xref: /freebsd/sys/dev/vge/if_vge.c (revision 8c784bb8cf36911b828652f0bf7e88f443abec50)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2004
5  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
48  * combines a tri-speed ethernet MAC and PHY, with the following
49  * features:
50  *
51  *	o Jumbo frame support up to 16K
52  *	o Transmit and receive flow control
53  *	o IPv4 checksum offload
54  *	o VLAN tag insertion and stripping
55  *	o TCP large send
56  *	o 64-bit multicast hash table filter
57  *	o 64 entry CAM filter
58  *	o 16K RX FIFO and 48K TX FIFO memory
59  *	o Interrupt moderation
60  *
61  * The VT6122 supports up to four transmit DMA queues. The descriptors
62  * in the transmit ring can address up to 7 data fragments; frames which
63  * span more than 7 data buffers must be coalesced, but in general the
64  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
65  * long. The receive descriptors address only a single buffer.
66  *
67  * There are two peculiar design issues with the VT6122. One is that
68  * receive data buffers must be aligned on a 32-bit boundary. This is
69  * not a problem where the VT6122 is used as a LOM device in x86-based
70  * systems, but on architectures that generate unaligned access traps, we
71  * have to do some copying.
72  *
73  * The other issue has to do with the way 64-bit addresses are handled.
74  * The DMA descriptors only allow you to specify 48 bits of addressing
75  * information. The remaining 16 bits are specified using one of the
76  * I/O registers. If you only have a 32-bit system, then this isn't
77  * an issue, but if you have a 64-bit system and more than 4GB of
78  * memory, you must have to make sure your network data buffers reside
79  * in the same 48-bit 'segment.'
80  *
81  * Special thanks to Ryan Fu at VIA Networking for providing documentation
82  * and sample NICs for testing.
83  */
84 
85 #ifdef HAVE_KERNEL_OPTION_HEADERS
86 #include "opt_device_polling.h"
87 #endif
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/module.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_var.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 MODULE_DEPEND(vge, pci, 1, 1, 1);
123 MODULE_DEPEND(vge, ether, 1, 1, 1);
124 MODULE_DEPEND(vge, miibus, 1, 1, 1);
125 
126 /* "device miibus" required.  See GENERIC if you get errors here. */
127 #include "miibus_if.h"
128 
129 #include <dev/vge/if_vgereg.h>
130 #include <dev/vge/if_vgevar.h>
131 
132 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
133 
134 /* Tunables */
135 static int msi_disable = 0;
136 TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
137 
138 /*
139  * The SQE error counter of MIB seems to report bogus value.
140  * Vendor's workaround does not seem to work on PCIe based
141  * controllers. Disable it until we find better workaround.
142  */
143 #undef VGE_ENABLE_SQEERR
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 static struct vge_type vge_devs[] = {
149 	{ VIA_VENDORID, VIA_DEVICEID_61XX,
150 		"VIA Networking Velocity Gigabit Ethernet" },
151 	{ 0, 0, NULL }
152 };
153 
154 static int	vge_attach(device_t);
155 static int	vge_detach(device_t);
156 static int	vge_probe(device_t);
157 static int	vge_resume(device_t);
158 static int	vge_shutdown(device_t);
159 static int	vge_suspend(device_t);
160 
161 static void	vge_cam_clear(struct vge_softc *);
162 static int	vge_cam_set(struct vge_softc *, uint8_t *);
163 static void	vge_clrwol(struct vge_softc *);
164 static void	vge_discard_rxbuf(struct vge_softc *, int);
165 static int	vge_dma_alloc(struct vge_softc *);
166 static void	vge_dma_free(struct vge_softc *);
167 static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
168 #ifdef VGE_EEPROM
169 static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
170 #endif
171 static int	vge_encap(struct vge_softc *, struct mbuf **);
172 #ifndef __NO_STRICT_ALIGNMENT
173 static __inline void
174 		vge_fixup_rx(struct mbuf *);
175 #endif
176 static void	vge_freebufs(struct vge_softc *);
177 static void	vge_ifmedia_sts(if_t, struct ifmediareq *);
178 static int	vge_ifmedia_upd(if_t);
179 static int	vge_ifmedia_upd_locked(struct vge_softc *);
180 static void	vge_init(void *);
181 static void	vge_init_locked(struct vge_softc *);
182 static void	vge_intr(void *);
183 static void	vge_intr_holdoff(struct vge_softc *);
184 static int	vge_ioctl(if_t, u_long, caddr_t);
185 static void	vge_link_statchg(void *);
186 static int	vge_miibus_readreg(device_t, int, int);
187 static int	vge_miibus_writereg(device_t, int, int, int);
188 static void	vge_miipoll_start(struct vge_softc *);
189 static void	vge_miipoll_stop(struct vge_softc *);
190 static int	vge_newbuf(struct vge_softc *, int);
191 static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
192 static void	vge_reset(struct vge_softc *);
193 static int	vge_rx_list_init(struct vge_softc *);
194 static int	vge_rxeof(struct vge_softc *, int);
195 static void	vge_rxfilter(struct vge_softc *);
196 static void	vge_setmedia(struct vge_softc *);
197 static void	vge_setvlan(struct vge_softc *);
198 static void	vge_setwol(struct vge_softc *);
199 static void	vge_start(if_t);
200 static void	vge_start_locked(if_t);
201 static void	vge_stats_clear(struct vge_softc *);
202 static void	vge_stats_update(struct vge_softc *);
203 static void	vge_stop(struct vge_softc *);
204 static void	vge_sysctl_node(struct vge_softc *);
205 static int	vge_tx_list_init(struct vge_softc *);
206 static void	vge_txeof(struct vge_softc *);
207 static void	vge_watchdog(void *);
208 
209 static device_method_t vge_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		vge_probe),
212 	DEVMETHOD(device_attach,	vge_attach),
213 	DEVMETHOD(device_detach,	vge_detach),
214 	DEVMETHOD(device_suspend,	vge_suspend),
215 	DEVMETHOD(device_resume,	vge_resume),
216 	DEVMETHOD(device_shutdown,	vge_shutdown),
217 
218 	/* MII interface */
219 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221 
222 	DEVMETHOD_END
223 };
224 
225 static driver_t vge_driver = {
226 	"vge",
227 	vge_methods,
228 	sizeof(struct vge_softc)
229 };
230 
231 DRIVER_MODULE(vge, pci, vge_driver, 0, 0);
232 DRIVER_MODULE(miibus, vge, miibus_driver, 0, 0);
233 
234 #ifdef VGE_EEPROM
235 /*
236  * Read a word of data stored in the EEPROM at address 'addr.'
237  */
238 static void
239 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
240 {
241 	int i;
242 	uint16_t word = 0;
243 
244 	/*
245 	 * Enter EEPROM embedded programming mode. In order to
246 	 * access the EEPROM at all, we first have to set the
247 	 * EELOAD bit in the CHIPCFG2 register.
248 	 */
249 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
250 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
251 
252 	/* Select the address of the word we want to read */
253 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
254 
255 	/* Issue read command */
256 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
257 
258 	/* Wait for the done bit to be set. */
259 	for (i = 0; i < VGE_TIMEOUT; i++) {
260 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
261 			break;
262 	}
263 
264 	if (i == VGE_TIMEOUT) {
265 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
266 		*dest = 0;
267 		return;
268 	}
269 
270 	/* Read the result */
271 	word = CSR_READ_2(sc, VGE_EERDDAT);
272 
273 	/* Turn off EEPROM access mode. */
274 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
275 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
276 
277 	*dest = word;
278 }
279 #endif
280 
281 /*
282  * Read a sequence of words from the EEPROM.
283  */
284 static void
285 vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
286 {
287 	int i;
288 #ifdef VGE_EEPROM
289 	uint16_t word = 0, *ptr;
290 
291 	for (i = 0; i < cnt; i++) {
292 		vge_eeprom_getword(sc, off + i, &word);
293 		ptr = (uint16_t *)(dest + (i * 2));
294 		if (swap)
295 			*ptr = ntohs(word);
296 		else
297 			*ptr = word;
298 	}
299 #else
300 	for (i = 0; i < ETHER_ADDR_LEN; i++)
301 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
302 #endif
303 }
304 
305 static void
306 vge_miipoll_stop(struct vge_softc *sc)
307 {
308 	int i;
309 
310 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
311 
312 	for (i = 0; i < VGE_TIMEOUT; i++) {
313 		DELAY(1);
314 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
315 			break;
316 	}
317 
318 	if (i == VGE_TIMEOUT)
319 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
320 }
321 
322 static void
323 vge_miipoll_start(struct vge_softc *sc)
324 {
325 	int i;
326 
327 	/* First, make sure we're idle. */
328 
329 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
330 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
331 
332 	for (i = 0; i < VGE_TIMEOUT; i++) {
333 		DELAY(1);
334 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
335 			break;
336 	}
337 
338 	if (i == VGE_TIMEOUT) {
339 		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
340 		return;
341 	}
342 
343 	/* Now enable auto poll mode. */
344 
345 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
346 
347 	/* And make sure it started. */
348 
349 	for (i = 0; i < VGE_TIMEOUT; i++) {
350 		DELAY(1);
351 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
352 			break;
353 	}
354 
355 	if (i == VGE_TIMEOUT)
356 		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
357 }
358 
359 static int
360 vge_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 	struct vge_softc *sc;
363 	int i;
364 	uint16_t rval = 0;
365 
366 	sc = device_get_softc(dev);
367 
368 	vge_miipoll_stop(sc);
369 
370 	/* Specify the register we want to read. */
371 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
372 
373 	/* Issue read command. */
374 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
375 
376 	/* Wait for the read command bit to self-clear. */
377 	for (i = 0; i < VGE_TIMEOUT; i++) {
378 		DELAY(1);
379 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
380 			break;
381 	}
382 
383 	if (i == VGE_TIMEOUT)
384 		device_printf(sc->vge_dev, "MII read timed out\n");
385 	else
386 		rval = CSR_READ_2(sc, VGE_MIIDATA);
387 
388 	vge_miipoll_start(sc);
389 
390 	return (rval);
391 }
392 
393 static int
394 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
395 {
396 	struct vge_softc *sc;
397 	int i, rval = 0;
398 
399 	sc = device_get_softc(dev);
400 
401 	vge_miipoll_stop(sc);
402 
403 	/* Specify the register we want to write. */
404 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
405 
406 	/* Specify the data we want to write. */
407 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
408 
409 	/* Issue write command. */
410 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
411 
412 	/* Wait for the write command bit to self-clear. */
413 	for (i = 0; i < VGE_TIMEOUT; i++) {
414 		DELAY(1);
415 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
416 			break;
417 	}
418 
419 	if (i == VGE_TIMEOUT) {
420 		device_printf(sc->vge_dev, "MII write timed out\n");
421 		rval = EIO;
422 	}
423 
424 	vge_miipoll_start(sc);
425 
426 	return (rval);
427 }
428 
429 static void
430 vge_cam_clear(struct vge_softc *sc)
431 {
432 	int i;
433 
434 	/*
435 	 * Turn off all the mask bits. This tells the chip
436 	 * that none of the entries in the CAM filter are valid.
437 	 * desired entries will be enabled as we fill the filter in.
438 	 */
439 
440 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
441 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
442 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
443 	for (i = 0; i < 8; i++)
444 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
445 
446 	/* Clear the VLAN filter too. */
447 
448 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
449 	for (i = 0; i < 8; i++)
450 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
451 
452 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455 
456 	sc->vge_camidx = 0;
457 }
458 
459 static int
460 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
461 {
462 	int i, error = 0;
463 
464 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
465 		return (ENOSPC);
466 
467 	/* Select the CAM data page. */
468 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
469 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
470 
471 	/* Set the filter entry we want to update and enable writing. */
472 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
473 
474 	/* Write the address to the CAM registers */
475 	for (i = 0; i < ETHER_ADDR_LEN; i++)
476 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
477 
478 	/* Issue a write command. */
479 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
480 
481 	/* Wake for it to clear. */
482 	for (i = 0; i < VGE_TIMEOUT; i++) {
483 		DELAY(1);
484 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
485 			break;
486 	}
487 
488 	if (i == VGE_TIMEOUT) {
489 		device_printf(sc->vge_dev, "setting CAM filter failed\n");
490 		error = EIO;
491 		goto fail;
492 	}
493 
494 	/* Select the CAM mask page. */
495 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
497 
498 	/* Set the mask bit that enables this filter. */
499 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
500 	    1<<(sc->vge_camidx & 7));
501 
502 	sc->vge_camidx++;
503 
504 fail:
505 	/* Turn off access to CAM. */
506 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
507 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
508 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
509 
510 	return (error);
511 }
512 
513 static void
514 vge_setvlan(struct vge_softc *sc)
515 {
516 	if_t ifp;
517 	uint8_t cfg;
518 
519 	VGE_LOCK_ASSERT(sc);
520 
521 	ifp = sc->vge_ifp;
522 	cfg = CSR_READ_1(sc, VGE_RXCFG);
523 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
524 		cfg |= VGE_VTAG_OPT2;
525 	else
526 		cfg &= ~VGE_VTAG_OPT2;
527 	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
528 }
529 
530 static u_int
531 vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
532 {
533 	struct vge_softc *sc = arg;
534 
535         if (sc->vge_camidx == VGE_CAM_MAXADDRS)
536 		return (0);
537 
538 	(void )vge_cam_set(sc, LLADDR(sdl));
539 
540 	return (1);
541 }
542 
543 static u_int
544 vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
545 {
546 	uint32_t h, *hashes = arg;
547 
548 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
549 	if (h < 32)
550 		hashes[0] |= (1 << h);
551 	else
552 		hashes[1] |= (1 << (h - 32));
553 
554 	return (1);
555 }
556 
557 /*
558  * Program the multicast filter. We use the 64-entry CAM filter
559  * for perfect filtering. If there's more than 64 multicast addresses,
560  * we use the hash filter instead.
561  */
562 static void
563 vge_rxfilter(struct vge_softc *sc)
564 {
565 	if_t ifp;
566 	uint32_t hashes[2];
567 	uint8_t rxcfg;
568 
569 	VGE_LOCK_ASSERT(sc);
570 
571 	/* First, zot all the multicast entries. */
572 	hashes[0] = 0;
573 	hashes[1] = 0;
574 
575 	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
576 	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
577 	    VGE_RXCTL_RX_PROMISC);
578 	/*
579 	 * Always allow VLAN oversized frames and frames for
580 	 * this host.
581 	 */
582 	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
583 
584 	ifp = sc->vge_ifp;
585 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
586 		rxcfg |= VGE_RXCTL_RX_BCAST;
587 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
588 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
589 			rxcfg |= VGE_RXCTL_RX_PROMISC;
590 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
591 			hashes[0] = 0xFFFFFFFF;
592 			hashes[1] = 0xFFFFFFFF;
593 		}
594 		goto done;
595 	}
596 
597 	vge_cam_clear(sc);
598 
599 	/* Now program new ones */
600 	if_foreach_llmaddr(ifp, vge_set_maddr, sc);
601 
602 	/* If there were too many addresses, use the hash filter. */
603         if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
604 		vge_cam_clear(sc);
605 		 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
606 	}
607 
608 done:
609 	if (hashes[0] != 0 || hashes[1] != 0)
610 		rxcfg |= VGE_RXCTL_RX_MCAST;
611 	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
612 	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
613 	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
614 }
615 
616 static void
617 vge_reset(struct vge_softc *sc)
618 {
619 	int i;
620 
621 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
622 
623 	for (i = 0; i < VGE_TIMEOUT; i++) {
624 		DELAY(5);
625 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
626 			break;
627 	}
628 
629 	if (i == VGE_TIMEOUT) {
630 		device_printf(sc->vge_dev, "soft reset timed out\n");
631 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
632 		DELAY(2000);
633 	}
634 
635 	DELAY(5000);
636 }
637 
638 /*
639  * Probe for a VIA gigabit chip. Check the PCI vendor and device
640  * IDs against our list and return a device name if we find a match.
641  */
642 static int
643 vge_probe(device_t dev)
644 {
645 	struct vge_type	*t;
646 
647 	t = vge_devs;
648 
649 	while (t->vge_name != NULL) {
650 		if ((pci_get_vendor(dev) == t->vge_vid) &&
651 		    (pci_get_device(dev) == t->vge_did)) {
652 			device_set_desc(dev, t->vge_name);
653 			return (BUS_PROBE_DEFAULT);
654 		}
655 		t++;
656 	}
657 
658 	return (ENXIO);
659 }
660 
661 /*
662  * Map a single buffer address.
663  */
664 
665 struct vge_dmamap_arg {
666 	bus_addr_t	vge_busaddr;
667 };
668 
669 static void
670 vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
671 {
672 	struct vge_dmamap_arg *ctx;
673 
674 	if (error != 0)
675 		return;
676 
677 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
678 
679 	ctx = (struct vge_dmamap_arg *)arg;
680 	ctx->vge_busaddr = segs[0].ds_addr;
681 }
682 
683 static int
684 vge_dma_alloc(struct vge_softc *sc)
685 {
686 	struct vge_dmamap_arg ctx;
687 	struct vge_txdesc *txd;
688 	struct vge_rxdesc *rxd;
689 	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
690 	int error, i;
691 
692 	/*
693 	 * It seems old PCI controllers do not support DAC.  DAC
694 	 * configuration can be enabled by accessing VGE_CHIPCFG3
695 	 * register but honor EEPROM configuration instead of
696 	 * blindly overriding DAC configuration.  PCIe based
697 	 * controllers are supposed to support 64bit DMA so enable
698 	 * 64bit DMA on these controllers.
699 	 */
700 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
701 		lowaddr = BUS_SPACE_MAXADDR;
702 	else
703 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
704 
705 again:
706 	/* Create parent ring tag. */
707 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
708 	    1, 0,			/* algnmnt, boundary */
709 	    lowaddr,			/* lowaddr */
710 	    BUS_SPACE_MAXADDR,		/* highaddr */
711 	    NULL, NULL,			/* filter, filterarg */
712 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
713 	    0,				/* nsegments */
714 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
715 	    0,				/* flags */
716 	    NULL, NULL,			/* lockfunc, lockarg */
717 	    &sc->vge_cdata.vge_ring_tag);
718 	if (error != 0) {
719 		device_printf(sc->vge_dev,
720 		    "could not create parent DMA tag.\n");
721 		goto fail;
722 	}
723 
724 	/* Create tag for Tx ring. */
725 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
726 	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
727 	    BUS_SPACE_MAXADDR,		/* lowaddr */
728 	    BUS_SPACE_MAXADDR,		/* highaddr */
729 	    NULL, NULL,			/* filter, filterarg */
730 	    VGE_TX_LIST_SZ,		/* maxsize */
731 	    1,				/* nsegments */
732 	    VGE_TX_LIST_SZ,		/* maxsegsize */
733 	    0,				/* flags */
734 	    NULL, NULL,			/* lockfunc, lockarg */
735 	    &sc->vge_cdata.vge_tx_ring_tag);
736 	if (error != 0) {
737 		device_printf(sc->vge_dev,
738 		    "could not allocate Tx ring DMA tag.\n");
739 		goto fail;
740 	}
741 
742 	/* Create tag for Rx ring. */
743 	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
744 	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
745 	    BUS_SPACE_MAXADDR,		/* lowaddr */
746 	    BUS_SPACE_MAXADDR,		/* highaddr */
747 	    NULL, NULL,			/* filter, filterarg */
748 	    VGE_RX_LIST_SZ,		/* maxsize */
749 	    1,				/* nsegments */
750 	    VGE_RX_LIST_SZ,		/* maxsegsize */
751 	    0,				/* flags */
752 	    NULL, NULL,			/* lockfunc, lockarg */
753 	    &sc->vge_cdata.vge_rx_ring_tag);
754 	if (error != 0) {
755 		device_printf(sc->vge_dev,
756 		    "could not allocate Rx ring DMA tag.\n");
757 		goto fail;
758 	}
759 
760 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
761 	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
762 	    (void **)&sc->vge_rdata.vge_tx_ring,
763 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
764 	    &sc->vge_cdata.vge_tx_ring_map);
765 	if (error != 0) {
766 		device_printf(sc->vge_dev,
767 		    "could not allocate DMA'able memory for Tx ring.\n");
768 		goto fail;
769 	}
770 
771 	ctx.vge_busaddr = 0;
772 	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
773 	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
774 	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
775 	if (error != 0 || ctx.vge_busaddr == 0) {
776 		device_printf(sc->vge_dev,
777 		    "could not load DMA'able memory for Tx ring.\n");
778 		goto fail;
779 	}
780 	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
781 
782 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
783 	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
784 	    (void **)&sc->vge_rdata.vge_rx_ring,
785 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
786 	    &sc->vge_cdata.vge_rx_ring_map);
787 	if (error != 0) {
788 		device_printf(sc->vge_dev,
789 		    "could not allocate DMA'able memory for Rx ring.\n");
790 		goto fail;
791 	}
792 
793 	ctx.vge_busaddr = 0;
794 	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
795 	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
796 	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
797 	if (error != 0 || ctx.vge_busaddr == 0) {
798 		device_printf(sc->vge_dev,
799 		    "could not load DMA'able memory for Rx ring.\n");
800 		goto fail;
801 	}
802 	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
803 
804 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
805 	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
806 	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
807 	if ((VGE_ADDR_HI(tx_ring_end) !=
808 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
809 	    (VGE_ADDR_HI(rx_ring_end) !=
810 	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
811 	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
812 		device_printf(sc->vge_dev, "4GB boundary crossed, "
813 		    "switching to 32bit DMA address mode.\n");
814 		vge_dma_free(sc);
815 		/* Limit DMA address space to 32bit and try again. */
816 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
817 		goto again;
818 	}
819 
820 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
821 		lowaddr = VGE_BUF_DMA_MAXADDR;
822 	else
823 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
824 	/* Create parent buffer tag. */
825 	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
826 	    1, 0,			/* algnmnt, boundary */
827 	    lowaddr,			/* lowaddr */
828 	    BUS_SPACE_MAXADDR,		/* highaddr */
829 	    NULL, NULL,			/* filter, filterarg */
830 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
831 	    0,				/* nsegments */
832 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
833 	    0,				/* flags */
834 	    NULL, NULL,			/* lockfunc, lockarg */
835 	    &sc->vge_cdata.vge_buffer_tag);
836 	if (error != 0) {
837 		device_printf(sc->vge_dev,
838 		    "could not create parent buffer DMA tag.\n");
839 		goto fail;
840 	}
841 
842 	/* Create tag for Tx buffers. */
843 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
844 	    1, 0,			/* algnmnt, boundary */
845 	    BUS_SPACE_MAXADDR,		/* lowaddr */
846 	    BUS_SPACE_MAXADDR,		/* highaddr */
847 	    NULL, NULL,			/* filter, filterarg */
848 	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
849 	    VGE_MAXTXSEGS,		/* nsegments */
850 	    MCLBYTES,			/* maxsegsize */
851 	    0,				/* flags */
852 	    NULL, NULL,			/* lockfunc, lockarg */
853 	    &sc->vge_cdata.vge_tx_tag);
854 	if (error != 0) {
855 		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
856 		goto fail;
857 	}
858 
859 	/* Create tag for Rx buffers. */
860 	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
861 	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
862 	    BUS_SPACE_MAXADDR,		/* lowaddr */
863 	    BUS_SPACE_MAXADDR,		/* highaddr */
864 	    NULL, NULL,			/* filter, filterarg */
865 	    MCLBYTES,			/* maxsize */
866 	    1,				/* nsegments */
867 	    MCLBYTES,			/* maxsegsize */
868 	    0,				/* flags */
869 	    NULL, NULL,			/* lockfunc, lockarg */
870 	    &sc->vge_cdata.vge_rx_tag);
871 	if (error != 0) {
872 		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
873 		goto fail;
874 	}
875 
876 	/* Create DMA maps for Tx buffers. */
877 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
878 		txd = &sc->vge_cdata.vge_txdesc[i];
879 		txd->tx_m = NULL;
880 		txd->tx_dmamap = NULL;
881 		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
882 		    &txd->tx_dmamap);
883 		if (error != 0) {
884 			device_printf(sc->vge_dev,
885 			    "could not create Tx dmamap.\n");
886 			goto fail;
887 		}
888 	}
889 	/* Create DMA maps for Rx buffers. */
890 	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
891 	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
892 		device_printf(sc->vge_dev,
893 		    "could not create spare Rx dmamap.\n");
894 		goto fail;
895 	}
896 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
897 		rxd = &sc->vge_cdata.vge_rxdesc[i];
898 		rxd->rx_m = NULL;
899 		rxd->rx_dmamap = NULL;
900 		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
901 		    &rxd->rx_dmamap);
902 		if (error != 0) {
903 			device_printf(sc->vge_dev,
904 			    "could not create Rx dmamap.\n");
905 			goto fail;
906 		}
907 	}
908 
909 fail:
910 	return (error);
911 }
912 
913 static void
914 vge_dma_free(struct vge_softc *sc)
915 {
916 	struct vge_txdesc *txd;
917 	struct vge_rxdesc *rxd;
918 	int i;
919 
920 	/* Tx ring. */
921 	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
922 		if (sc->vge_rdata.vge_tx_ring_paddr)
923 			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
924 			    sc->vge_cdata.vge_tx_ring_map);
925 		if (sc->vge_rdata.vge_tx_ring)
926 			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
927 			    sc->vge_rdata.vge_tx_ring,
928 			    sc->vge_cdata.vge_tx_ring_map);
929 		sc->vge_rdata.vge_tx_ring = NULL;
930 		sc->vge_rdata.vge_tx_ring_paddr = 0;
931 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
932 		sc->vge_cdata.vge_tx_ring_tag = NULL;
933 	}
934 	/* Rx ring. */
935 	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
936 		if (sc->vge_rdata.vge_rx_ring_paddr)
937 			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
938 			    sc->vge_cdata.vge_rx_ring_map);
939 		if (sc->vge_rdata.vge_rx_ring)
940 			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
941 			    sc->vge_rdata.vge_rx_ring,
942 			    sc->vge_cdata.vge_rx_ring_map);
943 		sc->vge_rdata.vge_rx_ring = NULL;
944 		sc->vge_rdata.vge_rx_ring_paddr = 0;
945 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
946 		sc->vge_cdata.vge_rx_ring_tag = NULL;
947 	}
948 	/* Tx buffers. */
949 	if (sc->vge_cdata.vge_tx_tag != NULL) {
950 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
951 			txd = &sc->vge_cdata.vge_txdesc[i];
952 			if (txd->tx_dmamap != NULL) {
953 				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
954 				    txd->tx_dmamap);
955 				txd->tx_dmamap = NULL;
956 			}
957 		}
958 		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
959 		sc->vge_cdata.vge_tx_tag = NULL;
960 	}
961 	/* Rx buffers. */
962 	if (sc->vge_cdata.vge_rx_tag != NULL) {
963 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
964 			rxd = &sc->vge_cdata.vge_rxdesc[i];
965 			if (rxd->rx_dmamap != NULL) {
966 				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
967 				    rxd->rx_dmamap);
968 				rxd->rx_dmamap = NULL;
969 			}
970 		}
971 		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
972 			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
973 			    sc->vge_cdata.vge_rx_sparemap);
974 			sc->vge_cdata.vge_rx_sparemap = NULL;
975 		}
976 		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
977 		sc->vge_cdata.vge_rx_tag = NULL;
978 	}
979 
980 	if (sc->vge_cdata.vge_buffer_tag != NULL) {
981 		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
982 		sc->vge_cdata.vge_buffer_tag = NULL;
983 	}
984 	if (sc->vge_cdata.vge_ring_tag != NULL) {
985 		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
986 		sc->vge_cdata.vge_ring_tag = NULL;
987 	}
988 }
989 
990 /*
991  * Attach the interface. Allocate softc structures, do ifmedia
992  * setup and ethernet/BPF attach.
993  */
994 static int
995 vge_attach(device_t dev)
996 {
997 	u_char eaddr[ETHER_ADDR_LEN];
998 	struct vge_softc *sc;
999 	if_t ifp;
1000 	int error = 0, cap, i, msic, rid;
1001 
1002 	sc = device_get_softc(dev);
1003 	sc->vge_dev = dev;
1004 
1005 	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1006 	    MTX_DEF);
1007 	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1008 
1009 	/*
1010 	 * Map control/status registers.
1011 	 */
1012 	pci_enable_busmaster(dev);
1013 
1014 	rid = PCIR_BAR(1);
1015 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1016 	    RF_ACTIVE);
1017 
1018 	if (sc->vge_res == NULL) {
1019 		device_printf(dev, "couldn't map ports/memory\n");
1020 		error = ENXIO;
1021 		goto fail;
1022 	}
1023 
1024 	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1025 		sc->vge_flags |= VGE_FLAG_PCIE;
1026 		sc->vge_expcap = cap;
1027 	} else
1028 		sc->vge_flags |= VGE_FLAG_JUMBO;
1029 	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1030 		sc->vge_flags |= VGE_FLAG_PMCAP;
1031 		sc->vge_pmcap = cap;
1032 	}
1033 	rid = 0;
1034 	msic = pci_msi_count(dev);
1035 	if (msi_disable == 0 && msic > 0) {
1036 		msic = 1;
1037 		if (pci_alloc_msi(dev, &msic) == 0) {
1038 			if (msic == 1) {
1039 				sc->vge_flags |= VGE_FLAG_MSI;
1040 				device_printf(dev, "Using %d MSI message\n",
1041 				    msic);
1042 				rid = 1;
1043 			} else
1044 				pci_release_msi(dev);
1045 		}
1046 	}
1047 
1048 	/* Allocate interrupt */
1049 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1050 	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1051 	if (sc->vge_irq == NULL) {
1052 		device_printf(dev, "couldn't map interrupt\n");
1053 		error = ENXIO;
1054 		goto fail;
1055 	}
1056 
1057 	/* Reset the adapter. */
1058 	vge_reset(sc);
1059 	/* Reload EEPROM. */
1060 	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1061 	for (i = 0; i < VGE_TIMEOUT; i++) {
1062 		DELAY(5);
1063 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1064 			break;
1065 	}
1066 	if (i == VGE_TIMEOUT)
1067 		device_printf(dev, "EEPROM reload timed out\n");
1068 	/*
1069 	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1070 	 * MAC will receive magic packet which in turn confuses
1071 	 * controller.
1072 	 */
1073 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1074 
1075 	/*
1076 	 * Get station address from the EEPROM.
1077 	 */
1078 	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1079 	/*
1080 	 * Save configured PHY address.
1081 	 * It seems the PHY address of PCIe controllers just
1082 	 * reflects media jump strapping status so we assume the
1083 	 * internal PHY address of PCIe controller is at 1.
1084 	 */
1085 	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1086 		sc->vge_phyaddr = 1;
1087 	else
1088 		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1089 		    VGE_MIICFG_PHYADDR;
1090 	/* Clear WOL and take hardware from powerdown. */
1091 	vge_clrwol(sc);
1092 	vge_sysctl_node(sc);
1093 	error = vge_dma_alloc(sc);
1094 	if (error)
1095 		goto fail;
1096 
1097 	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1098 	if (ifp == NULL) {
1099 		device_printf(dev, "can not if_alloc()\n");
1100 		error = ENOSPC;
1101 		goto fail;
1102 	}
1103 
1104 	vge_miipoll_start(sc);
1105 	/* Do MII setup */
1106 	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1107 	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1108 	    MIIF_DOPAUSE);
1109 	if (error != 0) {
1110 		device_printf(dev, "attaching PHYs failed\n");
1111 		goto fail;
1112 	}
1113 
1114 	if_setsoftc(ifp, sc);
1115 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1116 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1117 	if_setioctlfn(ifp, vge_ioctl);
1118 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
1119 	if_setstartfn(ifp, vge_start);
1120 	if_sethwassist(ifp, VGE_CSUM_FEATURES);
1121 	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1122 	    IFCAP_VLAN_HWTAGGING, 0);
1123 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1124 		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
1125 	if_setcapenable(ifp, if_getcapabilities(ifp));
1126 #ifdef DEVICE_POLLING
1127 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1128 #endif
1129 	if_setinitfn(ifp, vge_init);
1130 	if_setsendqlen(ifp, VGE_TX_DESC_CNT - 1);
1131 	if_setsendqready(ifp);
1132 
1133 	/*
1134 	 * Call MI attach routine.
1135 	 */
1136 	ether_ifattach(ifp, eaddr);
1137 
1138 	/* Tell the upper layer(s) we support long frames. */
1139 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1140 
1141 	/* Hook interrupt last to avoid having to lock softc */
1142 	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1143 	    NULL, vge_intr, sc, &sc->vge_intrhand);
1144 
1145 	if (error) {
1146 		device_printf(dev, "couldn't set up irq\n");
1147 		ether_ifdetach(ifp);
1148 		goto fail;
1149 	}
1150 
1151 fail:
1152 	if (error)
1153 		vge_detach(dev);
1154 
1155 	return (error);
1156 }
1157 
1158 /*
1159  * Shutdown hardware and free up resources. This can be called any
1160  * time after the mutex has been initialized. It is called in both
1161  * the error case in attach and the normal detach case so it needs
1162  * to be careful about only freeing resources that have actually been
1163  * allocated.
1164  */
1165 static int
1166 vge_detach(device_t dev)
1167 {
1168 	struct vge_softc *sc;
1169 	if_t ifp;
1170 
1171 	sc = device_get_softc(dev);
1172 	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1173 	ifp = sc->vge_ifp;
1174 
1175 #ifdef DEVICE_POLLING
1176 	if (if_getcapenable(ifp) & IFCAP_POLLING)
1177 		ether_poll_deregister(ifp);
1178 #endif
1179 
1180 	/* These should only be active if attach succeeded */
1181 	if (device_is_attached(dev)) {
1182 		ether_ifdetach(ifp);
1183 		VGE_LOCK(sc);
1184 		vge_stop(sc);
1185 		VGE_UNLOCK(sc);
1186 		callout_drain(&sc->vge_watchdog);
1187 	}
1188 	if (sc->vge_miibus)
1189 		device_delete_child(dev, sc->vge_miibus);
1190 	bus_generic_detach(dev);
1191 
1192 	if (sc->vge_intrhand)
1193 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1194 	if (sc->vge_irq)
1195 		bus_release_resource(dev, SYS_RES_IRQ,
1196 		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1197 	if (sc->vge_flags & VGE_FLAG_MSI)
1198 		pci_release_msi(dev);
1199 	if (sc->vge_res)
1200 		bus_release_resource(dev, SYS_RES_MEMORY,
1201 		    PCIR_BAR(1), sc->vge_res);
1202 	if (ifp)
1203 		if_free(ifp);
1204 
1205 	vge_dma_free(sc);
1206 	mtx_destroy(&sc->vge_mtx);
1207 
1208 	return (0);
1209 }
1210 
1211 static void
1212 vge_discard_rxbuf(struct vge_softc *sc, int prod)
1213 {
1214 	struct vge_rxdesc *rxd;
1215 	int i;
1216 
1217 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1218 	rxd->rx_desc->vge_sts = 0;
1219 	rxd->rx_desc->vge_ctl = 0;
1220 
1221 	/*
1222 	 * Note: the manual fails to document the fact that for
1223 	 * proper opration, the driver needs to replentish the RX
1224 	 * DMA ring 4 descriptors at a time (rather than one at a
1225 	 * time, like most chips). We can allocate the new buffers
1226 	 * but we should not set the OWN bits until we're ready
1227 	 * to hand back 4 of them in one shot.
1228 	 */
1229 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1230 		for (i = VGE_RXCHUNK; i > 0; i--) {
1231 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1232 			rxd = rxd->rxd_prev;
1233 		}
1234 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1235 	}
1236 }
1237 
1238 static int
1239 vge_newbuf(struct vge_softc *sc, int prod)
1240 {
1241 	struct vge_rxdesc *rxd;
1242 	struct mbuf *m;
1243 	bus_dma_segment_t segs[1];
1244 	bus_dmamap_t map;
1245 	int i, nsegs;
1246 
1247 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1248 	if (m == NULL)
1249 		return (ENOBUFS);
1250 	/*
1251 	 * This is part of an evil trick to deal with strict-alignment
1252 	 * architectures. The VIA chip requires RX buffers to be aligned
1253 	 * on 32-bit boundaries, but that will hose strict-alignment
1254 	 * architectures. To get around this, we leave some empty space
1255 	 * at the start of each buffer and for non-strict-alignment hosts,
1256 	 * we copy the buffer back two bytes to achieve word alignment.
1257 	 * This is slightly more efficient than allocating a new buffer,
1258 	 * copying the contents, and discarding the old buffer.
1259 	 */
1260 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1261 	m_adj(m, VGE_RX_BUF_ALIGN);
1262 
1263 	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1264 	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1265 		m_freem(m);
1266 		return (ENOBUFS);
1267 	}
1268 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1269 
1270 	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1271 	if (rxd->rx_m != NULL) {
1272 		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1273 		    BUS_DMASYNC_POSTREAD);
1274 		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1275 	}
1276 	map = rxd->rx_dmamap;
1277 	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1278 	sc->vge_cdata.vge_rx_sparemap = map;
1279 	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1280 	    BUS_DMASYNC_PREREAD);
1281 	rxd->rx_m = m;
1282 
1283 	rxd->rx_desc->vge_sts = 0;
1284 	rxd->rx_desc->vge_ctl = 0;
1285 	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1286 	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1287 	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1288 
1289 	/*
1290 	 * Note: the manual fails to document the fact that for
1291 	 * proper operation, the driver needs to replenish the RX
1292 	 * DMA ring 4 descriptors at a time (rather than one at a
1293 	 * time, like most chips). We can allocate the new buffers
1294 	 * but we should not set the OWN bits until we're ready
1295 	 * to hand back 4 of them in one shot.
1296 	 */
1297 	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1298 		for (i = VGE_RXCHUNK; i > 0; i--) {
1299 			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1300 			rxd = rxd->rxd_prev;
1301 		}
1302 		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1303 	}
1304 
1305 	return (0);
1306 }
1307 
1308 static int
1309 vge_tx_list_init(struct vge_softc *sc)
1310 {
1311 	struct vge_ring_data *rd;
1312 	struct vge_txdesc *txd;
1313 	int i;
1314 
1315 	VGE_LOCK_ASSERT(sc);
1316 
1317 	sc->vge_cdata.vge_tx_prodidx = 0;
1318 	sc->vge_cdata.vge_tx_considx = 0;
1319 	sc->vge_cdata.vge_tx_cnt = 0;
1320 
1321 	rd = &sc->vge_rdata;
1322 	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1323 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1324 		txd = &sc->vge_cdata.vge_txdesc[i];
1325 		txd->tx_m = NULL;
1326 		txd->tx_desc = &rd->vge_tx_ring[i];
1327 	}
1328 
1329 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1330 	    sc->vge_cdata.vge_tx_ring_map,
1331 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1332 
1333 	return (0);
1334 }
1335 
1336 static int
1337 vge_rx_list_init(struct vge_softc *sc)
1338 {
1339 	struct vge_ring_data *rd;
1340 	struct vge_rxdesc *rxd;
1341 	int i;
1342 
1343 	VGE_LOCK_ASSERT(sc);
1344 
1345 	sc->vge_cdata.vge_rx_prodidx = 0;
1346 	sc->vge_cdata.vge_head = NULL;
1347 	sc->vge_cdata.vge_tail = NULL;
1348 	sc->vge_cdata.vge_rx_commit = 0;
1349 
1350 	rd = &sc->vge_rdata;
1351 	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1352 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1353 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1354 		rxd->rx_m = NULL;
1355 		rxd->rx_desc = &rd->vge_rx_ring[i];
1356 		if (i == 0)
1357 			rxd->rxd_prev =
1358 			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1359 		else
1360 			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1361 		if (vge_newbuf(sc, i) != 0)
1362 			return (ENOBUFS);
1363 	}
1364 
1365 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1366 	    sc->vge_cdata.vge_rx_ring_map,
1367 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1368 
1369 	sc->vge_cdata.vge_rx_commit = 0;
1370 
1371 	return (0);
1372 }
1373 
1374 static void
1375 vge_freebufs(struct vge_softc *sc)
1376 {
1377 	struct vge_txdesc *txd;
1378 	struct vge_rxdesc *rxd;
1379 	if_t ifp;
1380 	int i;
1381 
1382 	VGE_LOCK_ASSERT(sc);
1383 
1384 	ifp = sc->vge_ifp;
1385 	/*
1386 	 * Free RX and TX mbufs still in the queues.
1387 	 */
1388 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1389 		rxd = &sc->vge_cdata.vge_rxdesc[i];
1390 		if (rxd->rx_m != NULL) {
1391 			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1392 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1393 			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1394 			    rxd->rx_dmamap);
1395 			m_freem(rxd->rx_m);
1396 			rxd->rx_m = NULL;
1397 		}
1398 	}
1399 
1400 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1401 		txd = &sc->vge_cdata.vge_txdesc[i];
1402 		if (txd->tx_m != NULL) {
1403 			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1404 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1405 			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1406 			    txd->tx_dmamap);
1407 			m_freem(txd->tx_m);
1408 			txd->tx_m = NULL;
1409 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1410 		}
1411 	}
1412 }
1413 
1414 #ifndef	__NO_STRICT_ALIGNMENT
1415 static __inline void
1416 vge_fixup_rx(struct mbuf *m)
1417 {
1418 	int i;
1419 	uint16_t *src, *dst;
1420 
1421 	src = mtod(m, uint16_t *);
1422 	dst = src - 1;
1423 
1424 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1425 		*dst++ = *src++;
1426 
1427 	m->m_data -= ETHER_ALIGN;
1428 }
1429 #endif
1430 
1431 /*
1432  * RX handler. We support the reception of jumbo frames that have
1433  * been fragmented across multiple 2K mbuf cluster buffers.
1434  */
1435 static int
1436 vge_rxeof(struct vge_softc *sc, int count)
1437 {
1438 	struct mbuf *m;
1439 	if_t ifp;
1440 	int prod, prog, total_len;
1441 	struct vge_rxdesc *rxd;
1442 	struct vge_rx_desc *cur_rx;
1443 	uint32_t rxstat, rxctl;
1444 
1445 	VGE_LOCK_ASSERT(sc);
1446 
1447 	ifp = sc->vge_ifp;
1448 
1449 	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1450 	    sc->vge_cdata.vge_rx_ring_map,
1451 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1452 
1453 	prod = sc->vge_cdata.vge_rx_prodidx;
1454 	for (prog = 0; count > 0 &&
1455 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
1456 	    VGE_RX_DESC_INC(prod)) {
1457 		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1458 		rxstat = le32toh(cur_rx->vge_sts);
1459 		if ((rxstat & VGE_RDSTS_OWN) != 0)
1460 			break;
1461 		count--;
1462 		prog++;
1463 		rxctl = le32toh(cur_rx->vge_ctl);
1464 		total_len = VGE_RXBYTES(rxstat);
1465 		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1466 		m = rxd->rx_m;
1467 
1468 		/*
1469 		 * If the 'start of frame' bit is set, this indicates
1470 		 * either the first fragment in a multi-fragment receive,
1471 		 * or an intermediate fragment. Either way, we want to
1472 		 * accumulate the buffers.
1473 		 */
1474 		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1475 			if (vge_newbuf(sc, prod) != 0) {
1476 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1477 				VGE_CHAIN_RESET(sc);
1478 				vge_discard_rxbuf(sc, prod);
1479 				continue;
1480 			}
1481 			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1482 			if (sc->vge_cdata.vge_head == NULL) {
1483 				sc->vge_cdata.vge_head = m;
1484 				sc->vge_cdata.vge_tail = m;
1485 			} else {
1486 				m->m_flags &= ~M_PKTHDR;
1487 				sc->vge_cdata.vge_tail->m_next = m;
1488 				sc->vge_cdata.vge_tail = m;
1489 			}
1490 			continue;
1491 		}
1492 
1493 		/*
1494 		 * Bad/error frames will have the RXOK bit cleared.
1495 		 * However, there's one error case we want to allow:
1496 		 * if a VLAN tagged frame arrives and the chip can't
1497 		 * match it against the CAM filter, it considers this
1498 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1499 		 * We don't want to drop the frame though: our VLAN
1500 		 * filtering is done in software.
1501 		 * We also want to receive bad-checksummed frames and
1502 		 * and frames with bad-length.
1503 		 */
1504 		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1505 		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1506 		    VGE_RDSTS_CSUMERR)) == 0) {
1507 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1508 			/*
1509 			 * If this is part of a multi-fragment packet,
1510 			 * discard all the pieces.
1511 			 */
1512 			VGE_CHAIN_RESET(sc);
1513 			vge_discard_rxbuf(sc, prod);
1514 			continue;
1515 		}
1516 
1517 		if (vge_newbuf(sc, prod) != 0) {
1518 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1519 			VGE_CHAIN_RESET(sc);
1520 			vge_discard_rxbuf(sc, prod);
1521 			continue;
1522 		}
1523 
1524 		/* Chain received mbufs. */
1525 		if (sc->vge_cdata.vge_head != NULL) {
1526 			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1527 			/*
1528 			 * Special case: if there's 4 bytes or less
1529 			 * in this buffer, the mbuf can be discarded:
1530 			 * the last 4 bytes is the CRC, which we don't
1531 			 * care about anyway.
1532 			 */
1533 			if (m->m_len <= ETHER_CRC_LEN) {
1534 				sc->vge_cdata.vge_tail->m_len -=
1535 				    (ETHER_CRC_LEN - m->m_len);
1536 				m_freem(m);
1537 			} else {
1538 				m->m_len -= ETHER_CRC_LEN;
1539 				m->m_flags &= ~M_PKTHDR;
1540 				sc->vge_cdata.vge_tail->m_next = m;
1541 			}
1542 			m = sc->vge_cdata.vge_head;
1543 			m->m_flags |= M_PKTHDR;
1544 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1545 		} else {
1546 			m->m_flags |= M_PKTHDR;
1547 			m->m_pkthdr.len = m->m_len =
1548 			    (total_len - ETHER_CRC_LEN);
1549 		}
1550 
1551 #ifndef	__NO_STRICT_ALIGNMENT
1552 		vge_fixup_rx(m);
1553 #endif
1554 		m->m_pkthdr.rcvif = ifp;
1555 
1556 		/* Do RX checksumming if enabled */
1557 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1558 		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1559 			/* Check IP header checksum */
1560 			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1561 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1562 			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1563 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1564 
1565 			/* Check TCP/UDP checksum */
1566 			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1567 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1568 				m->m_pkthdr.csum_flags |=
1569 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1570 				m->m_pkthdr.csum_data = 0xffff;
1571 			}
1572 		}
1573 
1574 		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1575 			/*
1576 			 * The 32-bit rxctl register is stored in little-endian.
1577 			 * However, the 16-bit vlan tag is stored in big-endian,
1578 			 * so we have to byte swap it.
1579 			 */
1580 			m->m_pkthdr.ether_vtag =
1581 			    bswap16(rxctl & VGE_RDCTL_VLANID);
1582 			m->m_flags |= M_VLANTAG;
1583 		}
1584 
1585 		VGE_UNLOCK(sc);
1586 		if_input(ifp, m);
1587 		VGE_LOCK(sc);
1588 		sc->vge_cdata.vge_head = NULL;
1589 		sc->vge_cdata.vge_tail = NULL;
1590 	}
1591 
1592 	if (prog > 0) {
1593 		sc->vge_cdata.vge_rx_prodidx = prod;
1594 		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1595 		    sc->vge_cdata.vge_rx_ring_map,
1596 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1597 		/* Update residue counter. */
1598 		if (sc->vge_cdata.vge_rx_commit != 0) {
1599 			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1600 			    sc->vge_cdata.vge_rx_commit);
1601 			sc->vge_cdata.vge_rx_commit = 0;
1602 		}
1603 	}
1604 	return (prog);
1605 }
1606 
1607 static void
1608 vge_txeof(struct vge_softc *sc)
1609 {
1610 	if_t ifp;
1611 	struct vge_tx_desc *cur_tx;
1612 	struct vge_txdesc *txd;
1613 	uint32_t txstat;
1614 	int cons, prod;
1615 
1616 	VGE_LOCK_ASSERT(sc);
1617 
1618 	ifp = sc->vge_ifp;
1619 
1620 	if (sc->vge_cdata.vge_tx_cnt == 0)
1621 		return;
1622 
1623 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1624 	    sc->vge_cdata.vge_tx_ring_map,
1625 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1626 
1627 	/*
1628 	 * Go through our tx list and free mbufs for those
1629 	 * frames that have been transmitted.
1630 	 */
1631 	cons = sc->vge_cdata.vge_tx_considx;
1632 	prod = sc->vge_cdata.vge_tx_prodidx;
1633 	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1634 		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1635 		txstat = le32toh(cur_tx->vge_sts);
1636 		if ((txstat & VGE_TDSTS_OWN) != 0)
1637 			break;
1638 		sc->vge_cdata.vge_tx_cnt--;
1639 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1640 
1641 		txd = &sc->vge_cdata.vge_txdesc[cons];
1642 		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1643 		    BUS_DMASYNC_POSTWRITE);
1644 		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1645 
1646 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1647 		    __func__));
1648 		m_freem(txd->tx_m);
1649 		txd->tx_m = NULL;
1650 		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1651 	}
1652 	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1653 	    sc->vge_cdata.vge_tx_ring_map,
1654 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1655 	sc->vge_cdata.vge_tx_considx = cons;
1656 	if (sc->vge_cdata.vge_tx_cnt == 0)
1657 		sc->vge_timer = 0;
1658 }
1659 
1660 static void
1661 vge_link_statchg(void *xsc)
1662 {
1663 	struct vge_softc *sc;
1664 	if_t ifp;
1665 	uint8_t physts;
1666 
1667 	sc = xsc;
1668 	ifp = sc->vge_ifp;
1669 	VGE_LOCK_ASSERT(sc);
1670 
1671 	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1672 	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1673 		if ((physts & VGE_PHYSTS_LINK) == 0) {
1674 			sc->vge_flags &= ~VGE_FLAG_LINK;
1675 			if_link_state_change(sc->vge_ifp,
1676 			    LINK_STATE_DOWN);
1677 		} else {
1678 			sc->vge_flags |= VGE_FLAG_LINK;
1679 			if_link_state_change(sc->vge_ifp,
1680 			    LINK_STATE_UP);
1681 			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1682 			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1683 			if ((physts & VGE_PHYSTS_FDX) != 0) {
1684 				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1685 					CSR_WRITE_1(sc, VGE_CRS2,
1686 					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1687 				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1688 					CSR_WRITE_1(sc, VGE_CRS2,
1689 					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1690 			}
1691 			if (!if_sendq_empty(ifp))
1692 				vge_start_locked(ifp);
1693 		}
1694 	}
1695 	/*
1696 	 * Restart MII auto-polling because link state change interrupt
1697 	 * will disable it.
1698 	 */
1699 	vge_miipoll_start(sc);
1700 }
1701 
1702 #ifdef DEVICE_POLLING
1703 static int
1704 vge_poll (if_t ifp, enum poll_cmd cmd, int count)
1705 {
1706 	struct vge_softc *sc = if_getsoftc(ifp);
1707 	int rx_npkts = 0;
1708 
1709 	VGE_LOCK(sc);
1710 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
1711 		goto done;
1712 
1713 	rx_npkts = vge_rxeof(sc, count);
1714 	vge_txeof(sc);
1715 
1716 	if (!if_sendq_empty(ifp))
1717 		vge_start_locked(ifp);
1718 
1719 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1720 		uint32_t       status;
1721 		status = CSR_READ_4(sc, VGE_ISR);
1722 		if (status == 0xFFFFFFFF)
1723 			goto done;
1724 		if (status)
1725 			CSR_WRITE_4(sc, VGE_ISR, status);
1726 
1727 		/*
1728 		 * XXX check behaviour on receiver stalls.
1729 		 */
1730 
1731 		if (status & VGE_ISR_TXDMA_STALL ||
1732 		    status & VGE_ISR_RXDMA_STALL) {
1733 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1734 			vge_init_locked(sc);
1735 		}
1736 
1737 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1738 			vge_rxeof(sc, count);
1739 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1740 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1741 		}
1742 	}
1743 done:
1744 	VGE_UNLOCK(sc);
1745 	return (rx_npkts);
1746 }
1747 #endif /* DEVICE_POLLING */
1748 
1749 static void
1750 vge_intr(void *arg)
1751 {
1752 	struct vge_softc *sc;
1753 	if_t ifp;
1754 	uint32_t status;
1755 
1756 	sc = arg;
1757 	VGE_LOCK(sc);
1758 
1759 	ifp = sc->vge_ifp;
1760 	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1761 	    (if_getflags(ifp) & IFF_UP) == 0) {
1762 		VGE_UNLOCK(sc);
1763 		return;
1764 	}
1765 
1766 #ifdef DEVICE_POLLING
1767 	if  (if_getcapenable(ifp) & IFCAP_POLLING) {
1768 		status = CSR_READ_4(sc, VGE_ISR);
1769 		CSR_WRITE_4(sc, VGE_ISR, status);
1770 		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1771 			vge_link_statchg(sc);
1772 		VGE_UNLOCK(sc);
1773 		return;
1774 	}
1775 #endif
1776 
1777 	/* Disable interrupts */
1778 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1779 	status = CSR_READ_4(sc, VGE_ISR);
1780 	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1781 	/* If the card has gone away the read returns 0xffff. */
1782 	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1783 		goto done;
1784 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1785 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1786 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1787 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1788 			vge_rxeof(sc, VGE_RX_DESC_CNT);
1789 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1790 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1791 		}
1792 
1793 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1794 			vge_txeof(sc);
1795 
1796 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1797 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1798 			vge_init_locked(sc);
1799 		}
1800 
1801 		if (status & VGE_ISR_LINKSTS)
1802 			vge_link_statchg(sc);
1803 	}
1804 done:
1805 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1806 		/* Re-enable interrupts */
1807 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1808 
1809 		if (!if_sendq_empty(ifp))
1810 			vge_start_locked(ifp);
1811 	}
1812 	VGE_UNLOCK(sc);
1813 }
1814 
1815 static int
1816 vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1817 {
1818 	struct vge_txdesc *txd;
1819 	struct vge_tx_frag *frag;
1820 	struct mbuf *m;
1821 	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1822 	int error, i, nsegs, padlen;
1823 	uint32_t cflags;
1824 
1825 	VGE_LOCK_ASSERT(sc);
1826 
1827 	M_ASSERTPKTHDR((*m_head));
1828 
1829 	/* Argh. This chip does not autopad short frames. */
1830 	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1831 		m = *m_head;
1832 		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1833 		if (M_WRITABLE(m) == 0) {
1834 			/* Get a writable copy. */
1835 			m = m_dup(*m_head, M_NOWAIT);
1836 			m_freem(*m_head);
1837 			if (m == NULL) {
1838 				*m_head = NULL;
1839 				return (ENOBUFS);
1840 			}
1841 			*m_head = m;
1842 		}
1843 		if (M_TRAILINGSPACE(m) < padlen) {
1844 			m = m_defrag(m, M_NOWAIT);
1845 			if (m == NULL) {
1846 				m_freem(*m_head);
1847 				*m_head = NULL;
1848 				return (ENOBUFS);
1849 			}
1850 		}
1851 		/*
1852 		 * Manually pad short frames, and zero the pad space
1853 		 * to avoid leaking data.
1854 		 */
1855 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1856 		m->m_pkthdr.len += padlen;
1857 		m->m_len = m->m_pkthdr.len;
1858 		*m_head = m;
1859 	}
1860 
1861 	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1862 
1863 	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1864 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1865 	if (error == EFBIG) {
1866 		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1867 		if (m == NULL) {
1868 			m_freem(*m_head);
1869 			*m_head = NULL;
1870 			return (ENOMEM);
1871 		}
1872 		*m_head = m;
1873 		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1874 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1875 		if (error != 0) {
1876 			m_freem(*m_head);
1877 			*m_head = NULL;
1878 			return (error);
1879 		}
1880 	} else if (error != 0)
1881 		return (error);
1882 	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1883 	    BUS_DMASYNC_PREWRITE);
1884 
1885 	m = *m_head;
1886 	cflags = 0;
1887 
1888 	/* Configure checksum offload. */
1889 	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1890 		cflags |= VGE_TDCTL_IPCSUM;
1891 	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1892 		cflags |= VGE_TDCTL_TCPCSUM;
1893 	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1894 		cflags |= VGE_TDCTL_UDPCSUM;
1895 
1896 	/* Configure VLAN. */
1897 	if ((m->m_flags & M_VLANTAG) != 0)
1898 		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1899 	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1900 	/*
1901 	 * XXX
1902 	 * Velocity family seems to support TSO but no information
1903 	 * for MSS configuration is available. Also the number of
1904 	 * fragments supported by a descriptor is too small to hold
1905 	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1906 	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1907 	 * longer chain of buffers but no additional information is
1908 	 * available.
1909 	 *
1910 	 * When telling the chip how many segments there are, we
1911 	 * must use nsegs + 1 instead of just nsegs. Darned if I
1912 	 * know why. This also means we can't use the last fragment
1913 	 * field of Tx descriptor.
1914 	 */
1915 	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1916 	    VGE_TD_LS_NORM);
1917 	for (i = 0; i < nsegs; i++) {
1918 		frag = &txd->tx_desc->vge_frag[i];
1919 		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1920 		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1921 		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1922 	}
1923 
1924 	sc->vge_cdata.vge_tx_cnt++;
1925 	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1926 
1927 	/*
1928 	 * Finally request interrupt and give the first descriptor
1929 	 * ownership to hardware.
1930 	 */
1931 	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1932 	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1933 	txd->tx_m = m;
1934 
1935 	return (0);
1936 }
1937 
1938 /*
1939  * Main transmit routine.
1940  */
1941 
1942 static void
1943 vge_start(if_t ifp)
1944 {
1945 	struct vge_softc *sc;
1946 
1947 	sc = if_getsoftc(ifp);
1948 	VGE_LOCK(sc);
1949 	vge_start_locked(ifp);
1950 	VGE_UNLOCK(sc);
1951 }
1952 
1953 static void
1954 vge_start_locked(if_t ifp)
1955 {
1956 	struct vge_softc *sc;
1957 	struct vge_txdesc *txd;
1958 	struct mbuf *m_head;
1959 	int enq, idx;
1960 
1961 	sc = if_getsoftc(ifp);
1962 
1963 	VGE_LOCK_ASSERT(sc);
1964 
1965 	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1966 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1967 	    IFF_DRV_RUNNING)
1968 		return;
1969 
1970 	idx = sc->vge_cdata.vge_tx_prodidx;
1971 	VGE_TX_DESC_DEC(idx);
1972 	for (enq = 0; !if_sendq_empty(ifp) &&
1973 	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1974 		m_head = if_dequeue(ifp);
1975 		if (m_head == NULL)
1976 			break;
1977 		/*
1978 		 * Pack the data into the transmit ring. If we
1979 		 * don't have room, set the OACTIVE flag and wait
1980 		 * for the NIC to drain the ring.
1981 		 */
1982 		if (vge_encap(sc, &m_head)) {
1983 			if (m_head == NULL)
1984 				break;
1985 			if_sendq_prepend(ifp, m_head);
1986 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1987 			break;
1988 		}
1989 
1990 		txd = &sc->vge_cdata.vge_txdesc[idx];
1991 		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1992 		VGE_TX_DESC_INC(idx);
1993 
1994 		enq++;
1995 		/*
1996 		 * If there's a BPF listener, bounce a copy of this frame
1997 		 * to him.
1998 		 */
1999 		ETHER_BPF_MTAP(ifp, m_head);
2000 	}
2001 
2002 	if (enq > 0) {
2003 		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2004 		    sc->vge_cdata.vge_tx_ring_map,
2005 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2006 		/* Issue a transmit command. */
2007 		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2008 		/*
2009 		 * Set a timeout in case the chip goes out to lunch.
2010 		 */
2011 		sc->vge_timer = 5;
2012 	}
2013 }
2014 
2015 static void
2016 vge_init(void *xsc)
2017 {
2018 	struct vge_softc *sc = xsc;
2019 
2020 	VGE_LOCK(sc);
2021 	vge_init_locked(sc);
2022 	VGE_UNLOCK(sc);
2023 }
2024 
2025 static void
2026 vge_init_locked(struct vge_softc *sc)
2027 {
2028 	if_t ifp = sc->vge_ifp;
2029 	int error, i;
2030 
2031 	VGE_LOCK_ASSERT(sc);
2032 
2033 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2034 		return;
2035 
2036 	/*
2037 	 * Cancel pending I/O and free all RX/TX buffers.
2038 	 */
2039 	vge_stop(sc);
2040 	vge_reset(sc);
2041 	vge_miipoll_start(sc);
2042 
2043 	/*
2044 	 * Initialize the RX and TX descriptors and mbufs.
2045 	 */
2046 
2047 	error = vge_rx_list_init(sc);
2048 	if (error != 0) {
2049                 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2050                 return;
2051 	}
2052 	vge_tx_list_init(sc);
2053 	/* Clear MAC statistics. */
2054 	vge_stats_clear(sc);
2055 	/* Set our station address */
2056 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2057 		CSR_WRITE_1(sc, VGE_PAR0 + i, if_getlladdr(sc->vge_ifp)[i]);
2058 
2059 	/*
2060 	 * Set receive FIFO threshold. Also allow transmission and
2061 	 * reception of VLAN tagged frames.
2062 	 */
2063 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2064 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2065 
2066 	/* Set DMA burst length */
2067 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2068 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2069 
2070 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2071 
2072 	/* Set collision backoff algorithm */
2073 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2074 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2075 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2076 
2077 	/* Disable LPSEL field in priority resolution */
2078 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2079 
2080 	/*
2081 	 * Load the addresses of the DMA queues into the chip.
2082 	 * Note that we only use one transmit queue.
2083 	 */
2084 
2085 	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2086 	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2087 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2088 	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2089 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2090 
2091 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2092 	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2093 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2094 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2095 
2096 	/* Configure interrupt moderation. */
2097 	vge_intr_holdoff(sc);
2098 
2099 	/* Enable and wake up the RX descriptor queue */
2100 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2101 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2102 
2103 	/* Enable the TX descriptor queue */
2104 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2105 
2106 	/* Init the cam filter. */
2107 	vge_cam_clear(sc);
2108 
2109 	/* Set up receiver filter. */
2110 	vge_rxfilter(sc);
2111 	vge_setvlan(sc);
2112 
2113 	/* Initialize pause timer. */
2114 	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2115 	/*
2116 	 * Initialize flow control parameters.
2117 	 *  TX XON high threshold : 48
2118 	 *  TX pause low threshold : 24
2119 	 *  Disable hald-duplex flow control
2120 	 */
2121 	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2122 	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2123 
2124 	/* Enable jumbo frame reception (if desired) */
2125 
2126 	/* Start the MAC. */
2127 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2128 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2129 	CSR_WRITE_1(sc, VGE_CRS0,
2130 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2131 
2132 #ifdef DEVICE_POLLING
2133 	/*
2134 	 * Disable interrupts except link state change if we are polling.
2135 	 */
2136 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
2137 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2138 	} else	/* otherwise ... */
2139 #endif
2140 	{
2141 	/*
2142 	 * Enable interrupts.
2143 	 */
2144 		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2145 	}
2146 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2147 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2148 
2149 	sc->vge_flags &= ~VGE_FLAG_LINK;
2150 	vge_ifmedia_upd_locked(sc);
2151 
2152 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2153 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2154 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2155 }
2156 
2157 /*
2158  * Set media options.
2159  */
2160 static int
2161 vge_ifmedia_upd(if_t ifp)
2162 {
2163 	struct vge_softc *sc;
2164 	int error;
2165 
2166 	sc = if_getsoftc(ifp);
2167 	VGE_LOCK(sc);
2168 	error = vge_ifmedia_upd_locked(sc);
2169 	VGE_UNLOCK(sc);
2170 
2171 	return (error);
2172 }
2173 
2174 static int
2175 vge_ifmedia_upd_locked(struct vge_softc *sc)
2176 {
2177 	struct mii_data *mii;
2178 	struct mii_softc *miisc;
2179 	int error;
2180 
2181 	mii = device_get_softc(sc->vge_miibus);
2182 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2183 		PHY_RESET(miisc);
2184 	vge_setmedia(sc);
2185 	error = mii_mediachg(mii);
2186 
2187 	return (error);
2188 }
2189 
2190 /*
2191  * Report current media status.
2192  */
2193 static void
2194 vge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2195 {
2196 	struct vge_softc *sc;
2197 	struct mii_data *mii;
2198 
2199 	sc = if_getsoftc(ifp);
2200 	mii = device_get_softc(sc->vge_miibus);
2201 
2202 	VGE_LOCK(sc);
2203 	if ((if_getflags(ifp) & IFF_UP) == 0) {
2204 		VGE_UNLOCK(sc);
2205 		return;
2206 	}
2207 	mii_pollstat(mii);
2208 	ifmr->ifm_active = mii->mii_media_active;
2209 	ifmr->ifm_status = mii->mii_media_status;
2210 	VGE_UNLOCK(sc);
2211 }
2212 
2213 static void
2214 vge_setmedia(struct vge_softc *sc)
2215 {
2216 	struct mii_data *mii;
2217 	struct ifmedia_entry *ife;
2218 
2219 	mii = device_get_softc(sc->vge_miibus);
2220 	ife = mii->mii_media.ifm_cur;
2221 
2222 	/*
2223 	 * If the user manually selects a media mode, we need to turn
2224 	 * on the forced MAC mode bit in the DIAGCTL register. If the
2225 	 * user happens to choose a full duplex mode, we also need to
2226 	 * set the 'force full duplex' bit. This applies only to
2227 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2228 	 * mode is disabled, and in 1000baseT mode, full duplex is
2229 	 * always implied, so we turn on the forced mode bit but leave
2230 	 * the FDX bit cleared.
2231 	 */
2232 
2233 	switch (IFM_SUBTYPE(ife->ifm_media)) {
2234 	case IFM_AUTO:
2235 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2236 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2237 		break;
2238 	case IFM_1000_T:
2239 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2240 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2241 		break;
2242 	case IFM_100_TX:
2243 	case IFM_10_T:
2244 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2245 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2246 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2247 		} else {
2248 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2249 		}
2250 		break;
2251 	default:
2252 		device_printf(sc->vge_dev, "unknown media type: %x\n",
2253 		    IFM_SUBTYPE(ife->ifm_media));
2254 		break;
2255 	}
2256 }
2257 
2258 static int
2259 vge_ioctl(if_t ifp, u_long command, caddr_t data)
2260 {
2261 	struct vge_softc *sc = if_getsoftc(ifp);
2262 	struct ifreq *ifr = (struct ifreq *) data;
2263 	struct mii_data *mii;
2264 	int error = 0, mask;
2265 
2266 	switch (command) {
2267 	case SIOCSIFMTU:
2268 		VGE_LOCK(sc);
2269 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2270 			error = EINVAL;
2271 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2272 			if (ifr->ifr_mtu > ETHERMTU &&
2273 			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2274 				error = EINVAL;
2275 			else
2276 				if_setmtu(ifp, ifr->ifr_mtu);
2277 		}
2278 		VGE_UNLOCK(sc);
2279 		break;
2280 	case SIOCSIFFLAGS:
2281 		VGE_LOCK(sc);
2282 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2283 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2284 			    ((if_getflags(ifp) ^ sc->vge_if_flags) &
2285 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2286 				vge_rxfilter(sc);
2287 			else
2288 				vge_init_locked(sc);
2289 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2290 			vge_stop(sc);
2291 		sc->vge_if_flags = if_getflags(ifp);
2292 		VGE_UNLOCK(sc);
2293 		break;
2294 	case SIOCADDMULTI:
2295 	case SIOCDELMULTI:
2296 		VGE_LOCK(sc);
2297 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2298 			vge_rxfilter(sc);
2299 		VGE_UNLOCK(sc);
2300 		break;
2301 	case SIOCGIFMEDIA:
2302 	case SIOCSIFMEDIA:
2303 		mii = device_get_softc(sc->vge_miibus);
2304 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2305 		break;
2306 	case SIOCSIFCAP:
2307 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2308 #ifdef DEVICE_POLLING
2309 		if (mask & IFCAP_POLLING) {
2310 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2311 				error = ether_poll_register(vge_poll, ifp);
2312 				if (error)
2313 					return (error);
2314 				VGE_LOCK(sc);
2315 					/* Disable interrupts */
2316 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2317 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2318 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2319 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2320 				VGE_UNLOCK(sc);
2321 			} else {
2322 				error = ether_poll_deregister(ifp);
2323 				/* Enable interrupts. */
2324 				VGE_LOCK(sc);
2325 				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2326 				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2327 				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2328 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2329 				VGE_UNLOCK(sc);
2330 			}
2331 		}
2332 #endif /* DEVICE_POLLING */
2333 		VGE_LOCK(sc);
2334 		if ((mask & IFCAP_TXCSUM) != 0 &&
2335 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2336 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2337 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2338 				if_sethwassistbits(ifp, VGE_CSUM_FEATURES, 0);
2339 			else
2340 				if_sethwassistbits(ifp, 0, VGE_CSUM_FEATURES);
2341 		}
2342 		if ((mask & IFCAP_RXCSUM) != 0 &&
2343 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2344 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2345 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2346 		    (if_getcapabilities(ifp) & IFCAP_WOL_UCAST) != 0)
2347 			if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2348 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2349 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2350 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2351 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2352 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2353 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2354 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2355 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2356 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2357 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2358 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2359 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2360 			vge_setvlan(sc);
2361 		}
2362 		VGE_UNLOCK(sc);
2363 		VLAN_CAPABILITIES(ifp);
2364 		break;
2365 	default:
2366 		error = ether_ioctl(ifp, command, data);
2367 		break;
2368 	}
2369 
2370 	return (error);
2371 }
2372 
2373 static void
2374 vge_watchdog(void *arg)
2375 {
2376 	struct vge_softc *sc;
2377 	if_t ifp;
2378 
2379 	sc = arg;
2380 	VGE_LOCK_ASSERT(sc);
2381 	vge_stats_update(sc);
2382 	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2383 	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2384 		return;
2385 
2386 	ifp = sc->vge_ifp;
2387 	if_printf(ifp, "watchdog timeout\n");
2388 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2389 
2390 	vge_txeof(sc);
2391 	vge_rxeof(sc, VGE_RX_DESC_CNT);
2392 
2393 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2394 	vge_init_locked(sc);
2395 }
2396 
2397 /*
2398  * Stop the adapter and free any mbufs allocated to the
2399  * RX and TX lists.
2400  */
2401 static void
2402 vge_stop(struct vge_softc *sc)
2403 {
2404 	if_t ifp;
2405 
2406 	VGE_LOCK_ASSERT(sc);
2407 	ifp = sc->vge_ifp;
2408 	sc->vge_timer = 0;
2409 	callout_stop(&sc->vge_watchdog);
2410 
2411 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2412 
2413 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2414 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2415 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2416 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2417 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2418 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2419 
2420 	vge_stats_update(sc);
2421 	VGE_CHAIN_RESET(sc);
2422 	vge_txeof(sc);
2423 	vge_freebufs(sc);
2424 }
2425 
2426 /*
2427  * Device suspend routine.  Stop the interface and save some PCI
2428  * settings in case the BIOS doesn't restore them properly on
2429  * resume.
2430  */
2431 static int
2432 vge_suspend(device_t dev)
2433 {
2434 	struct vge_softc *sc;
2435 
2436 	sc = device_get_softc(dev);
2437 
2438 	VGE_LOCK(sc);
2439 	vge_stop(sc);
2440 	vge_setwol(sc);
2441 	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2442 	VGE_UNLOCK(sc);
2443 
2444 	return (0);
2445 }
2446 
2447 /*
2448  * Device resume routine.  Restore some PCI settings in case the BIOS
2449  * doesn't, re-enable busmastering, and restart the interface if
2450  * appropriate.
2451  */
2452 static int
2453 vge_resume(device_t dev)
2454 {
2455 	struct vge_softc *sc;
2456 	if_t ifp;
2457 	uint16_t pmstat;
2458 
2459 	sc = device_get_softc(dev);
2460 	VGE_LOCK(sc);
2461 	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2462 		/* Disable PME and clear PME status. */
2463 		pmstat = pci_read_config(sc->vge_dev,
2464 		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2465 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2466 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2467 			pci_write_config(sc->vge_dev,
2468 			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2469 		}
2470 	}
2471 	vge_clrwol(sc);
2472 	/* Restart MII auto-polling. */
2473 	vge_miipoll_start(sc);
2474 	ifp = sc->vge_ifp;
2475 	/* Reinitialize interface if necessary. */
2476 	if ((if_getflags(ifp) & IFF_UP) != 0) {
2477 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2478 		vge_init_locked(sc);
2479 	}
2480 	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2481 	VGE_UNLOCK(sc);
2482 
2483 	return (0);
2484 }
2485 
2486 /*
2487  * Stop all chip I/O so that the kernel's probe routines don't
2488  * get confused by errant DMAs when rebooting.
2489  */
2490 static int
2491 vge_shutdown(device_t dev)
2492 {
2493 
2494 	return (vge_suspend(dev));
2495 }
2496 
2497 #define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2498 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2499 
2500 static void
2501 vge_sysctl_node(struct vge_softc *sc)
2502 {
2503 	struct sysctl_ctx_list *ctx;
2504 	struct sysctl_oid_list *child, *parent;
2505 	struct sysctl_oid *tree;
2506 	struct vge_hw_stats *stats;
2507 
2508 	stats = &sc->vge_stats;
2509 	ctx = device_get_sysctl_ctx(sc->vge_dev);
2510 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2511 
2512 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2513 	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2514 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2515 	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2516 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2517 	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2518 
2519 	/* Pull in device tunables. */
2520 	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2521 	resource_int_value(device_get_name(sc->vge_dev),
2522 	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2523 	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2524 	resource_int_value(device_get_name(sc->vge_dev),
2525 	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2526 	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2527 	resource_int_value(device_get_name(sc->vge_dev),
2528 	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2529 
2530 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2531 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2532 	parent = SYSCTL_CHILDREN(tree);
2533 
2534 	/* Rx statistics. */
2535 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2536 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2537 	child = SYSCTL_CHILDREN(tree);
2538 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2539 	    &stats->rx_frames, "frames");
2540 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2541 	    &stats->rx_good_frames, "Good frames");
2542 	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2543 	    &stats->rx_fifo_oflows, "FIFO overflows");
2544 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2545 	    &stats->rx_runts, "Too short frames");
2546 	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2547 	    &stats->rx_runts_errs, "Too short frames with errors");
2548 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2549 	    &stats->rx_pkts_64, "64 bytes frames");
2550 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2551 	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2552 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2553 	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2554 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2555 	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2556 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2557 	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2558 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2559 	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2560 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2561 	    &stats->rx_pkts_1519_max, "1519 to max frames");
2562 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2563 	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2564 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2565 	    &stats->rx_jumbos, "Jumbo frames");
2566 	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2567 	    &stats->rx_crcerrs, "CRC errors");
2568 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2569 	    &stats->rx_pause_frames, "CRC errors");
2570 	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2571 	    &stats->rx_alignerrs, "Alignment errors");
2572 	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2573 	    &stats->rx_nobufs, "Frames with no buffer event");
2574 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2575 	    &stats->rx_symerrs, "Frames with symbol errors");
2576 	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2577 	    &stats->rx_lenerrs, "Frames with length mismatched");
2578 
2579 	/* Tx statistics. */
2580 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2581 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2582 	child = SYSCTL_CHILDREN(tree);
2583 	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2584 	    &stats->tx_good_frames, "Good frames");
2585 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2586 	    &stats->tx_pkts_64, "64 bytes frames");
2587 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2588 	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2589 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2590 	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2591 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2592 	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2593 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2594 	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2595 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2596 	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2597 	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2598 	    &stats->tx_jumbos, "Jumbo frames");
2599 	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2600 	    &stats->tx_colls, "Collisions");
2601 	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2602 	    &stats->tx_latecolls, "Late collisions");
2603 	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2604 	    &stats->tx_pause, "Pause frames");
2605 #ifdef VGE_ENABLE_SQEERR
2606 	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2607 	    &stats->tx_sqeerrs, "SQE errors");
2608 #endif
2609 	/* Clear MAC statistics. */
2610 	vge_stats_clear(sc);
2611 }
2612 
2613 #undef	VGE_SYSCTL_STAT_ADD32
2614 
2615 static void
2616 vge_stats_clear(struct vge_softc *sc)
2617 {
2618 	int i;
2619 
2620 	CSR_WRITE_1(sc, VGE_MIBCSR,
2621 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2622 	CSR_WRITE_1(sc, VGE_MIBCSR,
2623 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2624 	for (i = VGE_TIMEOUT; i > 0; i--) {
2625 		DELAY(1);
2626 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2627 			break;
2628 	}
2629 	if (i == 0)
2630 		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2631 	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2632 	    ~VGE_MIBCSR_FREEZE);
2633 }
2634 
2635 static void
2636 vge_stats_update(struct vge_softc *sc)
2637 {
2638 	struct vge_hw_stats *stats;
2639 	if_t ifp;
2640 	uint32_t mib[VGE_MIB_CNT], val;
2641 	int i;
2642 
2643 	VGE_LOCK_ASSERT(sc);
2644 
2645 	stats = &sc->vge_stats;
2646 	ifp = sc->vge_ifp;
2647 
2648 	CSR_WRITE_1(sc, VGE_MIBCSR,
2649 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2650 	for (i = VGE_TIMEOUT; i > 0; i--) {
2651 		DELAY(1);
2652 		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2653 			break;
2654 	}
2655 	if (i == 0) {
2656 		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2657 		vge_stats_clear(sc);
2658 		return;
2659 	}
2660 
2661 	bzero(mib, sizeof(mib));
2662 reset_idx:
2663 	/* Set MIB read index to 0. */
2664 	CSR_WRITE_1(sc, VGE_MIBCSR,
2665 	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2666 	for (i = 0; i < VGE_MIB_CNT; i++) {
2667 		val = CSR_READ_4(sc, VGE_MIBDATA);
2668 		if (i != VGE_MIB_DATA_IDX(val)) {
2669 			/* Reading interrupted. */
2670 			goto reset_idx;
2671 		}
2672 		mib[i] = val & VGE_MIB_DATA_MASK;
2673 	}
2674 
2675 	/* Rx stats. */
2676 	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2677 	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2678 	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2679 	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2680 	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2681 	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2682 	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2683 	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2684 	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2685 	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2686 	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2687 	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2688 	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2689 	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2690 	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2691 	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2692 	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2693 	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2694 	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2695 	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2696 
2697 	/* Tx stats. */
2698 	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2699 	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2700 	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2701 	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2702 	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2703 	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2704 	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2705 	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2706 	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2707 	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2708 #ifdef VGE_ENABLE_SQEERR
2709 	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2710 #endif
2711 	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2712 
2713 	/* Update counters in ifnet. */
2714 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2715 
2716 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2717 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2718 
2719 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2720 	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2721 
2722 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2723 
2724 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2725 	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2726 	    mib[VGE_MIB_RX_RUNTS] +
2727 	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2728 	    mib[VGE_MIB_RX_CRCERRS] +
2729 	    mib[VGE_MIB_RX_ALIGNERRS] +
2730 	    mib[VGE_MIB_RX_NOBUFS] +
2731 	    mib[VGE_MIB_RX_SYMERRS] +
2732 	    mib[VGE_MIB_RX_LENERRS]);
2733 }
2734 
2735 static void
2736 vge_intr_holdoff(struct vge_softc *sc)
2737 {
2738 	uint8_t intctl;
2739 
2740 	VGE_LOCK_ASSERT(sc);
2741 
2742 	/*
2743 	 * Set Tx interrupt supression threshold.
2744 	 * It's possible to use single-shot timer in VGE_CRS1 register
2745 	 * in Tx path such that driver can remove most of Tx completion
2746 	 * interrupts. However this requires additional access to
2747 	 * VGE_CRS1 register to reload the timer in addintion to
2748 	 * activating Tx kick command. Another downside is we don't know
2749 	 * what single-shot timer value should be used in advance so
2750 	 * reclaiming transmitted mbufs could be delayed a lot which in
2751 	 * turn slows down Tx operation.
2752 	 */
2753 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2754 	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2755 
2756 	/* Set Rx interrupt suppresion threshold. */
2757 	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2758 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2759 
2760 	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2761 	intctl &= ~VGE_INTCTL_SC_RELOAD;
2762 	intctl |= VGE_INTCTL_HC_RELOAD;
2763 	if (sc->vge_tx_coal_pkt <= 0)
2764 		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2765 	else
2766 		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2767 	if (sc->vge_rx_coal_pkt <= 0)
2768 		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2769 	else
2770 		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2771 	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2772 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2773 	if (sc->vge_int_holdoff > 0) {
2774 		/* Set interrupt holdoff timer. */
2775 		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2776 		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2777 		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2778 		/* Enable holdoff timer. */
2779 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2780 	}
2781 }
2782 
2783 static void
2784 vge_setlinkspeed(struct vge_softc *sc)
2785 {
2786 	struct mii_data *mii;
2787 	int aneg, i;
2788 
2789 	VGE_LOCK_ASSERT(sc);
2790 
2791 	mii = device_get_softc(sc->vge_miibus);
2792 	mii_pollstat(mii);
2793 	aneg = 0;
2794 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2795 	    (IFM_ACTIVE | IFM_AVALID)) {
2796 		switch IFM_SUBTYPE(mii->mii_media_active) {
2797 		case IFM_10_T:
2798 		case IFM_100_TX:
2799 			return;
2800 		case IFM_1000_T:
2801 			aneg++;
2802 		default:
2803 			break;
2804 		}
2805 	}
2806 	/* Clear forced MAC speed/duplex configuration. */
2807 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2808 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2809 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2810 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2811 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2812 	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2813 	    BMCR_AUTOEN | BMCR_STARTNEG);
2814 	DELAY(1000);
2815 	if (aneg != 0) {
2816 		/* Poll link state until vge(4) get a 10/100 link. */
2817 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2818 			mii_pollstat(mii);
2819 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2820 			    == (IFM_ACTIVE | IFM_AVALID)) {
2821 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2822 				case IFM_10_T:
2823 				case IFM_100_TX:
2824 					return;
2825 				default:
2826 					break;
2827 				}
2828 			}
2829 			VGE_UNLOCK(sc);
2830 			pause("vgelnk", hz);
2831 			VGE_LOCK(sc);
2832 		}
2833 		if (i == MII_ANEGTICKS_GIGE)
2834 			device_printf(sc->vge_dev, "establishing link failed, "
2835 			    "WOL may not work!");
2836 	}
2837 	/*
2838 	 * No link, force MAC to have 100Mbps, full-duplex link.
2839 	 * This is the last resort and may/may not work.
2840 	 */
2841 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2842 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2843 }
2844 
2845 static void
2846 vge_setwol(struct vge_softc *sc)
2847 {
2848 	if_t ifp;
2849 	uint16_t pmstat;
2850 	uint8_t val;
2851 
2852 	VGE_LOCK_ASSERT(sc);
2853 
2854 	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2855 		/* No PME capability, PHY power down. */
2856 		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2857 		    BMCR_PDOWN);
2858 		vge_miipoll_stop(sc);
2859 		return;
2860 	}
2861 
2862 	ifp = sc->vge_ifp;
2863 
2864 	/* Clear WOL on pattern match. */
2865 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2866 	/* Disable WOL on magic/unicast packet. */
2867 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2868 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2869 	    VGE_WOLCFG_PMEOVR);
2870 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
2871 		vge_setlinkspeed(sc);
2872 		val = 0;
2873 		if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2874 			val |= VGE_WOLCR1_UCAST;
2875 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2876 			val |= VGE_WOLCR1_MAGIC;
2877 		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2878 		val = 0;
2879 		if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2880 			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2881 		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2882 		/* Disable MII auto-polling. */
2883 		vge_miipoll_stop(sc);
2884 	}
2885 	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2886 	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2887 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2888 
2889 	/* Clear WOL status on pattern match. */
2890 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2891 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2892 
2893 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2894 	val |= VGE_STICKHW_SWPTAG;
2895 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2896 	/* Put hardware into sleep. */
2897 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2898 	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2899 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2900 	/* Request PME if WOL is requested. */
2901 	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2902 	    PCIR_POWER_STATUS, 2);
2903 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2904 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2905 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2906 	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2907 	    pmstat, 2);
2908 }
2909 
2910 static void
2911 vge_clrwol(struct vge_softc *sc)
2912 {
2913 	uint8_t val;
2914 
2915 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2916 	val &= ~VGE_STICKHW_SWPTAG;
2917 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2918 	/* Disable WOL and clear power state indicator. */
2919 	val = CSR_READ_1(sc, VGE_PWRSTAT);
2920 	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2921 	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2922 
2923 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2924 	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2925 
2926 	/* Clear WOL on pattern match. */
2927 	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2928 	/* Disable WOL on magic/unicast packet. */
2929 	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2930 	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2931 	    VGE_WOLCFG_PMEOVR);
2932 	/* Clear WOL status on pattern match. */
2933 	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2934 	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2935 }
2936