xref: /freebsd/sys/dev/sk/if_sk.c (revision a0b9e2e854027e6ff61fb075a1309dbc71c42b54)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-4-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000
7  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by Bill Paul.
20  * 4. Neither the name of the author nor the names of any co-contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 /*
56  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
57  * the SK-984x series adapters, both single port and dual port.
58  * References:
59  * 	The XaQti XMAC II datasheet,
60  *  https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
61  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
62  *
63  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
64  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
65  * convenience to others until Vitesse corrects this problem:
66  *
67  * https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
68  *
69  * Written by Bill Paul <wpaul@ee.columbia.edu>
70  * Department of Electrical Engineering
71  * Columbia University, New York City
72  */
73 /*
74  * The SysKonnect gigabit ethernet adapters consist of two main
75  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
76  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
77  * components and a PHY while the GEnesis controller provides a PCI
78  * interface with DMA support. Each card may have between 512K and
79  * 2MB of SRAM on board depending on the configuration.
80  *
81  * The SysKonnect GEnesis controller can have either one or two XMAC
82  * chips connected to it, allowing single or dual port NIC configurations.
83  * SysKonnect has the distinction of being the only vendor on the market
84  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
85  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
86  * XMAC registers. This driver takes advantage of these features to allow
87  * both XMACs to operate as independent interfaces.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/bus.h>
93 #include <sys/endian.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sockio.h>
100 #include <sys/queue.h>
101 #include <sys/sysctl.h>
102 
103 #include <net/bpf.h>
104 #include <net/ethernet.h>
105 #include <net/if.h>
106 #include <net/if_var.h>
107 #include <net/if_arp.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/if_vlan_var.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 
117 #include <machine/bus.h>
118 #include <machine/in_cksum.h>
119 #include <machine/resource.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/brgphyreg.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #if 0
130 #define SK_USEIOSPACE
131 #endif
132 
133 #include <dev/sk/if_skreg.h>
134 #include <dev/sk/xmaciireg.h>
135 #include <dev/sk/yukonreg.h>
136 
137 MODULE_DEPEND(sk, pci, 1, 1, 1);
138 MODULE_DEPEND(sk, ether, 1, 1, 1);
139 MODULE_DEPEND(sk, miibus, 1, 1, 1);
140 
141 /* "device miibus" required.  See GENERIC if you get errors here. */
142 #include "miibus_if.h"
143 
144 static const struct sk_type sk_devs[] = {
145 	{
146 		VENDORID_SK,
147 		DEVICEID_SK_V1,
148 		"SysKonnect Gigabit Ethernet (V1.0)"
149 	},
150 	{
151 		VENDORID_SK,
152 		DEVICEID_SK_V2,
153 		"SysKonnect Gigabit Ethernet (V2.0)"
154 	},
155 	{
156 		VENDORID_MARVELL,
157 		DEVICEID_SK_V2,
158 		"Marvell Gigabit Ethernet"
159 	},
160 	{
161 		VENDORID_MARVELL,
162 		DEVICEID_BELKIN_5005,
163 		"Belkin F5D5005 Gigabit Ethernet"
164 	},
165 	{
166 		VENDORID_3COM,
167 		DEVICEID_3COM_3C940,
168 		"3Com 3C940 Gigabit Ethernet"
169 	},
170 	{
171 		VENDORID_LINKSYS,
172 		DEVICEID_LINKSYS_EG1032,
173 		"Linksys EG1032 Gigabit Ethernet"
174 	},
175 	{
176 		VENDORID_DLINK,
177 		DEVICEID_DLINK_DGE530T_A1,
178 		"D-Link DGE-530T Gigabit Ethernet"
179 	},
180 	{
181 		VENDORID_DLINK,
182 		DEVICEID_DLINK_DGE530T_B1,
183 		"D-Link DGE-530T Gigabit Ethernet"
184 	},
185 	{ 0, 0, NULL }
186 };
187 
188 static int skc_probe(device_t);
189 static int skc_attach(device_t);
190 static int skc_detach(device_t);
191 static int skc_shutdown(device_t);
192 static int skc_suspend(device_t);
193 static int skc_resume(device_t);
194 static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
195 static int sk_detach(device_t);
196 static int sk_probe(device_t);
197 static int sk_attach(device_t);
198 static void sk_tick(void *);
199 static void sk_yukon_tick(void *);
200 static void sk_intr(void *);
201 static void sk_intr_xmac(struct sk_if_softc *);
202 static void sk_intr_bcom(struct sk_if_softc *);
203 static void sk_intr_yukon(struct sk_if_softc *);
204 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
205 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
206 static void sk_rxeof(struct sk_if_softc *);
207 static void sk_jumbo_rxeof(struct sk_if_softc *);
208 static void sk_txeof(struct sk_if_softc *);
209 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
210 static int sk_encap(struct sk_if_softc *, struct mbuf **);
211 static void sk_start(struct ifnet *);
212 static void sk_start_locked(struct ifnet *);
213 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
214 static void sk_init(void *);
215 static void sk_init_locked(struct sk_if_softc *);
216 static void sk_init_xmac(struct sk_if_softc *);
217 static void sk_init_yukon(struct sk_if_softc *);
218 static void sk_stop(struct sk_if_softc *);
219 static void sk_watchdog(void *);
220 static int sk_ifmedia_upd(struct ifnet *);
221 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
222 static void sk_reset(struct sk_softc *);
223 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
224 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
225 static int sk_newbuf(struct sk_if_softc *, int);
226 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
227 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
228 static int sk_dma_alloc(struct sk_if_softc *);
229 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
230 static void sk_dma_free(struct sk_if_softc *);
231 static void sk_dma_jumbo_free(struct sk_if_softc *);
232 static int sk_init_rx_ring(struct sk_if_softc *);
233 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
234 static void sk_init_tx_ring(struct sk_if_softc *);
235 static u_int32_t sk_win_read_4(struct sk_softc *, int);
236 static u_int16_t sk_win_read_2(struct sk_softc *, int);
237 static u_int8_t sk_win_read_1(struct sk_softc *, int);
238 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
239 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
241 
242 static int sk_miibus_readreg(device_t, int, int);
243 static int sk_miibus_writereg(device_t, int, int, int);
244 static void sk_miibus_statchg(device_t);
245 
246 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
247 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
248 						int);
249 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
250 
251 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
252 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
253 						int);
254 static void sk_marv_miibus_statchg(struct sk_if_softc *);
255 
256 static uint32_t sk_xmchash(const uint8_t *);
257 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
258 static void sk_rxfilter(struct sk_if_softc *);
259 static void sk_rxfilter_genesis(struct sk_if_softc *);
260 static void sk_rxfilter_yukon(struct sk_if_softc *);
261 
262 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
263 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
264 
265 /* Tunables. */
266 static int jumbo_disable = 0;
267 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
268 
269 /*
270  * It seems that SK-NET GENESIS supports very simple checksum offload
271  * capability for Tx and I believe it can generate 0 checksum value for
272  * UDP packets in Tx as the hardware can't differenciate UDP packets from
273  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
274  * means sender didn't perforam checksum computation. For the safety I
275  * disabled UDP checksum offload capability at the moment. Alternatively
276  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
277  * offload routine.
278  */
279 #define SK_CSUM_FEATURES	(CSUM_TCP)
280 
281 /*
282  * Note that we have newbus methods for both the GEnesis controller
283  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
284  * the miibus code is a child of the XMACs. We need to do it this way
285  * so that the miibus drivers can access the PHY registers on the
286  * right PHY. It's not quite what I had in mind, but it's the only
287  * design that achieves the desired effect.
288  */
289 static device_method_t skc_methods[] = {
290 	/* Device interface */
291 	DEVMETHOD(device_probe,		skc_probe),
292 	DEVMETHOD(device_attach,	skc_attach),
293 	DEVMETHOD(device_detach,	skc_detach),
294 	DEVMETHOD(device_suspend,	skc_suspend),
295 	DEVMETHOD(device_resume,	skc_resume),
296 	DEVMETHOD(device_shutdown,	skc_shutdown),
297 
298 	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
299 
300 	DEVMETHOD_END
301 };
302 
303 static driver_t skc_driver = {
304 	"skc",
305 	skc_methods,
306 	sizeof(struct sk_softc)
307 };
308 
309 static devclass_t skc_devclass;
310 
311 static device_method_t sk_methods[] = {
312 	/* Device interface */
313 	DEVMETHOD(device_probe,		sk_probe),
314 	DEVMETHOD(device_attach,	sk_attach),
315 	DEVMETHOD(device_detach,	sk_detach),
316 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
317 
318 	/* MII interface */
319 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
320 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
321 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
322 
323 	DEVMETHOD_END
324 };
325 
326 static driver_t sk_driver = {
327 	"sk",
328 	sk_methods,
329 	sizeof(struct sk_if_softc)
330 };
331 
332 static devclass_t sk_devclass;
333 
334 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
335 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
336 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
337 
338 static struct resource_spec sk_res_spec_io[] = {
339 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
340 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
341 	{ -1,			0,		0 }
342 };
343 
344 static struct resource_spec sk_res_spec_mem[] = {
345 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
346 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
347 	{ -1,			0,		0 }
348 };
349 
350 #define SK_SETBIT(sc, reg, x)		\
351 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
352 
353 #define SK_CLRBIT(sc, reg, x)		\
354 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
355 
356 #define SK_WIN_SETBIT_4(sc, reg, x)	\
357 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
358 
359 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
360 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
361 
362 #define SK_WIN_SETBIT_2(sc, reg, x)	\
363 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
364 
365 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
366 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
367 
368 static u_int32_t
369 sk_win_read_4(sc, reg)
370 	struct sk_softc		*sc;
371 	int			reg;
372 {
373 #ifdef SK_USEIOSPACE
374 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
375 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
376 #else
377 	return(CSR_READ_4(sc, reg));
378 #endif
379 }
380 
381 static u_int16_t
382 sk_win_read_2(sc, reg)
383 	struct sk_softc		*sc;
384 	int			reg;
385 {
386 #ifdef SK_USEIOSPACE
387 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
388 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
389 #else
390 	return(CSR_READ_2(sc, reg));
391 #endif
392 }
393 
394 static u_int8_t
395 sk_win_read_1(sc, reg)
396 	struct sk_softc		*sc;
397 	int			reg;
398 {
399 #ifdef SK_USEIOSPACE
400 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
401 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
402 #else
403 	return(CSR_READ_1(sc, reg));
404 #endif
405 }
406 
407 static void
408 sk_win_write_4(sc, reg, val)
409 	struct sk_softc		*sc;
410 	int			reg;
411 	u_int32_t		val;
412 {
413 #ifdef SK_USEIOSPACE
414 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
415 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
416 #else
417 	CSR_WRITE_4(sc, reg, val);
418 #endif
419 	return;
420 }
421 
422 static void
423 sk_win_write_2(sc, reg, val)
424 	struct sk_softc		*sc;
425 	int			reg;
426 	u_int32_t		val;
427 {
428 #ifdef SK_USEIOSPACE
429 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
430 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
431 #else
432 	CSR_WRITE_2(sc, reg, val);
433 #endif
434 	return;
435 }
436 
437 static void
438 sk_win_write_1(sc, reg, val)
439 	struct sk_softc		*sc;
440 	int			reg;
441 	u_int32_t		val;
442 {
443 #ifdef SK_USEIOSPACE
444 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
445 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
446 #else
447 	CSR_WRITE_1(sc, reg, val);
448 #endif
449 	return;
450 }
451 
452 static int
453 sk_miibus_readreg(dev, phy, reg)
454 	device_t		dev;
455 	int			phy, reg;
456 {
457 	struct sk_if_softc	*sc_if;
458 	int			v;
459 
460 	sc_if = device_get_softc(dev);
461 
462 	SK_IF_MII_LOCK(sc_if);
463 	switch(sc_if->sk_softc->sk_type) {
464 	case SK_GENESIS:
465 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
466 		break;
467 	case SK_YUKON:
468 	case SK_YUKON_LITE:
469 	case SK_YUKON_LP:
470 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
471 		break;
472 	default:
473 		v = 0;
474 		break;
475 	}
476 	SK_IF_MII_UNLOCK(sc_if);
477 
478 	return (v);
479 }
480 
481 static int
482 sk_miibus_writereg(dev, phy, reg, val)
483 	device_t		dev;
484 	int			phy, reg, val;
485 {
486 	struct sk_if_softc	*sc_if;
487 	int			v;
488 
489 	sc_if = device_get_softc(dev);
490 
491 	SK_IF_MII_LOCK(sc_if);
492 	switch(sc_if->sk_softc->sk_type) {
493 	case SK_GENESIS:
494 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
495 		break;
496 	case SK_YUKON:
497 	case SK_YUKON_LITE:
498 	case SK_YUKON_LP:
499 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
500 		break;
501 	default:
502 		v = 0;
503 		break;
504 	}
505 	SK_IF_MII_UNLOCK(sc_if);
506 
507 	return (v);
508 }
509 
510 static void
511 sk_miibus_statchg(dev)
512 	device_t		dev;
513 {
514 	struct sk_if_softc	*sc_if;
515 
516 	sc_if = device_get_softc(dev);
517 
518 	SK_IF_MII_LOCK(sc_if);
519 	switch(sc_if->sk_softc->sk_type) {
520 	case SK_GENESIS:
521 		sk_xmac_miibus_statchg(sc_if);
522 		break;
523 	case SK_YUKON:
524 	case SK_YUKON_LITE:
525 	case SK_YUKON_LP:
526 		sk_marv_miibus_statchg(sc_if);
527 		break;
528 	}
529 	SK_IF_MII_UNLOCK(sc_if);
530 
531 	return;
532 }
533 
534 static int
535 sk_xmac_miibus_readreg(sc_if, phy, reg)
536 	struct sk_if_softc	*sc_if;
537 	int			phy, reg;
538 {
539 	int			i;
540 
541 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
542 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
543 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
544 		for (i = 0; i < SK_TIMEOUT; i++) {
545 			DELAY(1);
546 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
547 			    XM_MMUCMD_PHYDATARDY)
548 				break;
549 		}
550 
551 		if (i == SK_TIMEOUT) {
552 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
553 			return(0);
554 		}
555 	}
556 	DELAY(1);
557 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
558 
559 	return(i);
560 }
561 
562 static int
563 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
564 	struct sk_if_softc	*sc_if;
565 	int			phy, reg, val;
566 {
567 	int			i;
568 
569 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
570 	for (i = 0; i < SK_TIMEOUT; i++) {
571 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
572 			break;
573 	}
574 
575 	if (i == SK_TIMEOUT) {
576 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
577 		return (ETIMEDOUT);
578 	}
579 
580 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
581 	for (i = 0; i < SK_TIMEOUT; i++) {
582 		DELAY(1);
583 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
584 			break;
585 	}
586 	if (i == SK_TIMEOUT)
587 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
588 
589 	return(0);
590 }
591 
592 static void
593 sk_xmac_miibus_statchg(sc_if)
594 	struct sk_if_softc	*sc_if;
595 {
596 	struct mii_data		*mii;
597 
598 	mii = device_get_softc(sc_if->sk_miibus);
599 
600 	/*
601 	 * If this is a GMII PHY, manually set the XMAC's
602 	 * duplex mode accordingly.
603 	 */
604 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
605 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
606 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607 		} else {
608 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
609 		}
610 	}
611 }
612 
613 static int
614 sk_marv_miibus_readreg(sc_if, phy, reg)
615 	struct sk_if_softc	*sc_if;
616 	int			phy, reg;
617 {
618 	u_int16_t		val;
619 	int			i;
620 
621 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
622 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
623 		return(0);
624 	}
625 
626         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
627 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
628 
629 	for (i = 0; i < SK_TIMEOUT; i++) {
630 		DELAY(1);
631 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
632 		if (val & YU_SMICR_READ_VALID)
633 			break;
634 	}
635 
636 	if (i == SK_TIMEOUT) {
637 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
638 		return(0);
639 	}
640 
641 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
642 
643 	return(val);
644 }
645 
646 static int
647 sk_marv_miibus_writereg(sc_if, phy, reg, val)
648 	struct sk_if_softc	*sc_if;
649 	int			phy, reg, val;
650 {
651 	int			i;
652 
653 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
654 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
655 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
656 
657 	for (i = 0; i < SK_TIMEOUT; i++) {
658 		DELAY(1);
659 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
660 			break;
661 	}
662 	if (i == SK_TIMEOUT)
663 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
664 
665 	return(0);
666 }
667 
668 static void
669 sk_marv_miibus_statchg(sc_if)
670 	struct sk_if_softc	*sc_if;
671 {
672 	return;
673 }
674 
675 #define HASH_BITS		6
676 
677 static u_int32_t
678 sk_xmchash(addr)
679 	const uint8_t *addr;
680 {
681 	uint32_t crc;
682 
683 	/* Compute CRC for the address value. */
684 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
685 
686 	return (~crc & ((1 << HASH_BITS) - 1));
687 }
688 
689 static void
690 sk_setfilt(sc_if, addr, slot)
691 	struct sk_if_softc	*sc_if;
692 	u_int16_t		*addr;
693 	int			slot;
694 {
695 	int			base;
696 
697 	base = XM_RXFILT_ENTRY(slot);
698 
699 	SK_XM_WRITE_2(sc_if, base, addr[0]);
700 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
701 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
702 
703 	return;
704 }
705 
706 static void
707 sk_rxfilter(sc_if)
708 	struct sk_if_softc	*sc_if;
709 {
710 	struct sk_softc		*sc;
711 
712 	SK_IF_LOCK_ASSERT(sc_if);
713 
714 	sc = sc_if->sk_softc;
715 	if (sc->sk_type == SK_GENESIS)
716 		sk_rxfilter_genesis(sc_if);
717 	else
718 		sk_rxfilter_yukon(sc_if);
719 }
720 
721 struct sk_add_maddr_genesis_ctx {
722 	struct sk_if_softc *sc_if;
723 	uint32_t hashes[2];
724 	uint32_t mode;
725 };
726 
727 static u_int
728 sk_add_maddr_genesis(void *arg, struct sockaddr_dl *sdl, u_int cnt)
729 {
730 	struct sk_add_maddr_genesis_ctx *ctx = arg;
731 	int h;
732 
733 	/*
734 	 * Program the first XM_RXFILT_MAX multicast groups
735 	 * into the perfect filter.
736 	 */
737 	if (cnt + 1 < XM_RXFILT_MAX) {
738 		sk_setfilt(ctx->sc_if, (uint16_t *)LLADDR(sdl), cnt + 1);
739 		ctx->mode |= XM_MODE_RX_USE_PERFECT;
740 		return (1);
741 	}
742 	h = sk_xmchash((const uint8_t *)LLADDR(sdl));
743 	if (h < 32)
744 		ctx->hashes[0] |= (1 << h);
745 	else
746 		ctx->hashes[1] |= (1 << (h - 32));
747 	ctx->mode |= XM_MODE_RX_USE_HASH;
748 
749 	return (1);
750 }
751 
752 static void
753 sk_rxfilter_genesis(struct sk_if_softc *sc_if)
754 {
755 	struct ifnet		*ifp = sc_if->sk_ifp;
756 	struct sk_add_maddr_genesis_ctx ctx = { sc_if, { 0, 0 } };
757 	int			i;
758 	u_int16_t		dummy[] = { 0, 0, 0 };
759 
760 	SK_IF_LOCK_ASSERT(sc_if);
761 
762 	ctx.mode = SK_XM_READ_4(sc_if, XM_MODE);
763 	ctx.mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
764 	    XM_MODE_RX_USE_PERFECT);
765 	/* First, zot all the existing perfect filters. */
766 	for (i = 1; i < XM_RXFILT_MAX; i++)
767 		sk_setfilt(sc_if, dummy, i);
768 
769 	/* Now program new ones. */
770 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
771 		if (ifp->if_flags & IFF_ALLMULTI)
772 			ctx.mode |= XM_MODE_RX_USE_HASH;
773 		if (ifp->if_flags & IFF_PROMISC)
774 			ctx.mode |= XM_MODE_RX_PROMISC;
775 		ctx.hashes[0] = 0xFFFFFFFF;
776 		ctx.hashes[1] = 0xFFFFFFFF;
777 	} else
778 		/* XXX want to maintain reverse semantics */
779 		if_foreach_llmaddr(ifp, sk_add_maddr_genesis, &ctx);
780 
781 	SK_XM_WRITE_4(sc_if, XM_MODE, ctx.mode);
782 	SK_XM_WRITE_4(sc_if, XM_MAR0, ctx.hashes[0]);
783 	SK_XM_WRITE_4(sc_if, XM_MAR2, ctx.hashes[1]);
784 }
785 
786 static u_int
787 sk_hash_maddr_yukon(void *arg, struct sockaddr_dl *sdl, u_int cnt)
788 {
789 	uint32_t crc, *hashes = arg;
790 
791 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
792 	/* Just want the 6 least significant bits. */
793 	crc &= 0x3f;
794 	/* Set the corresponding bit in the hash table. */
795 	hashes[crc >> 5] |= 1 << (crc & 0x1f);
796 
797 	return (1);
798 }
799 
800 static void
801 sk_rxfilter_yukon(struct sk_if_softc *sc_if)
802 {
803 	struct ifnet		*ifp;
804 	uint32_t		hashes[2] = { 0, 0 }, mode;
805 
806 	SK_IF_LOCK_ASSERT(sc_if);
807 
808 	ifp = sc_if->sk_ifp;
809 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
810 	if (ifp->if_flags & IFF_PROMISC)
811 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
812 	else if (ifp->if_flags & IFF_ALLMULTI) {
813 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
814 		hashes[0] = 0xFFFFFFFF;
815 		hashes[1] = 0xFFFFFFFF;
816 	} else {
817 		mode |= YU_RCR_UFLEN;
818 		if_foreach_llmaddr(ifp, sk_hash_maddr_yukon, hashes);
819 		if (hashes[0] != 0 || hashes[1] != 0)
820 			mode |= YU_RCR_MUFLEN;
821 	}
822 
823 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
824 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
825 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
826 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
827 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
828 }
829 
830 static int
831 sk_init_rx_ring(sc_if)
832 	struct sk_if_softc	*sc_if;
833 {
834 	struct sk_ring_data	*rd;
835 	bus_addr_t		addr;
836 	u_int32_t		csum_start;
837 	int			i;
838 
839 	sc_if->sk_cdata.sk_rx_cons = 0;
840 
841 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
842 	    ETHER_HDR_LEN;
843 	rd = &sc_if->sk_rdata;
844 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
845 	for (i = 0; i < SK_RX_RING_CNT; i++) {
846 		if (sk_newbuf(sc_if, i) != 0)
847 			return (ENOBUFS);
848 		if (i == (SK_RX_RING_CNT - 1))
849 			addr = SK_RX_RING_ADDR(sc_if, 0);
850 		else
851 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
852 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
853 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
854 	}
855 
856 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
857 	    sc_if->sk_cdata.sk_rx_ring_map,
858 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
859 
860 	return(0);
861 }
862 
863 static int
864 sk_init_jumbo_rx_ring(sc_if)
865 	struct sk_if_softc	*sc_if;
866 {
867 	struct sk_ring_data	*rd;
868 	bus_addr_t		addr;
869 	u_int32_t		csum_start;
870 	int			i;
871 
872 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
873 
874 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
875 	    ETHER_HDR_LEN;
876 	rd = &sc_if->sk_rdata;
877 	bzero(rd->sk_jumbo_rx_ring,
878 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
879 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
880 		if (sk_jumbo_newbuf(sc_if, i) != 0)
881 			return (ENOBUFS);
882 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
883 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
884 		else
885 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
886 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
887 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
888 	}
889 
890 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
891 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
892 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
893 
894 	return (0);
895 }
896 
897 static void
898 sk_init_tx_ring(sc_if)
899 	struct sk_if_softc	*sc_if;
900 {
901 	struct sk_ring_data	*rd;
902 	struct sk_txdesc	*txd;
903 	bus_addr_t		addr;
904 	int			i;
905 
906 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
907 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
908 
909 	sc_if->sk_cdata.sk_tx_prod = 0;
910 	sc_if->sk_cdata.sk_tx_cons = 0;
911 	sc_if->sk_cdata.sk_tx_cnt = 0;
912 
913 	rd = &sc_if->sk_rdata;
914 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
915 	for (i = 0; i < SK_TX_RING_CNT; i++) {
916 		if (i == (SK_TX_RING_CNT - 1))
917 			addr = SK_TX_RING_ADDR(sc_if, 0);
918 		else
919 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
920 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
921 		txd = &sc_if->sk_cdata.sk_txdesc[i];
922 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
923 	}
924 
925 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
926 	    sc_if->sk_cdata.sk_tx_ring_map,
927 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
928 }
929 
930 static __inline void
931 sk_discard_rxbuf(sc_if, idx)
932 	struct sk_if_softc	*sc_if;
933 	int			idx;
934 {
935 	struct sk_rx_desc	*r;
936 	struct sk_rxdesc	*rxd;
937 	struct mbuf		*m;
938 
939 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
940 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
941 	m = rxd->rx_m;
942 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
943 }
944 
945 static __inline void
946 sk_discard_jumbo_rxbuf(sc_if, idx)
947 	struct sk_if_softc	*sc_if;
948 	int			idx;
949 {
950 	struct sk_rx_desc	*r;
951 	struct sk_rxdesc	*rxd;
952 	struct mbuf		*m;
953 
954 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
955 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
956 	m = rxd->rx_m;
957 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
958 }
959 
960 static int
961 sk_newbuf(sc_if, idx)
962 	struct sk_if_softc	*sc_if;
963 	int 			idx;
964 {
965 	struct sk_rx_desc	*r;
966 	struct sk_rxdesc	*rxd;
967 	struct mbuf		*m;
968 	bus_dma_segment_t	segs[1];
969 	bus_dmamap_t		map;
970 	int			nsegs;
971 
972 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
973 	if (m == NULL)
974 		return (ENOBUFS);
975 	m->m_len = m->m_pkthdr.len = MCLBYTES;
976 	m_adj(m, ETHER_ALIGN);
977 
978 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
979 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
980 		m_freem(m);
981 		return (ENOBUFS);
982 	}
983 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
984 
985 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
986 	if (rxd->rx_m != NULL) {
987 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
988 		    BUS_DMASYNC_POSTREAD);
989 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
990 	}
991 	map = rxd->rx_dmamap;
992 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
993 	sc_if->sk_cdata.sk_rx_sparemap = map;
994 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
995 	    BUS_DMASYNC_PREREAD);
996 	rxd->rx_m = m;
997 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
998 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
999 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1000 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1001 
1002 	return (0);
1003 }
1004 
1005 static int
1006 sk_jumbo_newbuf(sc_if, idx)
1007 	struct sk_if_softc	*sc_if;
1008 	int			idx;
1009 {
1010 	struct sk_rx_desc	*r;
1011 	struct sk_rxdesc	*rxd;
1012 	struct mbuf		*m;
1013 	bus_dma_segment_t	segs[1];
1014 	bus_dmamap_t		map;
1015 	int			nsegs;
1016 
1017 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1018 	if (m == NULL)
1019 		return (ENOBUFS);
1020 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1021 	/*
1022 	 * Adjust alignment so packet payload begins on a
1023 	 * longword boundary. Mandatory for Alpha, useful on
1024 	 * x86 too.
1025 	 */
1026 	m_adj(m, ETHER_ALIGN);
1027 
1028 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1029 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1030 		m_freem(m);
1031 		return (ENOBUFS);
1032 	}
1033 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1034 
1035 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1036 	if (rxd->rx_m != NULL) {
1037 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1038 		    BUS_DMASYNC_POSTREAD);
1039 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1040 		    rxd->rx_dmamap);
1041 	}
1042 	map = rxd->rx_dmamap;
1043 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1044 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1045 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1046 	    BUS_DMASYNC_PREREAD);
1047 	rxd->rx_m = m;
1048 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1049 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1050 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1051 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1052 
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Set media options.
1058  */
1059 static int
1060 sk_ifmedia_upd(ifp)
1061 	struct ifnet		*ifp;
1062 {
1063 	struct sk_if_softc	*sc_if = ifp->if_softc;
1064 	struct mii_data		*mii;
1065 
1066 	mii = device_get_softc(sc_if->sk_miibus);
1067 	sk_init(sc_if);
1068 	mii_mediachg(mii);
1069 
1070 	return(0);
1071 }
1072 
1073 /*
1074  * Report current media status.
1075  */
1076 static void
1077 sk_ifmedia_sts(ifp, ifmr)
1078 	struct ifnet		*ifp;
1079 	struct ifmediareq	*ifmr;
1080 {
1081 	struct sk_if_softc	*sc_if;
1082 	struct mii_data		*mii;
1083 
1084 	sc_if = ifp->if_softc;
1085 	mii = device_get_softc(sc_if->sk_miibus);
1086 
1087 	mii_pollstat(mii);
1088 	ifmr->ifm_active = mii->mii_media_active;
1089 	ifmr->ifm_status = mii->mii_media_status;
1090 
1091 	return;
1092 }
1093 
1094 static int
1095 sk_ioctl(ifp, command, data)
1096 	struct ifnet		*ifp;
1097 	u_long			command;
1098 	caddr_t			data;
1099 {
1100 	struct sk_if_softc	*sc_if = ifp->if_softc;
1101 	struct ifreq		*ifr = (struct ifreq *) data;
1102 	int			error, mask;
1103 	struct mii_data		*mii;
1104 
1105 	error = 0;
1106 	switch(command) {
1107 	case SIOCSIFMTU:
1108 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1109 			error = EINVAL;
1110 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1111 			if (sc_if->sk_jumbo_disable != 0 &&
1112 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1113 				error = EINVAL;
1114 			else {
1115 				SK_IF_LOCK(sc_if);
1116 				ifp->if_mtu = ifr->ifr_mtu;
1117 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1118 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1119 					sk_init_locked(sc_if);
1120 				}
1121 				SK_IF_UNLOCK(sc_if);
1122 			}
1123 		}
1124 		break;
1125 	case SIOCSIFFLAGS:
1126 		SK_IF_LOCK(sc_if);
1127 		if (ifp->if_flags & IFF_UP) {
1128 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1129 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1130 				    & (IFF_PROMISC | IFF_ALLMULTI))
1131 					sk_rxfilter(sc_if);
1132 			} else
1133 				sk_init_locked(sc_if);
1134 		} else {
1135 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1136 				sk_stop(sc_if);
1137 		}
1138 		sc_if->sk_if_flags = ifp->if_flags;
1139 		SK_IF_UNLOCK(sc_if);
1140 		break;
1141 	case SIOCADDMULTI:
1142 	case SIOCDELMULTI:
1143 		SK_IF_LOCK(sc_if);
1144 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1145 			sk_rxfilter(sc_if);
1146 		SK_IF_UNLOCK(sc_if);
1147 		break;
1148 	case SIOCGIFMEDIA:
1149 	case SIOCSIFMEDIA:
1150 		mii = device_get_softc(sc_if->sk_miibus);
1151 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1152 		break;
1153 	case SIOCSIFCAP:
1154 		SK_IF_LOCK(sc_if);
1155 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1156 			SK_IF_UNLOCK(sc_if);
1157 			break;
1158 		}
1159 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1160 		if ((mask & IFCAP_TXCSUM) != 0 &&
1161 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1162 			ifp->if_capenable ^= IFCAP_TXCSUM;
1163 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1164 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1165 			else
1166 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1167 		}
1168 		if ((mask & IFCAP_RXCSUM) != 0 &&
1169 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1170 			ifp->if_capenable ^= IFCAP_RXCSUM;
1171 		SK_IF_UNLOCK(sc_if);
1172 		break;
1173 	default:
1174 		error = ether_ioctl(ifp, command, data);
1175 		break;
1176 	}
1177 
1178 	return (error);
1179 }
1180 
1181 /*
1182  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1183  * IDs against our list and return a device name if we find a match.
1184  */
1185 static int
1186 skc_probe(dev)
1187 	device_t		dev;
1188 {
1189 	const struct sk_type	*t = sk_devs;
1190 
1191 	while(t->sk_name != NULL) {
1192 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1193 		    (pci_get_device(dev) == t->sk_did)) {
1194 			/*
1195 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1196 			 * Rev. 3 is supported by re(4).
1197 			 */
1198 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1199 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1200 				(pci_get_subdevice(dev) !=
1201 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1202 				t++;
1203 				continue;
1204 			}
1205 			device_set_desc(dev, t->sk_name);
1206 			return (BUS_PROBE_DEFAULT);
1207 		}
1208 		t++;
1209 	}
1210 
1211 	return(ENXIO);
1212 }
1213 
1214 /*
1215  * Force the GEnesis into reset, then bring it out of reset.
1216  */
1217 static void
1218 sk_reset(sc)
1219 	struct sk_softc		*sc;
1220 {
1221 
1222 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1223 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1224 	if (SK_YUKON_FAMILY(sc->sk_type))
1225 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1226 
1227 	DELAY(1000);
1228 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1229 	DELAY(2);
1230 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1231 	if (SK_YUKON_FAMILY(sc->sk_type))
1232 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1233 
1234 	if (sc->sk_type == SK_GENESIS) {
1235 		/* Configure packet arbiter */
1236 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1237 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1238 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1239 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1240 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1241 	}
1242 
1243 	/* Enable RAM interface */
1244 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1245 
1246 	/*
1247          * Configure interrupt moderation. The moderation timer
1248 	 * defers interrupts specified in the interrupt moderation
1249 	 * timer mask based on the timeout specified in the interrupt
1250 	 * moderation timer init register. Each bit in the timer
1251 	 * register represents one tick, so to specify a timeout in
1252 	 * microseconds, we have to multiply by the correct number of
1253 	 * ticks-per-microsecond.
1254 	 */
1255 	switch (sc->sk_type) {
1256 	case SK_GENESIS:
1257 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1258 		break;
1259 	default:
1260 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1261 		break;
1262 	}
1263 	if (bootverbose)
1264 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1265 		    sc->sk_int_mod);
1266 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1267 	    sc->sk_int_ticks));
1268 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1269 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1270 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1271 
1272 	return;
1273 }
1274 
1275 static int
1276 sk_probe(dev)
1277 	device_t		dev;
1278 {
1279 	struct sk_softc		*sc;
1280 
1281 	sc = device_get_softc(device_get_parent(dev));
1282 
1283 	/*
1284 	 * Not much to do here. We always know there will be
1285 	 * at least one XMAC present, and if there are two,
1286 	 * skc_attach() will create a second device instance
1287 	 * for us.
1288 	 */
1289 	switch (sc->sk_type) {
1290 	case SK_GENESIS:
1291 		device_set_desc(dev, "XaQti Corp. XMAC II");
1292 		break;
1293 	case SK_YUKON:
1294 	case SK_YUKON_LITE:
1295 	case SK_YUKON_LP:
1296 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1297 		break;
1298 	}
1299 
1300 	return (BUS_PROBE_DEFAULT);
1301 }
1302 
1303 /*
1304  * Each XMAC chip is attached as a separate logical IP interface.
1305  * Single port cards will have only one logical interface of course.
1306  */
1307 static int
1308 sk_attach(dev)
1309 	device_t		dev;
1310 {
1311 	struct sk_softc		*sc;
1312 	struct sk_if_softc	*sc_if;
1313 	struct ifnet		*ifp;
1314 	u_int32_t		r;
1315 	int			error, i, phy, port;
1316 	u_char			eaddr[6];
1317 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1318 
1319 	if (dev == NULL)
1320 		return(EINVAL);
1321 
1322 	error = 0;
1323 	sc_if = device_get_softc(dev);
1324 	sc = device_get_softc(device_get_parent(dev));
1325 	port = *(int *)device_get_ivars(dev);
1326 
1327 	sc_if->sk_if_dev = dev;
1328 	sc_if->sk_port = port;
1329 	sc_if->sk_softc = sc;
1330 	sc->sk_if[port] = sc_if;
1331 	if (port == SK_PORT_A)
1332 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1333 	if (port == SK_PORT_B)
1334 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1335 
1336 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1337 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1338 
1339 	if (sk_dma_alloc(sc_if) != 0) {
1340 		error = ENOMEM;
1341 		goto fail;
1342 	}
1343 	sk_dma_jumbo_alloc(sc_if);
1344 
1345 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1346 	if (ifp == NULL) {
1347 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1348 		error = ENOSPC;
1349 		goto fail;
1350 	}
1351 	ifp->if_softc = sc_if;
1352 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1353 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1354 	/*
1355 	 * SK_GENESIS has a bug in checksum offload - From linux.
1356 	 */
1357 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1358 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1359 		ifp->if_hwassist = 0;
1360 	} else {
1361 		ifp->if_capabilities = 0;
1362 		ifp->if_hwassist = 0;
1363 	}
1364 	ifp->if_capenable = ifp->if_capabilities;
1365 	/*
1366 	 * Some revision of Yukon controller generates corrupted
1367 	 * frame when TX checksum offloading is enabled.  The
1368 	 * frame has a valid checksum value so payload might be
1369 	 * modified during TX checksum calculation. Disable TX
1370 	 * checksum offloading but give users chance to enable it
1371 	 * when they know their controller works without problems
1372 	 * with TX checksum offloading.
1373 	 */
1374 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1375 	ifp->if_ioctl = sk_ioctl;
1376 	ifp->if_start = sk_start;
1377 	ifp->if_init = sk_init;
1378 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1379 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1380 	IFQ_SET_READY(&ifp->if_snd);
1381 
1382 	/*
1383 	 * Get station address for this interface. Note that
1384 	 * dual port cards actually come with three station
1385 	 * addresses: one for each port, plus an extra. The
1386 	 * extra one is used by the SysKonnect driver software
1387 	 * as a 'virtual' station address for when both ports
1388 	 * are operating in failover mode. Currently we don't
1389 	 * use this extra address.
1390 	 */
1391 	SK_IF_LOCK(sc_if);
1392 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1393 		eaddr[i] =
1394 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1395 
1396 	/* Verify whether the station address is invalid or not. */
1397 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1398 		device_printf(sc_if->sk_if_dev,
1399 		    "Generating random ethernet address\n");
1400 		r = arc4random();
1401 		/*
1402 		 * Set OUI to convenient locally assigned address.  'b'
1403 		 * is 0x62, which has the locally assigned bit set, and
1404 		 * the broadcast/multicast bit clear.
1405 		 */
1406 		eaddr[0] = 'b';
1407 		eaddr[1] = 's';
1408 		eaddr[2] = 'd';
1409 		eaddr[3] = (r >> 16) & 0xff;
1410 		eaddr[4] = (r >>  8) & 0xff;
1411 		eaddr[5] = (r >>  0) & 0xff;
1412 	}
1413 	/*
1414 	 * Set up RAM buffer addresses. The NIC will have a certain
1415 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1416 	 * need to divide this up a) between the transmitter and
1417  	 * receiver and b) between the two XMACs, if this is a
1418 	 * dual port NIC. Our algotithm is to divide up the memory
1419 	 * evenly so that everyone gets a fair share.
1420 	 *
1421 	 * Just to be contrary, Yukon2 appears to have separate memory
1422 	 * for each MAC.
1423 	 */
1424 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1425 		u_int32_t		chunk, val;
1426 
1427 		chunk = sc->sk_ramsize / 2;
1428 		val = sc->sk_rboff / sizeof(u_int64_t);
1429 		sc_if->sk_rx_ramstart = val;
1430 		val += (chunk / sizeof(u_int64_t));
1431 		sc_if->sk_rx_ramend = val - 1;
1432 		sc_if->sk_tx_ramstart = val;
1433 		val += (chunk / sizeof(u_int64_t));
1434 		sc_if->sk_tx_ramend = val - 1;
1435 	} else {
1436 		u_int32_t		chunk, val;
1437 
1438 		chunk = sc->sk_ramsize / 4;
1439 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1440 		    sizeof(u_int64_t);
1441 		sc_if->sk_rx_ramstart = val;
1442 		val += (chunk / sizeof(u_int64_t));
1443 		sc_if->sk_rx_ramend = val - 1;
1444 		sc_if->sk_tx_ramstart = val;
1445 		val += (chunk / sizeof(u_int64_t));
1446 		sc_if->sk_tx_ramend = val - 1;
1447 	}
1448 
1449 	/* Read and save PHY type and set PHY address */
1450 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1451 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1452 		switch(sc_if->sk_phytype) {
1453 		case SK_PHYTYPE_XMAC:
1454 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1455 			break;
1456 		case SK_PHYTYPE_BCOM:
1457 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1458 			break;
1459 		default:
1460 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1461 			    sc_if->sk_phytype);
1462 			error = ENODEV;
1463 			SK_IF_UNLOCK(sc_if);
1464 			goto fail;
1465 		}
1466 	} else {
1467 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1468 		    sc->sk_pmd != 'S') {
1469 			/* not initialized, punt */
1470 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1471 			sc->sk_coppertype = 1;
1472 		}
1473 
1474 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1475 
1476 		if (!(sc->sk_coppertype))
1477 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1478 	}
1479 
1480 	/*
1481 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1482 	 */
1483 	SK_IF_UNLOCK(sc_if);
1484 	ether_ifattach(ifp, eaddr);
1485 	SK_IF_LOCK(sc_if);
1486 
1487 	/*
1488 	 * The hardware should be ready for VLAN_MTU by default:
1489 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1490 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1491 	 *
1492 	 */
1493         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1494         ifp->if_capenable |= IFCAP_VLAN_MTU;
1495 	/*
1496 	 * Tell the upper layer(s) we support long frames.
1497 	 * Must appear after the call to ether_ifattach() because
1498 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1499 	 */
1500         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1501 
1502 	/*
1503 	 * Do miibus setup.
1504 	 */
1505 	phy = MII_PHY_ANY;
1506 	switch (sc->sk_type) {
1507 	case SK_GENESIS:
1508 		sk_init_xmac(sc_if);
1509 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1510 			phy = 0;
1511 		break;
1512 	case SK_YUKON:
1513 	case SK_YUKON_LITE:
1514 	case SK_YUKON_LP:
1515 		sk_init_yukon(sc_if);
1516 		phy = 0;
1517 		break;
1518 	}
1519 
1520 	SK_IF_UNLOCK(sc_if);
1521 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1522 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1523 	if (error != 0) {
1524 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1525 		ether_ifdetach(ifp);
1526 		goto fail;
1527 	}
1528 
1529 fail:
1530 	if (error) {
1531 		/* Access should be ok even though lock has been dropped */
1532 		sc->sk_if[port] = NULL;
1533 		sk_detach(dev);
1534 	}
1535 
1536 	return(error);
1537 }
1538 
1539 /*
1540  * Attach the interface. Allocate softc structures, do ifmedia
1541  * setup and ethernet/BPF attach.
1542  */
1543 static int
1544 skc_attach(dev)
1545 	device_t		dev;
1546 {
1547 	struct sk_softc		*sc;
1548 	int			error = 0, *port;
1549 	uint8_t			skrs;
1550 	const char		*pname = NULL;
1551 	char			*revstr;
1552 
1553 	sc = device_get_softc(dev);
1554 	sc->sk_dev = dev;
1555 
1556 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1557 	    MTX_DEF);
1558 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1559 	/*
1560 	 * Map control/status registers.
1561 	 */
1562 	pci_enable_busmaster(dev);
1563 
1564 	/* Allocate resources */
1565 #ifdef SK_USEIOSPACE
1566 	sc->sk_res_spec = sk_res_spec_io;
1567 #else
1568 	sc->sk_res_spec = sk_res_spec_mem;
1569 #endif
1570 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1571 	if (error) {
1572 		if (sc->sk_res_spec == sk_res_spec_mem)
1573 			sc->sk_res_spec = sk_res_spec_io;
1574 		else
1575 			sc->sk_res_spec = sk_res_spec_mem;
1576 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1577 		if (error) {
1578 			device_printf(dev, "couldn't allocate %s resources\n",
1579 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1580 			    "I/O");
1581 			goto fail;
1582 		}
1583 	}
1584 
1585 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1586 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1587 
1588 	/* Bail out if chip is not recognized. */
1589 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1590 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1591 		    sc->sk_type, sc->sk_rev);
1592 		error = ENXIO;
1593 		goto fail;
1594 	}
1595 
1596 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1597 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1598 		OID_AUTO, "int_mod",
1599 		CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1600 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1601 		"SK interrupt moderation");
1602 
1603 	/* Pull in device tunables. */
1604 	sc->sk_int_mod = SK_IM_DEFAULT;
1605 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1606 		"int_mod", &sc->sk_int_mod);
1607 	if (error == 0) {
1608 		if (sc->sk_int_mod < SK_IM_MIN ||
1609 		    sc->sk_int_mod > SK_IM_MAX) {
1610 			device_printf(dev, "int_mod value out of range; "
1611 			    "using default: %d\n", SK_IM_DEFAULT);
1612 			sc->sk_int_mod = SK_IM_DEFAULT;
1613 		}
1614 	}
1615 
1616 	/* Reset the adapter. */
1617 	sk_reset(sc);
1618 
1619 	skrs = sk_win_read_1(sc, SK_EPROM0);
1620 	if (sc->sk_type == SK_GENESIS) {
1621 		/* Read and save RAM size and RAMbuffer offset */
1622 		switch(skrs) {
1623 		case SK_RAMSIZE_512K_64:
1624 			sc->sk_ramsize = 0x80000;
1625 			sc->sk_rboff = SK_RBOFF_0;
1626 			break;
1627 		case SK_RAMSIZE_1024K_64:
1628 			sc->sk_ramsize = 0x100000;
1629 			sc->sk_rboff = SK_RBOFF_80000;
1630 			break;
1631 		case SK_RAMSIZE_1024K_128:
1632 			sc->sk_ramsize = 0x100000;
1633 			sc->sk_rboff = SK_RBOFF_0;
1634 			break;
1635 		case SK_RAMSIZE_2048K_128:
1636 			sc->sk_ramsize = 0x200000;
1637 			sc->sk_rboff = SK_RBOFF_0;
1638 			break;
1639 		default:
1640 			device_printf(dev, "unknown ram size: %d\n", skrs);
1641 			error = ENXIO;
1642 			goto fail;
1643 		}
1644 	} else { /* SK_YUKON_FAMILY */
1645 		if (skrs == 0x00)
1646 			sc->sk_ramsize = 0x20000;
1647 		else
1648 			sc->sk_ramsize = skrs * (1<<12);
1649 		sc->sk_rboff = SK_RBOFF_0;
1650 	}
1651 
1652 	/* Read and save physical media type */
1653 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1654 
1655 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1656 		 sc->sk_coppertype = 1;
1657 	 else
1658 		 sc->sk_coppertype = 0;
1659 
1660 	/* Determine whether to name it with VPD PN or just make it up.
1661 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1662 	switch (pci_get_device(dev)) {
1663 	case DEVICEID_SK_V1:
1664 	case DEVICEID_BELKIN_5005:
1665 	case DEVICEID_3COM_3C940:
1666 	case DEVICEID_LINKSYS_EG1032:
1667 	case DEVICEID_DLINK_DGE530T_A1:
1668 	case DEVICEID_DLINK_DGE530T_B1:
1669 		/* Stay with VPD PN. */
1670 		(void) pci_get_vpd_ident(dev, &pname);
1671 		break;
1672 	case DEVICEID_SK_V2:
1673 		/* YUKON VPD PN might bear no resemblance to reality. */
1674 		switch (sc->sk_type) {
1675 		case SK_GENESIS:
1676 			/* Stay with VPD PN. */
1677 			(void) pci_get_vpd_ident(dev, &pname);
1678 			break;
1679 		case SK_YUKON:
1680 			pname = "Marvell Yukon Gigabit Ethernet";
1681 			break;
1682 		case SK_YUKON_LITE:
1683 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1684 			break;
1685 		case SK_YUKON_LP:
1686 			pname = "Marvell Yukon LP Gigabit Ethernet";
1687 			break;
1688 		default:
1689 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1690 			break;
1691 		}
1692 
1693 		/* Yukon Lite Rev. A0 needs special test. */
1694 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1695 			u_int32_t far;
1696 			u_int8_t testbyte;
1697 
1698 			/* Save flash address register before testing. */
1699 			far = sk_win_read_4(sc, SK_EP_ADDR);
1700 
1701 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1702 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1703 
1704 			if (testbyte != 0x00) {
1705 				/* Yukon Lite Rev. A0 detected. */
1706 				sc->sk_type = SK_YUKON_LITE;
1707 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1708 				/* Restore flash address register. */
1709 				sk_win_write_4(sc, SK_EP_ADDR, far);
1710 			}
1711 		}
1712 		break;
1713 	default:
1714 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1715 			"chipver=%02x, rev=%x\n",
1716 			pci_get_vendor(dev), pci_get_device(dev),
1717 			sc->sk_type, sc->sk_rev);
1718 		error = ENXIO;
1719 		goto fail;
1720 	}
1721 
1722 	if (sc->sk_type == SK_YUKON_LITE) {
1723 		switch (sc->sk_rev) {
1724 		case SK_YUKON_LITE_REV_A0:
1725 			revstr = "A0";
1726 			break;
1727 		case SK_YUKON_LITE_REV_A1:
1728 			revstr = "A1";
1729 			break;
1730 		case SK_YUKON_LITE_REV_A3:
1731 			revstr = "A3";
1732 			break;
1733 		default:
1734 			revstr = "";
1735 			break;
1736 		}
1737 	} else {
1738 		revstr = "";
1739 	}
1740 
1741 	/* Announce the product name and more VPD data if there. */
1742 	if (pname != NULL)
1743 		device_printf(dev, "%s rev. %s(0x%x)\n",
1744 			pname, revstr, sc->sk_rev);
1745 
1746 	if (bootverbose) {
1747 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1748 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1749 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1750 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1751 	}
1752 
1753 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1754 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1755 		device_printf(dev, "failed to add child for PORT_A\n");
1756 		error = ENXIO;
1757 		goto fail;
1758 	}
1759 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1760 	if (port == NULL) {
1761 		device_printf(dev, "failed to allocate memory for "
1762 		    "ivars of PORT_A\n");
1763 		error = ENXIO;
1764 		goto fail;
1765 	}
1766 	*port = SK_PORT_A;
1767 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1768 
1769 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1770 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1771 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1772 			device_printf(dev, "failed to add child for PORT_B\n");
1773 			error = ENXIO;
1774 			goto fail;
1775 		}
1776 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1777 		if (port == NULL) {
1778 			device_printf(dev, "failed to allocate memory for "
1779 			    "ivars of PORT_B\n");
1780 			error = ENXIO;
1781 			goto fail;
1782 		}
1783 		*port = SK_PORT_B;
1784 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1785 	}
1786 
1787 	/* Turn on the 'driver is loaded' LED. */
1788 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1789 
1790 	error = bus_generic_attach(dev);
1791 	if (error) {
1792 		device_printf(dev, "failed to attach port(s)\n");
1793 		goto fail;
1794 	}
1795 
1796 	/* Hook interrupt last to avoid having to lock softc */
1797 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1798 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1799 
1800 	if (error) {
1801 		device_printf(dev, "couldn't set up irq\n");
1802 		goto fail;
1803 	}
1804 
1805 fail:
1806 	if (error)
1807 		skc_detach(dev);
1808 
1809 	return(error);
1810 }
1811 
1812 /*
1813  * Shutdown hardware and free up resources. This can be called any
1814  * time after the mutex has been initialized. It is called in both
1815  * the error case in attach and the normal detach case so it needs
1816  * to be careful about only freeing resources that have actually been
1817  * allocated.
1818  */
1819 static int
1820 sk_detach(dev)
1821 	device_t		dev;
1822 {
1823 	struct sk_if_softc	*sc_if;
1824 	struct ifnet		*ifp;
1825 
1826 	sc_if = device_get_softc(dev);
1827 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1828 	    ("sk mutex not initialized in sk_detach"));
1829 	SK_IF_LOCK(sc_if);
1830 
1831 	ifp = sc_if->sk_ifp;
1832 	/* These should only be active if attach_xmac succeeded */
1833 	if (device_is_attached(dev)) {
1834 		sk_stop(sc_if);
1835 		/* Can't hold locks while calling detach */
1836 		SK_IF_UNLOCK(sc_if);
1837 		callout_drain(&sc_if->sk_tick_ch);
1838 		callout_drain(&sc_if->sk_watchdog_ch);
1839 		ether_ifdetach(ifp);
1840 		SK_IF_LOCK(sc_if);
1841 	}
1842 	/*
1843 	 * We're generally called from skc_detach() which is using
1844 	 * device_delete_child() to get to here. It's already trashed
1845 	 * miibus for us, so don't do it here or we'll panic.
1846 	 */
1847 	/*
1848 	if (sc_if->sk_miibus != NULL)
1849 		device_delete_child(dev, sc_if->sk_miibus);
1850 	*/
1851 	bus_generic_detach(dev);
1852 	sk_dma_jumbo_free(sc_if);
1853 	sk_dma_free(sc_if);
1854 	SK_IF_UNLOCK(sc_if);
1855 	if (ifp)
1856 		if_free(ifp);
1857 
1858 	return(0);
1859 }
1860 
1861 static int
1862 skc_detach(dev)
1863 	device_t		dev;
1864 {
1865 	struct sk_softc		*sc;
1866 
1867 	sc = device_get_softc(dev);
1868 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1869 
1870 	if (device_is_alive(dev)) {
1871 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1872 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1873 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1874 		}
1875 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1876 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1877 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1878 		}
1879 		bus_generic_detach(dev);
1880 	}
1881 
1882 	if (sc->sk_intrhand)
1883 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1884 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1885 
1886 	mtx_destroy(&sc->sk_mii_mtx);
1887 	mtx_destroy(&sc->sk_mtx);
1888 
1889 	return(0);
1890 }
1891 
1892 static bus_dma_tag_t
1893 skc_get_dma_tag(device_t bus, device_t child __unused)
1894 {
1895 
1896 	return (bus_get_dma_tag(bus));
1897 }
1898 
1899 struct sk_dmamap_arg {
1900 	bus_addr_t	sk_busaddr;
1901 };
1902 
1903 static void
1904 sk_dmamap_cb(arg, segs, nseg, error)
1905 	void			*arg;
1906 	bus_dma_segment_t	*segs;
1907 	int			nseg;
1908 	int			error;
1909 {
1910 	struct sk_dmamap_arg	*ctx;
1911 
1912 	if (error != 0)
1913 		return;
1914 
1915 	ctx = arg;
1916 	ctx->sk_busaddr = segs[0].ds_addr;
1917 }
1918 
1919 /*
1920  * Allocate jumbo buffer storage. The SysKonnect adapters support
1921  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1922  * use them in their drivers. In order for us to use them, we need
1923  * large 9K receive buffers, however standard mbuf clusters are only
1924  * 2048 bytes in size. Consequently, we need to allocate and manage
1925  * our own jumbo buffer pool. Fortunately, this does not require an
1926  * excessive amount of additional code.
1927  */
1928 static int
1929 sk_dma_alloc(sc_if)
1930 	struct sk_if_softc	*sc_if;
1931 {
1932 	struct sk_dmamap_arg	ctx;
1933 	struct sk_txdesc	*txd;
1934 	struct sk_rxdesc	*rxd;
1935 	int			error, i;
1936 
1937 	/* create parent tag */
1938 	/*
1939 	 * XXX
1940 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1941 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1942 	 * However bz@ reported that it does not work on amd64 with > 4GB
1943 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1944 	 * by limiting DMA address to be in 32bit address space.
1945 	 */
1946 	error = bus_dma_tag_create(
1947 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1948 		    1, 0,			/* algnmnt, boundary */
1949 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1950 		    BUS_SPACE_MAXADDR,		/* highaddr */
1951 		    NULL, NULL,			/* filter, filterarg */
1952 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1953 		    0,				/* nsegments */
1954 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1955 		    0,				/* flags */
1956 		    NULL, NULL,			/* lockfunc, lockarg */
1957 		    &sc_if->sk_cdata.sk_parent_tag);
1958 	if (error != 0) {
1959 		device_printf(sc_if->sk_if_dev,
1960 		    "failed to create parent DMA tag\n");
1961 		goto fail;
1962 	}
1963 
1964 	/* create tag for Tx ring */
1965 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1966 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1967 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1968 		    BUS_SPACE_MAXADDR,		/* highaddr */
1969 		    NULL, NULL,			/* filter, filterarg */
1970 		    SK_TX_RING_SZ,		/* maxsize */
1971 		    1,				/* nsegments */
1972 		    SK_TX_RING_SZ,		/* maxsegsize */
1973 		    0,				/* flags */
1974 		    NULL, NULL,			/* lockfunc, lockarg */
1975 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1976 	if (error != 0) {
1977 		device_printf(sc_if->sk_if_dev,
1978 		    "failed to allocate Tx ring DMA tag\n");
1979 		goto fail;
1980 	}
1981 
1982 	/* create tag for Rx ring */
1983 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1984 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1985 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1986 		    BUS_SPACE_MAXADDR,		/* highaddr */
1987 		    NULL, NULL,			/* filter, filterarg */
1988 		    SK_RX_RING_SZ,		/* maxsize */
1989 		    1,				/* nsegments */
1990 		    SK_RX_RING_SZ,		/* maxsegsize */
1991 		    0,				/* flags */
1992 		    NULL, NULL,			/* lockfunc, lockarg */
1993 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1994 	if (error != 0) {
1995 		device_printf(sc_if->sk_if_dev,
1996 		    "failed to allocate Rx ring DMA tag\n");
1997 		goto fail;
1998 	}
1999 
2000 	/* create tag for Tx buffers */
2001 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2002 		    1, 0,			/* algnmnt, boundary */
2003 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2004 		    BUS_SPACE_MAXADDR,		/* highaddr */
2005 		    NULL, NULL,			/* filter, filterarg */
2006 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2007 		    SK_MAXTXSEGS,		/* nsegments */
2008 		    MCLBYTES,			/* maxsegsize */
2009 		    0,				/* flags */
2010 		    NULL, NULL,			/* lockfunc, lockarg */
2011 		    &sc_if->sk_cdata.sk_tx_tag);
2012 	if (error != 0) {
2013 		device_printf(sc_if->sk_if_dev,
2014 		    "failed to allocate Tx DMA tag\n");
2015 		goto fail;
2016 	}
2017 
2018 	/* create tag for Rx buffers */
2019 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2020 		    1, 0,			/* algnmnt, boundary */
2021 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2022 		    BUS_SPACE_MAXADDR,		/* highaddr */
2023 		    NULL, NULL,			/* filter, filterarg */
2024 		    MCLBYTES,			/* maxsize */
2025 		    1,				/* nsegments */
2026 		    MCLBYTES,			/* maxsegsize */
2027 		    0,				/* flags */
2028 		    NULL, NULL,			/* lockfunc, lockarg */
2029 		    &sc_if->sk_cdata.sk_rx_tag);
2030 	if (error != 0) {
2031 		device_printf(sc_if->sk_if_dev,
2032 		    "failed to allocate Rx DMA tag\n");
2033 		goto fail;
2034 	}
2035 
2036 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2037 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2038 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2039 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2040 	if (error != 0) {
2041 		device_printf(sc_if->sk_if_dev,
2042 		    "failed to allocate DMA'able memory for Tx ring\n");
2043 		goto fail;
2044 	}
2045 
2046 	ctx.sk_busaddr = 0;
2047 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2048 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2049 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2050 	if (error != 0) {
2051 		device_printf(sc_if->sk_if_dev,
2052 		    "failed to load DMA'able memory for Tx ring\n");
2053 		goto fail;
2054 	}
2055 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2056 
2057 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2058 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2059 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2060 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2061 	if (error != 0) {
2062 		device_printf(sc_if->sk_if_dev,
2063 		    "failed to allocate DMA'able memory for Rx ring\n");
2064 		goto fail;
2065 	}
2066 
2067 	ctx.sk_busaddr = 0;
2068 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2069 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2070 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2071 	if (error != 0) {
2072 		device_printf(sc_if->sk_if_dev,
2073 		    "failed to load DMA'able memory for Rx ring\n");
2074 		goto fail;
2075 	}
2076 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2077 
2078 	/* create DMA maps for Tx buffers */
2079 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2080 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2081 		txd->tx_m = NULL;
2082 		txd->tx_dmamap = NULL;
2083 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2084 		    &txd->tx_dmamap);
2085 		if (error != 0) {
2086 			device_printf(sc_if->sk_if_dev,
2087 			    "failed to create Tx dmamap\n");
2088 			goto fail;
2089 		}
2090 	}
2091 
2092 	/* create DMA maps for Rx buffers */
2093 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2094 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2095 		device_printf(sc_if->sk_if_dev,
2096 		    "failed to create spare Rx dmamap\n");
2097 		goto fail;
2098 	}
2099 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2100 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2101 		rxd->rx_m = NULL;
2102 		rxd->rx_dmamap = NULL;
2103 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2104 		    &rxd->rx_dmamap);
2105 		if (error != 0) {
2106 			device_printf(sc_if->sk_if_dev,
2107 			    "failed to create Rx dmamap\n");
2108 			goto fail;
2109 		}
2110 	}
2111 
2112 fail:
2113 	return (error);
2114 }
2115 
2116 static int
2117 sk_dma_jumbo_alloc(sc_if)
2118 	struct sk_if_softc	*sc_if;
2119 {
2120 	struct sk_dmamap_arg	ctx;
2121 	struct sk_rxdesc	*jrxd;
2122 	int			error, i;
2123 
2124 	if (jumbo_disable != 0) {
2125 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2126 		sc_if->sk_jumbo_disable = 1;
2127 		return (0);
2128 	}
2129 	/* create tag for jumbo Rx ring */
2130 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2131 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2132 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2133 		    BUS_SPACE_MAXADDR,		/* highaddr */
2134 		    NULL, NULL,			/* filter, filterarg */
2135 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2136 		    1,				/* nsegments */
2137 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2138 		    0,				/* flags */
2139 		    NULL, NULL,			/* lockfunc, lockarg */
2140 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2141 	if (error != 0) {
2142 		device_printf(sc_if->sk_if_dev,
2143 		    "failed to allocate jumbo Rx ring DMA tag\n");
2144 		goto jumbo_fail;
2145 	}
2146 
2147 	/* create tag for jumbo Rx buffers */
2148 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2149 		    1, 0,			/* algnmnt, boundary */
2150 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2151 		    BUS_SPACE_MAXADDR,		/* highaddr */
2152 		    NULL, NULL,			/* filter, filterarg */
2153 		    MJUM9BYTES,			/* maxsize */
2154 		    1,				/* nsegments */
2155 		    MJUM9BYTES,			/* maxsegsize */
2156 		    0,				/* flags */
2157 		    NULL, NULL,			/* lockfunc, lockarg */
2158 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2159 	if (error != 0) {
2160 		device_printf(sc_if->sk_if_dev,
2161 		    "failed to allocate jumbo Rx DMA tag\n");
2162 		goto jumbo_fail;
2163 	}
2164 
2165 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2166 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2167 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2168 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2169 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2170 	if (error != 0) {
2171 		device_printf(sc_if->sk_if_dev,
2172 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2173 		goto jumbo_fail;
2174 	}
2175 
2176 	ctx.sk_busaddr = 0;
2177 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2178 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2179 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2180 	    &ctx, BUS_DMA_NOWAIT);
2181 	if (error != 0) {
2182 		device_printf(sc_if->sk_if_dev,
2183 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2184 		goto jumbo_fail;
2185 	}
2186 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2187 
2188 	/* create DMA maps for jumbo Rx buffers */
2189 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2190 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2191 		device_printf(sc_if->sk_if_dev,
2192 		    "failed to create spare jumbo Rx dmamap\n");
2193 		goto jumbo_fail;
2194 	}
2195 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2196 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2197 		jrxd->rx_m = NULL;
2198 		jrxd->rx_dmamap = NULL;
2199 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2200 		    &jrxd->rx_dmamap);
2201 		if (error != 0) {
2202 			device_printf(sc_if->sk_if_dev,
2203 			    "failed to create jumbo Rx dmamap\n");
2204 			goto jumbo_fail;
2205 		}
2206 	}
2207 
2208 	return (0);
2209 
2210 jumbo_fail:
2211 	sk_dma_jumbo_free(sc_if);
2212 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2213 	    "resource shortage\n");
2214 	sc_if->sk_jumbo_disable = 1;
2215 	return (0);
2216 }
2217 
2218 static void
2219 sk_dma_free(sc_if)
2220 	struct sk_if_softc	*sc_if;
2221 {
2222 	struct sk_txdesc	*txd;
2223 	struct sk_rxdesc	*rxd;
2224 	int			i;
2225 
2226 	/* Tx ring */
2227 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2228 		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2229 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2230 			    sc_if->sk_cdata.sk_tx_ring_map);
2231 		if (sc_if->sk_rdata.sk_tx_ring)
2232 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2233 			    sc_if->sk_rdata.sk_tx_ring,
2234 			    sc_if->sk_cdata.sk_tx_ring_map);
2235 		sc_if->sk_rdata.sk_tx_ring = NULL;
2236 		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2237 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2238 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2239 	}
2240 	/* Rx ring */
2241 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2242 		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2243 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2244 			    sc_if->sk_cdata.sk_rx_ring_map);
2245 		if (sc_if->sk_rdata.sk_rx_ring)
2246 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2247 			    sc_if->sk_rdata.sk_rx_ring,
2248 			    sc_if->sk_cdata.sk_rx_ring_map);
2249 		sc_if->sk_rdata.sk_rx_ring = NULL;
2250 		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2251 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2252 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2253 	}
2254 	/* Tx buffers */
2255 	if (sc_if->sk_cdata.sk_tx_tag) {
2256 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2257 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2258 			if (txd->tx_dmamap) {
2259 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2260 				    txd->tx_dmamap);
2261 				txd->tx_dmamap = NULL;
2262 			}
2263 		}
2264 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2265 		sc_if->sk_cdata.sk_tx_tag = NULL;
2266 	}
2267 	/* Rx buffers */
2268 	if (sc_if->sk_cdata.sk_rx_tag) {
2269 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2270 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2271 			if (rxd->rx_dmamap) {
2272 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2273 				    rxd->rx_dmamap);
2274 				rxd->rx_dmamap = NULL;
2275 			}
2276 		}
2277 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2278 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2279 			    sc_if->sk_cdata.sk_rx_sparemap);
2280 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2281 		}
2282 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2283 		sc_if->sk_cdata.sk_rx_tag = NULL;
2284 	}
2285 
2286 	if (sc_if->sk_cdata.sk_parent_tag) {
2287 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2288 		sc_if->sk_cdata.sk_parent_tag = NULL;
2289 	}
2290 }
2291 
2292 static void
2293 sk_dma_jumbo_free(sc_if)
2294 	struct sk_if_softc	*sc_if;
2295 {
2296 	struct sk_rxdesc	*jrxd;
2297 	int			i;
2298 
2299 	/* jumbo Rx ring */
2300 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2301 		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2302 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2303 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2304 		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2305 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2306 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2307 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2308 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2309 		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2310 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2311 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2312 	}
2313 
2314 	/* jumbo Rx buffers */
2315 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2316 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2317 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2318 			if (jrxd->rx_dmamap) {
2319 				bus_dmamap_destroy(
2320 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2321 				    jrxd->rx_dmamap);
2322 				jrxd->rx_dmamap = NULL;
2323 			}
2324 		}
2325 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2326 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2327 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2328 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2329 		}
2330 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2331 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2332 	}
2333 }
2334 
2335 static void
2336 sk_txcksum(ifp, m, f)
2337 	struct ifnet		*ifp;
2338 	struct mbuf		*m;
2339 	struct sk_tx_desc	*f;
2340 {
2341 	struct ip		*ip;
2342 	u_int16_t		offset;
2343 	u_int8_t 		*p;
2344 
2345 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2346 	for(; m && m->m_len == 0; m = m->m_next)
2347 		;
2348 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2349 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2350 		/* checksum may be corrupted */
2351 		goto sendit;
2352 	}
2353 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2354 		if (m->m_len != ETHER_HDR_LEN) {
2355 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2356 			    __func__);
2357 			/* checksum may be corrupted */
2358 			goto sendit;
2359 		}
2360 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2361 			;
2362 		if (m == NULL) {
2363 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2364 			/* checksum may be corrupted */
2365 			goto sendit;
2366 		}
2367 		ip = mtod(m, struct ip *);
2368 	} else {
2369 		p = mtod(m, u_int8_t *);
2370 		p += ETHER_HDR_LEN;
2371 		ip = (struct ip *)p;
2372 	}
2373 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2374 
2375 sendit:
2376 	f->sk_csum_startval = 0;
2377 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2378 	    (offset << 16));
2379 }
2380 
2381 static int
2382 sk_encap(sc_if, m_head)
2383         struct sk_if_softc	*sc_if;
2384         struct mbuf		**m_head;
2385 {
2386 	struct sk_txdesc	*txd;
2387 	struct sk_tx_desc	*f = NULL;
2388 	struct mbuf		*m;
2389 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2390 	u_int32_t		cflags, frag, si, sk_ctl;
2391 	int			error, i, nseg;
2392 
2393 	SK_IF_LOCK_ASSERT(sc_if);
2394 
2395 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2396 		return (ENOBUFS);
2397 
2398 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2399 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2400 	if (error == EFBIG) {
2401 		m = m_defrag(*m_head, M_NOWAIT);
2402 		if (m == NULL) {
2403 			m_freem(*m_head);
2404 			*m_head = NULL;
2405 			return (ENOMEM);
2406 		}
2407 		*m_head = m;
2408 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2409 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2410 		if (error != 0) {
2411 			m_freem(*m_head);
2412 			*m_head = NULL;
2413 			return (error);
2414 		}
2415 	} else if (error != 0)
2416 		return (error);
2417 	if (nseg == 0) {
2418 		m_freem(*m_head);
2419 		*m_head = NULL;
2420 		return (EIO);
2421 	}
2422 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2423 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2424 		return (ENOBUFS);
2425 	}
2426 
2427 	m = *m_head;
2428 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2429 		cflags = SK_OPCODE_CSUM;
2430 	else
2431 		cflags = SK_OPCODE_DEFAULT;
2432 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2433 	for (i = 0; i < nseg; i++) {
2434 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2435 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2436 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2437 		sk_ctl = txsegs[i].ds_len | cflags;
2438 		if (i == 0) {
2439 			if (cflags == SK_OPCODE_CSUM)
2440 				sk_txcksum(sc_if->sk_ifp, m, f);
2441 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2442 		} else
2443 			sk_ctl |= SK_TXCTL_OWN;
2444 		f->sk_ctl = htole32(sk_ctl);
2445 		sc_if->sk_cdata.sk_tx_cnt++;
2446 		SK_INC(frag, SK_TX_RING_CNT);
2447 	}
2448 	sc_if->sk_cdata.sk_tx_prod = frag;
2449 
2450 	/* set EOF on the last desciptor */
2451 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2452 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2453 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2454 
2455 	/* turn the first descriptor ownership to NIC */
2456 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2457 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2458 
2459 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2460 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2461 	txd->tx_m = m;
2462 
2463 	/* sync descriptors */
2464 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2465 	    BUS_DMASYNC_PREWRITE);
2466 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2467 	    sc_if->sk_cdata.sk_tx_ring_map,
2468 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2469 
2470 	return (0);
2471 }
2472 
2473 static void
2474 sk_start(ifp)
2475 	struct ifnet		*ifp;
2476 {
2477 	struct sk_if_softc *sc_if;
2478 
2479 	sc_if = ifp->if_softc;
2480 
2481 	SK_IF_LOCK(sc_if);
2482 	sk_start_locked(ifp);
2483 	SK_IF_UNLOCK(sc_if);
2484 
2485 	return;
2486 }
2487 
2488 static void
2489 sk_start_locked(ifp)
2490 	struct ifnet		*ifp;
2491 {
2492         struct sk_softc		*sc;
2493         struct sk_if_softc	*sc_if;
2494         struct mbuf		*m_head;
2495 	int			enq;
2496 
2497 	sc_if = ifp->if_softc;
2498 	sc = sc_if->sk_softc;
2499 
2500 	SK_IF_LOCK_ASSERT(sc_if);
2501 
2502 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2503 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2504 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2505 		if (m_head == NULL)
2506 			break;
2507 
2508 		/*
2509 		 * Pack the data into the transmit ring. If we
2510 		 * don't have room, set the OACTIVE flag and wait
2511 		 * for the NIC to drain the ring.
2512 		 */
2513 		if (sk_encap(sc_if, &m_head)) {
2514 			if (m_head == NULL)
2515 				break;
2516 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2517 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2518 			break;
2519 		}
2520 
2521 		enq++;
2522 		/*
2523 		 * If there's a BPF listener, bounce a copy of this frame
2524 		 * to him.
2525 		 */
2526 		BPF_MTAP(ifp, m_head);
2527 	}
2528 
2529 	if (enq > 0) {
2530 		/* Transmit */
2531 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2532 
2533 		/* Set a timeout in case the chip goes out to lunch. */
2534 		sc_if->sk_watchdog_timer = 5;
2535 	}
2536 }
2537 
2538 static void
2539 sk_watchdog(arg)
2540 	void			*arg;
2541 {
2542 	struct sk_if_softc	*sc_if;
2543 	struct ifnet		*ifp;
2544 
2545 	ifp = arg;
2546 	sc_if = ifp->if_softc;
2547 
2548 	SK_IF_LOCK_ASSERT(sc_if);
2549 
2550 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2551 		goto done;
2552 
2553 	/*
2554 	 * Reclaim first as there is a possibility of losing Tx completion
2555 	 * interrupts.
2556 	 */
2557 	sk_txeof(sc_if);
2558 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2559 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2560 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2561 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2562 		sk_init_locked(sc_if);
2563 	}
2564 
2565 done:
2566 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2567 
2568 	return;
2569 }
2570 
2571 static int
2572 skc_shutdown(dev)
2573 	device_t		dev;
2574 {
2575 	struct sk_softc		*sc;
2576 
2577 	sc = device_get_softc(dev);
2578 	SK_LOCK(sc);
2579 
2580 	/* Turn off the 'driver is loaded' LED. */
2581 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2582 
2583 	/*
2584 	 * Reset the GEnesis controller. Doing this should also
2585 	 * assert the resets on the attached XMAC(s).
2586 	 */
2587 	sk_reset(sc);
2588 	SK_UNLOCK(sc);
2589 
2590 	return (0);
2591 }
2592 
2593 static int
2594 skc_suspend(dev)
2595 	device_t		dev;
2596 {
2597 	struct sk_softc		*sc;
2598 	struct sk_if_softc	*sc_if0, *sc_if1;
2599 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2600 
2601 	sc = device_get_softc(dev);
2602 
2603 	SK_LOCK(sc);
2604 
2605 	sc_if0 = sc->sk_if[SK_PORT_A];
2606 	sc_if1 = sc->sk_if[SK_PORT_B];
2607 	if (sc_if0 != NULL)
2608 		ifp0 = sc_if0->sk_ifp;
2609 	if (sc_if1 != NULL)
2610 		ifp1 = sc_if1->sk_ifp;
2611 	if (ifp0 != NULL)
2612 		sk_stop(sc_if0);
2613 	if (ifp1 != NULL)
2614 		sk_stop(sc_if1);
2615 	sc->sk_suspended = 1;
2616 
2617 	SK_UNLOCK(sc);
2618 
2619 	return (0);
2620 }
2621 
2622 static int
2623 skc_resume(dev)
2624 	device_t		dev;
2625 {
2626 	struct sk_softc		*sc;
2627 	struct sk_if_softc	*sc_if0, *sc_if1;
2628 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2629 
2630 	sc = device_get_softc(dev);
2631 
2632 	SK_LOCK(sc);
2633 
2634 	sc_if0 = sc->sk_if[SK_PORT_A];
2635 	sc_if1 = sc->sk_if[SK_PORT_B];
2636 	if (sc_if0 != NULL)
2637 		ifp0 = sc_if0->sk_ifp;
2638 	if (sc_if1 != NULL)
2639 		ifp1 = sc_if1->sk_ifp;
2640 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2641 		sk_init_locked(sc_if0);
2642 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2643 		sk_init_locked(sc_if1);
2644 	sc->sk_suspended = 0;
2645 
2646 	SK_UNLOCK(sc);
2647 
2648 	return (0);
2649 }
2650 
2651 /*
2652  * According to the data sheet from SK-NET GENESIS the hardware can compute
2653  * two Rx checksums at the same time(Each checksum start position is
2654  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2655  * does not work at least on my Yukon hardware. I tried every possible ways
2656  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2657  * checksum offload was disabled at the moment and only IP checksum offload
2658  * was enabled.
2659  * As nomral IP header size is 20 bytes I can't expect it would give an
2660  * increase in throughput. However it seems it doesn't hurt performance in
2661  * my testing. If there is a more detailed information for checksum secret
2662  * of the hardware in question please contact yongari@FreeBSD.org to add
2663  * TCP/UDP checksum offload support.
2664  */
2665 static __inline void
2666 sk_rxcksum(ifp, m, csum)
2667 	struct ifnet		*ifp;
2668 	struct mbuf		*m;
2669 	u_int32_t		csum;
2670 {
2671 	struct ether_header	*eh;
2672 	struct ip		*ip;
2673 	int32_t			hlen, len, pktlen;
2674 	u_int16_t		csum1, csum2, ipcsum;
2675 
2676 	pktlen = m->m_pkthdr.len;
2677 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2678 		return;
2679 	eh = mtod(m, struct ether_header *);
2680 	if (eh->ether_type != htons(ETHERTYPE_IP))
2681 		return;
2682 	ip = (struct ip *)(eh + 1);
2683 	if (ip->ip_v != IPVERSION)
2684 		return;
2685 	hlen = ip->ip_hl << 2;
2686 	pktlen -= sizeof(struct ether_header);
2687 	if (hlen < sizeof(struct ip))
2688 		return;
2689 	if (ntohs(ip->ip_len) < hlen)
2690 		return;
2691 	if (ntohs(ip->ip_len) != pktlen)
2692 		return;
2693 
2694 	csum1 = htons(csum & 0xffff);
2695 	csum2 = htons((csum >> 16) & 0xffff);
2696 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2697 	/* checksum fixup for IP options */
2698 	len = hlen - sizeof(struct ip);
2699 	if (len > 0) {
2700 		/*
2701 		 * If the second checksum value is correct we can compute IP
2702 		 * checksum with simple math. Unfortunately the second checksum
2703 		 * value is wrong so we can't verify the checksum from the
2704 		 * value(It seems there is some magic here to get correct
2705 		 * value). If the second checksum value is correct it also
2706 		 * means we can get TCP/UDP checksum) here. However, it still
2707 		 * needs pseudo header checksum calculation due to hardware
2708 		 * limitations.
2709 		 */
2710 		return;
2711 	}
2712 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2713 	if (ipcsum == 0xffff)
2714 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2715 }
2716 
2717 static __inline int
2718 sk_rxvalid(sc, stat, len)
2719 	struct sk_softc		*sc;
2720 	u_int32_t		stat, len;
2721 {
2722 
2723 	if (sc->sk_type == SK_GENESIS) {
2724 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2725 		    XM_RXSTAT_BYTES(stat) != len)
2726 			return (0);
2727 	} else {
2728 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2729 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2730 		    YU_RXSTAT_JABBER)) != 0 ||
2731 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2732 		    YU_RXSTAT_BYTES(stat) != len)
2733 			return (0);
2734 	}
2735 
2736 	return (1);
2737 }
2738 
2739 static void
2740 sk_rxeof(sc_if)
2741 	struct sk_if_softc	*sc_if;
2742 {
2743 	struct sk_softc		*sc;
2744 	struct mbuf		*m;
2745 	struct ifnet		*ifp;
2746 	struct sk_rx_desc	*cur_rx;
2747 	struct sk_rxdesc	*rxd;
2748 	int			cons, prog;
2749 	u_int32_t		csum, rxstat, sk_ctl;
2750 
2751 	sc = sc_if->sk_softc;
2752 	ifp = sc_if->sk_ifp;
2753 
2754 	SK_IF_LOCK_ASSERT(sc_if);
2755 
2756 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2757 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2758 
2759 	prog = 0;
2760 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2761 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2762 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2763 		sk_ctl = le32toh(cur_rx->sk_ctl);
2764 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2765 			break;
2766 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2767 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2768 
2769 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2770 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2771 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2772 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2773 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2774 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2775 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2776 			sk_discard_rxbuf(sc_if, cons);
2777 			continue;
2778 		}
2779 
2780 		m = rxd->rx_m;
2781 		csum = le32toh(cur_rx->sk_csum);
2782 		if (sk_newbuf(sc_if, cons) != 0) {
2783 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2784 			/* reuse old buffer */
2785 			sk_discard_rxbuf(sc_if, cons);
2786 			continue;
2787 		}
2788 		m->m_pkthdr.rcvif = ifp;
2789 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2790 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2791 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2792 			sk_rxcksum(ifp, m, csum);
2793 		SK_IF_UNLOCK(sc_if);
2794 		(*ifp->if_input)(ifp, m);
2795 		SK_IF_LOCK(sc_if);
2796 	}
2797 
2798 	if (prog > 0) {
2799 		sc_if->sk_cdata.sk_rx_cons = cons;
2800 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2801 		    sc_if->sk_cdata.sk_rx_ring_map,
2802 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2803 	}
2804 }
2805 
2806 static void
2807 sk_jumbo_rxeof(sc_if)
2808 	struct sk_if_softc	*sc_if;
2809 {
2810 	struct sk_softc		*sc;
2811 	struct mbuf		*m;
2812 	struct ifnet		*ifp;
2813 	struct sk_rx_desc	*cur_rx;
2814 	struct sk_rxdesc	*jrxd;
2815 	int			cons, prog;
2816 	u_int32_t		csum, rxstat, sk_ctl;
2817 
2818 	sc = sc_if->sk_softc;
2819 	ifp = sc_if->sk_ifp;
2820 
2821 	SK_IF_LOCK_ASSERT(sc_if);
2822 
2823 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2824 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2825 
2826 	prog = 0;
2827 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2828 	    prog < SK_JUMBO_RX_RING_CNT;
2829 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2830 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2831 		sk_ctl = le32toh(cur_rx->sk_ctl);
2832 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2833 			break;
2834 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2835 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2836 
2837 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2838 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2839 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2840 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2841 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2842 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2843 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2844 			sk_discard_jumbo_rxbuf(sc_if, cons);
2845 			continue;
2846 		}
2847 
2848 		m = jrxd->rx_m;
2849 		csum = le32toh(cur_rx->sk_csum);
2850 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2851 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2852 			/* reuse old buffer */
2853 			sk_discard_jumbo_rxbuf(sc_if, cons);
2854 			continue;
2855 		}
2856 		m->m_pkthdr.rcvif = ifp;
2857 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2858 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2859 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2860 			sk_rxcksum(ifp, m, csum);
2861 		SK_IF_UNLOCK(sc_if);
2862 		(*ifp->if_input)(ifp, m);
2863 		SK_IF_LOCK(sc_if);
2864 	}
2865 
2866 	if (prog > 0) {
2867 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2868 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2869 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2870 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2871 	}
2872 }
2873 
2874 static void
2875 sk_txeof(sc_if)
2876 	struct sk_if_softc	*sc_if;
2877 {
2878 	struct sk_txdesc	*txd;
2879 	struct sk_tx_desc	*cur_tx;
2880 	struct ifnet		*ifp;
2881 	u_int32_t		idx, sk_ctl;
2882 
2883 	ifp = sc_if->sk_ifp;
2884 
2885 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2886 	if (txd == NULL)
2887 		return;
2888 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2889 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2890 	/*
2891 	 * Go through our tx ring and free mbufs for those
2892 	 * frames that have been sent.
2893 	 */
2894 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2895 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2896 			break;
2897 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2898 		sk_ctl = le32toh(cur_tx->sk_ctl);
2899 		if (sk_ctl & SK_TXCTL_OWN)
2900 			break;
2901 		sc_if->sk_cdata.sk_tx_cnt--;
2902 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2903 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2904 			continue;
2905 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2906 		    BUS_DMASYNC_POSTWRITE);
2907 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2908 
2909 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2910 		m_freem(txd->tx_m);
2911 		txd->tx_m = NULL;
2912 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2913 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2914 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2915 	}
2916 	sc_if->sk_cdata.sk_tx_cons = idx;
2917 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2918 
2919 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2920 	    sc_if->sk_cdata.sk_tx_ring_map,
2921 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2922 }
2923 
2924 static void
2925 sk_tick(xsc_if)
2926 	void			*xsc_if;
2927 {
2928 	struct sk_if_softc	*sc_if;
2929 	struct mii_data		*mii;
2930 	struct ifnet		*ifp;
2931 	int			i;
2932 
2933 	sc_if = xsc_if;
2934 	ifp = sc_if->sk_ifp;
2935 	mii = device_get_softc(sc_if->sk_miibus);
2936 
2937 	if (!(ifp->if_flags & IFF_UP))
2938 		return;
2939 
2940 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2941 		sk_intr_bcom(sc_if);
2942 		return;
2943 	}
2944 
2945 	/*
2946 	 * According to SysKonnect, the correct way to verify that
2947 	 * the link has come back up is to poll bit 0 of the GPIO
2948 	 * register three times. This pin has the signal from the
2949 	 * link_sync pin connected to it; if we read the same link
2950 	 * state 3 times in a row, we know the link is up.
2951 	 */
2952 	for (i = 0; i < 3; i++) {
2953 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2954 			break;
2955 	}
2956 
2957 	if (i != 3) {
2958 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2959 		return;
2960 	}
2961 
2962 	/* Turn the GP0 interrupt back on. */
2963 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2964 	SK_XM_READ_2(sc_if, XM_ISR);
2965 	mii_tick(mii);
2966 	callout_stop(&sc_if->sk_tick_ch);
2967 }
2968 
2969 static void
2970 sk_yukon_tick(xsc_if)
2971 	void			*xsc_if;
2972 {
2973 	struct sk_if_softc	*sc_if;
2974 	struct mii_data		*mii;
2975 
2976 	sc_if = xsc_if;
2977 	mii = device_get_softc(sc_if->sk_miibus);
2978 
2979 	mii_tick(mii);
2980 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2981 }
2982 
2983 static void
2984 sk_intr_bcom(sc_if)
2985 	struct sk_if_softc	*sc_if;
2986 {
2987 	struct mii_data		*mii;
2988 	struct ifnet		*ifp;
2989 	int			status;
2990 	mii = device_get_softc(sc_if->sk_miibus);
2991 	ifp = sc_if->sk_ifp;
2992 
2993 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2994 
2995 	/*
2996 	 * Read the PHY interrupt register to make sure
2997 	 * we clear any pending interrupts.
2998 	 */
2999 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3000 
3001 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3002 		sk_init_xmac(sc_if);
3003 		return;
3004 	}
3005 
3006 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3007 		int			lstat;
3008 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3009 		    BRGPHY_MII_AUXSTS);
3010 
3011 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3012 			mii_mediachg(mii);
3013 			/* Turn off the link LED. */
3014 			SK_IF_WRITE_1(sc_if, 0,
3015 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3016 			sc_if->sk_link = 0;
3017 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3018 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3019 	    		    BRGPHY_MII_IMR, 0xFF00);
3020 			mii_tick(mii);
3021 			sc_if->sk_link = 1;
3022 			/* Turn on the link LED. */
3023 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3024 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3025 			    SK_LINKLED_BLINK_OFF);
3026 		} else {
3027 			mii_tick(mii);
3028 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3029 		}
3030 	}
3031 
3032 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3033 
3034 	return;
3035 }
3036 
3037 static void
3038 sk_intr_xmac(sc_if)
3039 	struct sk_if_softc	*sc_if;
3040 {
3041 	struct sk_softc		*sc;
3042 	u_int16_t		status;
3043 
3044 	sc = sc_if->sk_softc;
3045 	status = SK_XM_READ_2(sc_if, XM_ISR);
3046 
3047 	/*
3048 	 * Link has gone down. Start MII tick timeout to
3049 	 * watch for link resync.
3050 	 */
3051 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3052 		if (status & XM_ISR_GP0_SET) {
3053 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3054 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3055 		}
3056 
3057 		if (status & XM_ISR_AUTONEG_DONE) {
3058 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3059 		}
3060 	}
3061 
3062 	if (status & XM_IMR_TX_UNDERRUN)
3063 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3064 
3065 	if (status & XM_IMR_RX_OVERRUN)
3066 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3067 
3068 	status = SK_XM_READ_2(sc_if, XM_ISR);
3069 
3070 	return;
3071 }
3072 
3073 static void
3074 sk_intr_yukon(sc_if)
3075 	struct sk_if_softc	*sc_if;
3076 {
3077 	u_int8_t status;
3078 
3079 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3080 	/* RX overrun */
3081 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3082 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3083 		    SK_RFCTL_RX_FIFO_OVER);
3084 	}
3085 	/* TX underrun */
3086 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3087 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3088 		    SK_TFCTL_TX_FIFO_UNDER);
3089 	}
3090 }
3091 
3092 static void
3093 sk_intr(xsc)
3094 	void			*xsc;
3095 {
3096 	struct sk_softc		*sc = xsc;
3097 	struct sk_if_softc	*sc_if0, *sc_if1;
3098 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3099 	u_int32_t		status;
3100 
3101 	SK_LOCK(sc);
3102 
3103 	status = CSR_READ_4(sc, SK_ISSR);
3104 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3105 		goto done_locked;
3106 
3107 	sc_if0 = sc->sk_if[SK_PORT_A];
3108 	sc_if1 = sc->sk_if[SK_PORT_B];
3109 
3110 	if (sc_if0 != NULL)
3111 		ifp0 = sc_if0->sk_ifp;
3112 	if (sc_if1 != NULL)
3113 		ifp1 = sc_if1->sk_ifp;
3114 
3115 	for (; (status &= sc->sk_intrmask) != 0;) {
3116 		/* Handle receive interrupts first. */
3117 		if (status & SK_ISR_RX1_EOF) {
3118 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3119 				sk_jumbo_rxeof(sc_if0);
3120 			else
3121 				sk_rxeof(sc_if0);
3122 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3123 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3124 		}
3125 		if (status & SK_ISR_RX2_EOF) {
3126 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3127 				sk_jumbo_rxeof(sc_if1);
3128 			else
3129 				sk_rxeof(sc_if1);
3130 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3131 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3132 		}
3133 
3134 		/* Then transmit interrupts. */
3135 		if (status & SK_ISR_TX1_S_EOF) {
3136 			sk_txeof(sc_if0);
3137 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3138 		}
3139 		if (status & SK_ISR_TX2_S_EOF) {
3140 			sk_txeof(sc_if1);
3141 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3142 		}
3143 
3144 		/* Then MAC interrupts. */
3145 		if (status & SK_ISR_MAC1 &&
3146 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3147 			if (sc->sk_type == SK_GENESIS)
3148 				sk_intr_xmac(sc_if0);
3149 			else
3150 				sk_intr_yukon(sc_if0);
3151 		}
3152 
3153 		if (status & SK_ISR_MAC2 &&
3154 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3155 			if (sc->sk_type == SK_GENESIS)
3156 				sk_intr_xmac(sc_if1);
3157 			else
3158 				sk_intr_yukon(sc_if1);
3159 		}
3160 
3161 		if (status & SK_ISR_EXTERNAL_REG) {
3162 			if (ifp0 != NULL &&
3163 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3164 				sk_intr_bcom(sc_if0);
3165 			if (ifp1 != NULL &&
3166 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3167 				sk_intr_bcom(sc_if1);
3168 		}
3169 		status = CSR_READ_4(sc, SK_ISSR);
3170 	}
3171 
3172 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3173 
3174 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3175 		sk_start_locked(ifp0);
3176 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3177 		sk_start_locked(ifp1);
3178 
3179 done_locked:
3180 	SK_UNLOCK(sc);
3181 }
3182 
3183 static void
3184 sk_init_xmac(sc_if)
3185 	struct sk_if_softc	*sc_if;
3186 {
3187 	struct sk_softc		*sc;
3188 	struct ifnet		*ifp;
3189 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3190 	static const struct sk_bcom_hack bhack[] = {
3191 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3192 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3193 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3194 	{ 0, 0 } };
3195 
3196 	SK_IF_LOCK_ASSERT(sc_if);
3197 
3198 	sc = sc_if->sk_softc;
3199 	ifp = sc_if->sk_ifp;
3200 
3201 	/* Unreset the XMAC. */
3202 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3203 	DELAY(1000);
3204 
3205 	/* Reset the XMAC's internal state. */
3206 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3207 
3208 	/* Save the XMAC II revision */
3209 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3210 
3211 	/*
3212 	 * Perform additional initialization for external PHYs,
3213 	 * namely for the 1000baseTX cards that use the XMAC's
3214 	 * GMII mode.
3215 	 */
3216 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3217 		int			i = 0;
3218 		u_int32_t		val;
3219 
3220 		/* Take PHY out of reset. */
3221 		val = sk_win_read_4(sc, SK_GPIO);
3222 		if (sc_if->sk_port == SK_PORT_A)
3223 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3224 		else
3225 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3226 		sk_win_write_4(sc, SK_GPIO, val);
3227 
3228 		/* Enable GMII mode on the XMAC. */
3229 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3230 
3231 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3232 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3233 		DELAY(10000);
3234 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3235 		    BRGPHY_MII_IMR, 0xFFF0);
3236 
3237 		/*
3238 		 * Early versions of the BCM5400 apparently have
3239 		 * a bug that requires them to have their reserved
3240 		 * registers initialized to some magic values. I don't
3241 		 * know what the numbers do, I'm just the messenger.
3242 		 */
3243 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3244 		    == 0x6041) {
3245 			while(bhack[i].reg) {
3246 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3247 				    bhack[i].reg, bhack[i].val);
3248 				i++;
3249 			}
3250 		}
3251 	}
3252 
3253 	/* Set station address */
3254 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3255 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3256 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3257 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3258 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3259 
3260 	if (ifp->if_flags & IFF_BROADCAST) {
3261 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3262 	} else {
3263 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3264 	}
3265 
3266 	/* We don't need the FCS appended to the packet. */
3267 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3268 
3269 	/* We want short frames padded to 60 bytes. */
3270 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3271 
3272 	/*
3273 	 * Enable the reception of all error frames. This is is
3274 	 * a necessary evil due to the design of the XMAC. The
3275 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3276 	 * frames can be up to 9000 bytes in length. When bad
3277 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3278 	 * in 'store and forward' mode. For this to work, the
3279 	 * entire frame has to fit into the FIFO, but that means
3280 	 * that jumbo frames larger than 8192 bytes will be
3281 	 * truncated. Disabling all bad frame filtering causes
3282 	 * the RX FIFO to operate in streaming mode, in which
3283 	 * case the XMAC will start transferring frames out of the
3284 	 * RX FIFO as soon as the FIFO threshold is reached.
3285 	 */
3286 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3287 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3288 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3289 		    XM_MODE_RX_INRANGELEN);
3290 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3291 	} else
3292 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3293 
3294 	/*
3295 	 * Bump up the transmit threshold. This helps hold off transmit
3296 	 * underruns when we're blasting traffic from both ports at once.
3297 	 */
3298 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3299 
3300 	/* Set Rx filter */
3301 	sk_rxfilter_genesis(sc_if);
3302 
3303 	/* Clear and enable interrupts */
3304 	SK_XM_READ_2(sc_if, XM_ISR);
3305 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3306 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3307 	else
3308 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3309 
3310 	/* Configure MAC arbiter */
3311 	switch(sc_if->sk_xmac_rev) {
3312 	case XM_XMAC_REV_B2:
3313 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3314 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3315 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3316 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3317 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3318 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3319 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3320 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3321 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3322 		break;
3323 	case XM_XMAC_REV_C1:
3324 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3325 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3326 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3327 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3328 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3329 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3330 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3331 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3332 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3333 		break;
3334 	default:
3335 		break;
3336 	}
3337 	sk_win_write_2(sc, SK_MACARB_CTL,
3338 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3339 
3340 	sc_if->sk_link = 1;
3341 
3342 	return;
3343 }
3344 
3345 static void
3346 sk_init_yukon(sc_if)
3347 	struct sk_if_softc	*sc_if;
3348 {
3349 	u_int32_t		phy, v;
3350 	u_int16_t		reg;
3351 	struct sk_softc		*sc;
3352 	struct ifnet		*ifp;
3353 	u_int8_t		*eaddr;
3354 	int			i;
3355 
3356 	SK_IF_LOCK_ASSERT(sc_if);
3357 
3358 	sc = sc_if->sk_softc;
3359 	ifp = sc_if->sk_ifp;
3360 
3361 	if (sc->sk_type == SK_YUKON_LITE &&
3362 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3363 		/*
3364 		 * Workaround code for COMA mode, set PHY reset.
3365 		 * Otherwise it will not correctly take chip out of
3366 		 * powerdown (coma)
3367 		 */
3368 		v = sk_win_read_4(sc, SK_GPIO);
3369 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3370 		sk_win_write_4(sc, SK_GPIO, v);
3371 	}
3372 
3373 	/* GMAC and GPHY Reset */
3374 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3375 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3376 	DELAY(1000);
3377 
3378 	if (sc->sk_type == SK_YUKON_LITE &&
3379 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3380 		/*
3381 		 * Workaround code for COMA mode, clear PHY reset
3382 		 */
3383 		v = sk_win_read_4(sc, SK_GPIO);
3384 		v |= SK_GPIO_DIR9;
3385 		v &= ~SK_GPIO_DAT9;
3386 		sk_win_write_4(sc, SK_GPIO, v);
3387 	}
3388 
3389 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3390 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3391 
3392 	if (sc->sk_coppertype)
3393 		phy |= SK_GPHY_COPPER;
3394 	else
3395 		phy |= SK_GPHY_FIBER;
3396 
3397 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3398 	DELAY(1000);
3399 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3400 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3401 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3402 
3403 	/* unused read of the interrupt source register */
3404 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3405 
3406 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3407 
3408 	/* MIB Counter Clear Mode set */
3409 	reg |= YU_PAR_MIB_CLR;
3410 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3411 
3412 	/* MIB Counter Clear Mode clear */
3413 	reg &= ~YU_PAR_MIB_CLR;
3414 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3415 
3416 	/* receive control reg */
3417 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3418 
3419 	/* transmit parameter register */
3420 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3421 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3422 
3423 	/* serial mode register */
3424 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3425 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3426 		reg |= YU_SMR_MFL_JUMBO;
3427 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3428 
3429 	/* Setup Yukon's station address */
3430 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3431 	for (i = 0; i < 3; i++)
3432 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3433 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3434 	/* Set GMAC source address of flow control. */
3435 	for (i = 0; i < 3; i++)
3436 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3437 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3438 	/* Set GMAC virtual address. */
3439 	for (i = 0; i < 3; i++)
3440 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3441 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3442 
3443 	/* Set Rx filter */
3444 	sk_rxfilter_yukon(sc_if);
3445 
3446 	/* enable interrupt mask for counter overflows */
3447 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3448 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3449 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3450 
3451 	/* Configure RX MAC FIFO Flush Mask */
3452 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3453 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3454 	    YU_RXSTAT_JABBER;
3455 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3456 
3457 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3458 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3459 		v = SK_TFCTL_OPERATION_ON;
3460 	else
3461 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3462 	/* Configure RX MAC FIFO */
3463 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3464 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3465 
3466 	/* Increase flush threshould to 64 bytes */
3467 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3468 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3469 
3470 	/* Configure TX MAC FIFO */
3471 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3472 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3473 }
3474 
3475 /*
3476  * Note that to properly initialize any part of the GEnesis chip,
3477  * you first have to take it out of reset mode.
3478  */
3479 static void
3480 sk_init(xsc)
3481 	void			*xsc;
3482 {
3483 	struct sk_if_softc	*sc_if = xsc;
3484 
3485 	SK_IF_LOCK(sc_if);
3486 	sk_init_locked(sc_if);
3487 	SK_IF_UNLOCK(sc_if);
3488 
3489 	return;
3490 }
3491 
3492 static void
3493 sk_init_locked(sc_if)
3494 	struct sk_if_softc	*sc_if;
3495 {
3496 	struct sk_softc		*sc;
3497 	struct ifnet		*ifp;
3498 	struct mii_data		*mii;
3499 	u_int16_t		reg;
3500 	u_int32_t		imr;
3501 	int			error;
3502 
3503 	SK_IF_LOCK_ASSERT(sc_if);
3504 
3505 	ifp = sc_if->sk_ifp;
3506 	sc = sc_if->sk_softc;
3507 	mii = device_get_softc(sc_if->sk_miibus);
3508 
3509 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3510 		return;
3511 
3512 	/* Cancel pending I/O and free all RX/TX buffers. */
3513 	sk_stop(sc_if);
3514 
3515 	if (sc->sk_type == SK_GENESIS) {
3516 		/* Configure LINK_SYNC LED */
3517 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3518 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3519 			SK_LINKLED_LINKSYNC_ON);
3520 
3521 		/* Configure RX LED */
3522 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3523 			SK_RXLEDCTL_COUNTER_START);
3524 
3525 		/* Configure TX LED */
3526 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3527 			SK_TXLEDCTL_COUNTER_START);
3528 	}
3529 
3530 	/*
3531 	 * Configure descriptor poll timer
3532 	 *
3533 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3534 	 * transmit command due to CPU/cache related interim storage problems
3535 	 * under certain conditions. The document recommends a polling
3536 	 * mechanism to send a Start transmit command to initiate transfer
3537 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3538 	 * enables descriptor poll timer to initiate descriptor processing
3539 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3540 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3541 	 * command instead of waiting for next descriptor polling time.
3542 	 * The same rule may apply to Rx side too but it seems that is not
3543 	 * needed at the moment.
3544 	 * Since sk(4) uses descriptor polling as a last resort there is no
3545 	 * need to set smaller polling time than maximum allowable one.
3546 	 */
3547 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3548 
3549 	/* Configure I2C registers */
3550 
3551 	/* Configure XMAC(s) */
3552 	switch (sc->sk_type) {
3553 	case SK_GENESIS:
3554 		sk_init_xmac(sc_if);
3555 		break;
3556 	case SK_YUKON:
3557 	case SK_YUKON_LITE:
3558 	case SK_YUKON_LP:
3559 		sk_init_yukon(sc_if);
3560 		break;
3561 	}
3562 	mii_mediachg(mii);
3563 
3564 	if (sc->sk_type == SK_GENESIS) {
3565 		/* Configure MAC FIFOs */
3566 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3567 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3568 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3569 
3570 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3571 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3572 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3573 	}
3574 
3575 	/* Configure transmit arbiter(s) */
3576 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3577 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3578 
3579 	/* Configure RAMbuffers */
3580 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3581 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3582 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3583 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3584 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3585 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3586 
3587 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3588 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3589 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3590 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3591 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3592 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3593 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3594 
3595 	/* Configure BMUs */
3596 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3597 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3598 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3599 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3600 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3601 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3602 	} else {
3603 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3604 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3605 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3606 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3607 	}
3608 
3609 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3610 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3611 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3612 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3613 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3614 
3615 	/* Init descriptors */
3616 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3617 		error = sk_init_jumbo_rx_ring(sc_if);
3618 	else
3619 		error = sk_init_rx_ring(sc_if);
3620 	if (error != 0) {
3621 		device_printf(sc_if->sk_if_dev,
3622 		    "initialization failed: no memory for rx buffers\n");
3623 		sk_stop(sc_if);
3624 		return;
3625 	}
3626 	sk_init_tx_ring(sc_if);
3627 
3628 	/* Set interrupt moderation if changed via sysctl. */
3629 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3630 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3631 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3632 		    sc->sk_int_ticks));
3633 		if (bootverbose)
3634 			device_printf(sc_if->sk_if_dev,
3635 			    "interrupt moderation is %d us.\n",
3636 			    sc->sk_int_mod);
3637 	}
3638 
3639 	/* Configure interrupt handling */
3640 	CSR_READ_4(sc, SK_ISSR);
3641 	if (sc_if->sk_port == SK_PORT_A)
3642 		sc->sk_intrmask |= SK_INTRS1;
3643 	else
3644 		sc->sk_intrmask |= SK_INTRS2;
3645 
3646 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3647 
3648 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3649 
3650 	/* Start BMUs. */
3651 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3652 
3653 	switch(sc->sk_type) {
3654 	case SK_GENESIS:
3655 		/* Enable XMACs TX and RX state machines */
3656 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3657 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3658 		break;
3659 	case SK_YUKON:
3660 	case SK_YUKON_LITE:
3661 	case SK_YUKON_LP:
3662 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3663 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3664 #if 0
3665 		/* XXX disable 100Mbps and full duplex mode? */
3666 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3667 #endif
3668 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3669 	}
3670 
3671 	/* Activate descriptor polling timer */
3672 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3673 	/* start transfer of Tx descriptors */
3674 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3675 
3676 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3677 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3678 
3679 	switch (sc->sk_type) {
3680 	case SK_YUKON:
3681 	case SK_YUKON_LITE:
3682 	case SK_YUKON_LP:
3683 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3684 		break;
3685 	}
3686 
3687 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3688 
3689 	return;
3690 }
3691 
3692 static void
3693 sk_stop(sc_if)
3694 	struct sk_if_softc	*sc_if;
3695 {
3696 	int			i;
3697 	struct sk_softc		*sc;
3698 	struct sk_txdesc	*txd;
3699 	struct sk_rxdesc	*rxd;
3700 	struct sk_rxdesc	*jrxd;
3701 	struct ifnet		*ifp;
3702 	u_int32_t		val;
3703 
3704 	SK_IF_LOCK_ASSERT(sc_if);
3705 	sc = sc_if->sk_softc;
3706 	ifp = sc_if->sk_ifp;
3707 
3708 	callout_stop(&sc_if->sk_tick_ch);
3709 	callout_stop(&sc_if->sk_watchdog_ch);
3710 
3711 	/* stop Tx descriptor polling timer */
3712 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3713 	/* stop transfer of Tx descriptors */
3714 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3715 	for (i = 0; i < SK_TIMEOUT; i++) {
3716 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3717 		if ((val & SK_TXBMU_TX_STOP) == 0)
3718 			break;
3719 		DELAY(1);
3720 	}
3721 	if (i == SK_TIMEOUT)
3722 		device_printf(sc_if->sk_if_dev,
3723 		    "can not stop transfer of Tx descriptor\n");
3724 	/* stop transfer of Rx descriptors */
3725 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3726 	for (i = 0; i < SK_TIMEOUT; i++) {
3727 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3728 		if ((val & SK_RXBMU_RX_STOP) == 0)
3729 			break;
3730 		DELAY(1);
3731 	}
3732 	if (i == SK_TIMEOUT)
3733 		device_printf(sc_if->sk_if_dev,
3734 		    "can not stop transfer of Rx descriptor\n");
3735 
3736 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3737 		/* Put PHY back into reset. */
3738 		val = sk_win_read_4(sc, SK_GPIO);
3739 		if (sc_if->sk_port == SK_PORT_A) {
3740 			val |= SK_GPIO_DIR0;
3741 			val &= ~SK_GPIO_DAT0;
3742 		} else {
3743 			val |= SK_GPIO_DIR2;
3744 			val &= ~SK_GPIO_DAT2;
3745 		}
3746 		sk_win_write_4(sc, SK_GPIO, val);
3747 	}
3748 
3749 	/* Turn off various components of this interface. */
3750 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3751 	switch (sc->sk_type) {
3752 	case SK_GENESIS:
3753 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3754 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3755 		break;
3756 	case SK_YUKON:
3757 	case SK_YUKON_LITE:
3758 	case SK_YUKON_LP:
3759 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3760 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3761 		break;
3762 	}
3763 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3765 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3766 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3767 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3768 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3769 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3770 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3771 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3772 
3773 	/* Disable interrupts */
3774 	if (sc_if->sk_port == SK_PORT_A)
3775 		sc->sk_intrmask &= ~SK_INTRS1;
3776 	else
3777 		sc->sk_intrmask &= ~SK_INTRS2;
3778 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3779 
3780 	SK_XM_READ_2(sc_if, XM_ISR);
3781 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3782 
3783 	/* Free RX and TX mbufs still in the queues. */
3784 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3785 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3786 		if (rxd->rx_m != NULL) {
3787 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3788 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3789 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3790 			    rxd->rx_dmamap);
3791 			m_freem(rxd->rx_m);
3792 			rxd->rx_m = NULL;
3793 		}
3794 	}
3795 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3796 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3797 		if (jrxd->rx_m != NULL) {
3798 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3799 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3800 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3801 			    jrxd->rx_dmamap);
3802 			m_freem(jrxd->rx_m);
3803 			jrxd->rx_m = NULL;
3804 		}
3805 	}
3806 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3807 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3808 		if (txd->tx_m != NULL) {
3809 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3810 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3811 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3812 			    txd->tx_dmamap);
3813 			m_freem(txd->tx_m);
3814 			txd->tx_m = NULL;
3815 		}
3816 	}
3817 
3818 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3819 
3820 	return;
3821 }
3822 
3823 static int
3824 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3825 {
3826 	int error, value;
3827 
3828 	if (!arg1)
3829 		return (EINVAL);
3830 	value = *(int *)arg1;
3831 	error = sysctl_handle_int(oidp, &value, 0, req);
3832 	if (error || !req->newptr)
3833 		return (error);
3834 	if (value < low || value > high)
3835 		return (EINVAL);
3836 	*(int *)arg1 = value;
3837 	return (0);
3838 }
3839 
3840 static int
3841 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3842 {
3843 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3844 }
3845