabilities;
705 #ifdef DEVICE_POLLING
706 	ifp->if_capabilities |= IFCAP_POLLING;
707 #endif
708 
709 	/*
710 	 * Windows may put the chip in suspend mode when it
711 	 * shuts down. Be sure to kick it in the head to wake it
712 	 * up again.
713 	 */
714 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
715 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
716 
717 	/*
718 	 * Get station address. The way the Rhine chips work,
719 	 * you're not allowed to directly access the EEPROM once
720 	 * they've been programmed a special way. Consequently,
721 	 * we need to read the node address from the PAR0 and PAR1
722 	 * registers.
723 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
724 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
725 	 * by driver is reset to default state.
726 	 */
727 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
728 	for (i = VR_TIMEOUT; i > 0; i--) {
729 		DELAY(1);
730 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
731 			break;
732 	}
733 	if (i == 0)
734 		device_printf(dev, "Reloading EEPROM timeout!\n");
735 	for (i = 0; i < ETHER_ADDR_LEN; i++)
736 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
737 
738 	/* Reset the adapter. */
739 	vr_reset(sc);
740 	/* Ack intr & disable further interrupts. */
741 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
742 	CSR_WRITE_2(sc, VR_IMR, 0);
743 	if (sc->vr_revid >= REV_ID_VT6102_A)
744 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
745 
746 	if (sc->vr_revid < REV_ID_VT6102_A) {
747 		pci_write_config(dev, VR_PCI_MODE2,
748 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
749 		    VR_MODE2_MODE10T, 1);
750 	} else {
751 		/* Report error instead of retrying forever. */
752 		pci_write_config(dev, VR_PCI_MODE2,
753 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
754 		    VR_MODE2_PCEROPT, 1);
755         	/* Detect MII coding error. */
756 		pci_write_config(dev, VR_PCI_MODE3,
757 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
758 		    VR_MODE3_MIION, 1);
759 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
760 		    sc->vr_revid < REV_ID_VT6105M_A0)
761 			pci_write_config(dev, VR_PCI_MODE2,
762 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
763 			    VR_MODE2_MODE10T, 1);
764 		/* Enable Memory-Read-Multiple. */
765 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
766 		    sc->vr_revid < REV_ID_VT6105M_A0)
767 			pci_write_config(dev, VR_PCI_MODE2,
768 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
769 			    VR_MODE2_MRDPL, 1);
770 	}
771 	/* Disable MII AUTOPOLL. */
772 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
773 
774 	if (vr_dma_alloc(sc) != 0) {
775 		error = ENXIO;
776 		goto fail;
777 	}
778 
779 	/* Do MII setup. */
780 	if (sc->vr_revid >= REV_ID_VT6105_A0)
781 		phy = 1;
782 	else
783 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
784 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
785 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
786 	if (error != 0) {
787 		device_printf(dev, "attaching PHYs failed\n");
788 		goto fail;
789 	}
790 
791 	/* Call MI attach routine. */
792 	ether_ifattach(ifp, eaddr);
793 	/*
794 	 * Tell the upper layer(s) we support long frames.
795 	 * Must appear after the call to ether_ifattach() because
796 	 * ether_ifattach() sets ifi_hdrlen to the default value.
797 	 */
798 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
799 
800 	/* Hook interrupt last to avoid having to lock softc. */
801 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
802 	    NULL, vr_intr, sc, &sc->vr_intrhand);
803 
804 	if (error) {
805 		device_printf(dev, "couldn't set up irq\n");
806 		ether_ifdetach(ifp);
807 		goto fail;
808 	}
809 
810 fail:
811 	if (error)
812 		vr_detach(dev);
813 
814 	return (error);
815 }
816 
817 /*
818  * Shutdown hardware and free up resources. This can be called any
819  * time after the mutex has been initialized. It is called in both
820  * the error case in attach and the normal detach case so it needs
821  * to be careful about only freeing resources that have actually been
822  * allocated.
823  */
824 static int
825 vr_detach(device_t dev)
826 {
827 	struct vr_softc		*sc = device_get_softc(dev);
828 	struct ifnet		*ifp = sc->vr_ifp;
829 
830 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
831 
832 #ifdef DEVICE_POLLING
833 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
834 		ether_poll_deregister(ifp);
835 #endif
836 
837 	/* These should only be active if attach succeeded. */
838 	if (device_is_attached(dev)) {
839 		VR_LOCK(sc);
840 		sc->vr_detach = 1;
841 		vr_stop(sc);
842 		VR_UNLOCK(sc);
843 		callout_drain(&sc->vr_stat_callout);
844 		taskqueue_drain(taskqueue_swi, &sc->vr_link_task);
845 		ether_ifdetach(ifp);
846 	}
847 	if (sc->vr_miibus)
848 		device_delete_child(dev, sc->vr_miibus);
849 	bus_generic_detach(dev);
850 
851 	if (sc->vr_intrhand)
852 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
853 	if (sc->vr_irq)
854 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
855 	if (sc->vr_res)
856 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
857 		    sc->vr_res);
858 
859 	if (ifp)
860 		if_free(ifp);
861 
862 	vr_dma_free(sc);
863 
864 	mtx_destroy(&sc->vr_mtx);
865 
866 	return (0);
867 }
868 
869 struct vr_dmamap_arg {
870 	bus_addr_t	vr_busaddr;
871 };
872 
873 static void
874 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
875 {
876 	struct vr_dmamap_arg	*ctx;
877 
878 	if (error != 0)
879 		return;
880 	ctx = arg;
881 	ctx->vr_busaddr = segs[0].ds_addr;
882 }
883 
884 static int
885 vr_dma_alloc(struct vr_softc *sc)
886 {
887 	struct vr_dmamap_arg	ctx;
888 	struct vr_txdesc	*txd;
889 	struct vr_rxdesc	*rxd;
890 	bus_size_t		tx_alignment;
891 	int			error, i;
892 
893 	/* Create parent DMA tag. */
894 	error = bus_dma_tag_create(
895 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
896 	    1, 0,			/* alignment, boundary */
897 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
898 	    BUS_SPACE_MAXADDR,		/* highaddr */
899 	    NULL, NULL,			/* filter, filterarg */
900 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
901 	    0,				/* nsegments */
902 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
903 	    0,				/* flags */
904 	    NULL, NULL,			/* lockfunc, lockarg */
905 	    &sc->vr_cdata.vr_parent_tag);
906 	if (error != 0) {
907 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
908 		goto fail;
909 	}
910 	/* Create tag for Tx ring. */
911 	error = bus_dma_tag_create(
912 	    sc->vr_cdata.vr_parent_tag,	/* parent */
913 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
914 	    BUS_SPACE_MAXADDR,		/* lowaddr */
915 	    BUS_SPACE_MAXADDR,		/* highaddr */
916 	    NULL, NULL,			/* filter, filterarg */
917 	    VR_TX_RING_SIZE,		/* maxsize */
918 	    1,				/* nsegments */
919 	    VR_TX_RING_SIZE,		/* maxsegsize */
920 	    0,				/* flags */
921 	    NULL, NULL,			/* lockfunc, lockarg */
922 	    &sc->vr_cdata.vr_tx_ring_tag);
923 	if (error != 0) {
924 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
925 		goto fail;
926 	}
927 
928 	/* Create tag for Rx ring. */
929 	error = bus_dma_tag_create(
930 	    sc->vr_cdata.vr_parent_tag,	/* parent */
931 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
932 	    BUS_SPACE_MAXADDR,		/* lowaddr */
933 	    BUS_SPACE_MAXADDR,		/* highaddr */
934 	    NULL, NULL,			/* filter, filterarg */
935 	    VR_RX_RING_SIZE,		/* maxsize */
936 	    1,				/* nsegments */
937 	    VR_RX_RING_SIZE,		/* maxsegsize */
938 	    0,				/* flags */
939 	    NULL, NULL,			/* lockfunc, lockarg */
940 	    &sc->vr_cdata.vr_rx_ring_tag);
941 	if (error != 0) {
942 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
943 		goto fail;
944 	}
945 
946 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
947 		tx_alignment = sizeof(uint32_t);
948 	else
949 		tx_alignment = 1;
950 	/* Create tag for Tx buffers. */
951 	error = bus_dma_tag_create(
952 	    sc->vr_cdata.vr_parent_tag,	/* parent */
953 	    tx_alignment, 0,		/* alignment, boundary */
954 	    BUS_SPACE_MAXADDR,		/* lowaddr */
955 	    BUS_SPACE_MAXADDR,		/* highaddr */
956 	    NULL, NULL,			/* filter, filterarg */
957 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
958 	    VR_MAXFRAGS,		/* nsegments */
959 	    MCLBYTES,			/* maxsegsize */
960 	    0,				/* flags */
961 	    NULL, NULL,			/* lockfunc, lockarg */
962 	    &sc->vr_cdata.vr_tx_tag);
963 	if (error != 0) {
964 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
965 		goto fail;
966 	}
967 
968 	/* Create tag for Rx buffers. */
969 	error = bus_dma_tag_create(
970 	    sc->vr_cdata.vr_parent_tag,	/* parent */
971 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
972 	    BUS_SPACE_MAXADDR,		/* lowaddr */
973 	    BUS_SPACE_MAXADDR,		/* highaddr */
974 	    NULL, NULL,			/* filter, filterarg */
975 	    MCLBYTES,			/* maxsize */
976 	    1,				/* nsegments */
977 	    MCLBYTES,			/* maxsegsize */
978 	    0,				/* flags */
979 	    NULL, NULL,			/* lockfunc, lockarg */
980 	    &sc->vr_cdata.vr_rx_tag);
981 	if (error != 0) {
982 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
983 		goto fail;
984 	}
985 
986 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
987 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
988 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
989 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
990 	if (error != 0) {
991 		device_printf(sc->vr_dev,
992 		    "failed to allocate DMA'able memory for Tx ring\n");
993 		goto fail;
994 	}
995 
996 	ctx.vr_busaddr = 0;
997 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
998 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
999 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1000 	if (error != 0 || ctx.vr_busaddr == 0) {
1001 		device_printf(sc->vr_dev,
1002 		    "failed to load DMA'able memory for Tx ring\n");
1003 		goto fail;
1004 	}
1005 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1006 
1007 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1008 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1009 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1010 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1011 	if (error != 0) {
1012 		device_printf(sc->vr_dev,
1013 		    "failed to allocate DMA'able memory for Rx ring\n");
1014 		goto fail;
1015 	}
1016 
1017 	ctx.vr_busaddr = 0;
1018 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1019 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1020 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1021 	if (error != 0 || ctx.vr_busaddr == 0) {
1022 		device_printf(sc->vr_dev,
1023 		    "failed to load DMA'able memory for Rx ring\n");
1024 		goto fail;
1025 	}
1026 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1027 
1028 	/* Create DMA maps for Tx buffers. */
1029 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1030 		txd = &sc->vr_cdata.vr_txdesc[i];
1031 		txd->tx_m = NULL;
1032 		txd->tx_dmamap = NULL;
1033 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1034 		    &txd->tx_dmamap);
1035 		if (error != 0) {
1036 			device_printf(sc->vr_dev,
1037 			    "failed to create Tx dmamap\n");
1038 			goto fail;
1039 		}
1040 	}
1041 	/* Create DMA maps for Rx buffers. */
1042 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1043 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1044 		device_printf(sc->vr_dev,
1045 		    "failed to create spare Rx dmamap\n");
1046 		goto fail;
1047 	}
1048 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1049 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1050 		rxd->rx_m = NULL;
1051 		rxd->rx_dmamap = NULL;
1052 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1053 		    &rxd->rx_dmamap);
1054 		if (error != 0) {
1055 			device_printf(sc->vr_dev,
1056 			    "failed to create Rx dmamap\n");
1057 			goto fail;
1058 		}
1059 	}
1060 
1061 fail:
1062 	return (error);
1063 }
1064 
1065 static void
1066 vr_dma_free(struct vr_softc *sc)
1067 {
1068 	struct vr_txdesc	*txd;
1069 	struct vr_rxdesc	*rxd;
1070 	int			i;
1071 
1072 	/* Tx ring. */
1073 	if (sc->vr_cdata.vr_tx_ring_tag) {
1074 		if (sc->vr_cdata.vr_tx_ring_map)
1075 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1076 			    sc->vr_cdata.vr_tx_ring_map);
1077 		if (sc->vr_cdata.vr_tx_ring_map &&
1078 		    sc->vr_rdata.vr_tx_ring)
1079 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1080 			    sc->vr_rdata.vr_tx_ring,
1081 			    sc->vr_cdata.vr_tx_ring_map);
1082 		sc->vr_rdata.vr_tx_ring = NULL;
1083 		sc->vr_cdata.vr_tx_ring_map = NULL;
1084 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1085 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1086 	}
1087 	/* Rx ring. */
1088 	if (sc->vr_cdata.vr_rx_ring_tag) {
1089 		if (sc->vr_cdata.vr_rx_ring_map)
1090 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1091 			    sc->vr_cdata.vr_rx_ring_map);
1092 		if (sc->vr_cdata.vr_rx_ring_map &&
1093 		    sc->vr_rdata.vr_rx_ring)
1094 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1095 			    sc->vr_rdata.vr_rx_ring,
1096 			    sc->vr_cdata.vr_rx_ring_map);
1097 		sc->vr_rdata.vr_rx_ring = NULL;
1098 		sc->vr_cdata.vr_rx_ring_map = NULL;
1099 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1100 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1101 	}
1102 	/* Tx buffers. */
1103 	if (sc->vr_cdata.vr_tx_tag) {
1104 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1105 			txd = &sc->vr_cdata.vr_txdesc[i];
1106 			if (txd->tx_dmamap) {
1107 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1108 				    txd->tx_dmamap);
1109 				txd->tx_dmamap = NULL;
1110 			}
1111 		}
1112 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1113 		sc->vr_cdata.vr_tx_tag = NULL;
1114 	}
1115 	/* Rx buffers. */
1116 	if (sc->vr_cdata.vr_rx_tag) {
1117 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1118 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1119 			if (rxd->rx_dmamap) {
1120 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1121 				    rxd->rx_dmamap);
1122 				rxd->rx_dmamap = NULL;
1123 			}
1124 		}
1125 		if (sc->vr_cdata.vr_rx_sparemap) {
1126 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1127 			    sc->vr_cdata.vr_rx_sparemap);
1128 			sc->vr_cdata.vr_rx_sparemap = 0;
1129 		}
1130 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1131 		sc->vr_cdata.vr_rx_tag = NULL;
1132 	}
1133 
1134 	if (sc->vr_cdata.vr_parent_tag) {
1135 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1136 		sc->vr_cdata.vr_parent_tag = NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * Initialize the transmit descriptors.
1142  */
1143 static int
1144 vr_tx_ring_init(struct vr_softc *sc)
1145 {
1146 	struct vr_ring_data	*rd;
1147 	struct vr_txdesc	*txd;
1148 	bus_addr_t		addr;
1149 	int			i;
1150 
1151 	sc->vr_cdata.vr_tx_prod = 0;
1152 	sc->vr_cdata.vr_tx_cons = 0;
1153 	sc->vr_cdata.vr_tx_cnt = 0;
1154 	sc->vr_cdata.vr_tx_pkts = 0;
1155 
1156 	rd = &sc->vr_rdata;
1157 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1158 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1159 		if (i == VR_TX_RING_CNT - 1)
1160 			addr = VR_TX_RING_ADDR(sc, 0);
1161 		else
1162 			addr = VR_TX_RING_ADDR(sc, i + 1);
1163 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1164 		txd = &sc->vr_cdata.vr_txdesc[i];
1165 		txd->tx_m = NULL;
1166 	}
1167 
1168 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1169 	    sc->vr_cdata.vr_tx_ring_map,
1170 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1171 
1172 	return (0);
1173 }
1174 
1175 /*
1176  * Initialize the RX descriptors and allocate mbufs for them. Note that
1177  * we arrange the descriptors in a closed ring, so that the last descriptor
1178  * points back to the first.
1179  */
1180 static int
1181 vr_rx_ring_init(struct vr_softc *sc)
1182 {
1183 	struct vr_ring_data	*rd;
1184 	struct vr_rxdesc	*rxd;
1185 	bus_addr_t		addr;
1186 	int			i;
1187 
1188 	sc->vr_cdata.vr_rx_cons = 0;
1189 
1190 	rd = &sc->vr_rdata;
1191 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1192 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1193 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1194 		rxd->rx_m = NULL;
1195 		rxd->desc = &rd->vr_rx_ring[i];
1196 		if (i == VR_RX_RING_CNT - 1)
1197 			addr = VR_RX_RING_ADDR(sc, 0);
1198 		else
1199 			addr = VR_RX_RING_ADDR(sc, i + 1);
1200 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1201 		if (vr_newbuf(sc, i) != 0)
1202 			return (ENOBUFS);
1203 	}
1204 
1205 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1206 	    sc->vr_cdata.vr_rx_ring_map,
1207 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1208 
1209 	return (0);
1210 }
1211 
1212 static __inline void
1213 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1214 {
1215 	struct vr_desc	*desc;
1216 
1217 	desc = rxd->desc;
1218 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1219 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1220 }
1221 
1222 /*
1223  * Initialize an RX descriptor and attach an MBUF cluster.
1224  * Note: the length fields are only 11 bits wide, which means the
1225  * largest size we can specify is 2047. This is important because
1226  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1227  * overflow the field and make a mess.
1228  */
1229 static int
1230 vr_newbuf(struct vr_softc *sc, int idx)
1231 {
1232 	struct vr_desc		*desc;
1233 	struct vr_rxdesc	*rxd;
1234 	struct mbuf		*m;
1235 	bus_dma_segment_t	segs[1];
1236 	bus_dmamap_t		map;
1237 	int			nsegs;
1238 
1239 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1240 	if (m == NULL)
1241 		return (ENOBUFS);
1242 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1243 	m_adj(m, sizeof(uint64_t));
1244 
1245 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1246 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1247 		m_freem(m);
1248 		return (ENOBUFS);
1249 	}
1250 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1251 
1252 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1253 	if (rxd->rx_m != NULL) {
1254 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1255 		    BUS_DMASYNC_POSTREAD);
1256 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1257 	}
1258 	map = rxd->rx_dmamap;
1259 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1260 	sc->vr_cdata.vr_rx_sparemap = map;
1261 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1262 	    BUS_DMASYNC_PREREAD);
1263 	rxd->rx_m = m;
1264 	desc = rxd->desc;
1265 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1266 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1267 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1268 
1269 	return (0);
1270 }
1271 
1272 #ifndef __NO_STRICT_ALIGNMENT
1273 static __inline void
1274 vr_fixup_rx(struct mbuf *m)
1275 {
1276         uint16_t		*src, *dst;
1277         int			i;
1278 
1279 	src = mtod(m, uint16_t *);
1280 	dst = src - 1;
1281 
1282 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1283 		*dst++ = *src++;
1284 
1285 	m->m_data -= ETHER_ALIGN;
1286 }
1287 #endif
1288 
1289 /*
1290  * A frame has been uploaded: pass the resulting mbuf chain up to
1291  * the higher level protocols.
1292  */
1293 static int
1294 vr_rxeof(struct vr_softc *sc)
1295 {
1296 	struct vr_rxdesc	*rxd;
1297 	struct mbuf		*m;
1298 	struct ifnet		*ifp;
1299 	struct vr_desc		*cur_rx;
1300 	int			cons, prog, total_len, rx_npkts;
1301 	uint32_t		rxstat, rxctl;
1302 
1303 	VR_LOCK_ASSERT(sc);
1304 	ifp = sc->vr_ifp;
1305 	cons = sc->vr_cdata.vr_rx_cons;
1306 	rx_npkts = 0;
1307 
1308 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1309 	    sc->vr_cdata.vr_rx_ring_map,
1310 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1311 
1312 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1313 #ifdef DEVICE_POLLING
1314 		if (ifp->if_capenable & IFCAP_POLLING) {
1315 			if (sc->rxcycles <= 0)
1316 				break;
1317 			sc->rxcycles--;
1318 		}
1319 #endif
1320 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1321 		rxstat = le32toh(cur_rx->vr_status);
1322 		rxctl = le32toh(cur_rx->vr_ctl);
1323 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1324 			break;
1325 
1326 		prog++;
1327 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1328 		m = rxd->rx_m;
1329 
1330 		/*
1331 		 * If an error occurs, update stats, clear the
1332 		 * status word and leave the mbuf cluster in place:
1333 		 * it should simply get re-used next time this descriptor
1334 		 * comes up in the ring.
1335 		 * We don't support SG in Rx path yet, so discard
1336 		 * partial frame.
1337 		 */
1338 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1339 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1340 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1341 			ifp->if_ierrors++;
1342 			sc->vr_stat.rx_errors++;
1343 			if (rxstat & VR_RXSTAT_CRCERR)
1344 				sc->vr_stat.rx_crc_errors++;
1345 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1346 				sc->vr_stat.rx_alignment++;
1347 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1348 				sc->vr_stat.rx_fifo_overflows++;
1349 			if (rxstat & VR_RXSTAT_GIANT)
1350 				sc->vr_stat.rx_giants++;
1351 			if (rxstat & VR_RXSTAT_RUNT)
1352 				sc->vr_stat.rx_runts++;
1353 			if (rxstat & VR_RXSTAT_BUFFERR)
1354 				sc->vr_stat.rx_no_buffers++;
1355 #ifdef	VR_SHOW_ERRORS
1356 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1357 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1358 #endif
1359 			vr_discard_rxbuf(rxd);
1360 			continue;
1361 		}
1362 
1363 		if (vr_newbuf(sc, cons) != 0) {
1364 			ifp->if_iqdrops++;
1365 			sc->vr_stat.rx_errors++;
1366 			sc->vr_stat.rx_no_mbufs++;
1367 			vr_discard_rxbuf(rxd);
1368 			continue;
1369 		}
1370 
1371 		/*
1372 		 * XXX The VIA Rhine chip includes the CRC with every
1373 		 * received frame, and there's no way to turn this
1374 		 * behavior off (at least, I can't find anything in
1375 		 * the manual that explains how to do it) so we have
1376 		 * to trim off the CRC manually.
1377 		 */
1378 		total_len = VR_RXBYTES(rxstat);
1379 		total_len -= ETHER_CRC_LEN;
1380 		m->m_pkthdr.len = m->m_len = total_len;
1381 #ifndef	__NO_STRICT_ALIGNMENT
1382 		/*
1383 		 * RX buffers must be 32-bit aligned.
1384 		 * Ignore the alignment problems on the non-strict alignment
1385 		 * platform. The performance hit incurred due to unaligned
1386 		 * accesses is much smaller than the hit produced by forcing
1387 		 * buffer copies all the time.
1388 		 */
1389 		vr_fixup_rx(m);
1390 #endif
1391 		m->m_pkthdr.rcvif = ifp;
1392 		ifp->if_ipackets++;
1393 		sc->vr_stat.rx_ok++;
1394 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1395 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1396 		    (rxctl & VR_RXCTL_IP) != 0) {
1397 			/* Checksum is valid for non-fragmented IP packets. */
1398 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1399 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1400 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1401 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1402 					m->m_pkthdr.csum_flags |=
1403 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1404 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1405 						m->m_pkthdr.csum_data = 0xffff;
1406 				}
1407 			}
1408 		}
1409 		VR_UNLOCK(sc);
1410 		(*ifp->if_input)(ifp, m);
1411 		VR_LOCK(sc);
1412 		rx_npkts++;
1413 	}
1414 
1415 	if (prog > 0) {
1416 		sc->vr_cdata.vr_rx_cons = cons;
1417 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1418 		    sc->vr_cdata.vr_rx_ring_map,
1419 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1420 	}
1421 	return (rx_npkts);
1422 }
1423 
1424 /*
1425  * A frame was downloaded to the chip. It's safe for us to clean up
1426  * the list buffers.
1427  */
1428 static void
1429 vr_txeof(struct vr_softc *sc)
1430 {
1431 	struct vr_txdesc	*txd;
1432 	struct vr_desc		*cur_tx;
1433 	struct ifnet		*ifp;
1434 	uint32_t		txctl, txstat;
1435 	int			cons, prod;
1436 
1437 	VR_LOCK_ASSERT(sc);
1438 
1439 	cons = sc->vr_cdata.vr_tx_cons;
1440 	prod = sc->vr_cdata.vr_tx_prod;
1441 	if (cons == prod)
1442 		return;
1443 
1444 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1445 	    sc->vr_cdata.vr_tx_ring_map,
1446 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1447 
1448 	ifp = sc->vr_ifp;
1449 	/*
1450 	 * Go through our tx list and free mbufs for those
1451 	 * frames that have been transmitted.
1452 	 */
1453 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1454 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1455 		txctl = le32toh(cur_tx->vr_ctl);
1456 		txstat = le32toh(cur_tx->vr_status);
1457 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1458 			break;
1459 
1460 		sc->vr_cdata.vr_tx_cnt--;
1461 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1462 		/* Only the first descriptor in the chain is valid. */
1463 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1464 			continue;
1465 
1466 		txd = &sc->vr_cdata.vr_txdesc[cons];
1467 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1468 		    __func__));
1469 
1470 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1471 			ifp->if_oerrors++;
1472 			sc->vr_stat.tx_errors++;
1473 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1474 				/* Give up and restart Tx. */
1475 				sc->vr_stat.tx_abort++;
1476 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1477 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1478 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1479 				    txd->tx_dmamap);
1480 				m_freem(txd->tx_m);
1481 				txd->tx_m = NULL;
1482 				VR_INC(cons, VR_TX_RING_CNT);
1483 				sc->vr_cdata.vr_tx_cons = cons;
1484 				if (vr_tx_stop(sc) != 0) {
1485 					device_printf(sc->vr_dev,
1486 					    "%s: Tx shutdown error -- "
1487 					    "resetting\n", __func__);
1488 					sc->vr_flags |= VR_F_RESTART;
1489 					return;
1490 				}
1491 				vr_tx_start(sc);
1492 				break;
1493 			}
1494 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1495 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1496 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1497 				sc->vr_stat.tx_underrun++;
1498 				/* Retry and restart Tx. */
1499 				sc->vr_cdata.vr_tx_cnt++;
1500 				sc->vr_cdata.vr_tx_cons = cons;
1501 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1502 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1503 				    sc->vr_cdata.vr_tx_ring_map,
1504 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1505 				vr_tx_underrun(sc);
1506 				return;
1507 			}
1508 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1509 				ifp->if_collisions++;
1510 				sc->vr_stat.tx_collisions++;
1511 			}
1512 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1513 				ifp->if_collisions++;
1514 				sc->vr_stat.tx_late_collisions++;
1515 			}
1516 		} else {
1517 			sc->vr_stat.tx_ok++;
1518 			ifp->if_opackets++;
1519 		}
1520 
1521 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1522 		    BUS_DMASYNC_POSTWRITE);
1523 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1524 		if (sc->vr_revid < REV_ID_VT3071_A) {
1525 			ifp->if_collisions +=
1526 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1527 			sc->vr_stat.tx_collisions +=
1528 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1529 		} else {
1530 			ifp->if_collisions += (txstat & 0x0f);
1531 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1532 		}
1533 		m_freem(txd->tx_m);
1534 		txd->tx_m = NULL;
1535 	}
1536 
1537 	sc->vr_cdata.vr_tx_cons = cons;
1538 	if (sc->vr_cdata.vr_tx_cnt == 0)
1539 		sc->vr_watchdog_timer = 0;
1540 }
1541 
1542 static void
1543 vr_tick(void *xsc)
1544 {
1545 	struct vr_softc		*sc;
1546 	struct mii_data		*mii;
1547 
1548 	sc = (struct vr_softc *)xsc;
1549 
1550 	VR_LOCK_ASSERT(sc);
1551 
1552 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1553 		device_printf(sc->vr_dev, "restarting\n");
1554 		sc->vr_stat.num_restart++;
1555 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1556 		vr_init_locked(sc);
1557 		sc->vr_flags &= ~VR_F_RESTART;
1558 	}
1559 
1560 	mii = device_get_softc(sc->vr_miibus);
1561 	mii_tick(mii);
1562 	vr_watchdog(sc);
1563 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1564 }
1565 
1566 #ifdef DEVICE_POLLING
1567 static poll_handler_t vr_poll;
1568 static poll_handler_t vr_poll_locked;
1569 
1570 static int
1571 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1572 {
1573 	struct vr_softc *sc;
1574 	int rx_npkts;
1575 
1576 	sc = ifp->if_softc;
1577 	rx_npkts = 0;
1578 
1579 	VR_LOCK(sc);
1580 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1581 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1582 	VR_UNLOCK(sc);
1583 	return (rx_npkts);
1584 }
1585 
1586 static int
1587 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1588 {
1589 	struct vr_softc *sc;
1590 	int rx_npkts;
1591 
1592 	sc = ifp->if_softc;
1593 
1594 	VR_LOCK_ASSERT(sc);
1595 
1596 	sc->rxcycles = count;
1597 	rx_npkts = vr_rxeof(sc);
1598 	vr_txeof(sc);
1599 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600 		vr_start_locked(ifp);
1601 
1602 	if (cmd == POLL_AND_CHECK_STATUS) {
1603 		uint16_t status;
1604 
1605 		/* Also check status register. */
1606 		status = CSR_READ_2(sc, VR_ISR);
1607 		if (status)
1608 			CSR_WRITE_2(sc, VR_ISR, status);
1609 
1610 		if ((status & VR_INTRS) == 0)
1611 			return (rx_npkts);
1612 
1613 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1614 		    VR_ISR_STATSOFLOW)) != 0) {
1615 			if (vr_error(sc, status) != 0)
1616 				return (rx_npkts);
1617 		}
1618 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1619 #ifdef	VR_SHOW_ERRORS
1620 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1621 			    __func__, status, VR_ISR_ERR_BITS);
1622 #endif
1623 			vr_rx_start(sc);
1624 		}
1625 	}
1626 	return (rx_npkts);
1627 }
1628 #endif /* DEVICE_POLLING */
1629 
1630 /* Back off the transmit threshold. */
1631 static void
1632 vr_tx_underrun(struct vr_softc *sc)
1633 {
1634 	int	thresh;
1635 
1636 	device_printf(sc->vr_dev, "Tx underrun -- ");
1637 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1638 		thresh = sc->vr_txthresh;
1639 		sc->vr_txthresh++;
1640 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1641 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1642 			printf("using store and forward mode\n");
1643 		} else
1644 			printf("increasing Tx threshold(%d -> %d)\n",
1645 			    vr_tx_threshold_tables[thresh].value,
1646 			    vr_tx_threshold_tables[thresh + 1].value);
1647 	} else
1648 		printf("\n");
1649 	sc->vr_stat.tx_underrun++;
1650 	if (vr_tx_stop(sc) != 0) {
1651 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1652 		    "resetting\n", __func__);
1653 		sc->vr_flags |= VR_F_RESTART;
1654 		return;
1655 	}
1656 	vr_tx_start(sc);
1657 }
1658 
1659 static void
1660 vr_intr(void *arg)
1661 {
1662 	struct vr_softc		*sc;
1663 	struct ifnet		*ifp;
1664 	uint16_t		status;
1665 
1666 	sc = (struct vr_softc *)arg;
1667 
1668 	VR_LOCK(sc);
1669 
1670 	if (sc->vr_suspended != 0)
1671 		goto done_locked;
1672 
1673 	status = CSR_READ_2(sc, VR_ISR);
1674 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1675 		goto done_locked;
1676 
1677 	ifp = sc->vr_ifp;
1678 #ifdef DEVICE_POLLING
1679 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1680 		goto done_locked;
1681 #endif
1682 
1683 	/* Suppress unwanted interrupts. */
1684 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1685 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1686 		CSR_WRITE_2(sc, VR_IMR, 0);
1687 		CSR_WRITE_2(sc, VR_ISR, status);
1688 		goto done_locked;
1689 	}
1690 
1691 	/* Disable interrupts. */
1692 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1693 
1694 	for (; (status & VR_INTRS) != 0;) {
1695 		CSR_WRITE_2(sc, VR_ISR, status);
1696 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1697 		    VR_ISR_STATSOFLOW)) != 0) {
1698 			if (vr_error(sc, status) != 0) {
1699 				VR_UNLOCK(sc);
1700 				return;
1701 			}
1702 		}
1703 		vr_rxeof(sc);
1704 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1705 #ifdef	VR_SHOW_ERRORS
1706 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1707 			    __func__, status, VR_ISR_ERR_BITS);
1708 #endif
1709 			/* Restart Rx if RxDMA SM was stopped. */
1710 			vr_rx_start(sc);
1711 		}
1712 		vr_txeof(sc);
1713 		status = CSR_READ_2(sc, VR_ISR);
1714 	}
1715 
1716 	/* Re-enable interrupts. */
1717 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1718 
1719 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1720 		vr_start_locked(ifp);
1721 
1722 done_locked:
1723 	VR_UNLOCK(sc);
1724 }
1725 
1726 static int
1727 vr_error(struct vr_softc *sc, uint16_t status)
1728 {
1729 	uint16_t pcis;
1730 
1731 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1732 	if ((status & VR_ISR_BUSERR) != 0) {
1733 		status &= ~VR_ISR_BUSERR;
1734 		sc->vr_stat.bus_errors++;
1735 		/* Disable further interrupts. */
1736 		CSR_WRITE_2(sc, VR_IMR, 0);
1737 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1738 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1739 		    "resetting\n", pcis);
1740 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1741 		sc->vr_flags |= VR_F_RESTART;
1742 		return (EAGAIN);
1743 	}
1744 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1745 		/* Link state change, duplex changes etc. */
1746 		status &= ~VR_ISR_LINKSTAT2;
1747 	}
1748 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1749 		status &= ~VR_ISR_STATSOFLOW;
1750 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1751 			/* Update MIB counters. */
1752 		}
1753 	}
1754 
1755 	if (status != 0)
1756 		device_printf(sc->vr_dev,
1757 		    "unhandled interrupt, status = 0x%04x\n", status);
1758 	return (0);
1759 }
1760 
1761 /*
1762  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1763  * pointers to the fragment pointers.
1764  */
1765 static int
1766 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1767 {
1768 	struct vr_txdesc	*txd;
1769 	struct vr_desc		*desc;
1770 	struct mbuf		*m;
1771 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1772 	uint32_t		csum_flags, txctl;
1773 	int			error, i, nsegs, prod, si;
1774 	int			padlen;
1775 
1776 	VR_LOCK_ASSERT(sc);
1777 
1778 	M_ASSERTPKTHDR((*m_head));
1779 
1780 	/*
1781 	 * Some VIA Rhine wants packet buffers to be longword
1782 	 * aligned, but very often our mbufs aren't. Rather than
1783 	 * waste time trying to decide when to copy and when not
1784 	 * to copy, just do it all the time.
1785 	 */
1786 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1787 		m = m_defrag(*m_head, M_DONTWAIT);
1788 		if (m == NULL) {
1789 			m_freem(*m_head);
1790 			*m_head = NULL;
1791 			return (ENOBUFS);
1792 		}
1793 		*m_head = m;
1794 	}
1795 
1796 	/*
1797 	 * The Rhine chip doesn't auto-pad, so we have to make
1798 	 * sure to pad short frames out to the minimum frame length
1799 	 * ourselves.
1800 	 */
1801 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1802 		m = *m_head;
1803 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1804 		if (M_WRITABLE(m) == 0) {
1805 			/* Get a writable copy. */
1806 			m = m_dup(*m_head, M_DONTWAIT);
1807 			m_freem(*m_head);
1808 			if (m == NULL) {
1809 				*m_head = NULL;
1810 				return (ENOBUFS);
1811 			}
1812 			*m_head = m;
1813 		}
1814 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1815 			m = m_defrag(m, M_DONTWAIT);
1816 			if (m == NULL) {
1817 				m_freem(*m_head);
1818 				*m_head = NULL;
1819 				return (ENOBUFS);
1820 			}
1821 		}
1822 		/*
1823 		 * Manually pad short frames, and zero the pad space
1824 		 * to avoid leaking data.
1825 		 */
1826 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1827 		m->m_pkthdr.len += padlen;
1828 		m->m_len = m->m_pkthdr.len;
1829 		*m_head = m;
1830 	}
1831 
1832 	prod = sc->vr_cdata.vr_tx_prod;
1833 	txd = &sc->vr_cdata.vr_txdesc[prod];
1834 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1835 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1836 	if (error == EFBIG) {
1837 		m = m_collapse(*m_head, M_DONTWAIT, VR_MAXFRAGS);
1838 		if (m == NULL) {
1839 			m_freem(*m_head);
1840 			*m_head = NULL;
1841 			return (ENOBUFS);
1842 		}
1843 		*m_head = m;
1844 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1845 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1846 		if (error != 0) {
1847 			m_freem(*m_head);
1848 			*m_head = NULL;
1849 			return (error);
1850 		}
1851 	} else if (error != 0)
1852 		return (error);
1853 	if (nsegs == 0) {
1854 		m_freem(*m_head);
1855 		*m_head = NULL;
1856 		return (EIO);
1857 	}
1858 
1859 	/* Check number of available descriptors. */
1860 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1861 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1862 		return (ENOBUFS);
1863 	}
1864 
1865 	txd->tx_m = *m_head;
1866 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1867 	    BUS_DMASYNC_PREWRITE);
1868 
1869 	/* Set checksum offload. */
1870 	csum_flags = 0;
1871 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1872 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1873 			csum_flags |= VR_TXCTL_IPCSUM;
1874 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1875 			csum_flags |= VR_TXCTL_TCPCSUM;
1876 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1877 			csum_flags |= VR_TXCTL_UDPCSUM;
1878 	}
1879 
1880 	/*
1881 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1882 	 * is required for all descriptors regardless of single or
1883 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1884 	 * the first descriptor for a multi-fragmented frames. Without
1885 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1886 	 * send any frames.
1887 	 */
1888 	si = prod;
1889 	for (i = 0; i < nsegs; i++) {
1890 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1891 		desc->vr_status = 0;
1892 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1893 		if (i == 0)
1894 			txctl |= VR_TXCTL_FIRSTFRAG;
1895 		desc->vr_ctl = htole32(txctl);
1896 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1897 		sc->vr_cdata.vr_tx_cnt++;
1898 		VR_INC(prod, VR_TX_RING_CNT);
1899 	}
1900 	/* Update producer index. */
1901 	sc->vr_cdata.vr_tx_prod = prod;
1902 
1903 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1904 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1905 
1906 	/*
1907 	 * Set EOP on the last desciptor and reuqest Tx completion
1908 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1909 	 */
1910 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1911 	if (sc->vr_cdata.vr_tx_pkts == 0)
1912 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1913 	else
1914 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1915 
1916 	/* Lastly turn the first descriptor ownership to hardware. */
1917 	desc = &sc->vr_rdata.vr_tx_ring[si];
1918 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1919 
1920 	/* Sync descriptors. */
1921 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1922 	    sc->vr_cdata.vr_tx_ring_map,
1923 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1924 
1925 	return (0);
1926 }
1927 
1928 static void
1929 vr_start(struct ifnet *ifp)
1930 {
1931 	struct vr_softc		*sc;
1932 
1933 	sc = ifp->if_softc;
1934 	VR_LOCK(sc);
1935 	vr_start_locked(ifp);
1936 	VR_UNLOCK(sc);
1937 }
1938 
1939 static void
1940 vr_start_locked(struct ifnet *ifp)
1941 {
1942 	struct vr_softc		*sc;
1943 	struct mbuf		*m_head;
1944 	int			enq;
1945 
1946 	sc = ifp->if_softc;
1947 
1948 	VR_LOCK_ASSERT(sc);
1949 
1950 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1951 	    IFF_DRV_RUNNING || sc->vr_link == 0)
1952 		return;
1953 
1954 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1955 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1956 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1957 		if (m_head == NULL)
1958 			break;
1959 		/*
1960 		 * Pack the data into the transmit ring. If we
1961 		 * don't have room, set the OACTIVE flag and wait
1962 		 * for the NIC to drain the ring.
1963 		 */
1964 		if (vr_encap(sc, &m_head)) {
1965 			if (m_head == NULL)
1966 				break;
1967 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1968 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1969 			break;
1970 		}
1971 
1972 		enq++;
1973 		/*
1974 		 * If there's a BPF listener, bounce a copy of this frame
1975 		 * to him.
1976 		 */
1977 		ETHER_BPF_MTAP(ifp, m_head);
1978 	}
1979 
1980 	if (enq > 0) {
1981 		/* Tell the chip to start transmitting. */
1982 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
1983 		/* Set a timeout in case the chip goes out to lunch. */
1984 		sc->vr_watchdog_timer = 5;
1985 	}
1986 }
1987 
1988 static void
1989 vr_init(void *xsc)
1990 {
1991 	struct vr_softc		*sc;
1992 
1993 	sc = (struct vr_softc *)xsc;
1994 	VR_LOCK(sc);
1995 	vr_init_locked(sc);
1996 	VR_UNLOCK(sc);
1997 }
1998 
1999 static void
2000 vr_init_locked(struct vr_softc *sc)
2001 {
2002 	struct ifnet		*ifp;
2003 	struct mii_data		*mii;
2004 	bus_addr_t		addr;
2005 	int			i;
2006 
2007 	VR_LOCK_ASSERT(sc);
2008 
2009 	ifp = sc->vr_ifp;
2010 	mii = device_get_softc(sc->vr_miibus);
2011 
2012 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2013 		return;
2014 
2015 	/* Cancel pending I/O and free all RX/TX buffers. */
2016 	vr_stop(sc);
2017 	vr_reset(sc);
2018 
2019 	/* Set our station address. */
2020 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2021 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2022 
2023 	/* Set DMA size. */
2024 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2025 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2026 
2027 	/*
2028 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2029 	 * so we must set both.
2030 	 */
2031 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2032 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2033 
2034 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2035 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2036 
2037 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2038 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2039 
2040 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2041 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2042 
2043 	/* Init circular RX list. */
2044 	if (vr_rx_ring_init(sc) != 0) {
2045 		device_printf(sc->vr_dev,
2046 		    "initialization failed: no memory for rx buffers\n");
2047 		vr_stop(sc);
2048 		return;
2049 	}
2050 
2051 	/* Init tx descriptors. */
2052 	vr_tx_ring_init(sc);
2053 
2054 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2055 		uint8_t vcam[2] = { 0, 0 };
2056 
2057 		/* Disable VLAN hardware tag insertion/stripping. */
2058 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2059 		/* Disable VLAN hardware filtering. */
2060 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2061 		/* Disable all CAM entries. */
2062 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2063 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2064 		/* Enable the first VLAN CAM. */
2065 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2066 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2067 	}
2068 
2069 	/*
2070 	 * Set up receive filter.
2071 	 */
2072 	vr_set_filter(sc);
2073 
2074 	/*
2075 	 * Load the address of the RX ring.
2076 	 */
2077 	addr = VR_RX_RING_ADDR(sc, 0);
2078 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2079 	/*
2080 	 * Load the address of the TX ring.
2081 	 */
2082 	addr = VR_TX_RING_ADDR(sc, 0);
2083 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2084 	/* Default : full-duplex, no Tx poll. */
2085 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2086 
2087 	/* Set flow-control parameters for Rhine III. */
2088 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2089  		/* Rx buffer count available for incoming packet. */
2090 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT);
2091 		/*
2092 		 * Tx pause low threshold : 16 free receive buffers
2093 		 * Tx pause XON high threshold : 48 free receive buffers
2094 		 */
2095 		CSR_WRITE_1(sc, VR_FLOWCR1,
2096 		    VR_FLOWCR1_TXLO16 | VR_FLOWCR1_TXHI48 | VR_FLOWCR1_XONXOFF);
2097 		/* Set Tx pause timer. */
2098 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2099 	}
2100 
2101 	/* Enable receiver and transmitter. */
2102 	CSR_WRITE_1(sc, VR_CR0,
2103 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2104 
2105 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2106 #ifdef DEVICE_POLLING
2107 	/*
2108 	 * Disable interrupts if we are polling.
2109 	 */
2110 	if (ifp->if_capenable & IFCAP_POLLING)
2111 		CSR_WRITE_2(sc, VR_IMR, 0);
2112 	else
2113 #endif
2114 	/*
2115 	 * Enable interrupts and disable MII intrs.
2116 	 */
2117 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2118 	if (sc->vr_revid > REV_ID_VT6102_A)
2119 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2120 
2121 	sc->vr_link = 0;
2122 	mii_mediachg(mii);
2123 
2124 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2125 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2126 
2127 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2128 }
2129 
2130 /*
2131  * Set media options.
2132  */
2133 static int
2134 vr_ifmedia_upd(struct ifnet *ifp)
2135 {
2136 	struct vr_softc		*sc;
2137 	struct mii_data		*mii;
2138 	struct mii_softc	*miisc;
2139 	int			error;
2140 
2141 	sc = ifp->if_softc;
2142 	VR_LOCK(sc);
2143 	mii = device_get_softc(sc->vr_miibus);
2144 	if (mii->mii_instance) {
2145 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2146 			mii_phy_reset(miisc);
2147 	}
2148 	error = mii_mediachg(mii);
2149 	VR_UNLOCK(sc);
2150 
2151 	return (error);
2152 }
2153 
2154 /*
2155  * Report current media status.
2156  */
2157 static void
2158 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2159 {
2160 	struct vr_softc		*sc;
2161 	struct mii_data		*mii;
2162 
2163 	sc = ifp->if_softc;
2164 	mii = device_get_softc(sc->vr_miibus);
2165 	VR_LOCK(sc);
2166 	mii_pollstat(mii);
2167 	VR_UNLOCK(sc);
2168 	ifmr->ifm_active = mii->mii_media_active;
2169 	ifmr->ifm_status = mii->mii_media_status;
2170 }
2171 
2172 static int
2173 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2174 {
2175 	struct vr_softc		*sc;
2176 	struct ifreq		*ifr;
2177 	struct mii_data		*mii;
2178 	int			error, mask;
2179 
2180 	sc = ifp->if_softc;
2181 	ifr = (struct ifreq *)data;
2182 	error = 0;
2183 
2184 	switch (command) {
2185 	case SIOCSIFFLAGS:
2186 		VR_LOCK(sc);
2187 		if (ifp->if_flags & IFF_UP) {
2188 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2189 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2190 				    (IFF_PROMISC | IFF_ALLMULTI))
2191 					vr_set_filter(sc);
2192 			} else {
2193 				if (sc->vr_detach == 0)
2194 					vr_init_locked(sc);
2195 			}
2196 		} else {
2197 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2198 				vr_stop(sc);
2199 		}
2200 		sc->vr_if_flags = ifp->if_flags;
2201 		VR_UNLOCK(sc);
2202 		break;
2203 	case SIOCADDMULTI:
2204 	case SIOCDELMULTI:
2205 		VR_LOCK(sc);
2206 		vr_set_filter(sc);
2207 		VR_UNLOCK(sc);
2208 		break;
2209 	case SIOCGIFMEDIA:
2210 	case SIOCSIFMEDIA:
2211 		mii = device_get_softc(sc->vr_miibus);
2212 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2213 		break;
2214 	case SIOCSIFCAP:
2215 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2216 #ifdef DEVICE_POLLING
2217 		if (mask & IFCAP_POLLING) {
2218 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2219 				error = ether_poll_register(vr_poll, ifp);
2220 				if (error != 0)
2221 					break;
2222 				VR_LOCK(sc);
2223 				/* Disable interrupts. */
2224 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2225 				ifp->if_capenable |= IFCAP_POLLING;
2226 				VR_UNLOCK(sc);
2227 			} else {
2228 				error = ether_poll_deregister(ifp);
2229 				/* Enable interrupts. */
2230 				VR_LOCK(sc);
2231 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2232 				ifp->if_capenable &= ~IFCAP_POLLING;
2233 				VR_UNLOCK(sc);
2234 			}
2235 		}
2236 #endif /* DEVICE_POLLING */
2237 		if ((mask & IFCAP_TXCSUM) != 0 &&
2238 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2239 			ifp->if_capenable ^= IFCAP_TXCSUM;
2240 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2241 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2242 			else
2243 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2244 		}
2245 		if ((mask & IFCAP_RXCSUM) != 0 &&
2246 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2247 			ifp->if_capenable ^= IFCAP_RXCSUM;
2248 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2249 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2250 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2251 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2252 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2253 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2254 		break;
2255 	default:
2256 		error = ether_ioctl(ifp, command, data);
2257 		break;
2258 	}
2259 
2260 	return (error);
2261 }
2262 
2263 static void
2264 vr_watchdog(struct vr_softc *sc)
2265 {
2266 	struct ifnet		*ifp;
2267 
2268 	VR_LOCK_ASSERT(sc);
2269 
2270 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2271 		return;
2272 
2273 	ifp = sc->vr_ifp;
2274 	/*
2275 	 * Reclaim first as we don't request interrupt for every packets.
2276 	 */
2277 	vr_txeof(sc);
2278 	if (sc->vr_cdata.vr_tx_cnt == 0)
2279 		return;
2280 
2281 	if (sc->vr_link == 0) {
2282 		if (bootverbose)
2283 			if_printf(sc->vr_ifp, "watchdog timeout "
2284 			   "(missed link)\n");
2285 		ifp->if_oerrors++;
2286 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2287 		vr_init_locked(sc);
2288 		return;
2289 	}
2290 
2291 	ifp->if_oerrors++;
2292 	if_printf(ifp, "watchdog timeout\n");
2293 
2294 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2295 	vr_init_locked(sc);
2296 
2297 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2298 		vr_start_locked(ifp);
2299 }
2300 
2301 static void
2302 vr_tx_start(struct vr_softc *sc)
2303 {
2304 	bus_addr_t	addr;
2305 	uint8_t		cmd;
2306 
2307 	cmd = CSR_READ_1(sc, VR_CR0);
2308 	if ((cmd & VR_CR0_TX_ON) == 0) {
2309 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2310 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2311 		cmd |= VR_CR0_TX_ON;
2312 		CSR_WRITE_1(sc, VR_CR0, cmd);
2313 	}
2314 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2315 		sc->vr_watchdog_timer = 5;
2316 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2317 	}
2318 }
2319 
2320 static void
2321 vr_rx_start(struct vr_softc *sc)
2322 {
2323 	bus_addr_t	addr;
2324 	uint8_t		cmd;
2325 
2326 	cmd = CSR_READ_1(sc, VR_CR0);
2327 	if ((cmd & VR_CR0_RX_ON) == 0) {
2328 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2329 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2330 		cmd |= VR_CR0_RX_ON;
2331 		CSR_WRITE_1(sc, VR_CR0, cmd);
2332 	}
2333 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2334 }
2335 
2336 static int
2337 vr_tx_stop(struct vr_softc *sc)
2338 {
2339 	int		i;
2340 	uint8_t		cmd;
2341 
2342 	cmd = CSR_READ_1(sc, VR_CR0);
2343 	if ((cmd & VR_CR0_TX_ON) != 0) {
2344 		cmd &= ~VR_CR0_TX_ON;
2345 		CSR_WRITE_1(sc, VR_CR0, cmd);
2346 		for (i = VR_TIMEOUT; i > 0; i--) {
2347 			DELAY(5);
2348 			cmd = CSR_READ_1(sc, VR_CR0);
2349 			if ((cmd & VR_CR0_TX_ON) == 0)
2350 				break;
2351 		}
2352 		if (i == 0)
2353 			return (ETIMEDOUT);
2354 	}
2355 	return (0);
2356 }
2357 
2358 static int
2359 vr_rx_stop(struct vr_softc *sc)
2360 {
2361 	int		i;
2362 	uint8_t		cmd;
2363 
2364 	cmd = CSR_READ_1(sc, VR_CR0);
2365 	if ((cmd & VR_CR0_RX_ON) != 0) {
2366 		cmd &= ~VR_CR0_RX_ON;
2367 		CSR_WRITE_1(sc, VR_CR0, cmd);
2368 		for (i = VR_TIMEOUT; i > 0; i--) {
2369 			DELAY(5);
2370 			cmd = CSR_READ_1(sc, VR_CR0);
2371 			if ((cmd & VR_CR0_RX_ON) == 0)
2372 				break;
2373 		}
2374 		if (i == 0)
2375 			return (ETIMEDOUT);
2376 	}
2377 	return (0);
2378 }
2379 
2380 /*
2381  * Stop the adapter and free any mbufs allocated to the
2382  * RX and TX lists.
2383  */
2384 static void
2385 vr_stop(struct vr_softc *sc)
2386 {
2387 	struct vr_txdesc	*txd;
2388 	struct vr_rxdesc	*rxd;
2389 	struct ifnet		*ifp;
2390 	int			i;
2391 
2392 	VR_LOCK_ASSERT(sc);
2393 
2394 	ifp = sc->vr_ifp;
2395 	sc->vr_watchdog_timer = 0;
2396 
2397 	callout_stop(&sc->vr_stat_callout);
2398 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2399 
2400 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2401 	if (vr_rx_stop(sc) != 0)
2402 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2403 	if (vr_tx_stop(sc) != 0)
2404 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2405 	/* Clear pending interrupts. */
2406 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2407 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2408 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2409 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2410 
2411 	/*
2412 	 * Free RX and TX mbufs still in the queues.
2413 	 */
2414 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2415 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2416 		if (rxd->rx_m != NULL) {
2417 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2418 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2419 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2420 			    rxd->rx_dmamap);
2421 			m_freem(rxd->rx_m);
2422 			rxd->rx_m = NULL;
2423 		}
2424         }
2425 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2426 		txd = &sc->vr_cdata.vr_txdesc[i];
2427 		if (txd->tx_m != NULL) {
2428 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2429 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2430 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2431 			    txd->tx_dmamap);
2432 			m_freem(txd->tx_m);
2433 			txd->tx_m = NULL;
2434 		}
2435         }
2436 }
2437 
2438 /*
2439  * Stop all chip I/O so that the kernel's probe routines don't
2440  * get confused by errant DMAs when rebooting.
2441  */
2442 static int
2443 vr_shutdown(device_t dev)
2444 {
2445 
2446 	return (vr_suspend(dev));
2447 }
2448 
2449 static int
2450 vr_suspend(device_t dev)
2451 {
2452 	struct vr_softc		*sc;
2453 
2454 	sc = device_get_softc(dev);
2455 
2456 	VR_LOCK(sc);
2457 	vr_stop(sc);
2458 	vr_setwol(sc);
2459 	sc->vr_suspended = 1;
2460 	VR_UNLOCK(sc);
2461 
2462 	return (0);
2463 }
2464 
2465 static int
2466 vr_resume(device_t dev)
2467 {
2468 	struct vr_softc		*sc;
2469 	struct ifnet		*ifp;
2470 
2471 	sc = device_get_softc(dev);
2472 
2473 	VR_LOCK(sc);
2474 	ifp = sc->vr_ifp;
2475 	vr_clrwol(sc);
2476 	vr_reset(sc);
2477 	if (ifp->if_flags & IFF_UP)
2478 		vr_init_locked(sc);
2479 
2480 	sc->vr_suspended = 0;
2481 	VR_UNLOCK(sc);
2482 
2483 	return (0);
2484 }
2485 
2486 static void
2487 vr_setwol(struct vr_softc *sc)
2488 {
2489 	struct ifnet		*ifp;
2490 	int			pmc;
2491 	uint16_t		pmstat;
2492 	uint8_t			v;
2493 
2494 	VR_LOCK_ASSERT(sc);
2495 
2496 	if (sc->vr_revid < REV_ID_VT6102_A ||
2497 	    pci_find_extcap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2498 		return;
2499 
2500 	ifp = sc->vr_ifp;
2501 
2502 	/* Clear WOL configuration. */
2503 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2504 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2505 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2506 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2507 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2508 		/* Newer Rhine III supports two additional patterns. */
2509 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2510 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2511 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2512 	}
2513 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2514 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2515 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2516 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2517 	/*
2518 	 * It seems that multicast wakeup frames require programming pattern
2519 	 * registers and valid CRC as well as pattern mask for each pattern.
2520 	 * While it's possible to setup such a pattern it would complicate
2521 	 * WOL configuration so ignore multicast wakeup frames.
2522 	 */
2523 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2524 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2525 		v = CSR_READ_1(sc, VR_STICKHW);
2526 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2527 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2528 	}
2529 
2530 	/* Put hardware into sleep. */
2531 	v = CSR_READ_1(sc, VR_STICKHW);
2532 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2533 	CSR_WRITE_1(sc, VR_STICKHW, v);
2534 
2535 	/* Request PME if WOL is requested. */
2536 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2537 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2538 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2539 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2540 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2541 }
2542 
2543 static void
2544 vr_clrwol(struct vr_softc *sc)
2545 {
2546 	uint8_t			v;
2547 
2548 	VR_LOCK_ASSERT(sc);
2549 
2550 	if (sc->vr_revid < REV_ID_VT6102_A)
2551 		return;
2552 
2553 	/* Take hardware out of sleep. */
2554 	v = CSR_READ_1(sc, VR_STICKHW);
2555 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2556 	CSR_WRITE_1(sc, VR_STICKHW, v);
2557 
2558 	/* Clear WOL configuration as WOL may interfere normal operation. */
2559 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2560 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2561 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2562 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2563 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2564 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2565 		/* Newer Rhine III supports two additional patterns. */
2566 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2567 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2568 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2569 	}
2570 }
2571 
2572 static int
2573 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2574 {
2575 	struct vr_softc		*sc;
2576 	struct vr_statistics	*stat;
2577 	int			error;
2578 	int			result;
2579 
2580 	result = -1;
2581 	error = sysctl_handle_int(oidp, &result, 0, req);
2582 
2583 	if (error != 0 || req->newptr == NULL)
2584 		return (error);
2585 
2586 	if (result == 1) {
2587 		sc = (struct vr_softc *)arg1;
2588 		stat = &sc->vr_stat;
2589 
2590 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2591 		printf("Outbound good frames : %ju\n",
2592 		    (uintmax_t)stat->tx_ok);
2593 		printf("Inbound good frames : %ju\n",
2594 		    (uintmax_t)stat->rx_ok);
2595 		printf("Outbound errors : %u\n", stat->tx_errors);
2596 		printf("Inbound errors : %u\n", stat->rx_errors);
2597 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2598 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2599 		printf("Inbound FIFO overflows : %d\n",
2600 		    stat->rx_fifo_overflows);
2601 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2602 		printf("Inbound frame alignment errors : %u\n",
2603 		    stat->rx_alignment);
2604 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2605 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2606 		printf("Outbound aborted with excessive collisions : %u\n",
2607 		    stat->tx_abort);
2608 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2609 		printf("Outbound late collisions : %u\n",
2610 		    stat->tx_late_collisions);
2611 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2612 		printf("PCI bus errors : %u\n", stat->bus_errors);
2613 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2614 		    stat->num_restart);
2615 	}
2616 
2617 	return (error);
2618 }
2619