xref: /freebsd/sys/dev/uart/uart_dev_imx.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*-
2  * Copyright (c) 2012 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Oleksandr Rybalko under sponsorship
6  * from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1.	Redistributions of source code must retain the above copyright
12  *	notice, this list of conditions and the following disclaimer.
13  * 2.	Redistributions in binary form must reproduce the above copyright
14  *	notice, this list of conditions and the following disclaimer in the
15  *	documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/kdb.h>
40 #include <machine/bus.h>
41 #include <machine/fdt.h>
42 
43 #include <dev/uart/uart.h>
44 #include <dev/uart/uart_cpu.h>
45 #include <dev/uart/uart_bus.h>
46 #include <dev/uart/uart_dev_imx.h>
47 #include "uart_if.h"
48 
49 #include <arm/freescale/imx/imx_ccmvar.h>
50 
51 /*
52  * The hardare FIFOs are 32 bytes.  We want an interrupt when there are 24 bytes
53  * available to read or space for 24 more bytes to write.  While 8 bytes of
54  * slack before over/underrun might seem excessive, the hardware can run at
55  * 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
56  * to get into the interrupt handler and service the fifo.
57  */
58 #define	IMX_FIFOSZ		32
59 #define	IMX_RXFIFO_LEVEL	24
60 #define	IMX_TXFIFO_LEVEL	24
61 
62 /*
63  * Low-level UART interface.
64  */
65 static int imx_uart_probe(struct uart_bas *bas);
66 static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
67 static void imx_uart_term(struct uart_bas *bas);
68 static void imx_uart_putc(struct uart_bas *bas, int);
69 static int imx_uart_rxready(struct uart_bas *bas);
70 static int imx_uart_getc(struct uart_bas *bas, struct mtx *);
71 
72 static struct uart_ops uart_imx_uart_ops = {
73 	.probe = imx_uart_probe,
74 	.init = imx_uart_init,
75 	.term = imx_uart_term,
76 	.putc = imx_uart_putc,
77 	.rxready = imx_uart_rxready,
78 	.getc = imx_uart_getc,
79 };
80 
81 #if 0 /* Handy when debugging. */
82 static void
83 dumpregs(struct uart_bas *bas, const char * msg)
84 {
85 
86 	if (!bootverbose)
87 		return;
88 	printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
89 		"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
90 	    msg, bas->bsh,
91 	    GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)),
92 	    GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
93 	    GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
94 }
95 #endif
96 
97 static int
98 imx_uart_probe(struct uart_bas *bas)
99 {
100 
101 	return (0);
102 }
103 
104 static u_int
105 imx_uart_getbaud(struct uart_bas *bas)
106 {
107 	uint32_t rate, ubir, ubmr;
108 	u_int baud, blo, bhi, i;
109 	static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
110 	static const u_int std_rates[] = {
111 		9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
112 	};
113 
114 	/*
115 	 * Get the baud rate the hardware is programmed for, then search the
116 	 * table of standard baud rates for a number that's within 3% of the
117 	 * actual rate the hardware is programmed for.  It's more comforting to
118 	 * see that your console is running at 115200 than 114942.  Note that
119 	 * here we cannot make a simplifying assumption that the predivider and
120 	 * numerator are 1 (like we do when setting the baud rate), because we
121 	 * don't know what u-boot might have set up.
122 	 */
123 	i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
124 	    IMXUART_UFCR_RFDIV_SHIFT;
125 	rate = imx_ccm_uart_hz() / predivs[i];
126 	ubir = GETREG(bas, REG(UBIR)) + 1;
127 	ubmr = GETREG(bas, REG(UBMR)) + 1;
128 	baud = ((rate / 16 ) * ubir) / ubmr;
129 
130 	blo = (baud * 100) / 103;
131 	bhi = (baud * 100) / 97;
132 	for (i = 0; i < nitems(std_rates); i++) {
133 		rate = std_rates[i];
134 		if (rate >= blo && rate <= bhi) {
135 			baud = rate;
136 			break;
137 		}
138 	}
139 
140 	return (baud);
141 }
142 
143 static void
144 imx_uart_init(struct uart_bas *bas, int baudrate, int databits,
145     int stopbits, int parity)
146 {
147 	uint32_t baseclk, reg;
148 
149         /* Enable the device and the RX/TX channels. */
150 	SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
151 	SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));
152 
153 	if (databits == 7)
154 		DIS(bas, UCR2, WS);
155 	else
156 		ENA(bas, UCR2, WS);
157 
158 	if (stopbits == 2)
159 		ENA(bas, UCR2, STPB);
160 	else
161 		DIS(bas, UCR2, STPB);
162 
163 	switch (parity) {
164 	case UART_PARITY_ODD:
165 		DIS(bas, UCR2, PROE);
166 		ENA(bas, UCR2, PREN);
167 		break;
168 	case UART_PARITY_EVEN:
169 		ENA(bas, UCR2, PROE);
170 		ENA(bas, UCR2, PREN);
171 		break;
172 	case UART_PARITY_MARK:
173 	case UART_PARITY_SPACE:
174                 /* FALLTHROUGH: Hardware doesn't support mark/space. */
175 	case UART_PARITY_NONE:
176 	default:
177 		DIS(bas, UCR2, PREN);
178 		break;
179 	}
180 
181 	/*
182 	 * The hardware has an extremely flexible baud clock: it allows setting
183 	 * both the numerator and denominator of the divider, as well as a
184 	 * separate pre-divider.  We simplify the problem of coming up with a
185 	 * workable pair of numbers by assuming a pre-divider and numerator of
186 	 * one because our base clock is so fast we can reach virtually any
187 	 * reasonable speed with a simple divisor.  The numerator value actually
188 	 * includes the 16x over-sampling (so a value of 16 means divide by 1);
189 	 * the register value is the numerator-1, so we have a hard-coded 15.
190 	 * Note that a quirk of the hardware requires that both UBIR and UBMR be
191 	 * set back to back in order for the change to take effect.
192 	 */
193 	if (baudrate > 0) {
194 		baseclk = imx_ccm_uart_hz();
195 		reg = GETREG(bas, REG(UFCR));
196 		reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
197 		SETREG(bas, REG(UFCR), reg);
198 		SETREG(bas, REG(UBIR), 15);
199 		SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
200 	}
201 
202 	/*
203 	 * Program the tx lowater and rx hiwater levels at which fifo-service
204 	 * interrupts are signaled.  The tx value is interpetted as "when there
205 	 * are only this many bytes remaining" (not "this many free").
206 	 */
207 	reg = GETREG(bas, REG(UFCR));
208 	reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
209 	reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
210 	reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
211 	SETREG(bas, REG(UFCR), reg);
212 }
213 
214 static void
215 imx_uart_term(struct uart_bas *bas)
216 {
217 
218 }
219 
220 static void
221 imx_uart_putc(struct uart_bas *bas, int c)
222 {
223 
224 	while (!(IS(bas, USR1, TRDY)))
225 		;
226 	SETREG(bas, REG(UTXD), c);
227 }
228 
229 static int
230 imx_uart_rxready(struct uart_bas *bas)
231 {
232 
233 	return ((IS(bas, USR2, RDR)) ? 1 : 0);
234 }
235 
236 static int
237 imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
238 {
239 	int c;
240 
241 	uart_lock(hwmtx);
242 	while (!(IS(bas, USR2, RDR)))
243 		;
244 
245 	c = GETREG(bas, REG(URXD));
246 	uart_unlock(hwmtx);
247 #if defined(KDB)
248 	if (c & FLD(URXD, BRK)) {
249 		if (kdb_break())
250 			return (0);
251 	}
252 #endif
253 	return (c & 0xff);
254 }
255 
256 /*
257  * High-level UART interface.
258  */
259 struct imx_uart_softc {
260 	struct uart_softc base;
261 };
262 
263 static int imx_uart_bus_attach(struct uart_softc *);
264 static int imx_uart_bus_detach(struct uart_softc *);
265 static int imx_uart_bus_flush(struct uart_softc *, int);
266 static int imx_uart_bus_getsig(struct uart_softc *);
267 static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
268 static int imx_uart_bus_ipend(struct uart_softc *);
269 static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
270 static int imx_uart_bus_probe(struct uart_softc *);
271 static int imx_uart_bus_receive(struct uart_softc *);
272 static int imx_uart_bus_setsig(struct uart_softc *, int);
273 static int imx_uart_bus_transmit(struct uart_softc *);
274 static void imx_uart_bus_grab(struct uart_softc *);
275 static void imx_uart_bus_ungrab(struct uart_softc *);
276 
277 static kobj_method_t imx_uart_methods[] = {
278 	KOBJMETHOD(uart_attach,		imx_uart_bus_attach),
279 	KOBJMETHOD(uart_detach,		imx_uart_bus_detach),
280 	KOBJMETHOD(uart_flush,		imx_uart_bus_flush),
281 	KOBJMETHOD(uart_getsig,		imx_uart_bus_getsig),
282 	KOBJMETHOD(uart_ioctl,		imx_uart_bus_ioctl),
283 	KOBJMETHOD(uart_ipend,		imx_uart_bus_ipend),
284 	KOBJMETHOD(uart_param,		imx_uart_bus_param),
285 	KOBJMETHOD(uart_probe,		imx_uart_bus_probe),
286 	KOBJMETHOD(uart_receive,	imx_uart_bus_receive),
287 	KOBJMETHOD(uart_setsig,		imx_uart_bus_setsig),
288 	KOBJMETHOD(uart_transmit,	imx_uart_bus_transmit),
289 	KOBJMETHOD(uart_grab,		imx_uart_bus_grab),
290 	KOBJMETHOD(uart_ungrab,		imx_uart_bus_ungrab),
291 	{ 0, 0 }
292 };
293 
294 struct uart_class uart_imx_class = {
295 	"imx",
296 	imx_uart_methods,
297 	sizeof(struct imx_uart_softc),
298 	.uc_ops = &uart_imx_uart_ops,
299 	.uc_range = 0x100,
300 	.uc_rclk = 24000000 /* TODO: get value from CCM */
301 };
302 
303 #define	SIGCHG(c, i, s, d)				\
304 	if (c) {					\
305 		i |= (i & s) ? s : s | d;		\
306 	} else {					\
307 		i = (i & s) ? (i & ~s) | d : i;		\
308 	}
309 
310 static int
311 imx_uart_bus_attach(struct uart_softc *sc)
312 {
313 	struct uart_bas *bas;
314 	struct uart_devinfo *di;
315 
316 	bas = &sc->sc_bas;
317 	if (sc->sc_sysdev != NULL) {
318 		di = sc->sc_sysdev;
319 		imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
320 		    di->parity);
321 	} else {
322 		imx_uart_init(bas, 115200, 8, 1, 0);
323 	}
324 
325 	(void)imx_uart_bus_getsig(sc);
326 
327 	/* Clear all pending interrupts. */
328 	SETREG(bas, REG(USR1), 0xffff);
329 	SETREG(bas, REG(USR2), 0xffff);
330 
331 	DIS(bas, UCR4, DREN);
332 	ENA(bas, UCR1, RRDYEN);
333 	DIS(bas, UCR1, IDEN);
334 	DIS(bas, UCR3, RXDSEN);
335 	ENA(bas, UCR2, ATEN);
336 	DIS(bas, UCR1, TXMPTYEN);
337 	DIS(bas, UCR1, TRDYEN);
338 	DIS(bas, UCR4, TCEN);
339 	DIS(bas, UCR4, OREN);
340 	ENA(bas, UCR4, BKEN);
341 	DIS(bas, UCR4, WKEN);
342 	DIS(bas, UCR1, ADEN);
343 	DIS(bas, UCR3, ACIEN);
344 	DIS(bas, UCR2, ESCI);
345 	DIS(bas, UCR4, ENIRI);
346 	DIS(bas, UCR3, AIRINTEN);
347 	DIS(bas, UCR3, AWAKEN);
348 	DIS(bas, UCR3, FRAERREN);
349 	DIS(bas, UCR3, PARERREN);
350 	DIS(bas, UCR1, RTSDEN);
351 	DIS(bas, UCR2, RTSEN);
352 	DIS(bas, UCR3, DTREN);
353 	DIS(bas, UCR3, RI);
354 	DIS(bas, UCR3, DCD);
355 	DIS(bas, UCR3, DTRDEN);
356 	ENA(bas, UCR2, IRTS);
357 	ENA(bas, UCR3, RXDMUXSEL);
358 
359 	return (0);
360 }
361 
362 static int
363 imx_uart_bus_detach(struct uart_softc *sc)
364 {
365 
366 	SETREG(&sc->sc_bas, REG(UCR4), 0);
367 
368 	return (0);
369 }
370 
371 static int
372 imx_uart_bus_flush(struct uart_softc *sc, int what)
373 {
374 
375 	/* TODO */
376 	return (0);
377 }
378 
379 static int
380 imx_uart_bus_getsig(struct uart_softc *sc)
381 {
382 	uint32_t new, old, sig;
383 	uint8_t bes;
384 
385 	do {
386 		old = sc->sc_hwsig;
387 		sig = old;
388 		uart_lock(sc->sc_hwmtx);
389 		bes = GETREG(&sc->sc_bas, REG(USR2));
390 		uart_unlock(sc->sc_hwmtx);
391 		/* XXX: chip can show delta */
392 		SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
393 		new = sig & ~SER_MASK_DELTA;
394 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
395 
396 	return (sig);
397 }
398 
399 static int
400 imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
401 {
402 	struct uart_bas *bas;
403 	int error;
404 
405 	bas = &sc->sc_bas;
406 	error = 0;
407 	uart_lock(sc->sc_hwmtx);
408 	switch (request) {
409 	case UART_IOCTL_BREAK:
410 		/* TODO */
411 		break;
412 	case UART_IOCTL_BAUD:
413 		*(u_int*)data = imx_uart_getbaud(bas);
414 		break;
415 	default:
416 		error = EINVAL;
417 		break;
418 	}
419 	uart_unlock(sc->sc_hwmtx);
420 
421 	return (error);
422 }
423 
424 static int
425 imx_uart_bus_ipend(struct uart_softc *sc)
426 {
427 	struct uart_bas *bas;
428 	int ipend;
429 	uint32_t usr1, usr2;
430 	uint32_t ucr1, ucr2, ucr4;
431 
432 	bas = &sc->sc_bas;
433 	ipend = 0;
434 
435 	uart_lock(sc->sc_hwmtx);
436 
437 	/* Read pending interrupts */
438 	usr1 = GETREG(bas, REG(USR1));
439 	usr2 = GETREG(bas, REG(USR2));
440 	/* ACK interrupts */
441 	SETREG(bas, REG(USR1), usr1);
442 	SETREG(bas, REG(USR2), usr2);
443 
444 	ucr1 = GETREG(bas, REG(UCR1));
445 	ucr2 = GETREG(bas, REG(UCR2));
446 	ucr4 = GETREG(bas, REG(UCR4));
447 
448 	/* If we have reached tx low-water, we can tx some more now. */
449 	if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
450 		DIS(bas, UCR1, TRDYEN);
451 		ipend |= SER_INT_TXIDLE;
452 	}
453 
454 	/*
455 	 * If we have reached the rx high-water, or if there are bytes in the rx
456 	 * fifo and no new data has arrived for 8 character periods (aging
457 	 * timer), we have input data to process.
458 	 */
459 	if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) ||
460 	    ((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
461 		DIS(bas, UCR1, RRDYEN);
462 		DIS(bas, UCR2, ATEN);
463 		ipend |= SER_INT_RXREADY;
464 	}
465 
466 	/* A break can come in at any time, it never gets disabled. */
467 	if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
468 		ipend |= SER_INT_BREAK;
469 
470 	uart_unlock(sc->sc_hwmtx);
471 
472 	return (ipend);
473 }
474 
475 static int
476 imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
477     int stopbits, int parity)
478 {
479 
480 	uart_lock(sc->sc_hwmtx);
481 	imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
482 	uart_unlock(sc->sc_hwmtx);
483 	return (0);
484 }
485 
486 static int
487 imx_uart_bus_probe(struct uart_softc *sc)
488 {
489 	int error;
490 
491 	error = imx_uart_probe(&sc->sc_bas);
492 	if (error)
493 		return (error);
494 
495 	/*
496 	 * On input we can read up to the full fifo size at once.  On output, we
497 	 * want to write only as much as the programmed tx low water level,
498 	 * because that's all we can be certain we have room for in the fifo
499 	 * when we get a tx-ready interrupt.
500 	 */
501 	sc->sc_rxfifosz = IMX_FIFOSZ;
502 	sc->sc_txfifosz = IMX_TXFIFO_LEVEL;
503 
504 	device_set_desc(sc->sc_dev, "Freescale i.MX UART");
505 	return (0);
506 }
507 
508 static int
509 imx_uart_bus_receive(struct uart_softc *sc)
510 {
511 	struct uart_bas *bas;
512 	int xc, out;
513 
514 	bas = &sc->sc_bas;
515 	uart_lock(sc->sc_hwmtx);
516 
517 	/*
518 	 * Empty the rx fifo.  We get the RRDY interrupt when IMX_RXFIFO_LEVEL
519 	 * (the rx high-water level) is reached, but we set sc_rxfifosz to the
520 	 * full hardware fifo size, so we can safely process however much is
521 	 * there, not just the highwater size.
522 	 */
523 	while (IS(bas, USR2, RDR)) {
524 		if (uart_rx_full(sc)) {
525 			/* No space left in input buffer */
526 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
527 			break;
528 		}
529 		xc = GETREG(bas, REG(URXD));
530 		out = xc & 0x000000ff;
531 		if (xc & FLD(URXD, FRMERR))
532 			out |= UART_STAT_FRAMERR;
533 		if (xc & FLD(URXD, PRERR))
534 			out |= UART_STAT_PARERR;
535 		if (xc & FLD(URXD, OVRRUN))
536 			out |= UART_STAT_OVERRUN;
537 		if (xc & FLD(URXD, BRK))
538 			out |= UART_STAT_BREAK;
539 
540 		uart_rx_put(sc, out);
541 	}
542 	ENA(bas, UCR1, RRDYEN);
543 	ENA(bas, UCR2, ATEN);
544 
545 	uart_unlock(sc->sc_hwmtx);
546 	return (0);
547 }
548 
549 static int
550 imx_uart_bus_setsig(struct uart_softc *sc, int sig)
551 {
552 
553 	return (0);
554 }
555 
556 static int
557 imx_uart_bus_transmit(struct uart_softc *sc)
558 {
559 	struct uart_bas *bas = &sc->sc_bas;
560 	int i;
561 
562 	bas = &sc->sc_bas;
563 	uart_lock(sc->sc_hwmtx);
564 
565 	/*
566 	 * Fill the tx fifo.  The uart core puts at most IMX_TXFIFO_LEVEL bytes
567 	 * into the txbuf (because that's what sc_txfifosz is set to), and
568 	 * because we got the TRDY (low-water reached) interrupt we know at
569 	 * least that much space is available in the fifo.
570 	 */
571 	for (i = 0; i < sc->sc_txdatasz; i++) {
572 		SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
573 	}
574 	sc->sc_txbusy = 1;
575 	ENA(bas, UCR1, TRDYEN);
576 
577 	uart_unlock(sc->sc_hwmtx);
578 
579 	return (0);
580 }
581 
582 static void
583 imx_uart_bus_grab(struct uart_softc *sc)
584 {
585 	struct uart_bas *bas = &sc->sc_bas;
586 
587 	bas = &sc->sc_bas;
588 	uart_lock(sc->sc_hwmtx);
589 	DIS(bas, UCR1, RRDYEN);
590 	DIS(bas, UCR2, ATEN);
591 	uart_unlock(sc->sc_hwmtx);
592 }
593 
594 static void
595 imx_uart_bus_ungrab(struct uart_softc *sc)
596 {
597 	struct uart_bas *bas = &sc->sc_bas;
598 
599 	bas = &sc->sc_bas;
600 	uart_lock(sc->sc_hwmtx);
601 	ENA(bas, UCR1, RRDYEN);
602 	ENA(bas, UCR2, ATEN);
603 	uart_unlock(sc->sc_hwmtx);
604 }
605