xref: /freebsd/sys/dev/sound/pci/csa.c (revision 7a7741af18d6c8a804cc643cb7ecda9d730c6aa6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1999 Seigo Tanimura
5  * All rights reserved.
6  *
7  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
8  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
9  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <machine/resource.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42 
43 #ifdef HAVE_KERNEL_OPTION_HEADERS
44 #include "opt_snd.h"
45 #endif
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/pci/csareg.h>
49 #include <dev/sound/pci/csavar.h>
50 
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53 
54 #include <dev/sound/pci/cs461x_dsp.h>
55 
56 /* This is the pci device id. */
57 #define CS4610_PCI_ID 0x60011013
58 #define CS4614_PCI_ID 0x60031013
59 #define CS4615_PCI_ID 0x60041013
60 
61 /* Here is the parameter structure per a device. */
62 struct csa_softc {
63 	device_t dev; /* device */
64 	csa_res res; /* resources */
65 
66 	device_t pcm; /* pcm device */
67 	driver_intr_t* pcmintr; /* pcm intr */
68 	void *pcmintr_arg; /* pcm intr arg */
69 	device_t midi; /* midi device */
70 	driver_intr_t* midiintr; /* midi intr */
71 	void *midiintr_arg; /* midi intr arg */
72 	void *ih; /* cookie */
73 
74 	struct csa_card *card;
75 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
76 };
77 
78 typedef struct csa_softc *sc_p;
79 
80 static int csa_probe(device_t dev);
81 static int csa_attach(device_t dev);
82 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
83 					      rman_res_t start, rman_res_t end,
84 					      rman_res_t count, u_int flags);
85 static int csa_release_resource(device_t bus, device_t child, struct resource *r);
86 static int csa_setup_intr(device_t bus, device_t child,
87 			  struct resource *irq, int flags,
88 			  driver_filter_t *filter,
89 			  driver_intr_t *intr,  void *arg, void **cookiep);
90 static int csa_teardown_intr(device_t bus, device_t child,
91 			     struct resource *irq, void *cookie);
92 static driver_intr_t csa_intr;
93 static int csa_initialize(sc_p scp);
94 static int csa_downloadimage(csa_res *resp);
95 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
96 
97 static void
98 amp_none(void)
99 {
100 }
101 
102 static void
103 amp_voyetra(void)
104 {
105 }
106 
107 static int
108 clkrun_hack(int run)
109 {
110 #ifdef __i386__
111 	devclass_t		pci_devclass;
112 	device_t		*pci_devices, *pci_children, *busp, *childp;
113 	int			pci_count = 0, pci_childcount = 0;
114 	int			i, j, port;
115 	u_int16_t		control;
116 	bus_space_tag_t		btag;
117 
118 	if ((pci_devclass = devclass_find("pci")) == NULL) {
119 		return ENXIO;
120 	}
121 
122 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
123 
124 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
125 		pci_childcount = 0;
126 		if (device_get_children(*busp, &pci_children, &pci_childcount))
127 			continue;
128 		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
129 			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
130 				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
131 				/* XXX */
132 				btag = X86_BUS_SPACE_IO;
133 
134 				control = bus_space_read_2(btag, 0x0, port);
135 				control &= ~0x2000;
136 				control |= run? 0 : 0x2000;
137 				bus_space_write_2(btag, 0x0, port, control);
138 				free(pci_devices, M_TEMP);
139 				free(pci_children, M_TEMP);
140 				return 0;
141 			}
142 		}
143 		free(pci_children, M_TEMP);
144 	}
145 
146 	free(pci_devices, M_TEMP);
147 	return ENXIO;
148 #else
149 	return 0;
150 #endif
151 }
152 
153 static struct csa_card cards_4610[] = {
154 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
155 };
156 
157 static struct csa_card cards_4614[] = {
158 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
159 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
160 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
161 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
162 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
163 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
164 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
165 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
166 	{0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0},
167 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
168 };
169 
170 static struct csa_card cards_4615[] = {
171 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
172 };
173 
174 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
175 
176 struct card_type {
177 	u_int32_t devid;
178 	char *name;
179 	struct csa_card *cards;
180 };
181 
182 static struct card_type cards[] = {
183 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
184 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
185 	{CS4615_PCI_ID, "CS4615", cards_4615},
186 	{0, NULL, NULL},
187 };
188 
189 static struct card_type *
190 csa_findcard(device_t dev)
191 {
192 	int i;
193 
194 	i = 0;
195 	while (cards[i].devid != 0) {
196 		if (pci_get_devid(dev) == cards[i].devid)
197 			return &cards[i];
198 		i++;
199 	}
200 	return NULL;
201 }
202 
203 struct csa_card *
204 csa_findsubcard(device_t dev)
205 {
206 	int i;
207 	struct card_type *card;
208 	struct csa_card *subcard;
209 
210 	card = csa_findcard(dev);
211 	if (card == NULL)
212 		return &nocard;
213 	subcard = card->cards;
214 	i = 0;
215 	while (subcard[i].subvendor != 0) {
216 		if (pci_get_subvendor(dev) == subcard[i].subvendor
217 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
218 			return &subcard[i];
219 		}
220 		i++;
221 	}
222 	return &subcard[i];
223 }
224 
225 static int
226 csa_probe(device_t dev)
227 {
228 	struct card_type *card;
229 
230 	card = csa_findcard(dev);
231 	if (card) {
232 		device_set_desc(dev, card->name);
233 		return BUS_PROBE_DEFAULT;
234 	}
235 	return ENXIO;
236 }
237 
238 static int
239 csa_attach(device_t dev)
240 {
241 	sc_p scp;
242 	csa_res *resp;
243 	struct sndcard_func *func;
244 	int error = ENXIO;
245 
246 	scp = device_get_softc(dev);
247 
248 	/* Fill in the softc. */
249 	bzero(scp, sizeof(*scp));
250 	scp->dev = dev;
251 
252 	pci_enable_busmaster(dev);
253 
254 	/* Allocate the resources. */
255 	resp = &scp->res;
256 	scp->card = csa_findsubcard(dev);
257 	scp->binfo.card = scp->card;
258 	printf("csa: card is %s\n", scp->card->name);
259 	resp->io_rid = PCIR_BAR(0);
260 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
261 		&resp->io_rid, RF_ACTIVE);
262 	if (resp->io == NULL)
263 		return (ENXIO);
264 	resp->mem_rid = PCIR_BAR(1);
265 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
266 		&resp->mem_rid, RF_ACTIVE);
267 	if (resp->mem == NULL)
268 		goto err_io;
269 	resp->irq_rid = 0;
270 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
271 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
272 	if (resp->irq == NULL)
273 		goto err_mem;
274 
275 	/* Enable interrupt. */
276 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
277 		goto err_intr;
278 #if 0
279 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
280 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
281 #endif
282 
283 	/* Initialize the chip. */
284 	if (csa_initialize(scp))
285 		goto err_teardown;
286 
287 	/* Reset the Processor. */
288 	csa_resetdsp(resp);
289 
290 	/* Download the Processor Image to the processor. */
291 	if (csa_downloadimage(resp))
292 		goto err_teardown;
293 
294 	/* Attach the children. */
295 
296 	/* PCM Audio */
297 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
298 	if (func == NULL) {
299 		error = ENOMEM;
300 		goto err_teardown;
301 	}
302 	func->varinfo = &scp->binfo;
303 	func->func = SCF_PCM;
304 	scp->pcm = device_add_child(dev, "pcm", DEVICE_UNIT_ANY);
305 	device_set_ivars(scp->pcm, func);
306 
307 	/* Midi Interface */
308 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
309 	if (func == NULL) {
310 		error = ENOMEM;
311 		goto err_teardown;
312 	}
313 	func->varinfo = &scp->binfo;
314 	func->func = SCF_MIDI;
315 	scp->midi = device_add_child(dev, "midi", DEVICE_UNIT_ANY);
316 	device_set_ivars(scp->midi, func);
317 
318 	bus_generic_attach(dev);
319 
320 	return (0);
321 
322 err_teardown:
323 	bus_teardown_intr(dev, resp->irq, scp->ih);
324 err_intr:
325 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
326 err_mem:
327 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
328 err_io:
329 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
330 	return (error);
331 }
332 
333 static int
334 csa_detach(device_t dev)
335 {
336 	csa_res *resp;
337 	sc_p scp;
338 	struct sndcard_func *func;
339 	int err;
340 
341 	scp = device_get_softc(dev);
342 	resp = &scp->res;
343 
344 	if (scp->midi != NULL) {
345 		func = device_get_ivars(scp->midi);
346 		err = device_delete_child(dev, scp->midi);
347 		if (err != 0)
348 			return err;
349 		if (func != NULL)
350 			free(func, M_DEVBUF);
351 		scp->midi = NULL;
352 	}
353 
354 	if (scp->pcm != NULL) {
355 		func = device_get_ivars(scp->pcm);
356 		err = device_delete_child(dev, scp->pcm);
357 		if (err != 0)
358 			return err;
359 		if (func != NULL)
360 			free(func, M_DEVBUF);
361 		scp->pcm = NULL;
362 	}
363 
364 	bus_teardown_intr(dev, resp->irq, scp->ih);
365 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
366 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
367 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
368 
369 	return bus_generic_detach(dev);
370 }
371 
372 static int
373 csa_resume(device_t dev)
374 {
375 	csa_res *resp;
376 	sc_p scp;
377 
378 	scp = device_get_softc(dev);
379 	resp = &scp->res;
380 
381 	/* Initialize the chip. */
382 	if (csa_initialize(scp))
383 		return (ENXIO);
384 
385 	/* Reset the Processor. */
386 	csa_resetdsp(resp);
387 
388 	/* Download the Processor Image to the processor. */
389 	if (csa_downloadimage(resp))
390 		return (ENXIO);
391 
392 	return (bus_generic_resume(dev));
393 }
394 
395 static struct resource *
396 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
397 		   rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
398 {
399 	sc_p scp;
400 	csa_res *resp;
401 	struct resource *res;
402 
403 	scp = device_get_softc(bus);
404 	resp = &scp->res;
405 	switch (type) {
406 	case SYS_RES_IRQ:
407 		if (*rid != 0)
408 			return (NULL);
409 		res = resp->irq;
410 		break;
411 	case SYS_RES_MEMORY:
412 		switch (*rid) {
413 		case PCIR_BAR(0):
414 			res = resp->io;
415 			break;
416 		case PCIR_BAR(1):
417 			res = resp->mem;
418 			break;
419 		default:
420 			return (NULL);
421 		}
422 		break;
423 	default:
424 		return (NULL);
425 	}
426 
427 	return res;
428 }
429 
430 static int
431 csa_release_resource(device_t bus, device_t child, struct resource *r)
432 {
433 	return (0);
434 }
435 
436 /*
437  * The following three functions deal with interrupt handling.
438  * An interrupt is primarily handled by the bridge driver.
439  * The bridge driver then determines the child devices to pass
440  * the interrupt. Certain information of the device can be read
441  * only once(eg the value of HISR). The bridge driver is responsible
442  * to pass such the information to the children.
443  */
444 
445 static int
446 csa_setup_intr(device_t bus, device_t child,
447 	       struct resource *irq, int flags,
448 	       driver_filter_t *filter,
449 	       driver_intr_t *intr, void *arg, void **cookiep)
450 {
451 	sc_p scp;
452 	csa_res *resp;
453 	struct sndcard_func *func;
454 
455 	if (filter != NULL) {
456 		printf("ata-csa.c: we cannot use a filter here\n");
457 		return (EINVAL);
458 	}
459 	scp = device_get_softc(bus);
460 	resp = &scp->res;
461 
462 	/*
463 	 * Look at the function code of the child to determine
464 	 * the appropriate handler for it.
465 	 */
466 	func = device_get_ivars(child);
467 	if (func == NULL || irq != resp->irq)
468 		return (EINVAL);
469 
470 	switch (func->func) {
471 	case SCF_PCM:
472 		scp->pcmintr = intr;
473 		scp->pcmintr_arg = arg;
474 		break;
475 
476 	case SCF_MIDI:
477 		scp->midiintr = intr;
478 		scp->midiintr_arg = arg;
479 		break;
480 
481 	default:
482 		return (EINVAL);
483 	}
484 	*cookiep = scp;
485 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
486 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
487 
488 	return (0);
489 }
490 
491 static int
492 csa_teardown_intr(device_t bus, device_t child,
493 		  struct resource *irq, void *cookie)
494 {
495 	sc_p scp;
496 	csa_res *resp;
497 	struct sndcard_func *func;
498 
499 	scp = device_get_softc(bus);
500 	resp = &scp->res;
501 
502 	/*
503 	 * Look at the function code of the child to determine
504 	 * the appropriate handler for it.
505 	 */
506 	func = device_get_ivars(child);
507 	if (func == NULL || irq != resp->irq || cookie != scp)
508 		return (EINVAL);
509 
510 	switch (func->func) {
511 	case SCF_PCM:
512 		scp->pcmintr = NULL;
513 		scp->pcmintr_arg = NULL;
514 		break;
515 
516 	case SCF_MIDI:
517 		scp->midiintr = NULL;
518 		scp->midiintr_arg = NULL;
519 		break;
520 
521 	default:
522 		return (EINVAL);
523 	}
524 
525 	return (0);
526 }
527 
528 /* The interrupt handler */
529 static void
530 csa_intr(void *arg)
531 {
532 	sc_p scp = arg;
533 	csa_res *resp;
534 	u_int32_t hisr;
535 
536 	resp = &scp->res;
537 
538 	/* Is this interrupt for us? */
539 	hisr = csa_readio(resp, BA0_HISR);
540 	if ((hisr & 0x7fffffff) == 0) {
541 		/* Throw an eoi. */
542 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
543 		return;
544 	}
545 
546 	/*
547 	 * Pass the value of HISR via struct csa_bridgeinfo.
548 	 * The children get access through their ivars.
549 	 */
550 	scp->binfo.hisr = hisr;
551 
552 	/* Invoke the handlers of the children. */
553 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
554 		scp->pcmintr(scp->pcmintr_arg);
555 		hisr &= ~(HISR_VC0 | HISR_VC1);
556 	}
557 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
558 		scp->midiintr(scp->midiintr_arg);
559 		hisr &= ~HISR_MIDI;
560 	}
561 
562 	/* Throw an eoi. */
563 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
564 }
565 
566 static int
567 csa_initialize(sc_p scp)
568 {
569 	int i;
570 	u_int32_t acsts, acisv;
571 	csa_res *resp;
572 
573 	resp = &scp->res;
574 
575 	/*
576 	 * First, blast the clock control register to zero so that the PLL starts
577 	 * out in a known state, and blast the master serial port control register
578 	 * to zero so that the serial ports also start out in a known state.
579 	 */
580 	csa_writeio(resp, BA0_CLKCR1, 0);
581 	csa_writeio(resp, BA0_SERMC1, 0);
582 
583 	/*
584 	 * If we are in AC97 mode, then we must set the part to a host controlled
585 	 * AC-link.  Otherwise, we won't be able to bring up the link.
586 	 */
587 #if 1
588 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
589 #else
590 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
591 #endif /* 1 */
592 
593 	/*
594 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
595 	 * spec) and then drive it high.  This is done for non AC97 modes since
596 	 * there might be logic external to the CS461x that uses the ARST# line
597 	 * for a reset.
598 	 */
599 	csa_writeio(resp, BA0_ACCTL, 1);
600 	DELAY(50);
601 	csa_writeio(resp, BA0_ACCTL, 0);
602 	DELAY(50);
603 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
604 
605 	/*
606 	 * The first thing we do here is to enable sync generation.  As soon
607 	 * as we start receiving bit clock, we'll start producing the SYNC
608 	 * signal.
609 	 */
610 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
611 
612 	/*
613 	 * Now wait for a short while to allow the AC97 part to start
614 	 * generating bit clock (so we don't try to start the PLL without an
615 	 * input clock).
616 	 */
617 	DELAY(50000);
618 
619 	/*
620 	 * Set the serial port timing configuration, so that
621 	 * the clock control circuit gets its clock from the correct place.
622 	 */
623 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
624 	DELAY(700000);
625 
626 	/*
627 	 * Write the selected clock control setup to the hardware.  Do not turn on
628 	 * SWCE yet (if requested), so that the devices clocked by the output of
629 	 * PLL are not clocked until the PLL is stable.
630 	 */
631 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
632 	csa_writeio(resp, BA0_PLLM, 0x3a);
633 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
634 
635 	/*
636 	 * Power up the PLL.
637 	 */
638 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
639 
640 	/*
641 	 * Wait until the PLL has stabilized.
642 	 */
643 	DELAY(5000);
644 
645 	/*
646 	 * Turn on clocking of the core so that we can setup the serial ports.
647 	 */
648 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
649 
650 	/*
651 	 * Fill the serial port FIFOs with silence.
652 	 */
653 	csa_clearserialfifos(resp);
654 
655 	/*
656 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
657 	 */
658 #ifdef notdef
659 	csa_writeio(resp, BA0_SERBSP, 0);
660 #endif /* notdef */
661 
662 	/*
663 	 *  Write the serial port configuration to the part.  The master
664 	 *  enable bit is not set until all other values have been written.
665 	 */
666 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
667 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
668 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
669 
670 	/*
671 	 * Wait for the codec ready signal from the AC97 codec.
672 	 */
673 	acsts = 0;
674 	for (i = 0 ; i < 1000 ; i++) {
675 		/*
676 		 * First, lets wait a short while to let things settle out a bit,
677 		 * and to prevent retrying the read too quickly.
678 		 */
679 		DELAY(125);
680 
681 		/*
682 		 * Read the AC97 status register to see if we've seen a CODEC READY
683 		 * signal from the AC97 codec.
684 		 */
685 		acsts = csa_readio(resp, BA0_ACSTS);
686 		if ((acsts & ACSTS_CRDY) != 0)
687 			break;
688 	}
689 
690 	/*
691 	 * Make sure we sampled CODEC READY.
692 	 */
693 	if ((acsts & ACSTS_CRDY) == 0)
694 		return (ENXIO);
695 
696 	/*
697 	 * Assert the vaid frame signal so that we can start sending commands
698 	 * to the AC97 codec.
699 	 */
700 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
701 
702 	/*
703 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
704 	 * the codec is pumping ADC data across the AC-link.
705 	 */
706 	acisv = 0;
707 	for (i = 0 ; i < 2000 ; i++) {
708 		/*
709 		 * First, lets wait a short while to let things settle out a bit,
710 		 * and to prevent retrying the read too quickly.
711 		 */
712 #ifdef notdef
713 		DELAY(10000000L); /* clw */
714 #else
715 		DELAY(1000);
716 #endif /* notdef */
717 		/*
718 		 * Read the input slot valid register and see if input slots 3 and
719 		 * 4 are valid yet.
720 		 */
721 		acisv = csa_readio(resp, BA0_ACISV);
722 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
723 			break;
724 	}
725 	/*
726 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
727 	 * an error.
728 	 */
729 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
730 		return (ENXIO);
731 
732 	/*
733 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
734 	 * commense the transfer of digital audio data to the AC97 codec.
735 	 */
736 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
737 
738 	/*
739 	 * Power down the DAC and ADC.  We will power them up (if) when we need
740 	 * them.
741 	 */
742 #ifdef notdef
743 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
744 #endif /* notdef */
745 
746 	/*
747 	 * Turn off the Processor by turning off the software clock enable flag in
748 	 * the clock control register.
749 	 */
750 #ifdef notdef
751 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
752 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
753 #endif /* notdef */
754 
755 	/*
756 	 * Enable interrupts on the part.
757 	 */
758 #if 0
759 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
760 #endif /* notdef */
761 
762 	return (0);
763 }
764 
765 void
766 csa_clearserialfifos(csa_res *resp)
767 {
768 	int i, j, pwr;
769 	u_int8_t clkcr1, serbst;
770 
771 	/*
772 	 * See if the devices are powered down.  If so, we must power them up first
773 	 * or they will not respond.
774 	 */
775 	pwr = 1;
776 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
777 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
778 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
779 		pwr = 0;
780 	}
781 
782 	/*
783 	 * We want to clear out the serial port FIFOs so we don't end up playing
784 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
785 	 * with zero (silence).
786 	 */
787 	csa_writeio(resp, BA0_SERBWP, 0);
788 
789 	/* Fill all 256 sample FIFO locations. */
790 	serbst = 0;
791 	for (i = 0 ; i < 256 ; i++) {
792 		/* Make sure the previous FIFO write operation has completed. */
793 		for (j = 0 ; j < 5 ; j++) {
794 			DELAY(100);
795 			serbst = csa_readio(resp, BA0_SERBST);
796 			if ((serbst & SERBST_WBSY) == 0)
797 				break;
798 		}
799 		if ((serbst & SERBST_WBSY) != 0) {
800 			if (!pwr)
801 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
802 		}
803 		/* Write the serial port FIFO index. */
804 		csa_writeio(resp, BA0_SERBAD, i);
805 		/* Tell the serial port to load the new value into the FIFO location. */
806 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
807 	}
808 	/*
809 	 *  Now, if we powered up the devices, then power them back down again.
810 	 *  This is kinda ugly, but should never happen.
811 	 */
812 	if (!pwr)
813 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
814 }
815 
816 void
817 csa_resetdsp(csa_res *resp)
818 {
819 	int i;
820 
821 	/*
822 	 * Write the reset bit of the SP control register.
823 	 */
824 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
825 
826 	/*
827 	 * Write the control register.
828 	 */
829 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
830 
831 	/*
832 	 * Clear the trap registers.
833 	 */
834 	for (i = 0 ; i < 8 ; i++) {
835 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
836 		csa_writemem(resp, BA1_TWPR, 0xffff);
837 	}
838 	csa_writemem(resp, BA1_DREG, 0);
839 
840 	/*
841 	 * Set the frame timer to reflect the number of cycles per frame.
842 	 */
843 	csa_writemem(resp, BA1_FRMT, 0xadf);
844 }
845 
846 static int
847 csa_downloadimage(csa_res *resp)
848 {
849 	int ret;
850 	u_long ul, offset;
851 
852 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
853 	        /*
854 	         * DMA this block from host memory to the appropriate
855 	         * memory on the CSDevice.
856 	         */
857 		ret = csa_transferimage(resp,
858 		    cs461x_firmware.BA1Array + offset,
859 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
860 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
861 		if (ret)
862 			return (ret);
863 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
864 	}
865 	return (0);
866 }
867 
868 static int
869 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
870 {
871 	u_long ul;
872 
873 	/*
874 	 * We do not allow DMAs from host memory to host memory (although the DMA
875 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
876 	 * in size (because that DMA can not do that).  Return an error if either
877 	 * of these conditions exist.
878 	 */
879 	if ((len & 0x3) != 0)
880 		return (EINVAL);
881 
882 	/* Check the destination address that it is a multiple of 4 */
883 	if ((dest & 0x3) != 0)
884 		return (EINVAL);
885 
886 	/* Write the buffer out. */
887 	for (ul = 0 ; ul < len ; ul += 4)
888 		csa_writemem(resp, dest + ul, src[ul >> 2]);
889 	return (0);
890 }
891 
892 int
893 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
894 {
895 	int i;
896 	u_int32_t acctl, acsts;
897 
898 	/*
899 	 * Make sure that there is not data sitting around from a previous
900 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
901 	 */
902 	csa_readio(resp, BA0_ACSDA);
903 
904 	/*
905 	 * Setup the AC97 control registers on the CS461x to send the
906 	 * appropriate command to the AC97 to perform the read.
907 	 * ACCAD = Command Address Register = 46Ch
908 	 * ACCDA = Command Data Register = 470h
909 	 * ACCTL = Control Register = 460h
910 	 * set DCV - will clear when process completed
911 	 * set CRW - Read command
912 	 * set VFRM - valid frame enabled
913 	 * set ESYN - ASYNC generation enabled
914 	 * set RSTN - ARST# inactive, AC97 codec not reset
915 	 */
916 
917 	/*
918 	 * Get the actual AC97 register from the offset
919 	 */
920 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
921 	csa_writeio(resp, BA0_ACCDA, 0);
922 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
923 
924 	/*
925 	 * Wait for the read to occur.
926 	 */
927 	acctl = 0;
928 	for (i = 0 ; i < 10 ; i++) {
929 		/*
930 		 * First, we want to wait for a short time.
931 		 */
932 		DELAY(25);
933 
934 		/*
935 		 * Now, check to see if the read has completed.
936 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
937 		 */
938 		acctl = csa_readio(resp, BA0_ACCTL);
939 		if ((acctl & ACCTL_DCV) == 0)
940 			break;
941 	}
942 
943 	/*
944 	 * Make sure the read completed.
945 	 */
946 	if ((acctl & ACCTL_DCV) != 0)
947 		return (EAGAIN);
948 
949 	/*
950 	 * Wait for the valid status bit to go active.
951 	 */
952 	acsts = 0;
953 	for (i = 0 ; i < 10 ; i++) {
954 		/*
955 		 * Read the AC97 status register.
956 		 * ACSTS = Status Register = 464h
957 		 */
958 		acsts = csa_readio(resp, BA0_ACSTS);
959 		/*
960 		 * See if we have valid status.
961 		 * VSTS - Valid Status
962 		 */
963 		if ((acsts & ACSTS_VSTS) != 0)
964 			break;
965 		/*
966 		 * Wait for a short while.
967 		 */
968 		 DELAY(25);
969 	}
970 
971 	/*
972 	 * Make sure we got valid status.
973 	 */
974 	if ((acsts & ACSTS_VSTS) == 0)
975 		return (EAGAIN);
976 
977 	/*
978 	 * Read the data returned from the AC97 register.
979 	 * ACSDA = Status Data Register = 474h
980 	 */
981 	*data = csa_readio(resp, BA0_ACSDA);
982 
983 	return (0);
984 }
985 
986 int
987 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
988 {
989 	int i;
990 	u_int32_t acctl;
991 
992 	/*
993 	 * Setup the AC97 control registers on the CS461x to send the
994 	 * appropriate command to the AC97 to perform the write.
995 	 * ACCAD = Command Address Register = 46Ch
996 	 * ACCDA = Command Data Register = 470h
997 	 * ACCTL = Control Register = 460h
998 	 * set DCV - will clear when process completed
999 	 * set VFRM - valid frame enabled
1000 	 * set ESYN - ASYNC generation enabled
1001 	 * set RSTN - ARST# inactive, AC97 codec not reset
1002 	 */
1003 
1004 	/*
1005 	 * Get the actual AC97 register from the offset
1006 	 */
1007 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
1008 	csa_writeio(resp, BA0_ACCDA, data);
1009 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1010 
1011 	/*
1012 	 * Wait for the write to occur.
1013 	 */
1014 	acctl = 0;
1015 	for (i = 0 ; i < 10 ; i++) {
1016 		/*
1017 		 * First, we want to wait for a short time.
1018 		 */
1019 		DELAY(25);
1020 
1021 		/*
1022 		 * Now, check to see if the read has completed.
1023 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1024 		 */
1025 		acctl = csa_readio(resp, BA0_ACCTL);
1026 		if ((acctl & ACCTL_DCV) == 0)
1027 			break;
1028 	}
1029 
1030 	/*
1031 	 * Make sure the write completed.
1032 	 */
1033 	if ((acctl & ACCTL_DCV) != 0)
1034 		return (EAGAIN);
1035 
1036 	return (0);
1037 }
1038 
1039 u_int32_t
1040 csa_readio(csa_res *resp, u_long offset)
1041 {
1042 	u_int32_t ul;
1043 
1044 	if (offset < BA0_AC97_RESET)
1045 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1046 	else {
1047 		if (csa_readcodec(resp, offset, &ul))
1048 			ul = 0;
1049 		return (ul);
1050 	}
1051 }
1052 
1053 void
1054 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1055 {
1056 	if (offset < BA0_AC97_RESET)
1057 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1058 	else
1059 		csa_writecodec(resp, offset, data);
1060 }
1061 
1062 u_int32_t
1063 csa_readmem(csa_res *resp, u_long offset)
1064 {
1065 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1066 }
1067 
1068 void
1069 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1070 {
1071 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1072 }
1073 
1074 static device_method_t csa_methods[] = {
1075 	/* Device interface */
1076 	DEVMETHOD(device_probe,		csa_probe),
1077 	DEVMETHOD(device_attach,	csa_attach),
1078 	DEVMETHOD(device_detach,	csa_detach),
1079 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1080 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1081 	DEVMETHOD(device_resume,	csa_resume),
1082 
1083 	/* Bus interface */
1084 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1085 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1086 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1087 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1088 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1089 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1090 
1091 	DEVMETHOD_END
1092 };
1093 
1094 static driver_t csa_driver = {
1095 	"csa",
1096 	csa_methods,
1097 	sizeof(struct csa_softc),
1098 };
1099 
1100 /*
1101  * csa can be attached to a pci bus.
1102  */
1103 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0);
1104 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1105 MODULE_VERSION(snd_csa, 1);
1106