xref: /freebsd/sys/dev/sound/pci/hdspe-pcm.c (revision a970610a3af63b3f4df5b69d91c6b4093a00ed8f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012-2021 Ruslan Bukin <br@bsdpad.com>
5  * Copyright (c) 2023-2024 Florian Walpen <dev@submerge.ch>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * RME HDSPe driver for FreeBSD (pcm-part).
32  * Supported cards: AIO, RayDAT.
33  */
34 
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pci/hdspe.h>
37 
38 #include <dev/pci/pcireg.h>
39 #include <dev/pci/pcivar.h>
40 
41 #include <mixer_if.h>
42 
43 #define HDSPE_MATRIX_MAX	8
44 
45 struct hdspe_latency {
46 	uint32_t n;
47 	uint32_t period;
48 	float ms;
49 };
50 
51 static struct hdspe_latency latency_map[] = {
52 	{ 7,   32, 0.7 },
53 	{ 0,   64, 1.5 },
54 	{ 1,  128,   3 },
55 	{ 2,  256,   6 },
56 	{ 3,  512,  12 },
57 	{ 4, 1024,  23 },
58 	{ 5, 2048,  46 },
59 	{ 6, 4096,  93 },
60 
61 	{ 0,    0,   0 },
62 };
63 
64 struct hdspe_rate {
65 	uint32_t speed;
66 	uint32_t reg;
67 };
68 
69 static struct hdspe_rate rate_map[] = {
70 	{  32000, (HDSPE_FREQ_32000) },
71 	{  44100, (HDSPE_FREQ_44100) },
72 	{  48000, (HDSPE_FREQ_48000) },
73 	{  64000, (HDSPE_FREQ_32000 | HDSPE_FREQ_DOUBLE) },
74 	{  88200, (HDSPE_FREQ_44100 | HDSPE_FREQ_DOUBLE) },
75 	{  96000, (HDSPE_FREQ_48000 | HDSPE_FREQ_DOUBLE) },
76 	{ 128000, (HDSPE_FREQ_32000 | HDSPE_FREQ_QUAD)   },
77 	{ 176400, (HDSPE_FREQ_44100 | HDSPE_FREQ_QUAD)   },
78 	{ 192000, (HDSPE_FREQ_48000 | HDSPE_FREQ_QUAD)   },
79 
80 	{ 0, 0 },
81 };
82 
83 static uint32_t
84 hdspe_channel_play_ports(struct hdspe_channel *hc)
85 {
86 	return (hc->ports & (HDSPE_CHAN_AIO_ALL | HDSPE_CHAN_RAY_ALL));
87 }
88 
89 static uint32_t
90 hdspe_channel_rec_ports(struct hdspe_channel *hc)
91 {
92 	return (hc->ports & (HDSPE_CHAN_AIO_ALL_REC | HDSPE_CHAN_RAY_ALL));
93 }
94 
95 static unsigned int
96 hdspe_adat_width(uint32_t speed)
97 {
98 	if (speed > 96000)
99 		return (2);
100 	if (speed > 48000)
101 		return (4);
102 	return (8);
103 }
104 
105 static uint32_t
106 hdspe_port_first(uint32_t ports)
107 {
108 	return (ports & (~(ports - 1)));	/* Extract first bit set. */
109 }
110 
111 static uint32_t
112 hdspe_port_first_row(uint32_t ports)
113 {
114 	uint32_t ends;
115 
116 	/* Restrict ports to one set with contiguous slots. */
117 	if (ports & HDSPE_CHAN_AIO_LINE)
118 		ports = HDSPE_CHAN_AIO_LINE;	/* Gap in the AIO slots here. */
119 	else if (ports & HDSPE_CHAN_AIO_ALL)
120 		ports &= HDSPE_CHAN_AIO_ALL;	/* Rest of the AIO slots. */
121 	else if (ports & HDSPE_CHAN_RAY_ALL)
122 		ports &= HDSPE_CHAN_RAY_ALL;	/* All RayDAT slots. */
123 
124 	/* Ends of port rows are followed by a port which is not in the set. */
125 	ends = ports & (~(ports >> 1));
126 	/* First row of contiguous ports ends in the first row end. */
127 	return (ports & (ends ^ (ends - 1)));
128 }
129 
130 static unsigned int
131 hdspe_channel_count(uint32_t ports, uint32_t adat_width)
132 {
133 	unsigned int count = 0;
134 
135 	if (ports & HDSPE_CHAN_AIO_ALL) {
136 		/* AIO ports. */
137 		if (ports & HDSPE_CHAN_AIO_LINE)
138 			count += 2;
139 		if (ports & HDSPE_CHAN_AIO_PHONE)
140 			count += 2;
141 		if (ports & HDSPE_CHAN_AIO_AES)
142 			count += 2;
143 		if (ports & HDSPE_CHAN_AIO_SPDIF)
144 			count += 2;
145 		if (ports & HDSPE_CHAN_AIO_ADAT)
146 			count += adat_width;
147 	} else if (ports & HDSPE_CHAN_RAY_ALL) {
148 		/* RayDAT ports. */
149 		if (ports & HDSPE_CHAN_RAY_AES)
150 			count += 2;
151 		if (ports & HDSPE_CHAN_RAY_SPDIF)
152 			count += 2;
153 		if (ports & HDSPE_CHAN_RAY_ADAT1)
154 			count += adat_width;
155 		if (ports & HDSPE_CHAN_RAY_ADAT2)
156 			count += adat_width;
157 		if (ports & HDSPE_CHAN_RAY_ADAT3)
158 			count += adat_width;
159 		if (ports & HDSPE_CHAN_RAY_ADAT4)
160 			count += adat_width;
161 	}
162 
163 	return (count);
164 }
165 
166 static unsigned int
167 hdspe_channel_offset(uint32_t subset, uint32_t ports, unsigned int adat_width)
168 {
169 	uint32_t preceding;
170 
171 	/* Make sure we have a subset of ports. */
172 	subset &= ports;
173 	/* Include all ports preceding the first one of the subset. */
174 	preceding = ports & (~subset & (subset - 1));
175 
176 	if (preceding & HDSPE_CHAN_AIO_ALL)
177 		preceding &= HDSPE_CHAN_AIO_ALL;	/* Contiguous AIO slots. */
178 	else if (preceding & HDSPE_CHAN_RAY_ALL)
179 		preceding &= HDSPE_CHAN_RAY_ALL;	/* Contiguous RayDAT slots. */
180 
181 	return (hdspe_channel_count(preceding, adat_width));
182 }
183 
184 static unsigned int
185 hdspe_port_slot_offset(uint32_t port, unsigned int adat_width)
186 {
187 	/* Exctract the first port (lowest bit) if set of ports. */
188 	switch (hdspe_port_first(port)) {
189 	/* AIO ports */
190 	case HDSPE_CHAN_AIO_LINE:
191 		return (0);
192 	case HDSPE_CHAN_AIO_PHONE:
193 		return (6);
194 	case HDSPE_CHAN_AIO_AES:
195 		return (8);
196 	case HDSPE_CHAN_AIO_SPDIF:
197 		return (10);
198 	case HDSPE_CHAN_AIO_ADAT:
199 		return (12);
200 
201 	/* RayDAT ports */
202 	case HDSPE_CHAN_RAY_AES:
203 		return (0);
204 	case HDSPE_CHAN_RAY_SPDIF:
205 		return (2);
206 	case HDSPE_CHAN_RAY_ADAT1:
207 		return (4);
208 	case HDSPE_CHAN_RAY_ADAT2:
209 		return (4 + adat_width);
210 	case HDSPE_CHAN_RAY_ADAT3:
211 		return (4 + 2 * adat_width);
212 	case HDSPE_CHAN_RAY_ADAT4:
213 		return (4 + 3 * adat_width);
214 	default:
215 		return (0);
216 	}
217 }
218 
219 static unsigned int
220 hdspe_port_slot_width(uint32_t ports, unsigned int adat_width)
221 {
222 	uint32_t row;
223 
224 	/* Count number of contiguous slots from the first physical port. */
225 	row = hdspe_port_first_row(ports);
226 	return (hdspe_channel_count(row, adat_width));
227 }
228 
229 static int
230 hdspe_hw_mixer(struct sc_chinfo *ch, unsigned int dst,
231     unsigned int src, unsigned short data)
232 {
233 	struct sc_pcminfo *scp;
234 	struct sc_info *sc;
235 	int offs;
236 
237 	scp = ch->parent;
238 	sc = scp->sc;
239 
240 	offs = 0;
241 	if (ch->dir == PCMDIR_PLAY)
242 		offs = 64;
243 
244 	hdspe_write_4(sc, HDSPE_MIXER_BASE +
245 	    ((offs + src + 128 * dst) * sizeof(uint32_t)),
246 	    data & 0xFFFF);
247 
248 	return (0);
249 };
250 
251 static int
252 hdspechan_setgain(struct sc_chinfo *ch)
253 {
254 	struct sc_info *sc;
255 	uint32_t port, ports;
256 	unsigned int slot, end_slot;
257 	unsigned short volume;
258 
259 	sc = ch->parent->sc;
260 
261 	/* Iterate through all physical ports of the channel. */
262 	ports = ch->ports;
263 	port = hdspe_port_first(ports);
264 	while (port != 0) {
265 		/* Get slot range of the physical port. */
266 		slot =
267 		    hdspe_port_slot_offset(port, hdspe_adat_width(sc->speed));
268 		end_slot = slot +
269 		    hdspe_port_slot_width(port, hdspe_adat_width(sc->speed));
270 
271 		/* Treat first slot as left channel. */
272 		volume = ch->lvol * HDSPE_MAX_GAIN / 100;
273 		for (; slot < end_slot; slot++) {
274 			hdspe_hw_mixer(ch, slot, slot, volume);
275 			/* Subsequent slots all get the right channel volume. */
276 			volume = ch->rvol * HDSPE_MAX_GAIN / 100;
277 		}
278 
279 		ports &= ~port;
280 		port = hdspe_port_first(ports);
281 	}
282 
283 	return (0);
284 }
285 
286 static int
287 hdspemixer_init(struct snd_mixer *m)
288 {
289 	struct sc_pcminfo *scp;
290 	struct sc_info *sc;
291 	int mask;
292 
293 	scp = mix_getdevinfo(m);
294 	sc = scp->sc;
295 	if (sc == NULL)
296 		return (-1);
297 
298 	mask = SOUND_MASK_PCM;
299 
300 	if (hdspe_channel_play_ports(scp->hc))
301 		mask |= SOUND_MASK_VOLUME;
302 
303 	if (hdspe_channel_rec_ports(scp->hc))
304 		mask |= SOUND_MASK_RECLEV;
305 
306 	snd_mtxlock(sc->lock);
307 	pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
308 	mix_setdevs(m, mask);
309 	snd_mtxunlock(sc->lock);
310 
311 	return (0);
312 }
313 
314 static int
315 hdspemixer_set(struct snd_mixer *m, unsigned dev,
316     unsigned left, unsigned right)
317 {
318 	struct sc_pcminfo *scp;
319 	struct sc_chinfo *ch;
320 	int i;
321 
322 	scp = mix_getdevinfo(m);
323 
324 #if 0
325 	device_printf(scp->dev, "hdspemixer_set() %d %d\n",
326 	    left, right);
327 #endif
328 
329 	for (i = 0; i < scp->chnum; i++) {
330 		ch = &scp->chan[i];
331 		if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) ||
332 		    (dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) {
333 			ch->lvol = left;
334 			ch->rvol = right;
335 			if (ch->run)
336 				hdspechan_setgain(ch);
337 		}
338 	}
339 
340 	return (0);
341 }
342 
343 static kobj_method_t hdspemixer_methods[] = {
344 	KOBJMETHOD(mixer_init,      hdspemixer_init),
345 	KOBJMETHOD(mixer_set,       hdspemixer_set),
346 	KOBJMETHOD_END
347 };
348 MIXER_DECLARE(hdspemixer);
349 
350 static void
351 hdspechan_enable(struct sc_chinfo *ch, int value)
352 {
353 	struct sc_pcminfo *scp;
354 	struct sc_info *sc;
355 	uint32_t row, ports;
356 	int reg;
357 	unsigned int slot, end_slot;
358 
359 	scp = ch->parent;
360 	sc = scp->sc;
361 
362 	if (ch->dir == PCMDIR_PLAY)
363 		reg = HDSPE_OUT_ENABLE_BASE;
364 	else
365 		reg = HDSPE_IN_ENABLE_BASE;
366 
367 	ch->run = value;
368 
369 	/* Iterate through rows of ports with contiguous slots. */
370 	ports = ch->ports;
371 	row = hdspe_port_first_row(ports);
372 	while (row != 0) {
373 		slot =
374 		    hdspe_port_slot_offset(row, hdspe_adat_width(sc->speed));
375 		end_slot = slot +
376 		    hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
377 
378 		for (; slot < end_slot; slot++) {
379 			hdspe_write_1(sc, reg + (4 * slot), value);
380 		}
381 
382 		ports &= ~row;
383 		row = hdspe_port_first_row(ports);
384 	}
385 }
386 
387 static int
388 hdspe_running(struct sc_info *sc)
389 {
390 	struct sc_pcminfo *scp;
391 	struct sc_chinfo *ch;
392 	device_t *devlist;
393 	int devcount;
394 	int i, j;
395 	int err;
396 
397 	if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
398 		goto bad;
399 
400 	for (i = 0; i < devcount; i++) {
401 		scp = device_get_ivars(devlist[i]);
402 		for (j = 0; j < scp->chnum; j++) {
403 			ch = &scp->chan[j];
404 			if (ch->run)
405 				goto bad;
406 		}
407 	}
408 
409 	free(devlist, M_TEMP);
410 
411 	return (0);
412 bad:
413 
414 #if 0
415 	device_printf(sc->dev, "hdspe is running\n");
416 #endif
417 
418 	free(devlist, M_TEMP);
419 
420 	return (1);
421 }
422 
423 static void
424 hdspe_start_audio(struct sc_info *sc)
425 {
426 
427 	sc->ctrl_register |= (HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
428 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
429 }
430 
431 static void
432 hdspe_stop_audio(struct sc_info *sc)
433 {
434 
435 	if (hdspe_running(sc) == 1)
436 		return;
437 
438 	sc->ctrl_register &= ~(HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
439 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
440 }
441 
442 static void
443 buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos,
444     unsigned int samples, unsigned int slots, unsigned int channels)
445 {
446 	int slot;
447 
448 	for (; samples > 0; samples--) {
449 		for (slot = 0; slot < slots; slot++) {
450 			dma[slot * HDSPE_CHANBUF_SAMPLES + pos] =
451 			    pcm[pos * channels + slot];
452 		}
453 		pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
454 	}
455 }
456 
457 static void
458 buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
459     unsigned int pos, unsigned int samples, unsigned int adat_width,
460     unsigned int pcm_width)
461 {
462 	unsigned int slot_offset, slots;
463 	unsigned int channels, chan_pos;
464 
465 	/* Translate DMA slot offset to DMA buffer offset. */
466 	slot_offset = hdspe_port_slot_offset(subset, adat_width);
467 	dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
468 
469 	/* Channel position of the port subset and total number of channels. */
470 	chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
471 	pcm += chan_pos;
472 	channels = hdspe_channel_count(ports, pcm_width);
473 
474 	/* Only copy as much as supported by both hardware and pcm channel. */
475 	slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
476 
477 	/* Let the compiler inline and loop unroll common cases. */
478 	if (slots == 2)
479 		buffer_mux_write(dma, pcm, pos, samples, 2, channels);
480 	else if (slots == 4)
481 		buffer_mux_write(dma, pcm, pos, samples, 4, channels);
482 	else if (slots == 8)
483 		buffer_mux_write(dma, pcm, pos, samples, 8, channels);
484 	else
485 		buffer_mux_write(dma, pcm, pos, samples, slots, channels);
486 }
487 
488 static void
489 buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos,
490     unsigned int samples, unsigned int slots, unsigned int channels)
491 {
492 	int slot;
493 
494 	for (; samples > 0; samples--) {
495 		for (slot = 0; slot < slots; slot++) {
496 			pcm[pos * channels + slot] =
497 			    dma[slot * HDSPE_CHANBUF_SAMPLES + pos];
498 		}
499 		pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
500 	}
501 }
502 
503 static void
504 buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
505     unsigned int pos, unsigned int samples, unsigned int adat_width,
506     unsigned int pcm_width)
507 {
508 	unsigned int slot_offset, slots;
509 	unsigned int channels, chan_pos;
510 
511 	/* Translate port slot offset to DMA buffer offset. */
512 	slot_offset = hdspe_port_slot_offset(subset, adat_width);
513 	dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
514 
515 	/* Channel position of the port subset and total number of channels. */
516 	chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
517 	pcm += chan_pos;
518 	channels = hdspe_channel_count(ports, pcm_width);
519 
520 	/* Only copy as much as supported by both hardware and pcm channel. */
521 	slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
522 
523 	/* Let the compiler inline and loop unroll common cases. */
524 	if (slots == 2)
525 		buffer_demux_read(dma, pcm, pos, samples, 2, channels);
526 	else if (slots == 4)
527 		buffer_demux_read(dma, pcm, pos, samples, 4, channels);
528 	else if (slots == 8)
529 		buffer_demux_read(dma, pcm, pos, samples, 8, channels);
530 	else
531 		buffer_demux_read(dma, pcm, pos, samples, slots, channels);
532 }
533 
534 
535 /* Copy data between DMA and PCM buffers. */
536 static void
537 buffer_copy(struct sc_chinfo *ch)
538 {
539 	struct sc_pcminfo *scp;
540 	struct sc_info *sc;
541 	uint32_t row, ports;
542 	uint32_t dma_pos;
543 	unsigned int pos, length, offset;
544 	unsigned int n;
545 	unsigned int adat_width, pcm_width;
546 
547 	scp = ch->parent;
548 	sc = scp->sc;
549 
550 	n = AFMT_CHANNEL(ch->format); /* n channels */
551 
552 	/* Let pcm formats differ from current hardware ADAT width. */
553 	adat_width = hdspe_adat_width(sc->speed);
554 	if (n == hdspe_channel_count(ch->ports, 2))
555 		pcm_width = 2;
556 	else if (n == hdspe_channel_count(ch->ports, 4))
557 		pcm_width = 4;
558 	else
559 		pcm_width = 8;
560 
561 	/* Derive buffer position and length to be copied. */
562 	if (ch->dir == PCMDIR_PLAY) {
563 		/* Position per channel is n times smaller than PCM. */
564 		pos = sndbuf_getreadyptr(ch->buffer) / n;
565 		length = sndbuf_getready(ch->buffer) / n;
566 		/* Copy no more than 2 periods in advance. */
567 		if (length > (sc->period * 4 * 2))
568 			length = (sc->period * 4 * 2);
569 		/* Skip what was already copied last time. */
570 		offset = (ch->position + HDSPE_CHANBUF_SIZE) - pos;
571 		offset %= HDSPE_CHANBUF_SIZE;
572 		if (offset <= length) {
573 			pos = (pos + offset) % HDSPE_CHANBUF_SIZE;
574 			length -= offset;
575 		}
576 	} else {
577 		/* Position per channel is n times smaller than PCM. */
578 		pos = sndbuf_getfreeptr(ch->buffer) / n;
579 		/* Get DMA buffer write position. */
580 		dma_pos = hdspe_read_2(sc, HDSPE_STATUS_REG);
581 		dma_pos &= HDSPE_BUF_POSITION_MASK;
582 		/* Copy what is newly available. */
583 		length = (dma_pos + HDSPE_CHANBUF_SIZE) - pos;
584 		length %= HDSPE_CHANBUF_SIZE;
585 	}
586 
587 	/* Position and length in samples (4 bytes). */
588 	pos /= 4;
589 	length /= 4;
590 
591 	/* Iterate through rows of ports with contiguous slots. */
592 	ports = ch->ports;
593 	if (pcm_width == adat_width)
594 		row = hdspe_port_first_row(ports);
595 	else
596 		row = hdspe_port_first(ports);
597 
598 	while (row != 0) {
599 		if (ch->dir == PCMDIR_PLAY)
600 			buffer_mux_port(sc->pbuf, ch->data, row, ch->ports, pos,
601 			    length, adat_width, pcm_width);
602 		else
603 			buffer_demux_port(sc->rbuf, ch->data, row, ch->ports,
604 			    pos, length, adat_width, pcm_width);
605 
606 		ports &= ~row;
607 		if (pcm_width == adat_width)
608 			row = hdspe_port_first_row(ports);
609 		else
610 			row = hdspe_port_first(ports);
611 	}
612 
613 	ch->position = ((pos + length) * 4) % HDSPE_CHANBUF_SIZE;
614 }
615 
616 static int
617 clean(struct sc_chinfo *ch)
618 {
619 	struct sc_pcminfo *scp;
620 	struct sc_info *sc;
621 	uint32_t *buf;
622 	uint32_t row, ports;
623 	unsigned int offset, slots;
624 
625 	scp = ch->parent;
626 	sc = scp->sc;
627 	buf = sc->rbuf;
628 
629 	if (ch->dir == PCMDIR_PLAY)
630 		buf = sc->pbuf;
631 
632 	/* Iterate through rows of ports with contiguous slots. */
633 	ports = ch->ports;
634 	row = hdspe_port_first_row(ports);
635 	while (row != 0) {
636 		offset = hdspe_port_slot_offset(row,
637 		    hdspe_adat_width(sc->speed));
638 		slots = hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
639 
640 		bzero(buf + offset * HDSPE_CHANBUF_SAMPLES,
641 		    slots * HDSPE_CHANBUF_SIZE);
642 
643 		ports &= ~row;
644 		row = hdspe_port_first_row(ports);
645 	}
646 
647 	ch->position = 0;
648 
649 	return (0);
650 }
651 
652 /* Channel interface. */
653 static void *
654 hdspechan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
655     struct pcm_channel *c, int dir)
656 {
657 	struct sc_pcminfo *scp;
658 	struct sc_chinfo *ch;
659 	struct sc_info *sc;
660 	int num;
661 
662 	scp = devinfo;
663 	sc = scp->sc;
664 
665 	snd_mtxlock(sc->lock);
666 	num = scp->chnum;
667 
668 	ch = &scp->chan[num];
669 
670 	if (dir == PCMDIR_PLAY)
671 		ch->ports = hdspe_channel_play_ports(scp->hc);
672 	else
673 		ch->ports = hdspe_channel_rec_ports(scp->hc);
674 
675 	ch->run = 0;
676 	ch->lvol = 0;
677 	ch->rvol = 0;
678 
679 	/* Support all possible ADAT widths as channel formats. */
680 	ch->cap_fmts[0] =
681 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 2), 0);
682 	ch->cap_fmts[1] =
683 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 4), 0);
684 	ch->cap_fmts[2] =
685 	    SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 8), 0);
686 	ch->cap_fmts[3] = 0;
687 	ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSPE, M_NOWAIT);
688 	*(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0};
689 
690 	/* Allocate maximum buffer size. */
691 	ch->size = HDSPE_CHANBUF_SIZE * hdspe_channel_count(ch->ports, 8);
692 	ch->data = malloc(ch->size, M_HDSPE, M_NOWAIT);
693 	ch->position = 0;
694 
695 	ch->buffer = b;
696 	ch->channel = c;
697 	ch->parent = scp;
698 
699 	ch->dir = dir;
700 
701 	snd_mtxunlock(sc->lock);
702 
703 	if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) {
704 		device_printf(scp->dev, "Can't setup sndbuf.\n");
705 		return (NULL);
706 	}
707 
708 	return (ch);
709 }
710 
711 static int
712 hdspechan_trigger(kobj_t obj, void *data, int go)
713 {
714 	struct sc_pcminfo *scp;
715 	struct sc_chinfo *ch;
716 	struct sc_info *sc;
717 
718 	ch = data;
719 	scp = ch->parent;
720 	sc = scp->sc;
721 
722 	snd_mtxlock(sc->lock);
723 	switch (go) {
724 	case PCMTRIG_START:
725 #if 0
726 		device_printf(scp->dev, "hdspechan_trigger(): start\n");
727 #endif
728 		hdspechan_enable(ch, 1);
729 		hdspechan_setgain(ch);
730 		hdspe_start_audio(sc);
731 		break;
732 
733 	case PCMTRIG_STOP:
734 	case PCMTRIG_ABORT:
735 #if 0
736 		device_printf(scp->dev, "hdspechan_trigger(): stop or abort\n");
737 #endif
738 		clean(ch);
739 		hdspechan_enable(ch, 0);
740 		hdspe_stop_audio(sc);
741 		break;
742 
743 	case PCMTRIG_EMLDMAWR:
744 	case PCMTRIG_EMLDMARD:
745 		if(ch->run)
746 			buffer_copy(ch);
747 		break;
748 	}
749 
750 	snd_mtxunlock(sc->lock);
751 
752 	return (0);
753 }
754 
755 static uint32_t
756 hdspechan_getptr(kobj_t obj, void *data)
757 {
758 	struct sc_pcminfo *scp;
759 	struct sc_chinfo *ch;
760 	struct sc_info *sc;
761 	uint32_t ret, pos;
762 
763 	ch = data;
764 	scp = ch->parent;
765 	sc = scp->sc;
766 
767 	snd_mtxlock(sc->lock);
768 	ret = hdspe_read_2(sc, HDSPE_STATUS_REG);
769 	snd_mtxunlock(sc->lock);
770 
771 	pos = ret & HDSPE_BUF_POSITION_MASK;
772 	pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */
773 
774 	return (pos);
775 }
776 
777 static int
778 hdspechan_free(kobj_t obj, void *data)
779 {
780 	struct sc_pcminfo *scp;
781 	struct sc_chinfo *ch;
782 	struct sc_info *sc;
783 
784 	ch = data;
785 	scp = ch->parent;
786 	sc = scp->sc;
787 
788 #if 0
789 	device_printf(scp->dev, "hdspechan_free()\n");
790 #endif
791 
792 	snd_mtxlock(sc->lock);
793 	if (ch->data != NULL) {
794 		free(ch->data, M_HDSPE);
795 		ch->data = NULL;
796 	}
797 	if (ch->caps != NULL) {
798 		free(ch->caps, M_HDSPE);
799 		ch->caps = NULL;
800 	}
801 	snd_mtxunlock(sc->lock);
802 
803 	return (0);
804 }
805 
806 static int
807 hdspechan_setformat(kobj_t obj, void *data, uint32_t format)
808 {
809 	struct sc_chinfo *ch;
810 
811 	ch = data;
812 
813 #if 0
814 	struct sc_pcminfo *scp = ch->parent;
815 	device_printf(scp->dev, "hdspechan_setformat(%d)\n", format);
816 #endif
817 
818 	ch->format = format;
819 
820 	return (0);
821 }
822 
823 static uint32_t
824 hdspechan_setspeed(kobj_t obj, void *data, uint32_t speed)
825 {
826 	struct sc_pcminfo *scp;
827 	struct hdspe_rate *hr;
828 	struct sc_chinfo *ch;
829 	struct sc_info *sc;
830 	long long period;
831 	int threshold;
832 	int i;
833 
834 	ch = data;
835 	scp = ch->parent;
836 	sc = scp->sc;
837 	hr = NULL;
838 
839 #if 0
840 	device_printf(scp->dev, "hdspechan_setspeed(%d)\n", speed);
841 #endif
842 
843 	if (hdspe_running(sc) == 1)
844 		goto end;
845 
846 	if (sc->force_speed > 0)
847 		speed = sc->force_speed;
848 
849 	/* First look for equal frequency. */
850 	for (i = 0; rate_map[i].speed != 0; i++) {
851 		if (rate_map[i].speed == speed)
852 			hr = &rate_map[i];
853 	}
854 
855 	/* If no match, just find nearest. */
856 	if (hr == NULL) {
857 		for (i = 0; rate_map[i].speed != 0; i++) {
858 			hr = &rate_map[i];
859 			threshold = hr->speed + ((rate_map[i + 1].speed != 0) ?
860 			    ((rate_map[i + 1].speed - hr->speed) >> 1) : 0);
861 			if (speed < threshold)
862 				break;
863 		}
864 	}
865 
866 	switch (sc->type) {
867 	case HDSPE_RAYDAT:
868 	case HDSPE_AIO:
869 		period = HDSPE_FREQ_AIO;
870 		break;
871 	default:
872 		/* Unsupported card. */
873 		goto end;
874 	}
875 
876 	/* Write frequency on the device. */
877 	sc->ctrl_register &= ~HDSPE_FREQ_MASK;
878 	sc->ctrl_register |= hr->reg;
879 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
880 
881 	speed = hr->speed;
882 	if (speed > 96000)
883 		speed /= 4;
884 	else if (speed > 48000)
885 		speed /= 2;
886 
887 	/* Set DDS value. */
888 	period /= speed;
889 	hdspe_write_4(sc, HDSPE_FREQ_REG, period);
890 
891 	sc->speed = hr->speed;
892 end:
893 
894 	return (sc->speed);
895 }
896 
897 static uint32_t
898 hdspechan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
899 {
900 	struct hdspe_latency *hl;
901 	struct sc_pcminfo *scp;
902 	struct sc_chinfo *ch;
903 	struct sc_info *sc;
904 	int threshold;
905 	int i;
906 
907 	ch = data;
908 	scp = ch->parent;
909 	sc = scp->sc;
910 	hl = NULL;
911 
912 #if 0
913 	device_printf(scp->dev, "hdspechan_setblocksize(%d)\n", blocksize);
914 #endif
915 
916 	if (hdspe_running(sc) == 1)
917 		goto end;
918 
919 	if (blocksize > HDSPE_LAT_BYTES_MAX)
920 		blocksize = HDSPE_LAT_BYTES_MAX;
921 	else if (blocksize < HDSPE_LAT_BYTES_MIN)
922 		blocksize = HDSPE_LAT_BYTES_MIN;
923 
924 	blocksize /= 4 /* samples */;
925 
926 	if (sc->force_period > 0)
927 		blocksize = sc->force_period;
928 
929 	/* First look for equal latency. */
930 	for (i = 0; latency_map[i].period != 0; i++) {
931 		if (latency_map[i].period == blocksize)
932 			hl = &latency_map[i];
933 	}
934 
935 	/* If no match, just find nearest. */
936 	if (hl == NULL) {
937 		for (i = 0; latency_map[i].period != 0; i++) {
938 			hl = &latency_map[i];
939 			threshold = hl->period + ((latency_map[i + 1].period != 0) ?
940 			    ((latency_map[i + 1].period - hl->period) >> 1) : 0);
941 			if (blocksize < threshold)
942 				break;
943 		}
944 	}
945 
946 	snd_mtxlock(sc->lock);
947 	sc->ctrl_register &= ~HDSPE_LAT_MASK;
948 	sc->ctrl_register |= hdspe_encode_latency(hl->n);
949 	hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
950 	sc->period = hl->period;
951 	snd_mtxunlock(sc->lock);
952 
953 #if 0
954 	device_printf(scp->dev, "New period=%d\n", sc->period);
955 #endif
956 
957 	sndbuf_resize(ch->buffer,
958 	    (HDSPE_CHANBUF_SIZE * AFMT_CHANNEL(ch->format)) / (sc->period * 4),
959 	    (sc->period * 4));
960 end:
961 
962 	return (sndbuf_getblksz(ch->buffer));
963 }
964 
965 static uint32_t hdspe_bkp_fmt[] = {
966 	SND_FORMAT(AFMT_S32_LE, 2, 0),
967 	0
968 };
969 
970 static struct pcmchan_caps hdspe_bkp_caps = {32000, 192000, hdspe_bkp_fmt, 0};
971 
972 static struct pcmchan_caps *
973 hdspechan_getcaps(kobj_t obj, void *data)
974 {
975 	struct sc_chinfo *ch;
976 
977 	ch = data;
978 
979 #if 0
980 	struct sc_pcminfo *scl = ch->parent;
981 	device_printf(scp->dev, "hdspechan_getcaps()\n");
982 #endif
983 
984 	if (ch->caps != NULL)
985 		return (ch->caps);
986 
987 	return (&hdspe_bkp_caps);
988 }
989 
990 static kobj_method_t hdspechan_methods[] = {
991 	KOBJMETHOD(channel_init,         hdspechan_init),
992 	KOBJMETHOD(channel_free,         hdspechan_free),
993 	KOBJMETHOD(channel_setformat,    hdspechan_setformat),
994 	KOBJMETHOD(channel_setspeed,     hdspechan_setspeed),
995 	KOBJMETHOD(channel_setblocksize, hdspechan_setblocksize),
996 	KOBJMETHOD(channel_trigger,      hdspechan_trigger),
997 	KOBJMETHOD(channel_getptr,       hdspechan_getptr),
998 	KOBJMETHOD(channel_getcaps,      hdspechan_getcaps),
999 	KOBJMETHOD_END
1000 };
1001 CHANNEL_DECLARE(hdspechan);
1002 
1003 static int
1004 hdspe_pcm_probe(device_t dev)
1005 {
1006 
1007 #if 0
1008 	device_printf(dev,"hdspe_pcm_probe()\n");
1009 #endif
1010 
1011 	return (0);
1012 }
1013 
1014 static uint32_t
1015 hdspe_pcm_intr(struct sc_pcminfo *scp)
1016 {
1017 	struct sc_chinfo *ch;
1018 	struct sc_info *sc;
1019 	int i;
1020 
1021 	sc = scp->sc;
1022 
1023 	for (i = 0; i < scp->chnum; i++) {
1024 		ch = &scp->chan[i];
1025 		snd_mtxunlock(sc->lock);
1026 		chn_intr(ch->channel);
1027 		snd_mtxlock(sc->lock);
1028 	}
1029 
1030 	return (0);
1031 }
1032 
1033 static int
1034 hdspe_pcm_attach(device_t dev)
1035 {
1036 	char status[SND_STATUSLEN];
1037 	struct sc_pcminfo *scp;
1038 	const char *buf;
1039 	uint32_t pcm_flags;
1040 	int err;
1041 	int play, rec;
1042 
1043 	scp = device_get_ivars(dev);
1044 	scp->ih = &hdspe_pcm_intr;
1045 
1046 	if (scp->hc->ports & HDSPE_CHAN_AIO_ALL)
1047 		buf = "AIO";
1048 	else if (scp->hc->ports & HDSPE_CHAN_RAY_ALL)
1049 		buf = "RayDAT";
1050 	else
1051 		buf = "?";
1052 	device_set_descf(dev, "HDSPe %s [%s]", buf, scp->hc->descr);
1053 
1054 	/*
1055 	 * We don't register interrupt handler with snd_setup_intr
1056 	 * in pcm device. Mark pcm device as MPSAFE manually.
1057 	 */
1058 	pcm_flags = pcm_getflags(dev) | SD_F_MPSAFE;
1059 	if (hdspe_channel_count(scp->hc->ports, 8) > HDSPE_MATRIX_MAX)
1060 		/* Disable vchan conversion, too many channels. */
1061 		pcm_flags |= SD_F_BITPERFECT;
1062 	pcm_setflags(dev, pcm_flags);
1063 
1064 	play = (hdspe_channel_play_ports(scp->hc)) ? 1 : 0;
1065 	rec = (hdspe_channel_rec_ports(scp->hc)) ? 1 : 0;
1066 	err = pcm_register(dev, scp, play, rec);
1067 	if (err) {
1068 		device_printf(dev, "Can't register pcm.\n");
1069 		return (ENXIO);
1070 	}
1071 
1072 	scp->chnum = 0;
1073 	if (play) {
1074 		pcm_addchan(dev, PCMDIR_PLAY, &hdspechan_class, scp);
1075 		scp->chnum++;
1076 	}
1077 
1078 	if (rec) {
1079 		pcm_addchan(dev, PCMDIR_REC, &hdspechan_class, scp);
1080 		scp->chnum++;
1081 	}
1082 
1083 	snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s",
1084 	    rman_get_start(scp->sc->cs),
1085 	    rman_get_start(scp->sc->irq),
1086 	    device_get_nameunit(device_get_parent(dev)));
1087 	pcm_setstatus(dev, status);
1088 
1089 	mixer_init(dev, &hdspemixer_class, scp);
1090 
1091 	return (0);
1092 }
1093 
1094 static int
1095 hdspe_pcm_detach(device_t dev)
1096 {
1097 	int err;
1098 
1099 	err = pcm_unregister(dev);
1100 	if (err) {
1101 		device_printf(dev, "Can't unregister device.\n");
1102 		return (err);
1103 	}
1104 
1105 	return (0);
1106 }
1107 
1108 static device_method_t hdspe_pcm_methods[] = {
1109 	DEVMETHOD(device_probe,     hdspe_pcm_probe),
1110 	DEVMETHOD(device_attach,    hdspe_pcm_attach),
1111 	DEVMETHOD(device_detach,    hdspe_pcm_detach),
1112 	{ 0, 0 }
1113 };
1114 
1115 static driver_t hdspe_pcm_driver = {
1116 	"pcm",
1117 	hdspe_pcm_methods,
1118 	PCM_SOFTC_SIZE,
1119 };
1120 
1121 DRIVER_MODULE(snd_hdspe_pcm, hdspe, hdspe_pcm_driver, 0, 0);
1122 MODULE_DEPEND(snd_hdspe, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1123 MODULE_VERSION(snd_hdspe, 1);
1124