1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /*- 26 * Ralink Technology RT2501USB/RT2601USB chipset driver 27 * http://www.ralinktech.com.tw/ 28 */ 29 30 #include "opt_wlan.h" 31 32 #include <sys/param.h> 33 #include <sys/sockio.h> 34 #include <sys/sysctl.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kdb.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_ratectl.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include "usbdevs.h" 72 73 #define USB_DEBUG_VAR rum_debug 74 #include <dev/usb/usb_debug.h> 75 76 #include <dev/usb/wlan/if_rumreg.h> 77 #include <dev/usb/wlan/if_rumvar.h> 78 #include <dev/usb/wlan/if_rumfw.h> 79 80 #ifdef USB_DEBUG 81 static int rum_debug = 0; 82 83 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 84 "USB rum"); 85 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 86 "Debug level"); 87 #endif 88 89 static const STRUCT_USB_HOST_ID rum_devs[] = { 90 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 91 RUM_DEV(ABOCOM, HWU54DM), 92 RUM_DEV(ABOCOM, RT2573_2), 93 RUM_DEV(ABOCOM, RT2573_3), 94 RUM_DEV(ABOCOM, RT2573_4), 95 RUM_DEV(ABOCOM, WUG2700), 96 RUM_DEV(AMIT, CGWLUSB2GO), 97 RUM_DEV(ASUS, RT2573_1), 98 RUM_DEV(ASUS, RT2573_2), 99 RUM_DEV(BELKIN, F5D7050A), 100 RUM_DEV(BELKIN, F5D9050V3), 101 RUM_DEV(CISCOLINKSYS, WUSB54GC), 102 RUM_DEV(CISCOLINKSYS, WUSB54GR), 103 RUM_DEV(CONCEPTRONIC2, C54RU2), 104 RUM_DEV(COREGA, CGWLUSB2GL), 105 RUM_DEV(COREGA, CGWLUSB2GPX), 106 RUM_DEV(DICKSMITH, CWD854F), 107 RUM_DEV(DICKSMITH, RT2573), 108 RUM_DEV(EDIMAX, EW7318USG), 109 RUM_DEV(DLINK2, DWLG122C1), 110 RUM_DEV(DLINK2, WUA1340), 111 RUM_DEV(DLINK2, DWA111), 112 RUM_DEV(DLINK2, DWA110), 113 RUM_DEV(GIGABYTE, GNWB01GS), 114 RUM_DEV(GIGABYTE, GNWI05GS), 115 RUM_DEV(GIGASET, RT2573), 116 RUM_DEV(GOODWAY, RT2573), 117 RUM_DEV(GUILLEMOT, HWGUSB254LB), 118 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 119 RUM_DEV(HUAWEI3COM, WUB320G), 120 RUM_DEV(MELCO, G54HP), 121 RUM_DEV(MELCO, SG54HP), 122 RUM_DEV(MELCO, SG54HG), 123 RUM_DEV(MELCO, WLIUCG), 124 RUM_DEV(MELCO, WLRUCG), 125 RUM_DEV(MELCO, WLRUCGAOSS), 126 RUM_DEV(MSI, RT2573_1), 127 RUM_DEV(MSI, RT2573_2), 128 RUM_DEV(MSI, RT2573_3), 129 RUM_DEV(MSI, RT2573_4), 130 RUM_DEV(NOVATECH, RT2573), 131 RUM_DEV(PLANEX2, GWUS54HP), 132 RUM_DEV(PLANEX2, GWUS54MINI2), 133 RUM_DEV(PLANEX2, GWUSMM), 134 RUM_DEV(QCOM, RT2573), 135 RUM_DEV(QCOM, RT2573_2), 136 RUM_DEV(QCOM, RT2573_3), 137 RUM_DEV(RALINK, RT2573), 138 RUM_DEV(RALINK, RT2573_2), 139 RUM_DEV(RALINK, RT2671), 140 RUM_DEV(SITECOMEU, WL113R2), 141 RUM_DEV(SITECOMEU, WL172), 142 RUM_DEV(SPARKLAN, RT2573), 143 RUM_DEV(SURECOM, RT2573), 144 #undef RUM_DEV 145 }; 146 147 static device_probe_t rum_match; 148 static device_attach_t rum_attach; 149 static device_detach_t rum_detach; 150 151 static usb_callback_t rum_bulk_read_callback; 152 static usb_callback_t rum_bulk_write_callback; 153 154 static usb_error_t rum_do_request(struct rum_softc *sc, 155 struct usb_device_request *req, void *data); 156 static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int); 157 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 158 const char [IFNAMSIZ], int, enum ieee80211_opmode, 159 int, const uint8_t [IEEE80211_ADDR_LEN], 160 const uint8_t [IEEE80211_ADDR_LEN]); 161 static void rum_vap_delete(struct ieee80211vap *); 162 static void rum_cmdq_cb(void *, int); 163 static int rum_cmd_sleepable(struct rum_softc *, const void *, 164 size_t, uint8_t, CMD_FUNC_PROTO); 165 static void rum_tx_free(struct rum_tx_data *, int); 166 static void rum_setup_tx_list(struct rum_softc *); 167 static void rum_reset_tx_list(struct rum_softc *, 168 struct ieee80211vap *); 169 static void rum_unsetup_tx_list(struct rum_softc *); 170 static void rum_beacon_miss(struct ieee80211vap *); 171 static void rum_sta_recv_mgmt(struct ieee80211_node *, 172 struct mbuf *, int, 173 const struct ieee80211_rx_stats *, int, int); 174 static int rum_set_power_state(struct rum_softc *, int); 175 static int rum_newstate(struct ieee80211vap *, 176 enum ieee80211_state, int); 177 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 178 static void rum_setup_tx_desc(struct rum_softc *, 179 struct rum_tx_desc *, struct ieee80211_key *, 180 uint32_t, uint8_t, uint8_t, int, int, int); 181 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 182 struct ieee80211_node *, 183 const struct ieee80211_key *); 184 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 185 struct ieee80211_node *); 186 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 187 struct ieee80211_node *, 188 const struct ieee80211_bpf_params *); 189 static int rum_tx_data(struct rum_softc *, struct mbuf *, 190 struct ieee80211_node *); 191 static int rum_transmit(struct ieee80211com *, struct mbuf *); 192 static void rum_start(struct rum_softc *); 193 static void rum_parent(struct ieee80211com *); 194 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 195 int); 196 static uint32_t rum_read(struct rum_softc *, uint16_t); 197 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 198 int); 199 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 200 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 201 size_t); 202 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 203 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 204 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 205 uint32_t); 206 static int rum_bbp_busy(struct rum_softc *); 207 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 208 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 209 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 210 static void rum_select_antenna(struct rum_softc *); 211 static void rum_enable_mrr(struct rum_softc *); 212 static void rum_set_txpreamble(struct rum_softc *); 213 static void rum_set_basicrates(struct rum_softc *); 214 static void rum_select_band(struct rum_softc *, 215 struct ieee80211_channel *); 216 static void rum_set_chan(struct rum_softc *, 217 struct ieee80211_channel *); 218 static void rum_set_maxretry(struct rum_softc *, 219 struct ieee80211vap *); 220 static int rum_enable_tsf_sync(struct rum_softc *); 221 static void rum_enable_tsf(struct rum_softc *); 222 static void rum_abort_tsf_sync(struct rum_softc *); 223 static void rum_get_tsf(struct rum_softc *, uint64_t *); 224 static void rum_update_slot_cb(struct rum_softc *, 225 union sec_param *, uint8_t); 226 static void rum_update_slot(struct ieee80211com *); 227 static int rum_wme_update(struct ieee80211com *); 228 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 229 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 230 static void rum_update_mcast(struct ieee80211com *); 231 static void rum_update_promisc(struct ieee80211com *); 232 static void rum_setpromisc(struct rum_softc *); 233 static const char *rum_get_rf(int); 234 static void rum_read_eeprom(struct rum_softc *); 235 static int rum_bbp_wakeup(struct rum_softc *); 236 static int rum_bbp_init(struct rum_softc *); 237 static void rum_clr_shkey_regs(struct rum_softc *); 238 static int rum_init(struct rum_softc *); 239 static void rum_stop(struct rum_softc *); 240 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 241 size_t); 242 static int rum_set_sleep_time(struct rum_softc *, uint16_t); 243 static int rum_reset(struct ieee80211vap *, u_long); 244 static int rum_set_beacon(struct rum_softc *, 245 struct ieee80211vap *); 246 static int rum_alloc_beacon(struct rum_softc *, 247 struct ieee80211vap *); 248 static void rum_update_beacon_cb(struct rum_softc *, 249 union sec_param *, uint8_t); 250 static void rum_update_beacon(struct ieee80211vap *, int); 251 static int rum_common_key_set(struct rum_softc *, 252 struct ieee80211_key *, uint16_t); 253 static void rum_group_key_set_cb(struct rum_softc *, 254 union sec_param *, uint8_t); 255 static void rum_group_key_del_cb(struct rum_softc *, 256 union sec_param *, uint8_t); 257 static void rum_pair_key_set_cb(struct rum_softc *, 258 union sec_param *, uint8_t); 259 static void rum_pair_key_del_cb(struct rum_softc *, 260 union sec_param *, uint8_t); 261 static int rum_key_alloc(struct ieee80211vap *, 262 struct ieee80211_key *, ieee80211_keyix *, 263 ieee80211_keyix *); 264 static int rum_key_set(struct ieee80211vap *, 265 const struct ieee80211_key *); 266 static int rum_key_delete(struct ieee80211vap *, 267 const struct ieee80211_key *); 268 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 269 const struct ieee80211_bpf_params *); 270 static void rum_scan_start(struct ieee80211com *); 271 static void rum_scan_end(struct ieee80211com *); 272 static void rum_set_channel(struct ieee80211com *); 273 static void rum_getradiocaps(struct ieee80211com *, int, int *, 274 struct ieee80211_channel[]); 275 static int rum_get_rssi(struct rum_softc *, uint8_t); 276 static void rum_ratectl_start(struct rum_softc *, 277 struct ieee80211_node *); 278 static void rum_ratectl_timeout(void *); 279 static void rum_ratectl_task(void *, int); 280 static int rum_pause(struct rum_softc *, int); 281 282 static const struct { 283 uint32_t reg; 284 uint32_t val; 285 } rum_def_mac[] = { 286 { RT2573_TXRX_CSR0, 0x025fb032 }, 287 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 288 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 289 { RT2573_TXRX_CSR3, 0x00858687 }, 290 { RT2573_TXRX_CSR7, 0x2e31353b }, 291 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 292 { RT2573_TXRX_CSR15, 0x0000000f }, 293 { RT2573_MAC_CSR6, 0x00000fff }, 294 { RT2573_MAC_CSR8, 0x016c030a }, 295 { RT2573_MAC_CSR10, 0x00000718 }, 296 { RT2573_MAC_CSR12, 0x00000004 }, 297 { RT2573_MAC_CSR13, 0x00007f00 }, 298 { RT2573_SEC_CSR2, 0x00000000 }, 299 { RT2573_SEC_CSR3, 0x00000000 }, 300 { RT2573_SEC_CSR4, 0x00000000 }, 301 { RT2573_PHY_CSR1, 0x000023b0 }, 302 { RT2573_PHY_CSR5, 0x00040a06 }, 303 { RT2573_PHY_CSR6, 0x00080606 }, 304 { RT2573_PHY_CSR7, 0x00000408 }, 305 { RT2573_AIFSN_CSR, 0x00002273 }, 306 { RT2573_CWMIN_CSR, 0x00002344 }, 307 { RT2573_CWMAX_CSR, 0x000034aa } 308 }; 309 310 static const struct { 311 uint8_t reg; 312 uint8_t val; 313 } rum_def_bbp[] = { 314 { 3, 0x80 }, 315 { 15, 0x30 }, 316 { 17, 0x20 }, 317 { 21, 0xc8 }, 318 { 22, 0x38 }, 319 { 23, 0x06 }, 320 { 24, 0xfe }, 321 { 25, 0x0a }, 322 { 26, 0x0d }, 323 { 32, 0x0b }, 324 { 34, 0x12 }, 325 { 37, 0x07 }, 326 { 39, 0xf8 }, 327 { 41, 0x60 }, 328 { 53, 0x10 }, 329 { 54, 0x18 }, 330 { 60, 0x10 }, 331 { 61, 0x04 }, 332 { 62, 0x04 }, 333 { 75, 0xfe }, 334 { 86, 0xfe }, 335 { 88, 0xfe }, 336 { 90, 0x0f }, 337 { 99, 0x00 }, 338 { 102, 0x16 }, 339 { 107, 0x04 } 340 }; 341 342 static const uint8_t rum_chan_5ghz[] = 343 { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 344 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 345 149, 153, 157, 161, 165 }; 346 347 static const struct rfprog { 348 uint8_t chan; 349 uint32_t r1, r2, r3, r4; 350 } rum_rf5226[] = { 351 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 352 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 353 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 354 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 355 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 356 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 357 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 358 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 359 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 360 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 361 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 362 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 363 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 364 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 365 366 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 367 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 368 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 369 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 370 371 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 372 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 373 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 374 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 375 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 376 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 377 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 378 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 379 380 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 381 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 382 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 383 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 384 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 385 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 386 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 387 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 388 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 389 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 390 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 391 392 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 393 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 394 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 395 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 396 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 397 }, rum_rf5225[] = { 398 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 399 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 400 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 401 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 402 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 403 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 404 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 405 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 406 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 407 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 408 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 409 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 410 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 411 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 412 413 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 414 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 415 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 416 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 417 418 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 419 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 420 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 421 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 422 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 423 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 424 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 425 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 426 427 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 428 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 429 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 430 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 431 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 432 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 433 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 434 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 435 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 436 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 437 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 438 439 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 440 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 441 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 442 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 443 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 444 }; 445 446 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 447 [RUM_BULK_WR] = { 448 .type = UE_BULK, 449 .endpoint = UE_ADDR_ANY, 450 .direction = UE_DIR_OUT, 451 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 452 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 453 .callback = rum_bulk_write_callback, 454 .timeout = 5000, /* ms */ 455 }, 456 [RUM_BULK_RD] = { 457 .type = UE_BULK, 458 .endpoint = UE_ADDR_ANY, 459 .direction = UE_DIR_IN, 460 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 461 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 462 .callback = rum_bulk_read_callback, 463 }, 464 }; 465 466 static int 467 rum_match(device_t self) 468 { 469 struct usb_attach_arg *uaa = device_get_ivars(self); 470 471 if (uaa->usb_mode != USB_MODE_HOST) 472 return (ENXIO); 473 if (uaa->info.bConfigIndex != 0) 474 return (ENXIO); 475 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 476 return (ENXIO); 477 478 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 479 } 480 481 static int 482 rum_attach(device_t self) 483 { 484 struct usb_attach_arg *uaa = device_get_ivars(self); 485 struct rum_softc *sc = device_get_softc(self); 486 struct ieee80211com *ic = &sc->sc_ic; 487 uint32_t tmp; 488 uint8_t iface_index; 489 int error, ntries; 490 491 device_set_usb_desc(self); 492 sc->sc_udev = uaa->device; 493 sc->sc_dev = self; 494 495 RUM_LOCK_INIT(sc); 496 RUM_CMDQ_LOCK_INIT(sc); 497 mbufq_init(&sc->sc_snd, ifqmaxlen); 498 499 iface_index = RT2573_IFACE_INDEX; 500 error = usbd_transfer_setup(uaa->device, &iface_index, 501 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 502 if (error) { 503 device_printf(self, "could not allocate USB transfers, " 504 "err=%s\n", usbd_errstr(error)); 505 goto detach; 506 } 507 508 RUM_LOCK(sc); 509 /* retrieve RT2573 rev. no */ 510 for (ntries = 0; ntries < 100; ntries++) { 511 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 512 break; 513 if (rum_pause(sc, hz / 100)) 514 break; 515 } 516 if (ntries == 100) { 517 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 518 RUM_UNLOCK(sc); 519 goto detach; 520 } 521 522 /* retrieve MAC address and various other things from EEPROM */ 523 rum_read_eeprom(sc); 524 525 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 526 tmp, rum_get_rf(sc->rf_rev)); 527 528 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 529 RUM_UNLOCK(sc); 530 531 ic->ic_softc = sc; 532 ic->ic_name = device_get_nameunit(self); 533 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 534 535 /* set device capabilities */ 536 ic->ic_caps = 537 IEEE80211_C_STA /* station mode supported */ 538 | IEEE80211_C_IBSS /* IBSS mode supported */ 539 | IEEE80211_C_MONITOR /* monitor mode supported */ 540 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 541 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 542 | IEEE80211_C_TXPMGT /* tx power management */ 543 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 544 | IEEE80211_C_SHSLOT /* short slot time supported */ 545 | IEEE80211_C_BGSCAN /* bg scanning supported */ 546 | IEEE80211_C_WPA /* 802.11i */ 547 | IEEE80211_C_WME /* 802.11e */ 548 | IEEE80211_C_PMGT /* Station-side power mgmt */ 549 | IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */ 550 ; 551 552 ic->ic_cryptocaps = 553 IEEE80211_CRYPTO_WEP | 554 IEEE80211_CRYPTO_AES_CCM | 555 IEEE80211_CRYPTO_TKIPMIC | 556 IEEE80211_CRYPTO_TKIP; 557 558 rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 559 ic->ic_channels); 560 561 ieee80211_ifattach(ic); 562 ic->ic_update_promisc = rum_update_promisc; 563 ic->ic_raw_xmit = rum_raw_xmit; 564 ic->ic_scan_start = rum_scan_start; 565 ic->ic_scan_end = rum_scan_end; 566 ic->ic_set_channel = rum_set_channel; 567 ic->ic_getradiocaps = rum_getradiocaps; 568 ic->ic_transmit = rum_transmit; 569 ic->ic_parent = rum_parent; 570 ic->ic_vap_create = rum_vap_create; 571 ic->ic_vap_delete = rum_vap_delete; 572 ic->ic_updateslot = rum_update_slot; 573 ic->ic_wme.wme_update = rum_wme_update; 574 ic->ic_update_mcast = rum_update_mcast; 575 576 ieee80211_radiotap_attach(ic, 577 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 578 RT2573_TX_RADIOTAP_PRESENT, 579 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 580 RT2573_RX_RADIOTAP_PRESENT); 581 582 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 583 584 if (bootverbose) 585 ieee80211_announce(ic); 586 587 return (0); 588 589 detach: 590 rum_detach(self); 591 return (ENXIO); /* failure */ 592 } 593 594 static int 595 rum_detach(device_t self) 596 { 597 struct rum_softc *sc = device_get_softc(self); 598 struct ieee80211com *ic = &sc->sc_ic; 599 600 /* Prevent further ioctls */ 601 RUM_LOCK(sc); 602 sc->sc_detached = 1; 603 RUM_UNLOCK(sc); 604 605 /* stop all USB transfers */ 606 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 607 608 /* free TX list, if any */ 609 RUM_LOCK(sc); 610 rum_unsetup_tx_list(sc); 611 RUM_UNLOCK(sc); 612 613 if (ic->ic_softc == sc) { 614 ieee80211_draintask(ic, &sc->cmdq_task); 615 ieee80211_ifdetach(ic); 616 } 617 618 mbufq_drain(&sc->sc_snd); 619 RUM_CMDQ_LOCK_DESTROY(sc); 620 RUM_LOCK_DESTROY(sc); 621 622 return (0); 623 } 624 625 static usb_error_t 626 rum_do_request(struct rum_softc *sc, 627 struct usb_device_request *req, void *data) 628 { 629 usb_error_t err; 630 int ntries = 10; 631 632 while (ntries--) { 633 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 634 req, data, 0, NULL, 250 /* ms */); 635 if (err == 0) 636 break; 637 638 DPRINTFN(1, "Control request failed, %s (retrying)\n", 639 usbd_errstr(err)); 640 if (rum_pause(sc, hz / 100)) 641 break; 642 } 643 return (err); 644 } 645 646 static usb_error_t 647 rum_do_mcu_request(struct rum_softc *sc, int request) 648 { 649 struct usb_device_request req; 650 651 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 652 req.bRequest = RT2573_MCU_CNTL; 653 USETW(req.wValue, request); 654 USETW(req.wIndex, 0); 655 USETW(req.wLength, 0); 656 657 return (rum_do_request(sc, &req, NULL)); 658 } 659 660 static struct ieee80211vap * 661 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 662 enum ieee80211_opmode opmode, int flags, 663 const uint8_t bssid[IEEE80211_ADDR_LEN], 664 const uint8_t mac[IEEE80211_ADDR_LEN]) 665 { 666 struct rum_softc *sc = ic->ic_softc; 667 struct rum_vap *rvp; 668 struct ieee80211vap *vap; 669 670 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 671 return NULL; 672 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 673 vap = &rvp->vap; 674 /* enable s/w bmiss handling for sta mode */ 675 676 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 677 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 678 /* out of memory */ 679 free(rvp, M_80211_VAP); 680 return (NULL); 681 } 682 683 /* override state transition machine */ 684 rvp->newstate = vap->iv_newstate; 685 vap->iv_newstate = rum_newstate; 686 vap->iv_key_alloc = rum_key_alloc; 687 vap->iv_key_set = rum_key_set; 688 vap->iv_key_delete = rum_key_delete; 689 vap->iv_update_beacon = rum_update_beacon; 690 vap->iv_reset = rum_reset; 691 vap->iv_max_aid = RT2573_ADDR_MAX; 692 693 if (opmode == IEEE80211_M_STA) { 694 /* 695 * Move device to the sleep state when 696 * beacon is received and there is no data for us. 697 * 698 * Used only for IEEE80211_S_SLEEP state. 699 */ 700 rvp->recv_mgmt = vap->iv_recv_mgmt; 701 vap->iv_recv_mgmt = rum_sta_recv_mgmt; 702 703 /* Ignored while sleeping. */ 704 rvp->bmiss = vap->iv_bmiss; 705 vap->iv_bmiss = rum_beacon_miss; 706 } 707 708 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 709 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 710 ieee80211_ratectl_init(vap); 711 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 712 /* complete setup */ 713 ieee80211_vap_attach(vap, ieee80211_media_change, 714 ieee80211_media_status, mac); 715 ic->ic_opmode = opmode; 716 return vap; 717 } 718 719 static void 720 rum_vap_delete(struct ieee80211vap *vap) 721 { 722 struct rum_vap *rvp = RUM_VAP(vap); 723 struct ieee80211com *ic = vap->iv_ic; 724 struct rum_softc *sc = ic->ic_softc; 725 726 /* Put vap into INIT state. */ 727 ieee80211_new_state(vap, IEEE80211_S_INIT, -1); 728 ieee80211_draintask(ic, &vap->iv_nstate_task); 729 730 RUM_LOCK(sc); 731 /* Cancel any unfinished Tx. */ 732 rum_reset_tx_list(sc, vap); 733 RUM_UNLOCK(sc); 734 735 usb_callout_drain(&rvp->ratectl_ch); 736 ieee80211_draintask(ic, &rvp->ratectl_task); 737 ieee80211_ratectl_deinit(vap); 738 ieee80211_vap_detach(vap); 739 m_freem(rvp->bcn_mbuf); 740 free(rvp, M_80211_VAP); 741 } 742 743 static void 744 rum_cmdq_cb(void *arg, int pending) 745 { 746 struct rum_softc *sc = arg; 747 struct rum_cmdq *rc; 748 749 RUM_CMDQ_LOCK(sc); 750 while (sc->cmdq[sc->cmdq_first].func != NULL) { 751 rc = &sc->cmdq[sc->cmdq_first]; 752 RUM_CMDQ_UNLOCK(sc); 753 754 RUM_LOCK(sc); 755 rc->func(sc, &rc->data, rc->rvp_id); 756 RUM_UNLOCK(sc); 757 758 RUM_CMDQ_LOCK(sc); 759 memset(rc, 0, sizeof (*rc)); 760 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 761 } 762 RUM_CMDQ_UNLOCK(sc); 763 } 764 765 static int 766 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 767 uint8_t rvp_id, CMD_FUNC_PROTO) 768 { 769 struct ieee80211com *ic = &sc->sc_ic; 770 771 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 772 773 RUM_CMDQ_LOCK(sc); 774 if (sc->cmdq[sc->cmdq_last].func != NULL) { 775 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 776 RUM_CMDQ_UNLOCK(sc); 777 778 return EAGAIN; 779 } 780 781 if (ptr != NULL) 782 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 783 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 784 sc->cmdq[sc->cmdq_last].func = func; 785 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 786 RUM_CMDQ_UNLOCK(sc); 787 788 ieee80211_runtask(ic, &sc->cmdq_task); 789 790 return 0; 791 } 792 793 static void 794 rum_tx_free(struct rum_tx_data *data, int txerr) 795 { 796 struct rum_softc *sc = data->sc; 797 798 if (data->m != NULL) { 799 ieee80211_tx_complete(data->ni, data->m, txerr); 800 data->m = NULL; 801 data->ni = NULL; 802 } 803 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 804 sc->tx_nfree++; 805 } 806 807 static void 808 rum_setup_tx_list(struct rum_softc *sc) 809 { 810 struct rum_tx_data *data; 811 int i; 812 813 sc->tx_nfree = 0; 814 STAILQ_INIT(&sc->tx_q); 815 STAILQ_INIT(&sc->tx_free); 816 817 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 818 data = &sc->tx_data[i]; 819 820 data->sc = sc; 821 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 822 sc->tx_nfree++; 823 } 824 } 825 826 static void 827 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap) 828 { 829 struct rum_tx_data *data, *tmp; 830 831 KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__)); 832 833 STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) { 834 if (data->ni != NULL && data->ni->ni_vap == vap) { 835 ieee80211_free_node(data->ni); 836 data->ni = NULL; 837 838 KASSERT(data->m != NULL, ("%s: m is NULL\n", 839 __func__)); 840 m_freem(data->m); 841 data->m = NULL; 842 843 STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next); 844 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 845 sc->tx_nfree++; 846 } 847 } 848 } 849 850 static void 851 rum_unsetup_tx_list(struct rum_softc *sc) 852 { 853 struct rum_tx_data *data; 854 int i; 855 856 /* make sure any subsequent use of the queues will fail */ 857 sc->tx_nfree = 0; 858 STAILQ_INIT(&sc->tx_q); 859 STAILQ_INIT(&sc->tx_free); 860 861 /* free up all node references and mbufs */ 862 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 863 data = &sc->tx_data[i]; 864 865 if (data->m != NULL) { 866 m_freem(data->m); 867 data->m = NULL; 868 } 869 if (data->ni != NULL) { 870 ieee80211_free_node(data->ni); 871 data->ni = NULL; 872 } 873 } 874 } 875 876 static void 877 rum_beacon_miss(struct ieee80211vap *vap) 878 { 879 struct ieee80211com *ic = vap->iv_ic; 880 struct rum_softc *sc = ic->ic_softc; 881 struct rum_vap *rvp = RUM_VAP(vap); 882 int sleep; 883 884 RUM_LOCK(sc); 885 if (sc->sc_sleeping && sc->sc_sleep_end < ticks) { 886 DPRINTFN(12, "dropping 'sleeping' bit, " 887 "device must be awake now\n"); 888 889 sc->sc_sleeping = 0; 890 } 891 892 sleep = sc->sc_sleeping; 893 RUM_UNLOCK(sc); 894 895 if (!sleep) 896 rvp->bmiss(vap); 897 #ifdef USB_DEBUG 898 else 899 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n"); 900 #endif 901 } 902 903 static void 904 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 905 const struct ieee80211_rx_stats *rxs, 906 int rssi, int nf) 907 { 908 struct ieee80211vap *vap = ni->ni_vap; 909 struct rum_softc *sc = vap->iv_ic->ic_softc; 910 struct rum_vap *rvp = RUM_VAP(vap); 911 912 if (vap->iv_state == IEEE80211_S_SLEEP && 913 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 914 RUM_LOCK(sc); 915 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n", 916 !!(sc->last_rx_flags & RT2573_RX_MYBSS), 917 sc->last_rx_flags); 918 919 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) == 920 (RT2573_RX_MYBSS | RT2573_RX_BC)) { 921 /* 922 * Put it to sleep here; in case if there is a data 923 * for us, iv_recv_mgmt() will wakeup the device via 924 * SLEEP -> RUN state transition. 925 */ 926 rum_set_power_state(sc, 1); 927 } 928 RUM_UNLOCK(sc); 929 } 930 931 rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); 932 } 933 934 static int 935 rum_set_power_state(struct rum_softc *sc, int sleep) 936 { 937 usb_error_t uerror; 938 939 RUM_LOCK_ASSERT(sc); 940 941 DPRINTFN(12, "moving to %s state (sleep time %u)\n", 942 sleep ? "sleep" : "awake", sc->sc_sleep_time); 943 944 uerror = rum_do_mcu_request(sc, 945 sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP); 946 if (uerror != USB_ERR_NORMAL_COMPLETION) { 947 device_printf(sc->sc_dev, 948 "%s: could not change power state: %s\n", 949 __func__, usbd_errstr(uerror)); 950 return (EIO); 951 } 952 953 sc->sc_sleeping = !!sleep; 954 sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0; 955 956 return (0); 957 } 958 959 static int 960 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 961 { 962 struct rum_vap *rvp = RUM_VAP(vap); 963 struct ieee80211com *ic = vap->iv_ic; 964 struct rum_softc *sc = ic->ic_softc; 965 const struct ieee80211_txparam *tp; 966 enum ieee80211_state ostate; 967 struct ieee80211_node *ni; 968 usb_error_t uerror; 969 int ret = 0; 970 971 ostate = vap->iv_state; 972 DPRINTF("%s -> %s\n", 973 ieee80211_state_name[ostate], 974 ieee80211_state_name[nstate]); 975 976 IEEE80211_UNLOCK(ic); 977 RUM_LOCK(sc); 978 usb_callout_stop(&rvp->ratectl_ch); 979 980 if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) { 981 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 982 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 983 984 /* 985 * Ignore any errors; 986 * any subsequent TX will wakeup it anyway 987 */ 988 (void) rum_set_power_state(sc, 0); 989 } 990 991 switch (nstate) { 992 case IEEE80211_S_INIT: 993 if (ostate == IEEE80211_S_RUN) 994 rum_abort_tsf_sync(sc); 995 996 break; 997 998 case IEEE80211_S_RUN: 999 if (ostate == IEEE80211_S_SLEEP) 1000 break; /* already handled */ 1001 1002 ni = ieee80211_ref_node(vap->iv_bss); 1003 1004 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 1005 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 1006 ni->ni_chan == IEEE80211_CHAN_ANYC) { 1007 ret = EINVAL; 1008 goto run_fail; 1009 } 1010 rum_update_slot_cb(sc, NULL, 0); 1011 rum_enable_mrr(sc); 1012 rum_set_txpreamble(sc); 1013 rum_set_basicrates(sc); 1014 rum_set_maxretry(sc, vap); 1015 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 1016 rum_set_bssid(sc, sc->sc_bssid); 1017 } 1018 1019 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1020 vap->iv_opmode == IEEE80211_M_IBSS) { 1021 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 1022 goto run_fail; 1023 } 1024 1025 if (vap->iv_opmode != IEEE80211_M_MONITOR && 1026 vap->iv_opmode != IEEE80211_M_AHDEMO) { 1027 if ((ret = rum_enable_tsf_sync(sc)) != 0) 1028 goto run_fail; 1029 } else 1030 rum_enable_tsf(sc); 1031 1032 /* enable automatic rate adaptation */ 1033 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1034 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1035 rum_ratectl_start(sc, ni); 1036 run_fail: 1037 ieee80211_free_node(ni); 1038 break; 1039 case IEEE80211_S_SLEEP: 1040 /* Implemented for STA mode only. */ 1041 if (vap->iv_opmode != IEEE80211_M_STA) 1042 break; 1043 1044 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 1045 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1046 ret = EIO; 1047 break; 1048 } 1049 1050 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 1051 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1052 ret = EIO; 1053 break; 1054 } 1055 1056 ret = rum_set_power_state(sc, 1); 1057 if (ret != 0) { 1058 device_printf(sc->sc_dev, 1059 "%s: could not move to the SLEEP state: %s\n", 1060 __func__, usbd_errstr(uerror)); 1061 } 1062 break; 1063 default: 1064 break; 1065 } 1066 RUM_UNLOCK(sc); 1067 IEEE80211_LOCK(ic); 1068 return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret); 1069 } 1070 1071 static void 1072 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 1073 { 1074 struct rum_softc *sc = usbd_xfer_softc(xfer); 1075 struct ieee80211vap *vap; 1076 struct rum_tx_data *data; 1077 struct mbuf *m; 1078 struct usb_page_cache *pc; 1079 unsigned int len; 1080 int actlen, sumlen; 1081 1082 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1083 1084 switch (USB_GET_STATE(xfer)) { 1085 case USB_ST_TRANSFERRED: 1086 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 1087 1088 /* free resources */ 1089 data = usbd_xfer_get_priv(xfer); 1090 rum_tx_free(data, 0); 1091 usbd_xfer_set_priv(xfer, NULL); 1092 1093 /* FALLTHROUGH */ 1094 case USB_ST_SETUP: 1095 tr_setup: 1096 data = STAILQ_FIRST(&sc->tx_q); 1097 if (data) { 1098 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 1099 m = data->m; 1100 1101 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 1102 DPRINTFN(0, "data overflow, %u bytes\n", 1103 m->m_pkthdr.len); 1104 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 1105 } 1106 pc = usbd_xfer_get_frame(xfer, 0); 1107 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 1108 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 1109 m->m_pkthdr.len); 1110 1111 vap = data->ni->ni_vap; 1112 if (ieee80211_radiotap_active_vap(vap)) { 1113 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1114 1115 tap->wt_flags = 0; 1116 tap->wt_rate = data->rate; 1117 tap->wt_antenna = sc->tx_ant; 1118 1119 ieee80211_radiotap_tx(vap, m); 1120 } 1121 1122 /* align end on a 4-bytes boundary */ 1123 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 1124 if ((len % 64) == 0) 1125 len += 4; 1126 1127 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 1128 m->m_pkthdr.len, len); 1129 1130 usbd_xfer_set_frame_len(xfer, 0, len); 1131 usbd_xfer_set_priv(xfer, data); 1132 1133 usbd_transfer_submit(xfer); 1134 } 1135 rum_start(sc); 1136 break; 1137 1138 default: /* Error */ 1139 DPRINTFN(11, "transfer error, %s\n", 1140 usbd_errstr(error)); 1141 1142 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1143 data = usbd_xfer_get_priv(xfer); 1144 if (data != NULL) { 1145 rum_tx_free(data, error); 1146 usbd_xfer_set_priv(xfer, NULL); 1147 } 1148 1149 if (error != USB_ERR_CANCELLED) { 1150 if (error == USB_ERR_TIMEOUT) 1151 device_printf(sc->sc_dev, "device timeout\n"); 1152 1153 /* 1154 * Try to clear stall first, also if other 1155 * errors occur, hence clearing stall 1156 * introduces a 50 ms delay: 1157 */ 1158 usbd_xfer_set_stall(xfer); 1159 goto tr_setup; 1160 } 1161 break; 1162 } 1163 } 1164 1165 static void 1166 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 1167 { 1168 struct rum_softc *sc = usbd_xfer_softc(xfer); 1169 struct ieee80211com *ic = &sc->sc_ic; 1170 struct ieee80211_frame_min *wh; 1171 struct ieee80211_node *ni; 1172 struct epoch_tracker et; 1173 struct mbuf *m = NULL; 1174 struct usb_page_cache *pc; 1175 uint32_t flags; 1176 uint8_t rssi = 0; 1177 int len; 1178 1179 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1180 1181 switch (USB_GET_STATE(xfer)) { 1182 case USB_ST_TRANSFERRED: 1183 1184 DPRINTFN(15, "rx done, actlen=%d\n", len); 1185 1186 if (len < RT2573_RX_DESC_SIZE) { 1187 DPRINTF("%s: xfer too short %d\n", 1188 device_get_nameunit(sc->sc_dev), len); 1189 counter_u64_add(ic->ic_ierrors, 1); 1190 goto tr_setup; 1191 } 1192 1193 len -= RT2573_RX_DESC_SIZE; 1194 pc = usbd_xfer_get_frame(xfer, 0); 1195 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 1196 1197 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1198 flags = le32toh(sc->sc_rx_desc.flags); 1199 sc->last_rx_flags = flags; 1200 if (len < ((flags >> 16) & 0xfff)) { 1201 DPRINTFN(5, "%s: frame is truncated from %d to %d " 1202 "bytes\n", device_get_nameunit(sc->sc_dev), 1203 (flags >> 16) & 0xfff, len); 1204 counter_u64_add(ic->ic_ierrors, 1); 1205 goto tr_setup; 1206 } 1207 len = (flags >> 16) & 0xfff; 1208 if (len < sizeof(struct ieee80211_frame_ack)) { 1209 DPRINTFN(5, "%s: frame too short %d\n", 1210 device_get_nameunit(sc->sc_dev), len); 1211 counter_u64_add(ic->ic_ierrors, 1); 1212 goto tr_setup; 1213 } 1214 if (flags & RT2573_RX_CRC_ERROR) { 1215 /* 1216 * This should not happen since we did not 1217 * request to receive those frames when we 1218 * filled RUM_TXRX_CSR2: 1219 */ 1220 DPRINTFN(5, "PHY or CRC error\n"); 1221 counter_u64_add(ic->ic_ierrors, 1); 1222 goto tr_setup; 1223 } 1224 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1225 switch (flags & RT2573_RX_DEC_MASK) { 1226 case RT2573_RX_IV_ERROR: 1227 DPRINTFN(5, "IV/EIV error\n"); 1228 break; 1229 case RT2573_RX_MIC_ERROR: 1230 DPRINTFN(5, "MIC error\n"); 1231 break; 1232 case RT2573_RX_KEY_ERROR: 1233 DPRINTFN(5, "Key error\n"); 1234 break; 1235 } 1236 counter_u64_add(ic->ic_ierrors, 1); 1237 goto tr_setup; 1238 } 1239 1240 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 1241 if (m == NULL) { 1242 DPRINTF("could not allocate mbuf\n"); 1243 counter_u64_add(ic->ic_ierrors, 1); 1244 goto tr_setup; 1245 } 1246 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1247 mtod(m, uint8_t *), len); 1248 1249 wh = mtod(m, struct ieee80211_frame_min *); 1250 1251 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1252 (flags & RT2573_RX_CIP_MASK) != 1253 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1254 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1255 m->m_flags |= M_WEP; 1256 } 1257 1258 /* finalize mbuf */ 1259 m->m_pkthdr.len = m->m_len = len; 1260 1261 if (ieee80211_radiotap_active(ic)) { 1262 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1263 1264 tap->wr_flags = 0; 1265 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1266 (flags & RT2573_RX_OFDM) ? 1267 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1268 rum_get_tsf(sc, &tap->wr_tsf); 1269 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1270 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1271 tap->wr_antenna = sc->rx_ant; 1272 } 1273 /* FALLTHROUGH */ 1274 case USB_ST_SETUP: 1275 tr_setup: 1276 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1277 usbd_transfer_submit(xfer); 1278 1279 /* 1280 * At the end of a USB callback it is always safe to unlock 1281 * the private mutex of a device! That is why we do the 1282 * "ieee80211_input" here, and not some lines up! 1283 */ 1284 RUM_UNLOCK(sc); 1285 if (m) { 1286 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1287 ni = ieee80211_find_rxnode(ic, wh); 1288 else 1289 ni = NULL; 1290 1291 NET_EPOCH_ENTER(et); 1292 if (ni != NULL) { 1293 (void) ieee80211_input(ni, m, rssi, 1294 RT2573_NOISE_FLOOR); 1295 ieee80211_free_node(ni); 1296 } else 1297 (void) ieee80211_input_all(ic, m, rssi, 1298 RT2573_NOISE_FLOOR); 1299 NET_EPOCH_EXIT(et); 1300 } 1301 RUM_LOCK(sc); 1302 rum_start(sc); 1303 return; 1304 1305 default: /* Error */ 1306 if (error != USB_ERR_CANCELLED) { 1307 /* try to clear stall first */ 1308 usbd_xfer_set_stall(xfer); 1309 goto tr_setup; 1310 } 1311 return; 1312 } 1313 } 1314 1315 static uint8_t 1316 rum_plcp_signal(int rate) 1317 { 1318 switch (rate) { 1319 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1320 case 12: return 0xb; 1321 case 18: return 0xf; 1322 case 24: return 0xa; 1323 case 36: return 0xe; 1324 case 48: return 0x9; 1325 case 72: return 0xd; 1326 case 96: return 0x8; 1327 case 108: return 0xc; 1328 1329 /* CCK rates (NB: not IEEE std, device-specific) */ 1330 case 2: return 0x0; 1331 case 4: return 0x1; 1332 case 11: return 0x2; 1333 case 22: return 0x3; 1334 } 1335 return 0xff; /* XXX unsupported/unknown rate */ 1336 } 1337 1338 /* 1339 * Map net80211 cipher to RT2573 security mode. 1340 */ 1341 static uint8_t 1342 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1343 { 1344 switch (cipher) { 1345 case IEEE80211_CIPHER_WEP: 1346 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1347 case IEEE80211_CIPHER_TKIP: 1348 return RT2573_MODE_TKIP; 1349 case IEEE80211_CIPHER_AES_CCM: 1350 return RT2573_MODE_AES_CCMP; 1351 default: 1352 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1353 return 0; 1354 } 1355 } 1356 1357 static void 1358 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1359 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1360 int hdrlen, int len, int rate) 1361 { 1362 struct ieee80211com *ic = &sc->sc_ic; 1363 struct wmeParams *wmep = &sc->wme_params[qid]; 1364 uint16_t plcp_length; 1365 int remainder; 1366 1367 flags |= RT2573_TX_VALID; 1368 flags |= len << 16; 1369 1370 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1371 const struct ieee80211_cipher *cip = k->wk_cipher; 1372 1373 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1374 1375 desc->eiv = 0; /* for WEP */ 1376 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1377 } 1378 1379 /* setup PLCP fields */ 1380 desc->plcp_signal = rum_plcp_signal(rate); 1381 desc->plcp_service = 4; 1382 1383 len += IEEE80211_CRC_LEN; 1384 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1385 flags |= RT2573_TX_OFDM; 1386 1387 plcp_length = len & 0xfff; 1388 desc->plcp_length_hi = plcp_length >> 6; 1389 desc->plcp_length_lo = plcp_length & 0x3f; 1390 } else { 1391 if (rate == 0) 1392 rate = 2; /* avoid division by zero */ 1393 plcp_length = howmany(16 * len, rate); 1394 if (rate == 22) { 1395 remainder = (16 * len) % 22; 1396 if (remainder != 0 && remainder < 7) 1397 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1398 } 1399 desc->plcp_length_hi = plcp_length >> 8; 1400 desc->plcp_length_lo = plcp_length & 0xff; 1401 1402 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1403 desc->plcp_signal |= 0x08; 1404 } 1405 1406 desc->flags = htole32(flags); 1407 desc->hdrlen = hdrlen; 1408 desc->xflags = xflags; 1409 1410 desc->wme = htole16(RT2573_QID(qid) | 1411 RT2573_AIFSN(wmep->wmep_aifsn) | 1412 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1413 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1414 } 1415 1416 static int 1417 rum_sendprot(struct rum_softc *sc, 1418 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1419 { 1420 struct ieee80211com *ic = ni->ni_ic; 1421 struct rum_tx_data *data; 1422 struct mbuf *mprot; 1423 int protrate, flags; 1424 1425 RUM_LOCK_ASSERT(sc); 1426 1427 mprot = ieee80211_alloc_prot(ni, m, rate, prot); 1428 if (mprot == NULL) { 1429 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 1430 device_printf(sc->sc_dev, 1431 "could not allocate mbuf for protection mode %d\n", prot); 1432 return (ENOBUFS); 1433 } 1434 1435 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1436 flags = 0; 1437 if (prot == IEEE80211_PROT_RTSCTS) 1438 flags |= RT2573_TX_NEED_ACK; 1439 1440 data = STAILQ_FIRST(&sc->tx_free); 1441 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1442 sc->tx_nfree--; 1443 1444 data->m = mprot; 1445 data->ni = ieee80211_ref_node(ni); 1446 data->rate = protrate; 1447 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1448 mprot->m_pkthdr.len, protrate); 1449 1450 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1451 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1452 1453 return 0; 1454 } 1455 1456 static uint32_t 1457 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1458 const struct ieee80211_key *k) 1459 { 1460 struct ieee80211vap *vap = ni->ni_vap; 1461 u_int cipher; 1462 uint32_t flags = 0; 1463 uint8_t mode, pos; 1464 1465 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1466 cipher = k->wk_cipher->ic_cipher; 1467 pos = k->wk_keyix; 1468 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1469 if (mode == 0) 1470 return 0; 1471 1472 flags |= RT2573_TX_CIP_MODE(mode); 1473 1474 /* Do not trust GROUP flag */ 1475 if (!(k >= &vap->iv_nw_keys[0] && 1476 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) 1477 flags |= RT2573_TX_KEY_PAIR; 1478 else 1479 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1480 1481 flags |= RT2573_TX_KEY_ID(pos); 1482 1483 if (cipher == IEEE80211_CIPHER_TKIP) 1484 flags |= RT2573_TX_TKIPMIC; 1485 } 1486 1487 return flags; 1488 } 1489 1490 static int 1491 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1492 { 1493 const struct ieee80211_txparam *tp = ni->ni_txparms; 1494 struct ieee80211com *ic = &sc->sc_ic; 1495 struct rum_tx_data *data; 1496 struct ieee80211_frame *wh; 1497 struct ieee80211_key *k = NULL; 1498 uint32_t flags = 0; 1499 uint16_t dur; 1500 uint8_t ac, type, xflags = 0; 1501 int hdrlen; 1502 1503 RUM_LOCK_ASSERT(sc); 1504 1505 data = STAILQ_FIRST(&sc->tx_free); 1506 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1507 sc->tx_nfree--; 1508 1509 wh = mtod(m0, struct ieee80211_frame *); 1510 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1511 hdrlen = ieee80211_anyhdrsize(wh); 1512 ac = M_WME_GETAC(m0); 1513 1514 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1515 k = ieee80211_crypto_get_txkey(ni, m0); 1516 if (k == NULL) 1517 return (ENOENT); 1518 1519 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1520 !k->wk_cipher->ic_encap(k, m0)) 1521 return (ENOBUFS); 1522 1523 wh = mtod(m0, struct ieee80211_frame *); 1524 } 1525 1526 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1527 flags |= RT2573_TX_NEED_ACK; 1528 1529 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1530 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1531 USETW(wh->i_dur, dur); 1532 1533 /* tell hardware to add timestamp for probe responses */ 1534 if (type == IEEE80211_FC0_TYPE_MGT && 1535 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1536 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1537 flags |= RT2573_TX_TIMESTAMP; 1538 } 1539 1540 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1541 xflags |= RT2573_TX_HWSEQ; 1542 1543 if (k != NULL) 1544 flags |= rum_tx_crypto_flags(sc, ni, k); 1545 1546 data->m = m0; 1547 data->ni = ni; 1548 data->rate = tp->mgmtrate; 1549 1550 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1551 m0->m_pkthdr.len, tp->mgmtrate); 1552 1553 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1554 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1555 1556 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1557 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1558 1559 return (0); 1560 } 1561 1562 static int 1563 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1564 const struct ieee80211_bpf_params *params) 1565 { 1566 struct ieee80211com *ic = ni->ni_ic; 1567 struct ieee80211_frame *wh; 1568 struct rum_tx_data *data; 1569 uint32_t flags; 1570 uint8_t ac, type, xflags = 0; 1571 int rate, error; 1572 1573 RUM_LOCK_ASSERT(sc); 1574 1575 wh = mtod(m0, struct ieee80211_frame *); 1576 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1577 1578 ac = params->ibp_pri & 3; 1579 1580 rate = params->ibp_rate0; 1581 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1582 return (EINVAL); 1583 1584 flags = 0; 1585 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1586 flags |= RT2573_TX_NEED_ACK; 1587 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1588 error = rum_sendprot(sc, m0, ni, 1589 params->ibp_flags & IEEE80211_BPF_RTS ? 1590 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1591 rate); 1592 if (error || sc->tx_nfree == 0) 1593 return (ENOBUFS); 1594 1595 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1596 } 1597 1598 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1599 xflags |= RT2573_TX_HWSEQ; 1600 1601 data = STAILQ_FIRST(&sc->tx_free); 1602 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1603 sc->tx_nfree--; 1604 1605 data->m = m0; 1606 data->ni = ni; 1607 data->rate = rate; 1608 1609 /* XXX need to setup descriptor ourself */ 1610 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1611 m0->m_pkthdr.len, rate); 1612 1613 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1614 m0->m_pkthdr.len, rate); 1615 1616 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1617 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1618 1619 return 0; 1620 } 1621 1622 static int 1623 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1624 { 1625 struct ieee80211vap *vap = ni->ni_vap; 1626 struct ieee80211com *ic = &sc->sc_ic; 1627 struct rum_tx_data *data; 1628 struct ieee80211_frame *wh; 1629 const struct ieee80211_txparam *tp = ni->ni_txparms; 1630 struct ieee80211_key *k = NULL; 1631 uint32_t flags = 0; 1632 uint16_t dur; 1633 uint8_t ac, type, qos, xflags = 0; 1634 int error, hdrlen, rate; 1635 1636 RUM_LOCK_ASSERT(sc); 1637 1638 wh = mtod(m0, struct ieee80211_frame *); 1639 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1640 hdrlen = ieee80211_anyhdrsize(wh); 1641 1642 if (IEEE80211_QOS_HAS_SEQ(wh)) 1643 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1644 else 1645 qos = 0; 1646 ac = M_WME_GETAC(m0); 1647 1648 if (m0->m_flags & M_EAPOL) 1649 rate = tp->mgmtrate; 1650 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1651 rate = tp->mcastrate; 1652 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1653 rate = tp->ucastrate; 1654 else { 1655 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1656 rate = ni->ni_txrate; 1657 } 1658 1659 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1660 k = ieee80211_crypto_get_txkey(ni, m0); 1661 if (k == NULL) { 1662 m_freem(m0); 1663 return (ENOENT); 1664 } 1665 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1666 !k->wk_cipher->ic_encap(k, m0)) { 1667 m_freem(m0); 1668 return (ENOBUFS); 1669 } 1670 1671 /* packet header may have moved, reset our local pointer */ 1672 wh = mtod(m0, struct ieee80211_frame *); 1673 } 1674 1675 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1676 xflags |= RT2573_TX_HWSEQ; 1677 1678 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1679 int prot = IEEE80211_PROT_NONE; 1680 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1681 prot = IEEE80211_PROT_RTSCTS; 1682 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1683 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1684 prot = ic->ic_protmode; 1685 if (prot != IEEE80211_PROT_NONE) { 1686 error = rum_sendprot(sc, m0, ni, prot, rate); 1687 if (error || sc->tx_nfree == 0) { 1688 m_freem(m0); 1689 return ENOBUFS; 1690 } 1691 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1692 } 1693 } 1694 1695 if (k != NULL) 1696 flags |= rum_tx_crypto_flags(sc, ni, k); 1697 1698 data = STAILQ_FIRST(&sc->tx_free); 1699 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1700 sc->tx_nfree--; 1701 1702 data->m = m0; 1703 data->ni = ni; 1704 data->rate = rate; 1705 1706 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1707 /* Unicast frame, check if an ACK is expected. */ 1708 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1709 IEEE80211_QOS_ACKPOLICY_NOACK) 1710 flags |= RT2573_TX_NEED_ACK; 1711 1712 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1713 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1714 USETW(wh->i_dur, dur); 1715 } 1716 1717 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1718 m0->m_pkthdr.len, rate); 1719 1720 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1721 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1722 1723 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1724 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1725 1726 return 0; 1727 } 1728 1729 static int 1730 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1731 { 1732 struct rum_softc *sc = ic->ic_softc; 1733 int error; 1734 1735 RUM_LOCK(sc); 1736 if (!sc->sc_running) { 1737 RUM_UNLOCK(sc); 1738 return (ENXIO); 1739 } 1740 error = mbufq_enqueue(&sc->sc_snd, m); 1741 if (error) { 1742 RUM_UNLOCK(sc); 1743 return (error); 1744 } 1745 rum_start(sc); 1746 RUM_UNLOCK(sc); 1747 1748 return (0); 1749 } 1750 1751 static void 1752 rum_start(struct rum_softc *sc) 1753 { 1754 struct ieee80211_node *ni; 1755 struct mbuf *m; 1756 1757 RUM_LOCK_ASSERT(sc); 1758 1759 if (!sc->sc_running) 1760 return; 1761 1762 while (sc->tx_nfree >= RUM_TX_MINFREE && 1763 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1764 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1765 if (rum_tx_data(sc, m, ni) != 0) { 1766 if_inc_counter(ni->ni_vap->iv_ifp, 1767 IFCOUNTER_OERRORS, 1); 1768 ieee80211_free_node(ni); 1769 break; 1770 } 1771 } 1772 } 1773 1774 static void 1775 rum_parent(struct ieee80211com *ic) 1776 { 1777 struct rum_softc *sc = ic->ic_softc; 1778 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1779 1780 RUM_LOCK(sc); 1781 if (sc->sc_detached) { 1782 RUM_UNLOCK(sc); 1783 return; 1784 } 1785 RUM_UNLOCK(sc); 1786 1787 if (ic->ic_nrunning > 0) { 1788 if (rum_init(sc) == 0) 1789 ieee80211_start_all(ic); 1790 else 1791 ieee80211_stop(vap); 1792 } else 1793 rum_stop(sc); 1794 } 1795 1796 static void 1797 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1798 { 1799 struct usb_device_request req; 1800 usb_error_t error; 1801 1802 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1803 req.bRequest = RT2573_READ_EEPROM; 1804 USETW(req.wValue, 0); 1805 USETW(req.wIndex, addr); 1806 USETW(req.wLength, len); 1807 1808 error = rum_do_request(sc, &req, buf); 1809 if (error != 0) { 1810 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1811 usbd_errstr(error)); 1812 } 1813 } 1814 1815 static uint32_t 1816 rum_read(struct rum_softc *sc, uint16_t reg) 1817 { 1818 uint32_t val; 1819 1820 rum_read_multi(sc, reg, &val, sizeof val); 1821 1822 return le32toh(val); 1823 } 1824 1825 static void 1826 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1827 { 1828 struct usb_device_request req; 1829 usb_error_t error; 1830 1831 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1832 req.bRequest = RT2573_READ_MULTI_MAC; 1833 USETW(req.wValue, 0); 1834 USETW(req.wIndex, reg); 1835 USETW(req.wLength, len); 1836 1837 error = rum_do_request(sc, &req, buf); 1838 if (error != 0) { 1839 device_printf(sc->sc_dev, 1840 "could not multi read MAC register: %s\n", 1841 usbd_errstr(error)); 1842 } 1843 } 1844 1845 static usb_error_t 1846 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1847 { 1848 uint32_t tmp = htole32(val); 1849 1850 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1851 } 1852 1853 static usb_error_t 1854 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1855 { 1856 struct usb_device_request req; 1857 usb_error_t error; 1858 size_t offset; 1859 1860 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1861 req.bRequest = RT2573_WRITE_MULTI_MAC; 1862 USETW(req.wValue, 0); 1863 1864 /* write at most 64 bytes at a time */ 1865 for (offset = 0; offset < len; offset += 64) { 1866 USETW(req.wIndex, reg + offset); 1867 USETW(req.wLength, MIN(len - offset, 64)); 1868 1869 error = rum_do_request(sc, &req, (char *)buf + offset); 1870 if (error != 0) { 1871 device_printf(sc->sc_dev, 1872 "could not multi write MAC register: %s\n", 1873 usbd_errstr(error)); 1874 return (error); 1875 } 1876 } 1877 1878 return (USB_ERR_NORMAL_COMPLETION); 1879 } 1880 1881 static usb_error_t 1882 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1883 { 1884 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1885 } 1886 1887 static usb_error_t 1888 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1889 { 1890 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1891 } 1892 1893 static usb_error_t 1894 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1895 { 1896 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1897 } 1898 1899 static int 1900 rum_bbp_busy(struct rum_softc *sc) 1901 { 1902 int ntries; 1903 1904 for (ntries = 0; ntries < 100; ntries++) { 1905 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1906 break; 1907 if (rum_pause(sc, hz / 100)) 1908 break; 1909 } 1910 if (ntries == 100) 1911 return (ETIMEDOUT); 1912 1913 return (0); 1914 } 1915 1916 static void 1917 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1918 { 1919 uint32_t tmp; 1920 1921 DPRINTFN(2, "reg=0x%08x\n", reg); 1922 1923 if (rum_bbp_busy(sc) != 0) { 1924 device_printf(sc->sc_dev, "could not write to BBP\n"); 1925 return; 1926 } 1927 1928 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1929 rum_write(sc, RT2573_PHY_CSR3, tmp); 1930 } 1931 1932 static uint8_t 1933 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1934 { 1935 uint32_t val; 1936 int ntries; 1937 1938 DPRINTFN(2, "reg=0x%08x\n", reg); 1939 1940 if (rum_bbp_busy(sc) != 0) { 1941 device_printf(sc->sc_dev, "could not read BBP\n"); 1942 return 0; 1943 } 1944 1945 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1946 rum_write(sc, RT2573_PHY_CSR3, val); 1947 1948 for (ntries = 0; ntries < 100; ntries++) { 1949 val = rum_read(sc, RT2573_PHY_CSR3); 1950 if (!(val & RT2573_BBP_BUSY)) 1951 return val & 0xff; 1952 if (rum_pause(sc, hz / 100)) 1953 break; 1954 } 1955 1956 device_printf(sc->sc_dev, "could not read BBP\n"); 1957 return 0; 1958 } 1959 1960 static void 1961 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1962 { 1963 uint32_t tmp; 1964 int ntries; 1965 1966 for (ntries = 0; ntries < 100; ntries++) { 1967 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1968 break; 1969 if (rum_pause(sc, hz / 100)) 1970 break; 1971 } 1972 if (ntries == 100) { 1973 device_printf(sc->sc_dev, "could not write to RF\n"); 1974 return; 1975 } 1976 1977 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1978 (reg & 3); 1979 rum_write(sc, RT2573_PHY_CSR4, tmp); 1980 1981 /* remember last written value in sc */ 1982 sc->rf_regs[reg] = val; 1983 1984 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1985 } 1986 1987 static void 1988 rum_select_antenna(struct rum_softc *sc) 1989 { 1990 uint8_t bbp4, bbp77; 1991 uint32_t tmp; 1992 1993 bbp4 = rum_bbp_read(sc, 4); 1994 bbp77 = rum_bbp_read(sc, 77); 1995 1996 /* TBD */ 1997 1998 /* make sure Rx is disabled before switching antenna */ 1999 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2000 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2001 2002 rum_bbp_write(sc, 4, bbp4); 2003 rum_bbp_write(sc, 77, bbp77); 2004 2005 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2006 } 2007 2008 /* 2009 * Enable multi-rate retries for frames sent at OFDM rates. 2010 * In 802.11b/g mode, allow fallback to CCK rates. 2011 */ 2012 static void 2013 rum_enable_mrr(struct rum_softc *sc) 2014 { 2015 struct ieee80211com *ic = &sc->sc_ic; 2016 2017 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2018 rum_setbits(sc, RT2573_TXRX_CSR4, 2019 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 2020 } else { 2021 rum_modbits(sc, RT2573_TXRX_CSR4, 2022 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 2023 } 2024 } 2025 2026 static void 2027 rum_set_txpreamble(struct rum_softc *sc) 2028 { 2029 struct ieee80211com *ic = &sc->sc_ic; 2030 2031 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2032 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2033 else 2034 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2035 } 2036 2037 static void 2038 rum_set_basicrates(struct rum_softc *sc) 2039 { 2040 struct ieee80211com *ic = &sc->sc_ic; 2041 2042 /* update basic rate set */ 2043 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2044 /* 11b basic rates: 1, 2Mbps */ 2045 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 2046 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2047 /* 11a basic rates: 6, 12, 24Mbps */ 2048 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 2049 } else { 2050 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 2051 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 2052 } 2053 } 2054 2055 /* 2056 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2057 * driver. 2058 */ 2059 static void 2060 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 2061 { 2062 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2063 2064 /* update all BBP registers that depend on the band */ 2065 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2066 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2067 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2068 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2069 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2070 } 2071 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2072 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2073 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2074 } 2075 2076 sc->bbp17 = bbp17; 2077 rum_bbp_write(sc, 17, bbp17); 2078 rum_bbp_write(sc, 96, bbp96); 2079 rum_bbp_write(sc, 104, bbp104); 2080 2081 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2082 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2083 rum_bbp_write(sc, 75, 0x80); 2084 rum_bbp_write(sc, 86, 0x80); 2085 rum_bbp_write(sc, 88, 0x80); 2086 } 2087 2088 rum_bbp_write(sc, 35, bbp35); 2089 rum_bbp_write(sc, 97, bbp97); 2090 rum_bbp_write(sc, 98, bbp98); 2091 2092 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2093 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 2094 RT2573_PA_PE_5GHZ); 2095 } else { 2096 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 2097 RT2573_PA_PE_2GHZ); 2098 } 2099 } 2100 2101 static void 2102 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 2103 { 2104 struct ieee80211com *ic = &sc->sc_ic; 2105 const struct rfprog *rfprog; 2106 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 2107 int8_t power; 2108 int i, chan; 2109 2110 chan = ieee80211_chan2ieee(ic, c); 2111 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2112 return; 2113 2114 /* select the appropriate RF settings based on what EEPROM says */ 2115 rfprog = (sc->rf_rev == RT2573_RF_5225 || 2116 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 2117 2118 /* find the settings for this channel (we know it exists) */ 2119 for (i = 0; rfprog[i].chan != chan; i++); 2120 2121 power = sc->txpow[i]; 2122 if (power < 0) { 2123 bbp94 += power; 2124 power = 0; 2125 } else if (power > 31) { 2126 bbp94 += power - 31; 2127 power = 31; 2128 } 2129 2130 /* 2131 * If we are switching from the 2GHz band to the 5GHz band or 2132 * vice-versa, BBP registers need to be reprogrammed. 2133 */ 2134 if (c->ic_flags != ic->ic_curchan->ic_flags) { 2135 rum_select_band(sc, c); 2136 rum_select_antenna(sc); 2137 } 2138 ic->ic_curchan = c; 2139 2140 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2141 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2142 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2143 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2144 2145 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2146 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2147 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 2148 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2149 2150 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2151 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2152 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2153 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2154 2155 rum_pause(sc, hz / 100); 2156 2157 /* enable smart mode for MIMO-capable RFs */ 2158 bbp3 = rum_bbp_read(sc, 3); 2159 2160 bbp3 &= ~RT2573_SMART_MODE; 2161 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 2162 bbp3 |= RT2573_SMART_MODE; 2163 2164 rum_bbp_write(sc, 3, bbp3); 2165 2166 if (bbp94 != RT2573_BBPR94_DEFAULT) 2167 rum_bbp_write(sc, 94, bbp94); 2168 2169 /* give the chip some extra time to do the switchover */ 2170 rum_pause(sc, hz / 100); 2171 } 2172 2173 static void 2174 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 2175 { 2176 struct ieee80211_node *ni = vap->iv_bss; 2177 const struct ieee80211_txparam *tp = ni->ni_txparms; 2178 struct rum_vap *rvp = RUM_VAP(vap); 2179 2180 rvp->maxretry = MIN(tp->maxretry, 0xf); 2181 2182 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 2183 RT2573_LONG_RETRY(rvp->maxretry), 2184 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 2185 } 2186 2187 /* 2188 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2189 * and HostAP operating modes. 2190 */ 2191 static int 2192 rum_enable_tsf_sync(struct rum_softc *sc) 2193 { 2194 struct ieee80211com *ic = &sc->sc_ic; 2195 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2196 uint32_t tmp; 2197 uint16_t bintval; 2198 2199 if (vap->iv_opmode != IEEE80211_M_STA) { 2200 /* 2201 * Change default 16ms TBTT adjustment to 8ms. 2202 * Must be done before enabling beacon generation. 2203 */ 2204 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2205 return EIO; 2206 } 2207 2208 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2209 2210 /* set beacon interval (in 1/16ms unit) */ 2211 bintval = vap->iv_bss->ni_intval; 2212 tmp |= bintval * 16; 2213 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2214 2215 switch (vap->iv_opmode) { 2216 case IEEE80211_M_STA: 2217 /* 2218 * Local TSF is always updated with remote TSF on beacon 2219 * reception. 2220 */ 2221 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2222 break; 2223 case IEEE80211_M_IBSS: 2224 /* 2225 * Local TSF is updated with remote TSF on beacon reception 2226 * only if the remote TSF is greater than local TSF. 2227 */ 2228 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2229 tmp |= RT2573_BCN_TX_EN; 2230 break; 2231 case IEEE80211_M_HOSTAP: 2232 /* SYNC with nobody */ 2233 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2234 tmp |= RT2573_BCN_TX_EN; 2235 break; 2236 default: 2237 device_printf(sc->sc_dev, 2238 "Enabling TSF failed. undefined opmode %d\n", 2239 vap->iv_opmode); 2240 return EINVAL; 2241 } 2242 2243 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2244 return EIO; 2245 2246 /* refresh current sleep time */ 2247 return (rum_set_sleep_time(sc, bintval)); 2248 } 2249 2250 static void 2251 rum_enable_tsf(struct rum_softc *sc) 2252 { 2253 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2254 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2255 } 2256 2257 static void 2258 rum_abort_tsf_sync(struct rum_softc *sc) 2259 { 2260 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2261 } 2262 2263 static void 2264 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2265 { 2266 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2267 } 2268 2269 static void 2270 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2271 { 2272 struct ieee80211com *ic = &sc->sc_ic; 2273 uint8_t slottime; 2274 2275 slottime = IEEE80211_GET_SLOTTIME(ic); 2276 2277 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2278 2279 DPRINTF("setting slot time to %uus\n", slottime); 2280 } 2281 2282 static void 2283 rum_update_slot(struct ieee80211com *ic) 2284 { 2285 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2286 } 2287 2288 static int 2289 rum_wme_update(struct ieee80211com *ic) 2290 { 2291 struct chanAccParams chp; 2292 const struct wmeParams *chanp; 2293 struct rum_softc *sc = ic->ic_softc; 2294 int error = 0; 2295 2296 ieee80211_wme_ic_getparams(ic, &chp); 2297 chanp = chp.cap_wmeParams; 2298 2299 RUM_LOCK(sc); 2300 error = rum_write(sc, RT2573_AIFSN_CSR, 2301 chanp[WME_AC_VO].wmep_aifsn << 12 | 2302 chanp[WME_AC_VI].wmep_aifsn << 8 | 2303 chanp[WME_AC_BK].wmep_aifsn << 4 | 2304 chanp[WME_AC_BE].wmep_aifsn); 2305 if (error) 2306 goto print_err; 2307 error = rum_write(sc, RT2573_CWMIN_CSR, 2308 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2309 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2310 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2311 chanp[WME_AC_BE].wmep_logcwmin); 2312 if (error) 2313 goto print_err; 2314 error = rum_write(sc, RT2573_CWMAX_CSR, 2315 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2316 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2317 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2318 chanp[WME_AC_BE].wmep_logcwmax); 2319 if (error) 2320 goto print_err; 2321 error = rum_write(sc, RT2573_TXOP01_CSR, 2322 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2323 chanp[WME_AC_BE].wmep_txopLimit); 2324 if (error) 2325 goto print_err; 2326 error = rum_write(sc, RT2573_TXOP23_CSR, 2327 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2328 chanp[WME_AC_VI].wmep_txopLimit); 2329 if (error) 2330 goto print_err; 2331 2332 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2333 2334 print_err: 2335 RUM_UNLOCK(sc); 2336 if (error != 0) { 2337 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2338 __func__, error); 2339 } 2340 2341 return (error); 2342 } 2343 2344 static void 2345 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2346 { 2347 2348 rum_write(sc, RT2573_MAC_CSR4, 2349 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2350 rum_write(sc, RT2573_MAC_CSR5, 2351 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2352 } 2353 2354 static void 2355 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2356 { 2357 2358 rum_write(sc, RT2573_MAC_CSR2, 2359 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2360 rum_write(sc, RT2573_MAC_CSR3, 2361 addr[4] | addr[5] << 8 | 0xff << 16); 2362 } 2363 2364 static void 2365 rum_setpromisc(struct rum_softc *sc) 2366 { 2367 struct ieee80211com *ic = &sc->sc_ic; 2368 2369 if (ic->ic_promisc == 0) 2370 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2371 else 2372 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2373 2374 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2375 "entering" : "leaving"); 2376 } 2377 2378 static void 2379 rum_update_promisc(struct ieee80211com *ic) 2380 { 2381 struct rum_softc *sc = ic->ic_softc; 2382 2383 RUM_LOCK(sc); 2384 if (sc->sc_running) 2385 rum_setpromisc(sc); 2386 RUM_UNLOCK(sc); 2387 } 2388 2389 static void 2390 rum_update_mcast(struct ieee80211com *ic) 2391 { 2392 /* Ignore. */ 2393 } 2394 2395 static const char * 2396 rum_get_rf(int rev) 2397 { 2398 switch (rev) { 2399 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2400 case RT2573_RF_2528: return "RT2528"; 2401 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2402 case RT2573_RF_5226: return "RT5226"; 2403 default: return "unknown"; 2404 } 2405 } 2406 2407 static void 2408 rum_read_eeprom(struct rum_softc *sc) 2409 { 2410 uint16_t val; 2411 #ifdef RUM_DEBUG 2412 int i; 2413 #endif 2414 2415 /* read MAC address */ 2416 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2417 2418 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2419 val = le16toh(val); 2420 sc->rf_rev = (val >> 11) & 0x1f; 2421 sc->hw_radio = (val >> 10) & 0x1; 2422 sc->rx_ant = (val >> 4) & 0x3; 2423 sc->tx_ant = (val >> 2) & 0x3; 2424 sc->nb_ant = val & 0x3; 2425 2426 DPRINTF("RF revision=%d\n", sc->rf_rev); 2427 2428 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2429 val = le16toh(val); 2430 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2431 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2432 2433 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2434 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2435 2436 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2437 val = le16toh(val); 2438 if ((val & 0xff) != 0xff) 2439 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2440 2441 /* Only [-10, 10] is valid */ 2442 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2443 sc->rssi_2ghz_corr = 0; 2444 2445 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2446 val = le16toh(val); 2447 if ((val & 0xff) != 0xff) 2448 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2449 2450 /* Only [-10, 10] is valid */ 2451 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2452 sc->rssi_5ghz_corr = 0; 2453 2454 if (sc->ext_2ghz_lna) 2455 sc->rssi_2ghz_corr -= 14; 2456 if (sc->ext_5ghz_lna) 2457 sc->rssi_5ghz_corr -= 14; 2458 2459 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2460 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2461 2462 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2463 val = le16toh(val); 2464 if ((val & 0xff) != 0xff) 2465 sc->rffreq = val & 0xff; 2466 2467 DPRINTF("RF freq=%d\n", sc->rffreq); 2468 2469 /* read Tx power for all a/b/g channels */ 2470 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2471 /* XXX default Tx power for 802.11a channels */ 2472 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2473 #ifdef RUM_DEBUG 2474 for (i = 0; i < 14; i++) 2475 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2476 #endif 2477 2478 /* read default values for BBP registers */ 2479 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2480 #ifdef RUM_DEBUG 2481 for (i = 0; i < 14; i++) { 2482 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2483 continue; 2484 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2485 sc->bbp_prom[i].val); 2486 } 2487 #endif 2488 } 2489 2490 static int 2491 rum_bbp_wakeup(struct rum_softc *sc) 2492 { 2493 unsigned int ntries; 2494 2495 for (ntries = 0; ntries < 100; ntries++) { 2496 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2497 break; 2498 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2499 if (rum_pause(sc, hz / 100)) 2500 break; 2501 } 2502 if (ntries == 100) { 2503 device_printf(sc->sc_dev, 2504 "timeout waiting for BBP/RF to wakeup\n"); 2505 return (ETIMEDOUT); 2506 } 2507 2508 return (0); 2509 } 2510 2511 static int 2512 rum_bbp_init(struct rum_softc *sc) 2513 { 2514 int i, ntries; 2515 2516 /* wait for BBP to be ready */ 2517 for (ntries = 0; ntries < 100; ntries++) { 2518 const uint8_t val = rum_bbp_read(sc, 0); 2519 if (val != 0 && val != 0xff) 2520 break; 2521 if (rum_pause(sc, hz / 100)) 2522 break; 2523 } 2524 if (ntries == 100) { 2525 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2526 return EIO; 2527 } 2528 2529 /* initialize BBP registers to default values */ 2530 for (i = 0; i < nitems(rum_def_bbp); i++) 2531 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2532 2533 /* write vendor-specific BBP values (from EEPROM) */ 2534 for (i = 0; i < 16; i++) { 2535 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2536 continue; 2537 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2538 } 2539 2540 return 0; 2541 } 2542 2543 static void 2544 rum_clr_shkey_regs(struct rum_softc *sc) 2545 { 2546 rum_write(sc, RT2573_SEC_CSR0, 0); 2547 rum_write(sc, RT2573_SEC_CSR1, 0); 2548 rum_write(sc, RT2573_SEC_CSR5, 0); 2549 } 2550 2551 static int 2552 rum_init(struct rum_softc *sc) 2553 { 2554 struct ieee80211com *ic = &sc->sc_ic; 2555 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2556 uint32_t tmp; 2557 int i, ret; 2558 2559 RUM_LOCK(sc); 2560 if (sc->sc_running) { 2561 ret = 0; 2562 goto end; 2563 } 2564 2565 /* initialize MAC registers to default values */ 2566 for (i = 0; i < nitems(rum_def_mac); i++) 2567 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2568 2569 /* reset some WME parameters to default values */ 2570 sc->wme_params[0].wmep_aifsn = 2; 2571 sc->wme_params[0].wmep_logcwmin = 4; 2572 sc->wme_params[0].wmep_logcwmax = 10; 2573 2574 /* set host ready */ 2575 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2576 rum_write(sc, RT2573_MAC_CSR1, 0); 2577 2578 /* wait for BBP/RF to wakeup */ 2579 if ((ret = rum_bbp_wakeup(sc)) != 0) 2580 goto end; 2581 2582 if ((ret = rum_bbp_init(sc)) != 0) 2583 goto end; 2584 2585 /* select default channel */ 2586 rum_select_band(sc, ic->ic_curchan); 2587 rum_select_antenna(sc); 2588 rum_set_chan(sc, ic->ic_curchan); 2589 2590 /* clear STA registers */ 2591 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2592 2593 /* clear security registers (if required) */ 2594 if (sc->sc_clr_shkeys == 0) { 2595 rum_clr_shkey_regs(sc); 2596 sc->sc_clr_shkeys = 1; 2597 } 2598 2599 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2600 2601 /* initialize ASIC */ 2602 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2603 2604 /* 2605 * Allocate Tx and Rx xfer queues. 2606 */ 2607 rum_setup_tx_list(sc); 2608 2609 /* update Rx filter */ 2610 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2611 2612 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2613 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2614 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2615 RT2573_DROP_ACKCTS; 2616 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2617 tmp |= RT2573_DROP_TODS; 2618 if (ic->ic_promisc == 0) 2619 tmp |= RT2573_DROP_NOT_TO_ME; 2620 } 2621 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2622 2623 sc->sc_running = 1; 2624 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2625 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2626 2627 end: RUM_UNLOCK(sc); 2628 2629 if (ret != 0) 2630 rum_stop(sc); 2631 2632 return ret; 2633 } 2634 2635 static void 2636 rum_stop(struct rum_softc *sc) 2637 { 2638 2639 RUM_LOCK(sc); 2640 if (!sc->sc_running) { 2641 RUM_UNLOCK(sc); 2642 return; 2643 } 2644 sc->sc_running = 0; 2645 RUM_UNLOCK(sc); 2646 2647 /* 2648 * Drain the USB transfers, if not already drained: 2649 */ 2650 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2651 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2652 2653 RUM_LOCK(sc); 2654 rum_unsetup_tx_list(sc); 2655 2656 /* disable Rx */ 2657 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2658 2659 /* reset ASIC */ 2660 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2661 rum_write(sc, RT2573_MAC_CSR1, 0); 2662 RUM_UNLOCK(sc); 2663 } 2664 2665 static void 2666 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2667 { 2668 uint16_t reg = RT2573_MCU_CODE_BASE; 2669 usb_error_t err; 2670 2671 /* copy firmware image into NIC */ 2672 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2673 err = rum_write(sc, reg, UGETDW(ucode)); 2674 if (err) { 2675 /* firmware already loaded ? */ 2676 device_printf(sc->sc_dev, "Firmware load " 2677 "failure! (ignored)\n"); 2678 break; 2679 } 2680 } 2681 2682 err = rum_do_mcu_request(sc, RT2573_MCU_RUN); 2683 if (err != USB_ERR_NORMAL_COMPLETION) { 2684 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2685 usbd_errstr(err)); 2686 } 2687 2688 /* give the chip some time to boot */ 2689 rum_pause(sc, hz / 8); 2690 } 2691 2692 static int 2693 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval) 2694 { 2695 struct ieee80211com *ic = &sc->sc_ic; 2696 usb_error_t uerror; 2697 int exp, delay; 2698 2699 RUM_LOCK_ASSERT(sc); 2700 2701 exp = ic->ic_lintval / bintval; 2702 delay = ic->ic_lintval % bintval; 2703 2704 if (exp > RT2573_TBCN_EXP_MAX) 2705 exp = RT2573_TBCN_EXP_MAX; 2706 if (delay > RT2573_TBCN_DELAY_MAX) 2707 delay = RT2573_TBCN_DELAY_MAX; 2708 2709 uerror = rum_modbits(sc, RT2573_MAC_CSR11, 2710 RT2573_TBCN_EXP(exp) | 2711 RT2573_TBCN_DELAY(delay), 2712 RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) | 2713 RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX)); 2714 2715 if (uerror != USB_ERR_NORMAL_COMPLETION) 2716 return (EIO); 2717 2718 sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay); 2719 2720 return (0); 2721 } 2722 2723 static int 2724 rum_reset(struct ieee80211vap *vap, u_long cmd) 2725 { 2726 struct ieee80211com *ic = vap->iv_ic; 2727 struct ieee80211_node *ni; 2728 struct rum_softc *sc = ic->ic_softc; 2729 int error; 2730 2731 switch (cmd) { 2732 case IEEE80211_IOC_POWERSAVE: 2733 case IEEE80211_IOC_PROTMODE: 2734 case IEEE80211_IOC_RTSTHRESHOLD: 2735 error = 0; 2736 break; 2737 case IEEE80211_IOC_POWERSAVESLEEP: 2738 ni = ieee80211_ref_node(vap->iv_bss); 2739 2740 RUM_LOCK(sc); 2741 error = rum_set_sleep_time(sc, ni->ni_intval); 2742 if (vap->iv_state == IEEE80211_S_SLEEP) { 2743 /* Use new values for wakeup timer. */ 2744 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2745 rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2746 } 2747 /* XXX send reassoc */ 2748 RUM_UNLOCK(sc); 2749 2750 ieee80211_free_node(ni); 2751 break; 2752 default: 2753 error = ENETRESET; 2754 break; 2755 } 2756 2757 return (error); 2758 } 2759 2760 static int 2761 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2762 { 2763 struct ieee80211com *ic = vap->iv_ic; 2764 struct rum_vap *rvp = RUM_VAP(vap); 2765 struct mbuf *m = rvp->bcn_mbuf; 2766 const struct ieee80211_txparam *tp; 2767 struct rum_tx_desc desc; 2768 2769 RUM_LOCK_ASSERT(sc); 2770 2771 if (m == NULL) 2772 return EINVAL; 2773 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2774 return EINVAL; 2775 2776 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2777 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2778 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2779 2780 /* copy the Tx descriptor into NIC memory */ 2781 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2782 RT2573_TX_DESC_SIZE) != 0) 2783 return EIO; 2784 2785 /* copy beacon header and payload into NIC memory */ 2786 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2787 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2788 return EIO; 2789 2790 return 0; 2791 } 2792 2793 static int 2794 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2795 { 2796 struct rum_vap *rvp = RUM_VAP(vap); 2797 struct ieee80211_node *ni = vap->iv_bss; 2798 struct mbuf *m; 2799 2800 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2801 return EINVAL; 2802 2803 m = ieee80211_beacon_alloc(ni); 2804 if (m == NULL) 2805 return ENOMEM; 2806 2807 if (rvp->bcn_mbuf != NULL) 2808 m_freem(rvp->bcn_mbuf); 2809 2810 rvp->bcn_mbuf = m; 2811 2812 return (rum_set_beacon(sc, vap)); 2813 } 2814 2815 static void 2816 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2817 uint8_t rvp_id) 2818 { 2819 struct ieee80211vap *vap = data->vap; 2820 2821 rum_set_beacon(sc, vap); 2822 } 2823 2824 static void 2825 rum_update_beacon(struct ieee80211vap *vap, int item) 2826 { 2827 struct ieee80211com *ic = vap->iv_ic; 2828 struct rum_softc *sc = ic->ic_softc; 2829 struct rum_vap *rvp = RUM_VAP(vap); 2830 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2831 struct ieee80211_node *ni = vap->iv_bss; 2832 struct mbuf *m = rvp->bcn_mbuf; 2833 int mcast = 0; 2834 2835 RUM_LOCK(sc); 2836 if (m == NULL) { 2837 m = ieee80211_beacon_alloc(ni); 2838 if (m == NULL) { 2839 device_printf(sc->sc_dev, 2840 "%s: could not allocate beacon frame\n", __func__); 2841 RUM_UNLOCK(sc); 2842 return; 2843 } 2844 rvp->bcn_mbuf = m; 2845 } 2846 2847 switch (item) { 2848 case IEEE80211_BEACON_ERP: 2849 rum_update_slot(ic); 2850 break; 2851 case IEEE80211_BEACON_TIM: 2852 mcast = 1; /*TODO*/ 2853 break; 2854 default: 2855 break; 2856 } 2857 RUM_UNLOCK(sc); 2858 2859 setbit(bo->bo_flags, item); 2860 ieee80211_beacon_update(ni, m, mcast); 2861 2862 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2863 } 2864 2865 static int 2866 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2867 uint16_t base) 2868 { 2869 2870 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2871 return EIO; 2872 2873 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2874 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2875 k->wk_txmic, 8)) 2876 return EIO; 2877 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2878 k->wk_rxmic, 8)) 2879 return EIO; 2880 } 2881 2882 return 0; 2883 } 2884 2885 static void 2886 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2887 uint8_t rvp_id) 2888 { 2889 struct ieee80211_key *k = &data->key; 2890 uint8_t mode; 2891 2892 if (sc->sc_clr_shkeys == 0) { 2893 rum_clr_shkey_regs(sc); 2894 sc->sc_clr_shkeys = 1; 2895 } 2896 2897 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2898 if (mode == 0) 2899 goto print_err; 2900 2901 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2902 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2903 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2904 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2905 2906 /* Install the key. */ 2907 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2908 goto print_err; 2909 2910 /* Set cipher mode. */ 2911 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2912 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2913 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2914 != 0) 2915 goto print_err; 2916 2917 /* Mark this key as valid. */ 2918 if (rum_setbits(sc, RT2573_SEC_CSR0, 2919 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2920 goto print_err; 2921 2922 return; 2923 2924 print_err: 2925 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2926 __func__, k->wk_keyix, rvp_id); 2927 } 2928 2929 static void 2930 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2931 uint8_t rvp_id) 2932 { 2933 struct ieee80211_key *k = &data->key; 2934 2935 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2936 k->wk_keyix, rvp_id); 2937 rum_clrbits(sc, 2938 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2939 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2940 rum_clrbits(sc, RT2573_SEC_CSR0, 2941 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2942 } 2943 2944 static void 2945 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2946 uint8_t rvp_id) 2947 { 2948 struct ieee80211_key *k = &data->key; 2949 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2950 uint8_t mode; 2951 2952 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2953 if (mode == 0) 2954 goto print_err; 2955 2956 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2957 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2958 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2959 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2960 2961 /* Install the key. */ 2962 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2963 goto print_err; 2964 2965 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2966 buf[IEEE80211_ADDR_LEN] = mode; 2967 2968 /* Set transmitter address and cipher mode. */ 2969 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2970 buf, sizeof buf) != 0) 2971 goto print_err; 2972 2973 /* Enable key table lookup for this vap. */ 2974 if (sc->vap_key_count[rvp_id]++ == 0) 2975 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2976 goto print_err; 2977 2978 /* Mark this key as valid. */ 2979 if (rum_setbits(sc, 2980 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2981 1 << (k->wk_keyix % 32)) != 0) 2982 goto print_err; 2983 2984 return; 2985 2986 print_err: 2987 device_printf(sc->sc_dev, 2988 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2989 rvp_id); 2990 } 2991 2992 static void 2993 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2994 uint8_t rvp_id) 2995 { 2996 struct ieee80211_key *k = &data->key; 2997 2998 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 2999 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 3000 1 << (k->wk_keyix % 32)); 3001 sc->keys_bmap &= ~(1ULL << k->wk_keyix); 3002 if (--sc->vap_key_count[rvp_id] == 0) 3003 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 3004 } 3005 3006 static int 3007 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 3008 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 3009 { 3010 struct rum_softc *sc = vap->iv_ic->ic_softc; 3011 uint8_t i; 3012 3013 if (!(&vap->iv_nw_keys[0] <= k && 3014 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 3015 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 3016 RUM_LOCK(sc); 3017 for (i = 0; i < RT2573_ADDR_MAX; i++) { 3018 if ((sc->keys_bmap & (1ULL << i)) == 0) { 3019 sc->keys_bmap |= (1ULL << i); 3020 *keyix = i; 3021 break; 3022 } 3023 } 3024 RUM_UNLOCK(sc); 3025 if (i == RT2573_ADDR_MAX) { 3026 device_printf(sc->sc_dev, 3027 "%s: no free space in the key table\n", 3028 __func__); 3029 return 0; 3030 } 3031 } else 3032 *keyix = 0; 3033 } else { 3034 *keyix = ieee80211_crypto_get_key_wepidx(vap, k); 3035 } 3036 *rxkeyix = *keyix; 3037 return 1; 3038 } 3039 3040 static int 3041 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 3042 { 3043 struct rum_softc *sc = vap->iv_ic->ic_softc; 3044 int group; 3045 3046 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3047 /* Not for us. */ 3048 return 1; 3049 } 3050 3051 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3052 3053 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3054 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 3055 } 3056 3057 static int 3058 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 3059 { 3060 struct rum_softc *sc = vap->iv_ic->ic_softc; 3061 int group; 3062 3063 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3064 /* Not for us. */ 3065 return 1; 3066 } 3067 3068 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3069 3070 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3071 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 3072 } 3073 3074 static int 3075 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3076 const struct ieee80211_bpf_params *params) 3077 { 3078 struct rum_softc *sc = ni->ni_ic->ic_softc; 3079 int ret; 3080 3081 RUM_LOCK(sc); 3082 /* prevent management frames from being sent if we're not ready */ 3083 if (!sc->sc_running) { 3084 ret = ENETDOWN; 3085 goto bad; 3086 } 3087 if (sc->tx_nfree < RUM_TX_MINFREE) { 3088 ret = EIO; 3089 goto bad; 3090 } 3091 3092 if (params == NULL) { 3093 /* 3094 * Legacy path; interpret frame contents to decide 3095 * precisely how to send the frame. 3096 */ 3097 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 3098 goto bad; 3099 } else { 3100 /* 3101 * Caller supplied explicit parameters to use in 3102 * sending the frame. 3103 */ 3104 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 3105 goto bad; 3106 } 3107 RUM_UNLOCK(sc); 3108 3109 return 0; 3110 bad: 3111 RUM_UNLOCK(sc); 3112 m_freem(m); 3113 return ret; 3114 } 3115 3116 static void 3117 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 3118 { 3119 struct ieee80211vap *vap = ni->ni_vap; 3120 struct rum_vap *rvp = RUM_VAP(vap); 3121 3122 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 3123 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 3124 3125 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3126 } 3127 3128 static void 3129 rum_ratectl_timeout(void *arg) 3130 { 3131 struct rum_vap *rvp = arg; 3132 struct ieee80211vap *vap = &rvp->vap; 3133 struct ieee80211com *ic = vap->iv_ic; 3134 3135 ieee80211_runtask(ic, &rvp->ratectl_task); 3136 } 3137 3138 static void 3139 rum_ratectl_task(void *arg, int pending) 3140 { 3141 struct rum_vap *rvp = arg; 3142 struct ieee80211vap *vap = &rvp->vap; 3143 struct rum_softc *sc = vap->iv_ic->ic_softc; 3144 struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs; 3145 int ok[3], fail; 3146 3147 RUM_LOCK(sc); 3148 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 3149 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 3150 3151 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 3152 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 3153 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 3154 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 3155 3156 txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES; 3157 txs->nframes = ok[0] + ok[1] + ok[2] + fail; 3158 txs->nsuccess = txs->nframes - fail; 3159 /* XXX at least */ 3160 txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 3161 3162 if (txs->nframes != 0) 3163 ieee80211_ratectl_tx_update(vap, txs); 3164 3165 /* count TX retry-fail as Tx errors */ 3166 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 3167 3168 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3169 RUM_UNLOCK(sc); 3170 } 3171 3172 static void 3173 rum_scan_start(struct ieee80211com *ic) 3174 { 3175 struct rum_softc *sc = ic->ic_softc; 3176 3177 RUM_LOCK(sc); 3178 rum_abort_tsf_sync(sc); 3179 rum_set_bssid(sc, ieee80211broadcastaddr); 3180 RUM_UNLOCK(sc); 3181 3182 } 3183 3184 static void 3185 rum_scan_end(struct ieee80211com *ic) 3186 { 3187 struct rum_softc *sc = ic->ic_softc; 3188 3189 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 3190 RUM_LOCK(sc); 3191 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 3192 rum_enable_tsf_sync(sc); 3193 else 3194 rum_enable_tsf(sc); 3195 rum_set_bssid(sc, sc->sc_bssid); 3196 RUM_UNLOCK(sc); 3197 } 3198 } 3199 3200 static void 3201 rum_set_channel(struct ieee80211com *ic) 3202 { 3203 struct rum_softc *sc = ic->ic_softc; 3204 3205 RUM_LOCK(sc); 3206 rum_set_chan(sc, ic->ic_curchan); 3207 RUM_UNLOCK(sc); 3208 } 3209 3210 static void 3211 rum_getradiocaps(struct ieee80211com *ic, 3212 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3213 { 3214 struct rum_softc *sc = ic->ic_softc; 3215 uint8_t bands[IEEE80211_MODE_BYTES]; 3216 3217 memset(bands, 0, sizeof(bands)); 3218 setbit(bands, IEEE80211_MODE_11B); 3219 setbit(bands, IEEE80211_MODE_11G); 3220 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 3221 3222 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 3223 setbit(bands, IEEE80211_MODE_11A); 3224 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3225 rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0); 3226 } 3227 } 3228 3229 static int 3230 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 3231 { 3232 struct ieee80211com *ic = &sc->sc_ic; 3233 int lna, agc, rssi; 3234 3235 lna = (raw >> 5) & 0x3; 3236 agc = raw & 0x1f; 3237 3238 if (lna == 0) { 3239 /* 3240 * No RSSI mapping 3241 * 3242 * NB: Since RSSI is relative to noise floor, -1 is 3243 * adequate for caller to know error happened. 3244 */ 3245 return -1; 3246 } 3247 3248 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 3249 3250 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3251 rssi += sc->rssi_2ghz_corr; 3252 3253 if (lna == 1) 3254 rssi -= 64; 3255 else if (lna == 2) 3256 rssi -= 74; 3257 else if (lna == 3) 3258 rssi -= 90; 3259 } else { 3260 rssi += sc->rssi_5ghz_corr; 3261 3262 if (!sc->ext_5ghz_lna && lna != 1) 3263 rssi += 4; 3264 3265 if (lna == 1) 3266 rssi -= 64; 3267 else if (lna == 2) 3268 rssi -= 86; 3269 else if (lna == 3) 3270 rssi -= 100; 3271 } 3272 return rssi; 3273 } 3274 3275 static int 3276 rum_pause(struct rum_softc *sc, int timeout) 3277 { 3278 3279 usb_pause_mtx(&sc->sc_mtx, timeout); 3280 return (0); 3281 } 3282 3283 static device_method_t rum_methods[] = { 3284 /* Device interface */ 3285 DEVMETHOD(device_probe, rum_match), 3286 DEVMETHOD(device_attach, rum_attach), 3287 DEVMETHOD(device_detach, rum_detach), 3288 DEVMETHOD_END 3289 }; 3290 3291 static driver_t rum_driver = { 3292 .name = "rum", 3293 .methods = rum_methods, 3294 .size = sizeof(struct rum_softc), 3295 }; 3296 3297 DRIVER_MODULE(rum, uhub, rum_driver, NULL, NULL); 3298 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3299 MODULE_DEPEND(rum, usb, 1, 1, 1); 3300 MODULE_VERSION(rum, 1); 3301 USB_PNP_HOST_INFO(rum_devs); 3302