xref: /freebsd/sys/dev/sk/if_sk.c (revision 586f63035fbe5e45cfc971037fd76375661ece26)
1 /*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 /*-
35  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36  *
37  * Permission to use, copy, modify, and distribute this software for any
38  * purpose with or without fee is hereby granted, provided that the above
39  * copyright notice and this permission notice appear in all copies.
40  *
41  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/bus.h>
91 #include <sys/endian.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/sockio.h>
98 #include <sys/queue.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/bpf.h>
102 #include <net/ethernet.h>
103 #include <net/if.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109 
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/ip.h>
113 
114 #include <machine/bus.h>
115 #include <machine/in_cksum.h>
116 #include <machine/resource.h>
117 #include <sys/rman.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/brgphyreg.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129 
130 #include <dev/sk/if_skreg.h>
131 #include <dev/sk/xmaciireg.h>
132 #include <dev/sk/yukonreg.h>
133 
134 MODULE_DEPEND(sk, pci, 1, 1, 1);
135 MODULE_DEPEND(sk, ether, 1, 1, 1);
136 MODULE_DEPEND(sk, miibus, 1, 1, 1);
137 
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 #ifndef lint
142 static const char rcsid[] =
143   "$FreeBSD$";
144 #endif
145 
146 static struct sk_type sk_devs[] = {
147 	{
148 		VENDORID_SK,
149 		DEVICEID_SK_V1,
150 		"SysKonnect Gigabit Ethernet (V1.0)"
151 	},
152 	{
153 		VENDORID_SK,
154 		DEVICEID_SK_V2,
155 		"SysKonnect Gigabit Ethernet (V2.0)"
156 	},
157 	{
158 		VENDORID_MARVELL,
159 		DEVICEID_SK_V2,
160 		"Marvell Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_MARVELL,
164 		DEVICEID_BELKIN_5005,
165 		"Belkin F5D5005 Gigabit Ethernet"
166 	},
167 	{
168 		VENDORID_3COM,
169 		DEVICEID_3COM_3C940,
170 		"3Com 3C940 Gigabit Ethernet"
171 	},
172 	{
173 		VENDORID_LINKSYS,
174 		DEVICEID_LINKSYS_EG1032,
175 		"Linksys EG1032 Gigabit Ethernet"
176 	},
177 	{
178 		VENDORID_DLINK,
179 		DEVICEID_DLINK_DGE530T_A1,
180 		"D-Link DGE-530T Gigabit Ethernet"
181 	},
182 	{
183 		VENDORID_DLINK,
184 		DEVICEID_DLINK_DGE530T_B1,
185 		"D-Link DGE-530T Gigabit Ethernet"
186 	},
187 	{ 0, 0, NULL }
188 };
189 
190 static int skc_probe(device_t);
191 static int skc_attach(device_t);
192 static int skc_detach(device_t);
193 static int skc_shutdown(device_t);
194 static int skc_suspend(device_t);
195 static int skc_resume(device_t);
196 static int sk_detach(device_t);
197 static int sk_probe(device_t);
198 static int sk_attach(device_t);
199 static void sk_tick(void *);
200 static void sk_yukon_tick(void *);
201 static void sk_intr(void *);
202 static void sk_intr_xmac(struct sk_if_softc *);
203 static void sk_intr_bcom(struct sk_if_softc *);
204 static void sk_intr_yukon(struct sk_if_softc *);
205 static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
206 static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
207 static void sk_rxeof(struct sk_if_softc *);
208 static void sk_jumbo_rxeof(struct sk_if_softc *);
209 static void sk_txeof(struct sk_if_softc *);
210 static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
211 static int sk_encap(struct sk_if_softc *, struct mbuf **);
212 static void sk_start(struct ifnet *);
213 static void sk_start_locked(struct ifnet *);
214 static int sk_ioctl(struct ifnet *, u_long, caddr_t);
215 static void sk_init(void *);
216 static void sk_init_locked(struct sk_if_softc *);
217 static void sk_init_xmac(struct sk_if_softc *);
218 static void sk_init_yukon(struct sk_if_softc *);
219 static void sk_stop(struct sk_if_softc *);
220 static void sk_watchdog(void *);
221 static int sk_ifmedia_upd(struct ifnet *);
222 static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
223 static void sk_reset(struct sk_softc *);
224 static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
225 static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
226 static int sk_newbuf(struct sk_if_softc *, int);
227 static int sk_jumbo_newbuf(struct sk_if_softc *, int);
228 static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
229 static int sk_dma_alloc(struct sk_if_softc *);
230 static int sk_dma_jumbo_alloc(struct sk_if_softc *);
231 static void sk_dma_free(struct sk_if_softc *);
232 static void sk_dma_jumbo_free(struct sk_if_softc *);
233 static int sk_init_rx_ring(struct sk_if_softc *);
234 static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
235 static void sk_init_tx_ring(struct sk_if_softc *);
236 static u_int32_t sk_win_read_4(struct sk_softc *, int);
237 static u_int16_t sk_win_read_2(struct sk_softc *, int);
238 static u_int8_t sk_win_read_1(struct sk_softc *, int);
239 static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
240 static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
241 static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
242 
243 static int sk_miibus_readreg(device_t, int, int);
244 static int sk_miibus_writereg(device_t, int, int, int);
245 static void sk_miibus_statchg(device_t);
246 
247 static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
248 static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
249 						int);
250 static void sk_xmac_miibus_statchg(struct sk_if_softc *);
251 
252 static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
253 static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
254 						int);
255 static void sk_marv_miibus_statchg(struct sk_if_softc *);
256 
257 static uint32_t sk_xmchash(const uint8_t *);
258 static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
259 static void sk_rxfilter(struct sk_if_softc *);
260 static void sk_rxfilter_genesis(struct sk_if_softc *);
261 static void sk_rxfilter_yukon(struct sk_if_softc *);
262 
263 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
264 static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
265 
266 /* Tunables. */
267 static int jumbo_disable = 0;
268 TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
269 
270 /*
271  * It seems that SK-NET GENESIS supports very simple checksum offload
272  * capability for Tx and I believe it can generate 0 checksum value for
273  * UDP packets in Tx as the hardware can't differenciate UDP packets from
274  * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
275  * means sender didn't perforam checksum computation. For the safety I
276  * disabled UDP checksum offload capability at the moment. Alternatively
277  * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
278  * offload routine.
279  */
280 #define SK_CSUM_FEATURES	(CSUM_TCP)
281 
282 /*
283  * Note that we have newbus methods for both the GEnesis controller
284  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
285  * the miibus code is a child of the XMACs. We need to do it this way
286  * so that the miibus drivers can access the PHY registers on the
287  * right PHY. It's not quite what I had in mind, but it's the only
288  * design that achieves the desired effect.
289  */
290 static device_method_t skc_methods[] = {
291 	/* Device interface */
292 	DEVMETHOD(device_probe,		skc_probe),
293 	DEVMETHOD(device_attach,	skc_attach),
294 	DEVMETHOD(device_detach,	skc_detach),
295 	DEVMETHOD(device_suspend,	skc_suspend),
296 	DEVMETHOD(device_resume,	skc_resume),
297 	DEVMETHOD(device_shutdown,	skc_shutdown),
298 
299 	DEVMETHOD_END
300 };
301 
302 static driver_t skc_driver = {
303 	"skc",
304 	skc_methods,
305 	sizeof(struct sk_softc)
306 };
307 
308 static devclass_t skc_devclass;
309 
310 static device_method_t sk_methods[] = {
311 	/* Device interface */
312 	DEVMETHOD(device_probe,		sk_probe),
313 	DEVMETHOD(device_attach,	sk_attach),
314 	DEVMETHOD(device_detach,	sk_detach),
315 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
316 
317 	/* MII interface */
318 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
319 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
320 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
321 
322 	DEVMETHOD_END
323 };
324 
325 static driver_t sk_driver = {
326 	"sk",
327 	sk_methods,
328 	sizeof(struct sk_if_softc)
329 };
330 
331 static devclass_t sk_devclass;
332 
333 DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
334 DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
335 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
336 
337 static struct resource_spec sk_res_spec_io[] = {
338 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
339 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
340 	{ -1,			0,		0 }
341 };
342 
343 static struct resource_spec sk_res_spec_mem[] = {
344 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
345 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
346 	{ -1,			0,		0 }
347 };
348 
349 #define SK_SETBIT(sc, reg, x)		\
350 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
351 
352 #define SK_CLRBIT(sc, reg, x)		\
353 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
354 
355 #define SK_WIN_SETBIT_4(sc, reg, x)	\
356 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
357 
358 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
359 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
360 
361 #define SK_WIN_SETBIT_2(sc, reg, x)	\
362 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
363 
364 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
365 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
366 
367 static u_int32_t
368 sk_win_read_4(sc, reg)
369 	struct sk_softc		*sc;
370 	int			reg;
371 {
372 #ifdef SK_USEIOSPACE
373 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
374 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
375 #else
376 	return(CSR_READ_4(sc, reg));
377 #endif
378 }
379 
380 static u_int16_t
381 sk_win_read_2(sc, reg)
382 	struct sk_softc		*sc;
383 	int			reg;
384 {
385 #ifdef SK_USEIOSPACE
386 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
387 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
388 #else
389 	return(CSR_READ_2(sc, reg));
390 #endif
391 }
392 
393 static u_int8_t
394 sk_win_read_1(sc, reg)
395 	struct sk_softc		*sc;
396 	int			reg;
397 {
398 #ifdef SK_USEIOSPACE
399 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
400 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
401 #else
402 	return(CSR_READ_1(sc, reg));
403 #endif
404 }
405 
406 static void
407 sk_win_write_4(sc, reg, val)
408 	struct sk_softc		*sc;
409 	int			reg;
410 	u_int32_t		val;
411 {
412 #ifdef SK_USEIOSPACE
413 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
414 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
415 #else
416 	CSR_WRITE_4(sc, reg, val);
417 #endif
418 	return;
419 }
420 
421 static void
422 sk_win_write_2(sc, reg, val)
423 	struct sk_softc		*sc;
424 	int			reg;
425 	u_int32_t		val;
426 {
427 #ifdef SK_USEIOSPACE
428 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
429 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
430 #else
431 	CSR_WRITE_2(sc, reg, val);
432 #endif
433 	return;
434 }
435 
436 static void
437 sk_win_write_1(sc, reg, val)
438 	struct sk_softc		*sc;
439 	int			reg;
440 	u_int32_t		val;
441 {
442 #ifdef SK_USEIOSPACE
443 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
444 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
445 #else
446 	CSR_WRITE_1(sc, reg, val);
447 #endif
448 	return;
449 }
450 
451 static int
452 sk_miibus_readreg(dev, phy, reg)
453 	device_t		dev;
454 	int			phy, reg;
455 {
456 	struct sk_if_softc	*sc_if;
457 	int			v;
458 
459 	sc_if = device_get_softc(dev);
460 
461 	SK_IF_MII_LOCK(sc_if);
462 	switch(sc_if->sk_softc->sk_type) {
463 	case SK_GENESIS:
464 		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
465 		break;
466 	case SK_YUKON:
467 	case SK_YUKON_LITE:
468 	case SK_YUKON_LP:
469 		v = sk_marv_miibus_readreg(sc_if, phy, reg);
470 		break;
471 	default:
472 		v = 0;
473 		break;
474 	}
475 	SK_IF_MII_UNLOCK(sc_if);
476 
477 	return (v);
478 }
479 
480 static int
481 sk_miibus_writereg(dev, phy, reg, val)
482 	device_t		dev;
483 	int			phy, reg, val;
484 {
485 	struct sk_if_softc	*sc_if;
486 	int			v;
487 
488 	sc_if = device_get_softc(dev);
489 
490 	SK_IF_MII_LOCK(sc_if);
491 	switch(sc_if->sk_softc->sk_type) {
492 	case SK_GENESIS:
493 		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
494 		break;
495 	case SK_YUKON:
496 	case SK_YUKON_LITE:
497 	case SK_YUKON_LP:
498 		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
499 		break;
500 	default:
501 		v = 0;
502 		break;
503 	}
504 	SK_IF_MII_UNLOCK(sc_if);
505 
506 	return (v);
507 }
508 
509 static void
510 sk_miibus_statchg(dev)
511 	device_t		dev;
512 {
513 	struct sk_if_softc	*sc_if;
514 
515 	sc_if = device_get_softc(dev);
516 
517 	SK_IF_MII_LOCK(sc_if);
518 	switch(sc_if->sk_softc->sk_type) {
519 	case SK_GENESIS:
520 		sk_xmac_miibus_statchg(sc_if);
521 		break;
522 	case SK_YUKON:
523 	case SK_YUKON_LITE:
524 	case SK_YUKON_LP:
525 		sk_marv_miibus_statchg(sc_if);
526 		break;
527 	}
528 	SK_IF_MII_UNLOCK(sc_if);
529 
530 	return;
531 }
532 
533 static int
534 sk_xmac_miibus_readreg(sc_if, phy, reg)
535 	struct sk_if_softc	*sc_if;
536 	int			phy, reg;
537 {
538 	int			i;
539 
540 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
541 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
542 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
543 		for (i = 0; i < SK_TIMEOUT; i++) {
544 			DELAY(1);
545 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
546 			    XM_MMUCMD_PHYDATARDY)
547 				break;
548 		}
549 
550 		if (i == SK_TIMEOUT) {
551 			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
552 			return(0);
553 		}
554 	}
555 	DELAY(1);
556 	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
557 
558 	return(i);
559 }
560 
561 static int
562 sk_xmac_miibus_writereg(sc_if, phy, reg, val)
563 	struct sk_if_softc	*sc_if;
564 	int			phy, reg, val;
565 {
566 	int			i;
567 
568 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
569 	for (i = 0; i < SK_TIMEOUT; i++) {
570 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
571 			break;
572 	}
573 
574 	if (i == SK_TIMEOUT) {
575 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
576 		return (ETIMEDOUT);
577 	}
578 
579 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
580 	for (i = 0; i < SK_TIMEOUT; i++) {
581 		DELAY(1);
582 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
583 			break;
584 	}
585 	if (i == SK_TIMEOUT)
586 		if_printf(sc_if->sk_ifp, "phy write timed out\n");
587 
588 	return(0);
589 }
590 
591 static void
592 sk_xmac_miibus_statchg(sc_if)
593 	struct sk_if_softc	*sc_if;
594 {
595 	struct mii_data		*mii;
596 
597 	mii = device_get_softc(sc_if->sk_miibus);
598 
599 	/*
600 	 * If this is a GMII PHY, manually set the XMAC's
601 	 * duplex mode accordingly.
602 	 */
603 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
604 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
605 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
606 		} else {
607 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
608 		}
609 	}
610 }
611 
612 static int
613 sk_marv_miibus_readreg(sc_if, phy, reg)
614 	struct sk_if_softc	*sc_if;
615 	int			phy, reg;
616 {
617 	u_int16_t		val;
618 	int			i;
619 
620 	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
621 	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
622 		return(0);
623 	}
624 
625         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
626 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
627 
628 	for (i = 0; i < SK_TIMEOUT; i++) {
629 		DELAY(1);
630 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
631 		if (val & YU_SMICR_READ_VALID)
632 			break;
633 	}
634 
635 	if (i == SK_TIMEOUT) {
636 		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
637 		return(0);
638 	}
639 
640 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
641 
642 	return(val);
643 }
644 
645 static int
646 sk_marv_miibus_writereg(sc_if, phy, reg, val)
647 	struct sk_if_softc	*sc_if;
648 	int			phy, reg, val;
649 {
650 	int			i;
651 
652 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
653 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
654 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
655 
656 	for (i = 0; i < SK_TIMEOUT; i++) {
657 		DELAY(1);
658 		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
659 			break;
660 	}
661 	if (i == SK_TIMEOUT)
662 		if_printf(sc_if->sk_ifp, "phy write timeout\n");
663 
664 	return(0);
665 }
666 
667 static void
668 sk_marv_miibus_statchg(sc_if)
669 	struct sk_if_softc	*sc_if;
670 {
671 	return;
672 }
673 
674 #define HASH_BITS		6
675 
676 static u_int32_t
677 sk_xmchash(addr)
678 	const uint8_t *addr;
679 {
680 	uint32_t crc;
681 
682 	/* Compute CRC for the address value. */
683 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
684 
685 	return (~crc & ((1 << HASH_BITS) - 1));
686 }
687 
688 static void
689 sk_setfilt(sc_if, addr, slot)
690 	struct sk_if_softc	*sc_if;
691 	u_int16_t		*addr;
692 	int			slot;
693 {
694 	int			base;
695 
696 	base = XM_RXFILT_ENTRY(slot);
697 
698 	SK_XM_WRITE_2(sc_if, base, addr[0]);
699 	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
700 	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
701 
702 	return;
703 }
704 
705 static void
706 sk_rxfilter(sc_if)
707 	struct sk_if_softc	*sc_if;
708 {
709 	struct sk_softc		*sc;
710 
711 	SK_IF_LOCK_ASSERT(sc_if);
712 
713 	sc = sc_if->sk_softc;
714 	if (sc->sk_type == SK_GENESIS)
715 		sk_rxfilter_genesis(sc_if);
716 	else
717 		sk_rxfilter_yukon(sc_if);
718 }
719 
720 static void
721 sk_rxfilter_genesis(sc_if)
722 	struct sk_if_softc	*sc_if;
723 {
724 	struct ifnet		*ifp = sc_if->sk_ifp;
725 	u_int32_t		hashes[2] = { 0, 0 }, mode;
726 	int			h = 0, i;
727 	struct ifmultiaddr	*ifma;
728 	u_int16_t		dummy[] = { 0, 0, 0 };
729 	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
730 
731 	SK_IF_LOCK_ASSERT(sc_if);
732 
733 	mode = SK_XM_READ_4(sc_if, XM_MODE);
734 	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
735 	    XM_MODE_RX_USE_PERFECT);
736 	/* First, zot all the existing perfect filters. */
737 	for (i = 1; i < XM_RXFILT_MAX; i++)
738 		sk_setfilt(sc_if, dummy, i);
739 
740 	/* Now program new ones. */
741 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
742 		if (ifp->if_flags & IFF_ALLMULTI)
743 			mode |= XM_MODE_RX_USE_HASH;
744 		if (ifp->if_flags & IFF_PROMISC)
745 			mode |= XM_MODE_RX_PROMISC;
746 		hashes[0] = 0xFFFFFFFF;
747 		hashes[1] = 0xFFFFFFFF;
748 	} else {
749 		i = 1;
750 		if_maddr_rlock(ifp);
751 		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
752 		    ifma_link) {
753 			if (ifma->ifma_addr->sa_family != AF_LINK)
754 				continue;
755 			/*
756 			 * Program the first XM_RXFILT_MAX multicast groups
757 			 * into the perfect filter.
758 			 */
759 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
760 			    maddr, ETHER_ADDR_LEN);
761 			if (i < XM_RXFILT_MAX) {
762 				sk_setfilt(sc_if, maddr, i);
763 				mode |= XM_MODE_RX_USE_PERFECT;
764 				i++;
765 				continue;
766 			}
767 			h = sk_xmchash((const uint8_t *)maddr);
768 			if (h < 32)
769 				hashes[0] |= (1 << h);
770 			else
771 				hashes[1] |= (1 << (h - 32));
772 			mode |= XM_MODE_RX_USE_HASH;
773 		}
774 		if_maddr_runlock(ifp);
775 	}
776 
777 	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
778 	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
779 	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
780 }
781 
782 static void
783 sk_rxfilter_yukon(sc_if)
784 	struct sk_if_softc	*sc_if;
785 {
786 	struct ifnet		*ifp;
787 	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
788 	struct ifmultiaddr	*ifma;
789 
790 	SK_IF_LOCK_ASSERT(sc_if);
791 
792 	ifp = sc_if->sk_ifp;
793 	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
794 	if (ifp->if_flags & IFF_PROMISC)
795 		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
796 	else if (ifp->if_flags & IFF_ALLMULTI) {
797 		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
798 		hashes[0] = 0xFFFFFFFF;
799 		hashes[1] = 0xFFFFFFFF;
800 	} else {
801 		mode |= YU_RCR_UFLEN;
802 		if_maddr_rlock(ifp);
803 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
804 			if (ifma->ifma_addr->sa_family != AF_LINK)
805 				continue;
806 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
807 			    ifma->ifma_addr), ETHER_ADDR_LEN);
808 			/* Just want the 6 least significant bits. */
809 			crc &= 0x3f;
810 			/* Set the corresponding bit in the hash table. */
811 			hashes[crc >> 5] |= 1 << (crc & 0x1f);
812 		}
813 		if_maddr_runlock(ifp);
814 		if (hashes[0] != 0 || hashes[1] != 0)
815 			mode |= YU_RCR_MUFLEN;
816 	}
817 
818 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
819 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
820 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
821 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
822 	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
823 }
824 
825 static int
826 sk_init_rx_ring(sc_if)
827 	struct sk_if_softc	*sc_if;
828 {
829 	struct sk_ring_data	*rd;
830 	bus_addr_t		addr;
831 	u_int32_t		csum_start;
832 	int			i;
833 
834 	sc_if->sk_cdata.sk_rx_cons = 0;
835 
836 	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
837 	    ETHER_HDR_LEN;
838 	rd = &sc_if->sk_rdata;
839 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
840 	for (i = 0; i < SK_RX_RING_CNT; i++) {
841 		if (sk_newbuf(sc_if, i) != 0)
842 			return (ENOBUFS);
843 		if (i == (SK_RX_RING_CNT - 1))
844 			addr = SK_RX_RING_ADDR(sc_if, 0);
845 		else
846 			addr = SK_RX_RING_ADDR(sc_if, i + 1);
847 		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
848 		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
849 	}
850 
851 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
852 	    sc_if->sk_cdata.sk_rx_ring_map,
853 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
854 
855 	return(0);
856 }
857 
858 static int
859 sk_init_jumbo_rx_ring(sc_if)
860 	struct sk_if_softc	*sc_if;
861 {
862 	struct sk_ring_data	*rd;
863 	bus_addr_t		addr;
864 	u_int32_t		csum_start;
865 	int			i;
866 
867 	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
868 
869 	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
870 	    ETHER_HDR_LEN;
871 	rd = &sc_if->sk_rdata;
872 	bzero(rd->sk_jumbo_rx_ring,
873 	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
874 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
875 		if (sk_jumbo_newbuf(sc_if, i) != 0)
876 			return (ENOBUFS);
877 		if (i == (SK_JUMBO_RX_RING_CNT - 1))
878 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
879 		else
880 			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
881 		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
882 		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
883 	}
884 
885 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
886 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
887 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
888 
889 	return (0);
890 }
891 
892 static void
893 sk_init_tx_ring(sc_if)
894 	struct sk_if_softc	*sc_if;
895 {
896 	struct sk_ring_data	*rd;
897 	struct sk_txdesc	*txd;
898 	bus_addr_t		addr;
899 	int			i;
900 
901 	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
902 	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
903 
904 	sc_if->sk_cdata.sk_tx_prod = 0;
905 	sc_if->sk_cdata.sk_tx_cons = 0;
906 	sc_if->sk_cdata.sk_tx_cnt = 0;
907 
908 	rd = &sc_if->sk_rdata;
909 	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
910 	for (i = 0; i < SK_TX_RING_CNT; i++) {
911 		if (i == (SK_TX_RING_CNT - 1))
912 			addr = SK_TX_RING_ADDR(sc_if, 0);
913 		else
914 			addr = SK_TX_RING_ADDR(sc_if, i + 1);
915 		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
916 		txd = &sc_if->sk_cdata.sk_txdesc[i];
917 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
918 	}
919 
920 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
921 	    sc_if->sk_cdata.sk_tx_ring_map,
922 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
923 }
924 
925 static __inline void
926 sk_discard_rxbuf(sc_if, idx)
927 	struct sk_if_softc	*sc_if;
928 	int			idx;
929 {
930 	struct sk_rx_desc	*r;
931 	struct sk_rxdesc	*rxd;
932 	struct mbuf		*m;
933 
934 
935 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
936 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
937 	m = rxd->rx_m;
938 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
939 }
940 
941 static __inline void
942 sk_discard_jumbo_rxbuf(sc_if, idx)
943 	struct sk_if_softc	*sc_if;
944 	int			idx;
945 {
946 	struct sk_rx_desc	*r;
947 	struct sk_rxdesc	*rxd;
948 	struct mbuf		*m;
949 
950 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
951 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
952 	m = rxd->rx_m;
953 	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
954 }
955 
956 static int
957 sk_newbuf(sc_if, idx)
958 	struct sk_if_softc	*sc_if;
959 	int 			idx;
960 {
961 	struct sk_rx_desc	*r;
962 	struct sk_rxdesc	*rxd;
963 	struct mbuf		*m;
964 	bus_dma_segment_t	segs[1];
965 	bus_dmamap_t		map;
966 	int			nsegs;
967 
968 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
969 	if (m == NULL)
970 		return (ENOBUFS);
971 	m->m_len = m->m_pkthdr.len = MCLBYTES;
972 	m_adj(m, ETHER_ALIGN);
973 
974 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
975 	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
976 		m_freem(m);
977 		return (ENOBUFS);
978 	}
979 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
980 
981 	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
982 	if (rxd->rx_m != NULL) {
983 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
984 		    BUS_DMASYNC_POSTREAD);
985 		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
986 	}
987 	map = rxd->rx_dmamap;
988 	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
989 	sc_if->sk_cdata.sk_rx_sparemap = map;
990 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
991 	    BUS_DMASYNC_PREREAD);
992 	rxd->rx_m = m;
993 	r = &sc_if->sk_rdata.sk_rx_ring[idx];
994 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
995 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
996 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
997 
998 	return (0);
999 }
1000 
1001 static int
1002 sk_jumbo_newbuf(sc_if, idx)
1003 	struct sk_if_softc	*sc_if;
1004 	int			idx;
1005 {
1006 	struct sk_rx_desc	*r;
1007 	struct sk_rxdesc	*rxd;
1008 	struct mbuf		*m;
1009 	bus_dma_segment_t	segs[1];
1010 	bus_dmamap_t		map;
1011 	int			nsegs;
1012 
1013 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1014 	if (m == NULL)
1015 		return (ENOBUFS);
1016 	if ((m->m_flags & M_EXT) == 0) {
1017 		m_freem(m);
1018 		return (ENOBUFS);
1019 	}
1020 	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1021 	/*
1022 	 * Adjust alignment so packet payload begins on a
1023 	 * longword boundary. Mandatory for Alpha, useful on
1024 	 * x86 too.
1025 	 */
1026 	m_adj(m, ETHER_ALIGN);
1027 
1028 	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1029 	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1030 		m_freem(m);
1031 		return (ENOBUFS);
1032 	}
1033 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1034 
1035 	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1036 	if (rxd->rx_m != NULL) {
1037 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1038 		    BUS_DMASYNC_POSTREAD);
1039 		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1040 		    rxd->rx_dmamap);
1041 	}
1042 	map = rxd->rx_dmamap;
1043 	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1044 	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1045 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1046 	    BUS_DMASYNC_PREREAD);
1047 	rxd->rx_m = m;
1048 	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1049 	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1050 	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1051 	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1052 
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Set media options.
1058  */
1059 static int
1060 sk_ifmedia_upd(ifp)
1061 	struct ifnet		*ifp;
1062 {
1063 	struct sk_if_softc	*sc_if = ifp->if_softc;
1064 	struct mii_data		*mii;
1065 
1066 	mii = device_get_softc(sc_if->sk_miibus);
1067 	sk_init(sc_if);
1068 	mii_mediachg(mii);
1069 
1070 	return(0);
1071 }
1072 
1073 /*
1074  * Report current media status.
1075  */
1076 static void
1077 sk_ifmedia_sts(ifp, ifmr)
1078 	struct ifnet		*ifp;
1079 	struct ifmediareq	*ifmr;
1080 {
1081 	struct sk_if_softc	*sc_if;
1082 	struct mii_data		*mii;
1083 
1084 	sc_if = ifp->if_softc;
1085 	mii = device_get_softc(sc_if->sk_miibus);
1086 
1087 	mii_pollstat(mii);
1088 	ifmr->ifm_active = mii->mii_media_active;
1089 	ifmr->ifm_status = mii->mii_media_status;
1090 
1091 	return;
1092 }
1093 
1094 static int
1095 sk_ioctl(ifp, command, data)
1096 	struct ifnet		*ifp;
1097 	u_long			command;
1098 	caddr_t			data;
1099 {
1100 	struct sk_if_softc	*sc_if = ifp->if_softc;
1101 	struct ifreq		*ifr = (struct ifreq *) data;
1102 	int			error, mask;
1103 	struct mii_data		*mii;
1104 
1105 	error = 0;
1106 	switch(command) {
1107 	case SIOCSIFMTU:
1108 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1109 			error = EINVAL;
1110 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1111 			if (sc_if->sk_jumbo_disable != 0 &&
1112 			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1113 				error = EINVAL;
1114 			else {
1115 				SK_IF_LOCK(sc_if);
1116 				ifp->if_mtu = ifr->ifr_mtu;
1117 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1118 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1119 					sk_init_locked(sc_if);
1120 				}
1121 				SK_IF_UNLOCK(sc_if);
1122 			}
1123 		}
1124 		break;
1125 	case SIOCSIFFLAGS:
1126 		SK_IF_LOCK(sc_if);
1127 		if (ifp->if_flags & IFF_UP) {
1128 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1129 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1130 				    & (IFF_PROMISC | IFF_ALLMULTI))
1131 					sk_rxfilter(sc_if);
1132 			} else
1133 				sk_init_locked(sc_if);
1134 		} else {
1135 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1136 				sk_stop(sc_if);
1137 		}
1138 		sc_if->sk_if_flags = ifp->if_flags;
1139 		SK_IF_UNLOCK(sc_if);
1140 		break;
1141 	case SIOCADDMULTI:
1142 	case SIOCDELMULTI:
1143 		SK_IF_LOCK(sc_if);
1144 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1145 			sk_rxfilter(sc_if);
1146 		SK_IF_UNLOCK(sc_if);
1147 		break;
1148 	case SIOCGIFMEDIA:
1149 	case SIOCSIFMEDIA:
1150 		mii = device_get_softc(sc_if->sk_miibus);
1151 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1152 		break;
1153 	case SIOCSIFCAP:
1154 		SK_IF_LOCK(sc_if);
1155 		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1156 			SK_IF_UNLOCK(sc_if);
1157 			break;
1158 		}
1159 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1160 		if ((mask & IFCAP_TXCSUM) != 0 &&
1161 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1162 			ifp->if_capenable ^= IFCAP_TXCSUM;
1163 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1164 				ifp->if_hwassist |= SK_CSUM_FEATURES;
1165 			else
1166 				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1167 		}
1168 		if ((mask & IFCAP_RXCSUM) != 0 &&
1169 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1170 			ifp->if_capenable ^= IFCAP_RXCSUM;
1171 		SK_IF_UNLOCK(sc_if);
1172 		break;
1173 	default:
1174 		error = ether_ioctl(ifp, command, data);
1175 		break;
1176 	}
1177 
1178 	return (error);
1179 }
1180 
1181 /*
1182  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1183  * IDs against our list and return a device name if we find a match.
1184  */
1185 static int
1186 skc_probe(dev)
1187 	device_t		dev;
1188 {
1189 	struct sk_type		*t = sk_devs;
1190 
1191 	while(t->sk_name != NULL) {
1192 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1193 		    (pci_get_device(dev) == t->sk_did)) {
1194 			/*
1195 			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1196 			 * Rev. 3 is supported by re(4).
1197 			 */
1198 			if ((t->sk_vid == VENDORID_LINKSYS) &&
1199 				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1200 				(pci_get_subdevice(dev) !=
1201 				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1202 				t++;
1203 				continue;
1204 			}
1205 			device_set_desc(dev, t->sk_name);
1206 			return (BUS_PROBE_DEFAULT);
1207 		}
1208 		t++;
1209 	}
1210 
1211 	return(ENXIO);
1212 }
1213 
1214 /*
1215  * Force the GEnesis into reset, then bring it out of reset.
1216  */
1217 static void
1218 sk_reset(sc)
1219 	struct sk_softc		*sc;
1220 {
1221 
1222 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1223 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1224 	if (SK_YUKON_FAMILY(sc->sk_type))
1225 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1226 
1227 	DELAY(1000);
1228 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1229 	DELAY(2);
1230 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1231 	if (SK_YUKON_FAMILY(sc->sk_type))
1232 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1233 
1234 	if (sc->sk_type == SK_GENESIS) {
1235 		/* Configure packet arbiter */
1236 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1237 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1238 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1239 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1240 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1241 	}
1242 
1243 	/* Enable RAM interface */
1244 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1245 
1246 	/*
1247          * Configure interrupt moderation. The moderation timer
1248 	 * defers interrupts specified in the interrupt moderation
1249 	 * timer mask based on the timeout specified in the interrupt
1250 	 * moderation timer init register. Each bit in the timer
1251 	 * register represents one tick, so to specify a timeout in
1252 	 * microseconds, we have to multiply by the correct number of
1253 	 * ticks-per-microsecond.
1254 	 */
1255 	switch (sc->sk_type) {
1256 	case SK_GENESIS:
1257 		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1258 		break;
1259 	default:
1260 		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1261 		break;
1262 	}
1263 	if (bootverbose)
1264 		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1265 		    sc->sk_int_mod);
1266 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1267 	    sc->sk_int_ticks));
1268 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1269 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1270 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1271 
1272 	return;
1273 }
1274 
1275 static int
1276 sk_probe(dev)
1277 	device_t		dev;
1278 {
1279 	struct sk_softc		*sc;
1280 
1281 	sc = device_get_softc(device_get_parent(dev));
1282 
1283 	/*
1284 	 * Not much to do here. We always know there will be
1285 	 * at least one XMAC present, and if there are two,
1286 	 * skc_attach() will create a second device instance
1287 	 * for us.
1288 	 */
1289 	switch (sc->sk_type) {
1290 	case SK_GENESIS:
1291 		device_set_desc(dev, "XaQti Corp. XMAC II");
1292 		break;
1293 	case SK_YUKON:
1294 	case SK_YUKON_LITE:
1295 	case SK_YUKON_LP:
1296 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1297 		break;
1298 	}
1299 
1300 	return (BUS_PROBE_DEFAULT);
1301 }
1302 
1303 /*
1304  * Each XMAC chip is attached as a separate logical IP interface.
1305  * Single port cards will have only one logical interface of course.
1306  */
1307 static int
1308 sk_attach(dev)
1309 	device_t		dev;
1310 {
1311 	struct sk_softc		*sc;
1312 	struct sk_if_softc	*sc_if;
1313 	struct ifnet		*ifp;
1314 	u_int32_t		r;
1315 	int			error, i, phy, port;
1316 	u_char			eaddr[6];
1317 	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1318 
1319 	if (dev == NULL)
1320 		return(EINVAL);
1321 
1322 	error = 0;
1323 	sc_if = device_get_softc(dev);
1324 	sc = device_get_softc(device_get_parent(dev));
1325 	port = *(int *)device_get_ivars(dev);
1326 
1327 	sc_if->sk_if_dev = dev;
1328 	sc_if->sk_port = port;
1329 	sc_if->sk_softc = sc;
1330 	sc->sk_if[port] = sc_if;
1331 	if (port == SK_PORT_A)
1332 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1333 	if (port == SK_PORT_B)
1334 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1335 
1336 	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1337 	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1338 
1339 	if (sk_dma_alloc(sc_if) != 0) {
1340 		error = ENOMEM;
1341 		goto fail;
1342 	}
1343 	sk_dma_jumbo_alloc(sc_if);
1344 
1345 	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1346 	if (ifp == NULL) {
1347 		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1348 		error = ENOSPC;
1349 		goto fail;
1350 	}
1351 	ifp->if_softc = sc_if;
1352 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1353 	ifp->if_mtu = ETHERMTU;
1354 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1355 	/*
1356 	 * SK_GENESIS has a bug in checksum offload - From linux.
1357 	 */
1358 	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1359 		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1360 		ifp->if_hwassist = 0;
1361 	} else {
1362 		ifp->if_capabilities = 0;
1363 		ifp->if_hwassist = 0;
1364 	}
1365 	ifp->if_capenable = ifp->if_capabilities;
1366 	/*
1367 	 * Some revision of Yukon controller generates corrupted
1368 	 * frame when TX checksum offloading is enabled.  The
1369 	 * frame has a valid checksum value so payload might be
1370 	 * modified during TX checksum calculation. Disable TX
1371 	 * checksum offloading but give users chance to enable it
1372 	 * when they know their controller works without problems
1373 	 * with TX checksum offloading.
1374 	 */
1375 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1376 	ifp->if_ioctl = sk_ioctl;
1377 	ifp->if_start = sk_start;
1378 	ifp->if_init = sk_init;
1379 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1380 	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1381 	IFQ_SET_READY(&ifp->if_snd);
1382 
1383 	/*
1384 	 * Get station address for this interface. Note that
1385 	 * dual port cards actually come with three station
1386 	 * addresses: one for each port, plus an extra. The
1387 	 * extra one is used by the SysKonnect driver software
1388 	 * as a 'virtual' station address for when both ports
1389 	 * are operating in failover mode. Currently we don't
1390 	 * use this extra address.
1391 	 */
1392 	SK_IF_LOCK(sc_if);
1393 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1394 		eaddr[i] =
1395 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1396 
1397 	/* Verify whether the station address is invalid or not. */
1398 	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1399 		device_printf(sc_if->sk_if_dev,
1400 		    "Generating random ethernet address\n");
1401 		r = arc4random();
1402 		/*
1403 		 * Set OUI to convenient locally assigned address.  'b'
1404 		 * is 0x62, which has the locally assigned bit set, and
1405 		 * the broadcast/multicast bit clear.
1406 		 */
1407 		eaddr[0] = 'b';
1408 		eaddr[1] = 's';
1409 		eaddr[2] = 'd';
1410 		eaddr[3] = (r >> 16) & 0xff;
1411 		eaddr[4] = (r >>  8) & 0xff;
1412 		eaddr[5] = (r >>  0) & 0xff;
1413 	}
1414 	/*
1415 	 * Set up RAM buffer addresses. The NIC will have a certain
1416 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1417 	 * need to divide this up a) between the transmitter and
1418  	 * receiver and b) between the two XMACs, if this is a
1419 	 * dual port NIC. Our algotithm is to divide up the memory
1420 	 * evenly so that everyone gets a fair share.
1421 	 *
1422 	 * Just to be contrary, Yukon2 appears to have separate memory
1423 	 * for each MAC.
1424 	 */
1425 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1426 		u_int32_t		chunk, val;
1427 
1428 		chunk = sc->sk_ramsize / 2;
1429 		val = sc->sk_rboff / sizeof(u_int64_t);
1430 		sc_if->sk_rx_ramstart = val;
1431 		val += (chunk / sizeof(u_int64_t));
1432 		sc_if->sk_rx_ramend = val - 1;
1433 		sc_if->sk_tx_ramstart = val;
1434 		val += (chunk / sizeof(u_int64_t));
1435 		sc_if->sk_tx_ramend = val - 1;
1436 	} else {
1437 		u_int32_t		chunk, val;
1438 
1439 		chunk = sc->sk_ramsize / 4;
1440 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1441 		    sizeof(u_int64_t);
1442 		sc_if->sk_rx_ramstart = val;
1443 		val += (chunk / sizeof(u_int64_t));
1444 		sc_if->sk_rx_ramend = val - 1;
1445 		sc_if->sk_tx_ramstart = val;
1446 		val += (chunk / sizeof(u_int64_t));
1447 		sc_if->sk_tx_ramend = val - 1;
1448 	}
1449 
1450 	/* Read and save PHY type and set PHY address */
1451 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1452 	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1453 		switch(sc_if->sk_phytype) {
1454 		case SK_PHYTYPE_XMAC:
1455 			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1456 			break;
1457 		case SK_PHYTYPE_BCOM:
1458 			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1459 			break;
1460 		default:
1461 			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1462 			    sc_if->sk_phytype);
1463 			error = ENODEV;
1464 			SK_IF_UNLOCK(sc_if);
1465 			goto fail;
1466 		}
1467 	} else {
1468 		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1469 		    sc->sk_pmd != 'S') {
1470 			/* not initialized, punt */
1471 			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1472 			sc->sk_coppertype = 1;
1473 		}
1474 
1475 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1476 
1477 		if (!(sc->sk_coppertype))
1478 			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1479 	}
1480 
1481 	/*
1482 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1483 	 */
1484 	SK_IF_UNLOCK(sc_if);
1485 	ether_ifattach(ifp, eaddr);
1486 	SK_IF_LOCK(sc_if);
1487 
1488 	/*
1489 	 * The hardware should be ready for VLAN_MTU by default:
1490 	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1491 	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1492 	 *
1493 	 */
1494         ifp->if_capabilities |= IFCAP_VLAN_MTU;
1495         ifp->if_capenable |= IFCAP_VLAN_MTU;
1496 	/*
1497 	 * Tell the upper layer(s) we support long frames.
1498 	 * Must appear after the call to ether_ifattach() because
1499 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1500 	 */
1501         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1502 
1503 	/*
1504 	 * Do miibus setup.
1505 	 */
1506 	phy = MII_PHY_ANY;
1507 	switch (sc->sk_type) {
1508 	case SK_GENESIS:
1509 		sk_init_xmac(sc_if);
1510 		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1511 			phy = 0;
1512 		break;
1513 	case SK_YUKON:
1514 	case SK_YUKON_LITE:
1515 	case SK_YUKON_LP:
1516 		sk_init_yukon(sc_if);
1517 		phy = 0;
1518 		break;
1519 	}
1520 
1521 	SK_IF_UNLOCK(sc_if);
1522 	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1523 	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1524 	if (error != 0) {
1525 		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1526 		ether_ifdetach(ifp);
1527 		goto fail;
1528 	}
1529 
1530 fail:
1531 	if (error) {
1532 		/* Access should be ok even though lock has been dropped */
1533 		sc->sk_if[port] = NULL;
1534 		sk_detach(dev);
1535 	}
1536 
1537 	return(error);
1538 }
1539 
1540 /*
1541  * Attach the interface. Allocate softc structures, do ifmedia
1542  * setup and ethernet/BPF attach.
1543  */
1544 static int
1545 skc_attach(dev)
1546 	device_t		dev;
1547 {
1548 	struct sk_softc		*sc;
1549 	int			error = 0, *port;
1550 	uint8_t			skrs;
1551 	const char		*pname = NULL;
1552 	char			*revstr;
1553 
1554 	sc = device_get_softc(dev);
1555 	sc->sk_dev = dev;
1556 
1557 	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1558 	    MTX_DEF);
1559 	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1560 	/*
1561 	 * Map control/status registers.
1562 	 */
1563 	pci_enable_busmaster(dev);
1564 
1565 	/* Allocate resources */
1566 #ifdef SK_USEIOSPACE
1567 	sc->sk_res_spec = sk_res_spec_io;
1568 #else
1569 	sc->sk_res_spec = sk_res_spec_mem;
1570 #endif
1571 	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1572 	if (error) {
1573 		if (sc->sk_res_spec == sk_res_spec_mem)
1574 			sc->sk_res_spec = sk_res_spec_io;
1575 		else
1576 			sc->sk_res_spec = sk_res_spec_mem;
1577 		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1578 		if (error) {
1579 			device_printf(dev, "couldn't allocate %s resources\n",
1580 			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1581 			    "I/O");
1582 			goto fail;
1583 		}
1584 	}
1585 
1586 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1587 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1588 
1589 	/* Bail out if chip is not recognized. */
1590 	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1591 		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1592 		    sc->sk_type, sc->sk_rev);
1593 		error = ENXIO;
1594 		goto fail;
1595 	}
1596 
1597 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1598 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1599 		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1600 		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1601 		"SK interrupt moderation");
1602 
1603 	/* Pull in device tunables. */
1604 	sc->sk_int_mod = SK_IM_DEFAULT;
1605 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1606 		"int_mod", &sc->sk_int_mod);
1607 	if (error == 0) {
1608 		if (sc->sk_int_mod < SK_IM_MIN ||
1609 		    sc->sk_int_mod > SK_IM_MAX) {
1610 			device_printf(dev, "int_mod value out of range; "
1611 			    "using default: %d\n", SK_IM_DEFAULT);
1612 			sc->sk_int_mod = SK_IM_DEFAULT;
1613 		}
1614 	}
1615 
1616 	/* Reset the adapter. */
1617 	sk_reset(sc);
1618 
1619 	skrs = sk_win_read_1(sc, SK_EPROM0);
1620 	if (sc->sk_type == SK_GENESIS) {
1621 		/* Read and save RAM size and RAMbuffer offset */
1622 		switch(skrs) {
1623 		case SK_RAMSIZE_512K_64:
1624 			sc->sk_ramsize = 0x80000;
1625 			sc->sk_rboff = SK_RBOFF_0;
1626 			break;
1627 		case SK_RAMSIZE_1024K_64:
1628 			sc->sk_ramsize = 0x100000;
1629 			sc->sk_rboff = SK_RBOFF_80000;
1630 			break;
1631 		case SK_RAMSIZE_1024K_128:
1632 			sc->sk_ramsize = 0x100000;
1633 			sc->sk_rboff = SK_RBOFF_0;
1634 			break;
1635 		case SK_RAMSIZE_2048K_128:
1636 			sc->sk_ramsize = 0x200000;
1637 			sc->sk_rboff = SK_RBOFF_0;
1638 			break;
1639 		default:
1640 			device_printf(dev, "unknown ram size: %d\n", skrs);
1641 			error = ENXIO;
1642 			goto fail;
1643 		}
1644 	} else { /* SK_YUKON_FAMILY */
1645 		if (skrs == 0x00)
1646 			sc->sk_ramsize = 0x20000;
1647 		else
1648 			sc->sk_ramsize = skrs * (1<<12);
1649 		sc->sk_rboff = SK_RBOFF_0;
1650 	}
1651 
1652 	/* Read and save physical media type */
1653 	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1654 
1655 	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1656 		 sc->sk_coppertype = 1;
1657 	 else
1658 		 sc->sk_coppertype = 0;
1659 
1660 	/* Determine whether to name it with VPD PN or just make it up.
1661 	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1662 	switch (pci_get_device(dev)) {
1663 	case DEVICEID_SK_V1:
1664 	case DEVICEID_BELKIN_5005:
1665 	case DEVICEID_3COM_3C940:
1666 	case DEVICEID_LINKSYS_EG1032:
1667 	case DEVICEID_DLINK_DGE530T_A1:
1668 	case DEVICEID_DLINK_DGE530T_B1:
1669 		/* Stay with VPD PN. */
1670 		(void) pci_get_vpd_ident(dev, &pname);
1671 		break;
1672 	case DEVICEID_SK_V2:
1673 		/* YUKON VPD PN might bear no resemblance to reality. */
1674 		switch (sc->sk_type) {
1675 		case SK_GENESIS:
1676 			/* Stay with VPD PN. */
1677 			(void) pci_get_vpd_ident(dev, &pname);
1678 			break;
1679 		case SK_YUKON:
1680 			pname = "Marvell Yukon Gigabit Ethernet";
1681 			break;
1682 		case SK_YUKON_LITE:
1683 			pname = "Marvell Yukon Lite Gigabit Ethernet";
1684 			break;
1685 		case SK_YUKON_LP:
1686 			pname = "Marvell Yukon LP Gigabit Ethernet";
1687 			break;
1688 		default:
1689 			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1690 			break;
1691 		}
1692 
1693 		/* Yukon Lite Rev. A0 needs special test. */
1694 		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1695 			u_int32_t far;
1696 			u_int8_t testbyte;
1697 
1698 			/* Save flash address register before testing. */
1699 			far = sk_win_read_4(sc, SK_EP_ADDR);
1700 
1701 			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1702 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1703 
1704 			if (testbyte != 0x00) {
1705 				/* Yukon Lite Rev. A0 detected. */
1706 				sc->sk_type = SK_YUKON_LITE;
1707 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1708 				/* Restore flash address register. */
1709 				sk_win_write_4(sc, SK_EP_ADDR, far);
1710 			}
1711 		}
1712 		break;
1713 	default:
1714 		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1715 			"chipver=%02x, rev=%x\n",
1716 			pci_get_vendor(dev), pci_get_device(dev),
1717 			sc->sk_type, sc->sk_rev);
1718 		error = ENXIO;
1719 		goto fail;
1720 	}
1721 
1722 	if (sc->sk_type == SK_YUKON_LITE) {
1723 		switch (sc->sk_rev) {
1724 		case SK_YUKON_LITE_REV_A0:
1725 			revstr = "A0";
1726 			break;
1727 		case SK_YUKON_LITE_REV_A1:
1728 			revstr = "A1";
1729 			break;
1730 		case SK_YUKON_LITE_REV_A3:
1731 			revstr = "A3";
1732 			break;
1733 		default:
1734 			revstr = "";
1735 			break;
1736 		}
1737 	} else {
1738 		revstr = "";
1739 	}
1740 
1741 	/* Announce the product name and more VPD data if there. */
1742 	if (pname != NULL)
1743 		device_printf(dev, "%s rev. %s(0x%x)\n",
1744 			pname, revstr, sc->sk_rev);
1745 
1746 	if (bootverbose) {
1747 		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1748 		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1749 		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1750 		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1751 	}
1752 
1753 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1754 	if (sc->sk_devs[SK_PORT_A] == NULL) {
1755 		device_printf(dev, "failed to add child for PORT_A\n");
1756 		error = ENXIO;
1757 		goto fail;
1758 	}
1759 	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1760 	if (port == NULL) {
1761 		device_printf(dev, "failed to allocate memory for "
1762 		    "ivars of PORT_A\n");
1763 		error = ENXIO;
1764 		goto fail;
1765 	}
1766 	*port = SK_PORT_A;
1767 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1768 
1769 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1770 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1771 		if (sc->sk_devs[SK_PORT_B] == NULL) {
1772 			device_printf(dev, "failed to add child for PORT_B\n");
1773 			error = ENXIO;
1774 			goto fail;
1775 		}
1776 		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1777 		if (port == NULL) {
1778 			device_printf(dev, "failed to allocate memory for "
1779 			    "ivars of PORT_B\n");
1780 			error = ENXIO;
1781 			goto fail;
1782 		}
1783 		*port = SK_PORT_B;
1784 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1785 	}
1786 
1787 	/* Turn on the 'driver is loaded' LED. */
1788 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1789 
1790 	error = bus_generic_attach(dev);
1791 	if (error) {
1792 		device_printf(dev, "failed to attach port(s)\n");
1793 		goto fail;
1794 	}
1795 
1796 	/* Hook interrupt last to avoid having to lock softc */
1797 	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1798 	    NULL, sk_intr, sc, &sc->sk_intrhand);
1799 
1800 	if (error) {
1801 		device_printf(dev, "couldn't set up irq\n");
1802 		goto fail;
1803 	}
1804 
1805 fail:
1806 	if (error)
1807 		skc_detach(dev);
1808 
1809 	return(error);
1810 }
1811 
1812 /*
1813  * Shutdown hardware and free up resources. This can be called any
1814  * time after the mutex has been initialized. It is called in both
1815  * the error case in attach and the normal detach case so it needs
1816  * to be careful about only freeing resources that have actually been
1817  * allocated.
1818  */
1819 static int
1820 sk_detach(dev)
1821 	device_t		dev;
1822 {
1823 	struct sk_if_softc	*sc_if;
1824 	struct ifnet		*ifp;
1825 
1826 	sc_if = device_get_softc(dev);
1827 	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1828 	    ("sk mutex not initialized in sk_detach"));
1829 	SK_IF_LOCK(sc_if);
1830 
1831 	ifp = sc_if->sk_ifp;
1832 	/* These should only be active if attach_xmac succeeded */
1833 	if (device_is_attached(dev)) {
1834 		sk_stop(sc_if);
1835 		/* Can't hold locks while calling detach */
1836 		SK_IF_UNLOCK(sc_if);
1837 		callout_drain(&sc_if->sk_tick_ch);
1838 		callout_drain(&sc_if->sk_watchdog_ch);
1839 		ether_ifdetach(ifp);
1840 		SK_IF_LOCK(sc_if);
1841 	}
1842 	if (ifp)
1843 		if_free(ifp);
1844 	/*
1845 	 * We're generally called from skc_detach() which is using
1846 	 * device_delete_child() to get to here. It's already trashed
1847 	 * miibus for us, so don't do it here or we'll panic.
1848 	 */
1849 	/*
1850 	if (sc_if->sk_miibus != NULL)
1851 		device_delete_child(dev, sc_if->sk_miibus);
1852 	*/
1853 	bus_generic_detach(dev);
1854 	sk_dma_jumbo_free(sc_if);
1855 	sk_dma_free(sc_if);
1856 	SK_IF_UNLOCK(sc_if);
1857 
1858 	return(0);
1859 }
1860 
1861 static int
1862 skc_detach(dev)
1863 	device_t		dev;
1864 {
1865 	struct sk_softc		*sc;
1866 
1867 	sc = device_get_softc(dev);
1868 	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1869 
1870 	if (device_is_alive(dev)) {
1871 		if (sc->sk_devs[SK_PORT_A] != NULL) {
1872 			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1873 			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1874 		}
1875 		if (sc->sk_devs[SK_PORT_B] != NULL) {
1876 			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1877 			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1878 		}
1879 		bus_generic_detach(dev);
1880 	}
1881 
1882 	if (sc->sk_intrhand)
1883 		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1884 	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1885 
1886 	mtx_destroy(&sc->sk_mii_mtx);
1887 	mtx_destroy(&sc->sk_mtx);
1888 
1889 	return(0);
1890 }
1891 
1892 struct sk_dmamap_arg {
1893 	bus_addr_t	sk_busaddr;
1894 };
1895 
1896 static void
1897 sk_dmamap_cb(arg, segs, nseg, error)
1898 	void			*arg;
1899 	bus_dma_segment_t	*segs;
1900 	int			nseg;
1901 	int			error;
1902 {
1903 	struct sk_dmamap_arg	*ctx;
1904 
1905 	if (error != 0)
1906 		return;
1907 
1908 	ctx = arg;
1909 	ctx->sk_busaddr = segs[0].ds_addr;
1910 }
1911 
1912 /*
1913  * Allocate jumbo buffer storage. The SysKonnect adapters support
1914  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1915  * use them in their drivers. In order for us to use them, we need
1916  * large 9K receive buffers, however standard mbuf clusters are only
1917  * 2048 bytes in size. Consequently, we need to allocate and manage
1918  * our own jumbo buffer pool. Fortunately, this does not require an
1919  * excessive amount of additional code.
1920  */
1921 static int
1922 sk_dma_alloc(sc_if)
1923 	struct sk_if_softc	*sc_if;
1924 {
1925 	struct sk_dmamap_arg	ctx;
1926 	struct sk_txdesc	*txd;
1927 	struct sk_rxdesc	*rxd;
1928 	int			error, i;
1929 
1930 	/* create parent tag */
1931 	/*
1932 	 * XXX
1933 	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1934 	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1935 	 * However bz@ reported that it does not work on amd64 with > 4GB
1936 	 * RAM. Until we have more clues of the breakage, disable DAC mode
1937 	 * by limiting DMA address to be in 32bit address space.
1938 	 */
1939 	error = bus_dma_tag_create(
1940 		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1941 		    1, 0,			/* algnmnt, boundary */
1942 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1943 		    BUS_SPACE_MAXADDR,		/* highaddr */
1944 		    NULL, NULL,			/* filter, filterarg */
1945 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1946 		    0,				/* nsegments */
1947 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1948 		    0,				/* flags */
1949 		    NULL, NULL,			/* lockfunc, lockarg */
1950 		    &sc_if->sk_cdata.sk_parent_tag);
1951 	if (error != 0) {
1952 		device_printf(sc_if->sk_if_dev,
1953 		    "failed to create parent DMA tag\n");
1954 		goto fail;
1955 	}
1956 
1957 	/* create tag for Tx ring */
1958 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1959 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1960 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1961 		    BUS_SPACE_MAXADDR,		/* highaddr */
1962 		    NULL, NULL,			/* filter, filterarg */
1963 		    SK_TX_RING_SZ,		/* maxsize */
1964 		    1,				/* nsegments */
1965 		    SK_TX_RING_SZ,		/* maxsegsize */
1966 		    0,				/* flags */
1967 		    NULL, NULL,			/* lockfunc, lockarg */
1968 		    &sc_if->sk_cdata.sk_tx_ring_tag);
1969 	if (error != 0) {
1970 		device_printf(sc_if->sk_if_dev,
1971 		    "failed to allocate Tx ring DMA tag\n");
1972 		goto fail;
1973 	}
1974 
1975 	/* create tag for Rx ring */
1976 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1977 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1978 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1979 		    BUS_SPACE_MAXADDR,		/* highaddr */
1980 		    NULL, NULL,			/* filter, filterarg */
1981 		    SK_RX_RING_SZ,		/* maxsize */
1982 		    1,				/* nsegments */
1983 		    SK_RX_RING_SZ,		/* maxsegsize */
1984 		    0,				/* flags */
1985 		    NULL, NULL,			/* lockfunc, lockarg */
1986 		    &sc_if->sk_cdata.sk_rx_ring_tag);
1987 	if (error != 0) {
1988 		device_printf(sc_if->sk_if_dev,
1989 		    "failed to allocate Rx ring DMA tag\n");
1990 		goto fail;
1991 	}
1992 
1993 	/* create tag for Tx buffers */
1994 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1995 		    1, 0,			/* algnmnt, boundary */
1996 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1997 		    BUS_SPACE_MAXADDR,		/* highaddr */
1998 		    NULL, NULL,			/* filter, filterarg */
1999 		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2000 		    SK_MAXTXSEGS,		/* nsegments */
2001 		    MCLBYTES,			/* maxsegsize */
2002 		    0,				/* flags */
2003 		    NULL, NULL,			/* lockfunc, lockarg */
2004 		    &sc_if->sk_cdata.sk_tx_tag);
2005 	if (error != 0) {
2006 		device_printf(sc_if->sk_if_dev,
2007 		    "failed to allocate Tx DMA tag\n");
2008 		goto fail;
2009 	}
2010 
2011 	/* create tag for Rx buffers */
2012 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2013 		    1, 0,			/* algnmnt, boundary */
2014 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2015 		    BUS_SPACE_MAXADDR,		/* highaddr */
2016 		    NULL, NULL,			/* filter, filterarg */
2017 		    MCLBYTES,			/* maxsize */
2018 		    1,				/* nsegments */
2019 		    MCLBYTES,			/* maxsegsize */
2020 		    0,				/* flags */
2021 		    NULL, NULL,			/* lockfunc, lockarg */
2022 		    &sc_if->sk_cdata.sk_rx_tag);
2023 	if (error != 0) {
2024 		device_printf(sc_if->sk_if_dev,
2025 		    "failed to allocate Rx DMA tag\n");
2026 		goto fail;
2027 	}
2028 
2029 	/* allocate DMA'able memory and load the DMA map for Tx ring */
2030 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2031 	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2032 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2033 	if (error != 0) {
2034 		device_printf(sc_if->sk_if_dev,
2035 		    "failed to allocate DMA'able memory for Tx ring\n");
2036 		goto fail;
2037 	}
2038 
2039 	ctx.sk_busaddr = 0;
2040 	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2041 	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2042 	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2043 	if (error != 0) {
2044 		device_printf(sc_if->sk_if_dev,
2045 		    "failed to load DMA'able memory for Tx ring\n");
2046 		goto fail;
2047 	}
2048 	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2049 
2050 	/* allocate DMA'able memory and load the DMA map for Rx ring */
2051 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2052 	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2053 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2054 	if (error != 0) {
2055 		device_printf(sc_if->sk_if_dev,
2056 		    "failed to allocate DMA'able memory for Rx ring\n");
2057 		goto fail;
2058 	}
2059 
2060 	ctx.sk_busaddr = 0;
2061 	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2062 	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2063 	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2064 	if (error != 0) {
2065 		device_printf(sc_if->sk_if_dev,
2066 		    "failed to load DMA'able memory for Rx ring\n");
2067 		goto fail;
2068 	}
2069 	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2070 
2071 	/* create DMA maps for Tx buffers */
2072 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2073 		txd = &sc_if->sk_cdata.sk_txdesc[i];
2074 		txd->tx_m = NULL;
2075 		txd->tx_dmamap = NULL;
2076 		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2077 		    &txd->tx_dmamap);
2078 		if (error != 0) {
2079 			device_printf(sc_if->sk_if_dev,
2080 			    "failed to create Tx dmamap\n");
2081 			goto fail;
2082 		}
2083 	}
2084 
2085 	/* create DMA maps for Rx buffers */
2086 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2087 	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2088 		device_printf(sc_if->sk_if_dev,
2089 		    "failed to create spare Rx dmamap\n");
2090 		goto fail;
2091 	}
2092 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2093 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2094 		rxd->rx_m = NULL;
2095 		rxd->rx_dmamap = NULL;
2096 		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2097 		    &rxd->rx_dmamap);
2098 		if (error != 0) {
2099 			device_printf(sc_if->sk_if_dev,
2100 			    "failed to create Rx dmamap\n");
2101 			goto fail;
2102 		}
2103 	}
2104 
2105 fail:
2106 	return (error);
2107 }
2108 
2109 static int
2110 sk_dma_jumbo_alloc(sc_if)
2111 	struct sk_if_softc	*sc_if;
2112 {
2113 	struct sk_dmamap_arg	ctx;
2114 	struct sk_rxdesc	*jrxd;
2115 	int			error, i;
2116 
2117 	if (jumbo_disable != 0) {
2118 		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2119 		sc_if->sk_jumbo_disable = 1;
2120 		return (0);
2121 	}
2122 	/* create tag for jumbo Rx ring */
2123 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2124 		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2125 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2126 		    BUS_SPACE_MAXADDR,		/* highaddr */
2127 		    NULL, NULL,			/* filter, filterarg */
2128 		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2129 		    1,				/* nsegments */
2130 		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2131 		    0,				/* flags */
2132 		    NULL, NULL,			/* lockfunc, lockarg */
2133 		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2134 	if (error != 0) {
2135 		device_printf(sc_if->sk_if_dev,
2136 		    "failed to allocate jumbo Rx ring DMA tag\n");
2137 		goto jumbo_fail;
2138 	}
2139 
2140 	/* create tag for jumbo Rx buffers */
2141 	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2142 		    1, 0,			/* algnmnt, boundary */
2143 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2144 		    BUS_SPACE_MAXADDR,		/* highaddr */
2145 		    NULL, NULL,			/* filter, filterarg */
2146 		    MJUM9BYTES,			/* maxsize */
2147 		    1,				/* nsegments */
2148 		    MJUM9BYTES,			/* maxsegsize */
2149 		    0,				/* flags */
2150 		    NULL, NULL,			/* lockfunc, lockarg */
2151 		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2152 	if (error != 0) {
2153 		device_printf(sc_if->sk_if_dev,
2154 		    "failed to allocate jumbo Rx DMA tag\n");
2155 		goto jumbo_fail;
2156 	}
2157 
2158 	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2159 	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2160 	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2161 	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2162 	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2163 	if (error != 0) {
2164 		device_printf(sc_if->sk_if_dev,
2165 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2166 		goto jumbo_fail;
2167 	}
2168 
2169 	ctx.sk_busaddr = 0;
2170 	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2171 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2172 	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2173 	    &ctx, BUS_DMA_NOWAIT);
2174 	if (error != 0) {
2175 		device_printf(sc_if->sk_if_dev,
2176 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2177 		goto jumbo_fail;
2178 	}
2179 	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2180 
2181 	/* create DMA maps for jumbo Rx buffers */
2182 	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2183 	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2184 		device_printf(sc_if->sk_if_dev,
2185 		    "failed to create spare jumbo Rx dmamap\n");
2186 		goto jumbo_fail;
2187 	}
2188 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2189 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2190 		jrxd->rx_m = NULL;
2191 		jrxd->rx_dmamap = NULL;
2192 		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2193 		    &jrxd->rx_dmamap);
2194 		if (error != 0) {
2195 			device_printf(sc_if->sk_if_dev,
2196 			    "failed to create jumbo Rx dmamap\n");
2197 			goto jumbo_fail;
2198 		}
2199 	}
2200 
2201 	return (0);
2202 
2203 jumbo_fail:
2204 	sk_dma_jumbo_free(sc_if);
2205 	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2206 	    "resource shortage\n");
2207 	sc_if->sk_jumbo_disable = 1;
2208 	return (0);
2209 }
2210 
2211 static void
2212 sk_dma_free(sc_if)
2213 	struct sk_if_softc	*sc_if;
2214 {
2215 	struct sk_txdesc	*txd;
2216 	struct sk_rxdesc	*rxd;
2217 	int			i;
2218 
2219 	/* Tx ring */
2220 	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2221 		if (sc_if->sk_cdata.sk_tx_ring_map)
2222 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2223 			    sc_if->sk_cdata.sk_tx_ring_map);
2224 		if (sc_if->sk_cdata.sk_tx_ring_map &&
2225 		    sc_if->sk_rdata.sk_tx_ring)
2226 			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2227 			    sc_if->sk_rdata.sk_tx_ring,
2228 			    sc_if->sk_cdata.sk_tx_ring_map);
2229 		sc_if->sk_rdata.sk_tx_ring = NULL;
2230 		sc_if->sk_cdata.sk_tx_ring_map = NULL;
2231 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2232 		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2233 	}
2234 	/* Rx ring */
2235 	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2236 		if (sc_if->sk_cdata.sk_rx_ring_map)
2237 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2238 			    sc_if->sk_cdata.sk_rx_ring_map);
2239 		if (sc_if->sk_cdata.sk_rx_ring_map &&
2240 		    sc_if->sk_rdata.sk_rx_ring)
2241 			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2242 			    sc_if->sk_rdata.sk_rx_ring,
2243 			    sc_if->sk_cdata.sk_rx_ring_map);
2244 		sc_if->sk_rdata.sk_rx_ring = NULL;
2245 		sc_if->sk_cdata.sk_rx_ring_map = NULL;
2246 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2247 		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2248 	}
2249 	/* Tx buffers */
2250 	if (sc_if->sk_cdata.sk_tx_tag) {
2251 		for (i = 0; i < SK_TX_RING_CNT; i++) {
2252 			txd = &sc_if->sk_cdata.sk_txdesc[i];
2253 			if (txd->tx_dmamap) {
2254 				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2255 				    txd->tx_dmamap);
2256 				txd->tx_dmamap = NULL;
2257 			}
2258 		}
2259 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2260 		sc_if->sk_cdata.sk_tx_tag = NULL;
2261 	}
2262 	/* Rx buffers */
2263 	if (sc_if->sk_cdata.sk_rx_tag) {
2264 		for (i = 0; i < SK_RX_RING_CNT; i++) {
2265 			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2266 			if (rxd->rx_dmamap) {
2267 				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2268 				    rxd->rx_dmamap);
2269 				rxd->rx_dmamap = NULL;
2270 			}
2271 		}
2272 		if (sc_if->sk_cdata.sk_rx_sparemap) {
2273 			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2274 			    sc_if->sk_cdata.sk_rx_sparemap);
2275 			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2276 		}
2277 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2278 		sc_if->sk_cdata.sk_rx_tag = NULL;
2279 	}
2280 
2281 	if (sc_if->sk_cdata.sk_parent_tag) {
2282 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2283 		sc_if->sk_cdata.sk_parent_tag = NULL;
2284 	}
2285 }
2286 
2287 static void
2288 sk_dma_jumbo_free(sc_if)
2289 	struct sk_if_softc	*sc_if;
2290 {
2291 	struct sk_rxdesc	*jrxd;
2292 	int			i;
2293 
2294 	/* jumbo Rx ring */
2295 	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2296 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2297 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2298 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2299 		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2300 		    sc_if->sk_rdata.sk_jumbo_rx_ring)
2301 			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2302 			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2303 			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2304 		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2305 		sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2306 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2307 		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2308 	}
2309 
2310 	/* jumbo Rx buffers */
2311 	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2312 		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2313 			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2314 			if (jrxd->rx_dmamap) {
2315 				bus_dmamap_destroy(
2316 				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2317 				    jrxd->rx_dmamap);
2318 				jrxd->rx_dmamap = NULL;
2319 			}
2320 		}
2321 		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2322 			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2323 			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2324 			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2325 		}
2326 		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2327 		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2328 	}
2329 }
2330 
2331 static void
2332 sk_txcksum(ifp, m, f)
2333 	struct ifnet		*ifp;
2334 	struct mbuf		*m;
2335 	struct sk_tx_desc	*f;
2336 {
2337 	struct ip		*ip;
2338 	u_int16_t		offset;
2339 	u_int8_t 		*p;
2340 
2341 	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2342 	for(; m && m->m_len == 0; m = m->m_next)
2343 		;
2344 	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2345 		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2346 		/* checksum may be corrupted */
2347 		goto sendit;
2348 	}
2349 	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2350 		if (m->m_len != ETHER_HDR_LEN) {
2351 			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2352 			    __func__);
2353 			/* checksum may be corrupted */
2354 			goto sendit;
2355 		}
2356 		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2357 			;
2358 		if (m == NULL) {
2359 			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2360 			/* checksum may be corrupted */
2361 			goto sendit;
2362 		}
2363 		ip = mtod(m, struct ip *);
2364 	} else {
2365 		p = mtod(m, u_int8_t *);
2366 		p += ETHER_HDR_LEN;
2367 		ip = (struct ip *)p;
2368 	}
2369 	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2370 
2371 sendit:
2372 	f->sk_csum_startval = 0;
2373 	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2374 	    (offset << 16));
2375 }
2376 
2377 static int
2378 sk_encap(sc_if, m_head)
2379         struct sk_if_softc	*sc_if;
2380         struct mbuf		**m_head;
2381 {
2382 	struct sk_txdesc	*txd;
2383 	struct sk_tx_desc	*f = NULL;
2384 	struct mbuf		*m;
2385 	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2386 	u_int32_t		cflags, frag, si, sk_ctl;
2387 	int			error, i, nseg;
2388 
2389 	SK_IF_LOCK_ASSERT(sc_if);
2390 
2391 	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2392 		return (ENOBUFS);
2393 
2394 	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2395 	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2396 	if (error == EFBIG) {
2397 		m = m_defrag(*m_head, M_DONTWAIT);
2398 		if (m == NULL) {
2399 			m_freem(*m_head);
2400 			*m_head = NULL;
2401 			return (ENOMEM);
2402 		}
2403 		*m_head = m;
2404 		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2405 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2406 		if (error != 0) {
2407 			m_freem(*m_head);
2408 			*m_head = NULL;
2409 			return (error);
2410 		}
2411 	} else if (error != 0)
2412 		return (error);
2413 	if (nseg == 0) {
2414 		m_freem(*m_head);
2415 		*m_head = NULL;
2416 		return (EIO);
2417 	}
2418 	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2419 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2420 		return (ENOBUFS);
2421 	}
2422 
2423 	m = *m_head;
2424 	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2425 		cflags = SK_OPCODE_CSUM;
2426 	else
2427 		cflags = SK_OPCODE_DEFAULT;
2428 	si = frag = sc_if->sk_cdata.sk_tx_prod;
2429 	for (i = 0; i < nseg; i++) {
2430 		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2431 		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2432 		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2433 		sk_ctl = txsegs[i].ds_len | cflags;
2434 		if (i == 0) {
2435 			if (cflags == SK_OPCODE_CSUM)
2436 				sk_txcksum(sc_if->sk_ifp, m, f);
2437 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2438 		} else
2439 			sk_ctl |= SK_TXCTL_OWN;
2440 		f->sk_ctl = htole32(sk_ctl);
2441 		sc_if->sk_cdata.sk_tx_cnt++;
2442 		SK_INC(frag, SK_TX_RING_CNT);
2443 	}
2444 	sc_if->sk_cdata.sk_tx_prod = frag;
2445 
2446 	/* set EOF on the last desciptor */
2447 	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2448 	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2449 	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2450 
2451 	/* turn the first descriptor ownership to NIC */
2452 	f = &sc_if->sk_rdata.sk_tx_ring[si];
2453 	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2454 
2455 	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2456 	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2457 	txd->tx_m = m;
2458 
2459 	/* sync descriptors */
2460 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2461 	    BUS_DMASYNC_PREWRITE);
2462 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2463 	    sc_if->sk_cdata.sk_tx_ring_map,
2464 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2465 
2466 	return (0);
2467 }
2468 
2469 static void
2470 sk_start(ifp)
2471 	struct ifnet		*ifp;
2472 {
2473 	struct sk_if_softc *sc_if;
2474 
2475 	sc_if = ifp->if_softc;
2476 
2477 	SK_IF_LOCK(sc_if);
2478 	sk_start_locked(ifp);
2479 	SK_IF_UNLOCK(sc_if);
2480 
2481 	return;
2482 }
2483 
2484 static void
2485 sk_start_locked(ifp)
2486 	struct ifnet		*ifp;
2487 {
2488         struct sk_softc		*sc;
2489         struct sk_if_softc	*sc_if;
2490         struct mbuf		*m_head;
2491 	int			enq;
2492 
2493 	sc_if = ifp->if_softc;
2494 	sc = sc_if->sk_softc;
2495 
2496 	SK_IF_LOCK_ASSERT(sc_if);
2497 
2498 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2499 	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2500 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2501 		if (m_head == NULL)
2502 			break;
2503 
2504 		/*
2505 		 * Pack the data into the transmit ring. If we
2506 		 * don't have room, set the OACTIVE flag and wait
2507 		 * for the NIC to drain the ring.
2508 		 */
2509 		if (sk_encap(sc_if, &m_head)) {
2510 			if (m_head == NULL)
2511 				break;
2512 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2513 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2514 			break;
2515 		}
2516 
2517 		enq++;
2518 		/*
2519 		 * If there's a BPF listener, bounce a copy of this frame
2520 		 * to him.
2521 		 */
2522 		BPF_MTAP(ifp, m_head);
2523 	}
2524 
2525 	if (enq > 0) {
2526 		/* Transmit */
2527 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2528 
2529 		/* Set a timeout in case the chip goes out to lunch. */
2530 		sc_if->sk_watchdog_timer = 5;
2531 	}
2532 }
2533 
2534 
2535 static void
2536 sk_watchdog(arg)
2537 	void			*arg;
2538 {
2539 	struct sk_if_softc	*sc_if;
2540 	struct ifnet		*ifp;
2541 
2542 	ifp = arg;
2543 	sc_if = ifp->if_softc;
2544 
2545 	SK_IF_LOCK_ASSERT(sc_if);
2546 
2547 	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2548 		goto done;
2549 
2550 	/*
2551 	 * Reclaim first as there is a possibility of losing Tx completion
2552 	 * interrupts.
2553 	 */
2554 	sk_txeof(sc_if);
2555 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2556 		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2557 		ifp->if_oerrors++;
2558 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2559 		sk_init_locked(sc_if);
2560 	}
2561 
2562 done:
2563 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2564 
2565 	return;
2566 }
2567 
2568 static int
2569 skc_shutdown(dev)
2570 	device_t		dev;
2571 {
2572 	struct sk_softc		*sc;
2573 
2574 	sc = device_get_softc(dev);
2575 	SK_LOCK(sc);
2576 
2577 	/* Turn off the 'driver is loaded' LED. */
2578 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2579 
2580 	/*
2581 	 * Reset the GEnesis controller. Doing this should also
2582 	 * assert the resets on the attached XMAC(s).
2583 	 */
2584 	sk_reset(sc);
2585 	SK_UNLOCK(sc);
2586 
2587 	return (0);
2588 }
2589 
2590 static int
2591 skc_suspend(dev)
2592 	device_t		dev;
2593 {
2594 	struct sk_softc		*sc;
2595 	struct sk_if_softc	*sc_if0, *sc_if1;
2596 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2597 
2598 	sc = device_get_softc(dev);
2599 
2600 	SK_LOCK(sc);
2601 
2602 	sc_if0 = sc->sk_if[SK_PORT_A];
2603 	sc_if1 = sc->sk_if[SK_PORT_B];
2604 	if (sc_if0 != NULL)
2605 		ifp0 = sc_if0->sk_ifp;
2606 	if (sc_if1 != NULL)
2607 		ifp1 = sc_if1->sk_ifp;
2608 	if (ifp0 != NULL)
2609 		sk_stop(sc_if0);
2610 	if (ifp1 != NULL)
2611 		sk_stop(sc_if1);
2612 	sc->sk_suspended = 1;
2613 
2614 	SK_UNLOCK(sc);
2615 
2616 	return (0);
2617 }
2618 
2619 static int
2620 skc_resume(dev)
2621 	device_t		dev;
2622 {
2623 	struct sk_softc		*sc;
2624 	struct sk_if_softc	*sc_if0, *sc_if1;
2625 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2626 
2627 	sc = device_get_softc(dev);
2628 
2629 	SK_LOCK(sc);
2630 
2631 	sc_if0 = sc->sk_if[SK_PORT_A];
2632 	sc_if1 = sc->sk_if[SK_PORT_B];
2633 	if (sc_if0 != NULL)
2634 		ifp0 = sc_if0->sk_ifp;
2635 	if (sc_if1 != NULL)
2636 		ifp1 = sc_if1->sk_ifp;
2637 	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2638 		sk_init_locked(sc_if0);
2639 	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2640 		sk_init_locked(sc_if1);
2641 	sc->sk_suspended = 0;
2642 
2643 	SK_UNLOCK(sc);
2644 
2645 	return (0);
2646 }
2647 
2648 /*
2649  * According to the data sheet from SK-NET GENESIS the hardware can compute
2650  * two Rx checksums at the same time(Each checksum start position is
2651  * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2652  * does not work at least on my Yukon hardware. I tried every possible ways
2653  * to get correct checksum value but couldn't get correct one. So TCP/UDP
2654  * checksum offload was disabled at the moment and only IP checksum offload
2655  * was enabled.
2656  * As nomral IP header size is 20 bytes I can't expect it would give an
2657  * increase in throughput. However it seems it doesn't hurt performance in
2658  * my testing. If there is a more detailed information for checksum secret
2659  * of the hardware in question please contact yongari@FreeBSD.org to add
2660  * TCP/UDP checksum offload support.
2661  */
2662 static __inline void
2663 sk_rxcksum(ifp, m, csum)
2664 	struct ifnet		*ifp;
2665 	struct mbuf		*m;
2666 	u_int32_t		csum;
2667 {
2668 	struct ether_header	*eh;
2669 	struct ip		*ip;
2670 	int32_t			hlen, len, pktlen;
2671 	u_int16_t		csum1, csum2, ipcsum;
2672 
2673 	pktlen = m->m_pkthdr.len;
2674 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2675 		return;
2676 	eh = mtod(m, struct ether_header *);
2677 	if (eh->ether_type != htons(ETHERTYPE_IP))
2678 		return;
2679 	ip = (struct ip *)(eh + 1);
2680 	if (ip->ip_v != IPVERSION)
2681 		return;
2682 	hlen = ip->ip_hl << 2;
2683 	pktlen -= sizeof(struct ether_header);
2684 	if (hlen < sizeof(struct ip))
2685 		return;
2686 	if (ntohs(ip->ip_len) < hlen)
2687 		return;
2688 	if (ntohs(ip->ip_len) != pktlen)
2689 		return;
2690 
2691 	csum1 = htons(csum & 0xffff);
2692 	csum2 = htons((csum >> 16) & 0xffff);
2693 	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2694 	/* checksum fixup for IP options */
2695 	len = hlen - sizeof(struct ip);
2696 	if (len > 0) {
2697 		/*
2698 		 * If the second checksum value is correct we can compute IP
2699 		 * checksum with simple math. Unfortunately the second checksum
2700 		 * value is wrong so we can't verify the checksum from the
2701 		 * value(It seems there is some magic here to get correct
2702 		 * value). If the second checksum value is correct it also
2703 		 * means we can get TCP/UDP checksum) here. However, it still
2704 		 * needs pseudo header checksum calculation due to hardware
2705 		 * limitations.
2706 		 */
2707 		return;
2708 	}
2709 	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2710 	if (ipcsum == 0xffff)
2711 		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2712 }
2713 
2714 static __inline int
2715 sk_rxvalid(sc, stat, len)
2716 	struct sk_softc		*sc;
2717 	u_int32_t		stat, len;
2718 {
2719 
2720 	if (sc->sk_type == SK_GENESIS) {
2721 		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2722 		    XM_RXSTAT_BYTES(stat) != len)
2723 			return (0);
2724 	} else {
2725 		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2726 		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2727 		    YU_RXSTAT_JABBER)) != 0 ||
2728 		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2729 		    YU_RXSTAT_BYTES(stat) != len)
2730 			return (0);
2731 	}
2732 
2733 	return (1);
2734 }
2735 
2736 static void
2737 sk_rxeof(sc_if)
2738 	struct sk_if_softc	*sc_if;
2739 {
2740 	struct sk_softc		*sc;
2741 	struct mbuf		*m;
2742 	struct ifnet		*ifp;
2743 	struct sk_rx_desc	*cur_rx;
2744 	struct sk_rxdesc	*rxd;
2745 	int			cons, prog;
2746 	u_int32_t		csum, rxstat, sk_ctl;
2747 
2748 	sc = sc_if->sk_softc;
2749 	ifp = sc_if->sk_ifp;
2750 
2751 	SK_IF_LOCK_ASSERT(sc_if);
2752 
2753 	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2754 	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2755 
2756 	prog = 0;
2757 	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2758 	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2759 		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2760 		sk_ctl = le32toh(cur_rx->sk_ctl);
2761 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2762 			break;
2763 		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2764 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2765 
2766 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2767 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2768 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2769 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2770 		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2771 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2772 			ifp->if_ierrors++;
2773 			sk_discard_rxbuf(sc_if, cons);
2774 			continue;
2775 		}
2776 
2777 		m = rxd->rx_m;
2778 		csum = le32toh(cur_rx->sk_csum);
2779 		if (sk_newbuf(sc_if, cons) != 0) {
2780 			ifp->if_iqdrops++;
2781 			/* reuse old buffer */
2782 			sk_discard_rxbuf(sc_if, cons);
2783 			continue;
2784 		}
2785 		m->m_pkthdr.rcvif = ifp;
2786 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2787 		ifp->if_ipackets++;
2788 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2789 			sk_rxcksum(ifp, m, csum);
2790 		SK_IF_UNLOCK(sc_if);
2791 		(*ifp->if_input)(ifp, m);
2792 		SK_IF_LOCK(sc_if);
2793 	}
2794 
2795 	if (prog > 0) {
2796 		sc_if->sk_cdata.sk_rx_cons = cons;
2797 		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2798 		    sc_if->sk_cdata.sk_rx_ring_map,
2799 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2800 	}
2801 }
2802 
2803 static void
2804 sk_jumbo_rxeof(sc_if)
2805 	struct sk_if_softc	*sc_if;
2806 {
2807 	struct sk_softc		*sc;
2808 	struct mbuf		*m;
2809 	struct ifnet		*ifp;
2810 	struct sk_rx_desc	*cur_rx;
2811 	struct sk_rxdesc	*jrxd;
2812 	int			cons, prog;
2813 	u_int32_t		csum, rxstat, sk_ctl;
2814 
2815 	sc = sc_if->sk_softc;
2816 	ifp = sc_if->sk_ifp;
2817 
2818 	SK_IF_LOCK_ASSERT(sc_if);
2819 
2820 	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2821 	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2822 
2823 	prog = 0;
2824 	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2825 	    prog < SK_JUMBO_RX_RING_CNT;
2826 	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2827 		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2828 		sk_ctl = le32toh(cur_rx->sk_ctl);
2829 		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2830 			break;
2831 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2832 		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2833 
2834 		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2835 		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2836 		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2837 		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2838 		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2839 		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2840 			ifp->if_ierrors++;
2841 			sk_discard_jumbo_rxbuf(sc_if, cons);
2842 			continue;
2843 		}
2844 
2845 		m = jrxd->rx_m;
2846 		csum = le32toh(cur_rx->sk_csum);
2847 		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2848 			ifp->if_iqdrops++;
2849 			/* reuse old buffer */
2850 			sk_discard_jumbo_rxbuf(sc_if, cons);
2851 			continue;
2852 		}
2853 		m->m_pkthdr.rcvif = ifp;
2854 		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2855 		ifp->if_ipackets++;
2856 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2857 			sk_rxcksum(ifp, m, csum);
2858 		SK_IF_UNLOCK(sc_if);
2859 		(*ifp->if_input)(ifp, m);
2860 		SK_IF_LOCK(sc_if);
2861 	}
2862 
2863 	if (prog > 0) {
2864 		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2865 		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2866 		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2867 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2868 	}
2869 }
2870 
2871 static void
2872 sk_txeof(sc_if)
2873 	struct sk_if_softc	*sc_if;
2874 {
2875 	struct sk_softc		*sc;
2876 	struct sk_txdesc	*txd;
2877 	struct sk_tx_desc	*cur_tx;
2878 	struct ifnet		*ifp;
2879 	u_int32_t		idx, sk_ctl;
2880 
2881 	sc = sc_if->sk_softc;
2882 	ifp = sc_if->sk_ifp;
2883 
2884 	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2885 	if (txd == NULL)
2886 		return;
2887 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2888 	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2889 	/*
2890 	 * Go through our tx ring and free mbufs for those
2891 	 * frames that have been sent.
2892 	 */
2893 	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2894 		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2895 			break;
2896 		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2897 		sk_ctl = le32toh(cur_tx->sk_ctl);
2898 		if (sk_ctl & SK_TXCTL_OWN)
2899 			break;
2900 		sc_if->sk_cdata.sk_tx_cnt--;
2901 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2902 		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2903 			continue;
2904 		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2905 		    BUS_DMASYNC_POSTWRITE);
2906 		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2907 
2908 		ifp->if_opackets++;
2909 		m_freem(txd->tx_m);
2910 		txd->tx_m = NULL;
2911 		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2912 		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2913 		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2914 	}
2915 	sc_if->sk_cdata.sk_tx_cons = idx;
2916 	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2917 
2918 	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2919 	    sc_if->sk_cdata.sk_tx_ring_map,
2920 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2921 }
2922 
2923 static void
2924 sk_tick(xsc_if)
2925 	void			*xsc_if;
2926 {
2927 	struct sk_if_softc	*sc_if;
2928 	struct mii_data		*mii;
2929 	struct ifnet		*ifp;
2930 	int			i;
2931 
2932 	sc_if = xsc_if;
2933 	ifp = sc_if->sk_ifp;
2934 	mii = device_get_softc(sc_if->sk_miibus);
2935 
2936 	if (!(ifp->if_flags & IFF_UP))
2937 		return;
2938 
2939 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2940 		sk_intr_bcom(sc_if);
2941 		return;
2942 	}
2943 
2944 	/*
2945 	 * According to SysKonnect, the correct way to verify that
2946 	 * the link has come back up is to poll bit 0 of the GPIO
2947 	 * register three times. This pin has the signal from the
2948 	 * link_sync pin connected to it; if we read the same link
2949 	 * state 3 times in a row, we know the link is up.
2950 	 */
2951 	for (i = 0; i < 3; i++) {
2952 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2953 			break;
2954 	}
2955 
2956 	if (i != 3) {
2957 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2958 		return;
2959 	}
2960 
2961 	/* Turn the GP0 interrupt back on. */
2962 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2963 	SK_XM_READ_2(sc_if, XM_ISR);
2964 	mii_tick(mii);
2965 	callout_stop(&sc_if->sk_tick_ch);
2966 }
2967 
2968 static void
2969 sk_yukon_tick(xsc_if)
2970 	void			*xsc_if;
2971 {
2972 	struct sk_if_softc	*sc_if;
2973 	struct mii_data		*mii;
2974 
2975 	sc_if = xsc_if;
2976 	mii = device_get_softc(sc_if->sk_miibus);
2977 
2978 	mii_tick(mii);
2979 	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2980 }
2981 
2982 static void
2983 sk_intr_bcom(sc_if)
2984 	struct sk_if_softc	*sc_if;
2985 {
2986 	struct mii_data		*mii;
2987 	struct ifnet		*ifp;
2988 	int			status;
2989 	mii = device_get_softc(sc_if->sk_miibus);
2990 	ifp = sc_if->sk_ifp;
2991 
2992 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2993 
2994 	/*
2995 	 * Read the PHY interrupt register to make sure
2996 	 * we clear any pending interrupts.
2997 	 */
2998 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2999 
3000 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3001 		sk_init_xmac(sc_if);
3002 		return;
3003 	}
3004 
3005 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3006 		int			lstat;
3007 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3008 		    BRGPHY_MII_AUXSTS);
3009 
3010 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3011 			mii_mediachg(mii);
3012 			/* Turn off the link LED. */
3013 			SK_IF_WRITE_1(sc_if, 0,
3014 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3015 			sc_if->sk_link = 0;
3016 		} else if (status & BRGPHY_ISR_LNK_CHG) {
3017 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3018 	    		    BRGPHY_MII_IMR, 0xFF00);
3019 			mii_tick(mii);
3020 			sc_if->sk_link = 1;
3021 			/* Turn on the link LED. */
3022 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3023 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3024 			    SK_LINKLED_BLINK_OFF);
3025 		} else {
3026 			mii_tick(mii);
3027 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3028 		}
3029 	}
3030 
3031 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3032 
3033 	return;
3034 }
3035 
3036 static void
3037 sk_intr_xmac(sc_if)
3038 	struct sk_if_softc	*sc_if;
3039 {
3040 	struct sk_softc		*sc;
3041 	u_int16_t		status;
3042 
3043 	sc = sc_if->sk_softc;
3044 	status = SK_XM_READ_2(sc_if, XM_ISR);
3045 
3046 	/*
3047 	 * Link has gone down. Start MII tick timeout to
3048 	 * watch for link resync.
3049 	 */
3050 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3051 		if (status & XM_ISR_GP0_SET) {
3052 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3053 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3054 		}
3055 
3056 		if (status & XM_ISR_AUTONEG_DONE) {
3057 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3058 		}
3059 	}
3060 
3061 	if (status & XM_IMR_TX_UNDERRUN)
3062 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3063 
3064 	if (status & XM_IMR_RX_OVERRUN)
3065 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3066 
3067 	status = SK_XM_READ_2(sc_if, XM_ISR);
3068 
3069 	return;
3070 }
3071 
3072 static void
3073 sk_intr_yukon(sc_if)
3074 	struct sk_if_softc	*sc_if;
3075 {
3076 	u_int8_t status;
3077 
3078 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3079 	/* RX overrun */
3080 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3081 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3082 		    SK_RFCTL_RX_FIFO_OVER);
3083 	}
3084 	/* TX underrun */
3085 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3086 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3087 		    SK_TFCTL_TX_FIFO_UNDER);
3088 	}
3089 }
3090 
3091 static void
3092 sk_intr(xsc)
3093 	void			*xsc;
3094 {
3095 	struct sk_softc		*sc = xsc;
3096 	struct sk_if_softc	*sc_if0, *sc_if1;
3097 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3098 	u_int32_t		status;
3099 
3100 	SK_LOCK(sc);
3101 
3102 	status = CSR_READ_4(sc, SK_ISSR);
3103 	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3104 		goto done_locked;
3105 
3106 	sc_if0 = sc->sk_if[SK_PORT_A];
3107 	sc_if1 = sc->sk_if[SK_PORT_B];
3108 
3109 	if (sc_if0 != NULL)
3110 		ifp0 = sc_if0->sk_ifp;
3111 	if (sc_if1 != NULL)
3112 		ifp1 = sc_if1->sk_ifp;
3113 
3114 	for (; (status &= sc->sk_intrmask) != 0;) {
3115 		/* Handle receive interrupts first. */
3116 		if (status & SK_ISR_RX1_EOF) {
3117 			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3118 				sk_jumbo_rxeof(sc_if0);
3119 			else
3120 				sk_rxeof(sc_if0);
3121 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3122 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3123 		}
3124 		if (status & SK_ISR_RX2_EOF) {
3125 			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3126 				sk_jumbo_rxeof(sc_if1);
3127 			else
3128 				sk_rxeof(sc_if1);
3129 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3130 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3131 		}
3132 
3133 		/* Then transmit interrupts. */
3134 		if (status & SK_ISR_TX1_S_EOF) {
3135 			sk_txeof(sc_if0);
3136 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3137 		}
3138 		if (status & SK_ISR_TX2_S_EOF) {
3139 			sk_txeof(sc_if1);
3140 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3141 		}
3142 
3143 		/* Then MAC interrupts. */
3144 		if (status & SK_ISR_MAC1 &&
3145 		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3146 			if (sc->sk_type == SK_GENESIS)
3147 				sk_intr_xmac(sc_if0);
3148 			else
3149 				sk_intr_yukon(sc_if0);
3150 		}
3151 
3152 		if (status & SK_ISR_MAC2 &&
3153 		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3154 			if (sc->sk_type == SK_GENESIS)
3155 				sk_intr_xmac(sc_if1);
3156 			else
3157 				sk_intr_yukon(sc_if1);
3158 		}
3159 
3160 		if (status & SK_ISR_EXTERNAL_REG) {
3161 			if (ifp0 != NULL &&
3162 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3163 				sk_intr_bcom(sc_if0);
3164 			if (ifp1 != NULL &&
3165 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3166 				sk_intr_bcom(sc_if1);
3167 		}
3168 		status = CSR_READ_4(sc, SK_ISSR);
3169 	}
3170 
3171 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3172 
3173 	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3174 		sk_start_locked(ifp0);
3175 	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3176 		sk_start_locked(ifp1);
3177 
3178 done_locked:
3179 	SK_UNLOCK(sc);
3180 }
3181 
3182 static void
3183 sk_init_xmac(sc_if)
3184 	struct sk_if_softc	*sc_if;
3185 {
3186 	struct sk_softc		*sc;
3187 	struct ifnet		*ifp;
3188 	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3189 	struct sk_bcom_hack	bhack[] = {
3190 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3191 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3192 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3193 	{ 0, 0 } };
3194 
3195 	SK_IF_LOCK_ASSERT(sc_if);
3196 
3197 	sc = sc_if->sk_softc;
3198 	ifp = sc_if->sk_ifp;
3199 
3200 	/* Unreset the XMAC. */
3201 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3202 	DELAY(1000);
3203 
3204 	/* Reset the XMAC's internal state. */
3205 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3206 
3207 	/* Save the XMAC II revision */
3208 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3209 
3210 	/*
3211 	 * Perform additional initialization for external PHYs,
3212 	 * namely for the 1000baseTX cards that use the XMAC's
3213 	 * GMII mode.
3214 	 */
3215 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3216 		int			i = 0;
3217 		u_int32_t		val;
3218 
3219 		/* Take PHY out of reset. */
3220 		val = sk_win_read_4(sc, SK_GPIO);
3221 		if (sc_if->sk_port == SK_PORT_A)
3222 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3223 		else
3224 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3225 		sk_win_write_4(sc, SK_GPIO, val);
3226 
3227 		/* Enable GMII mode on the XMAC. */
3228 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3229 
3230 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3231 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3232 		DELAY(10000);
3233 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3234 		    BRGPHY_MII_IMR, 0xFFF0);
3235 
3236 		/*
3237 		 * Early versions of the BCM5400 apparently have
3238 		 * a bug that requires them to have their reserved
3239 		 * registers initialized to some magic values. I don't
3240 		 * know what the numbers do, I'm just the messenger.
3241 		 */
3242 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3243 		    == 0x6041) {
3244 			while(bhack[i].reg) {
3245 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3246 				    bhack[i].reg, bhack[i].val);
3247 				i++;
3248 			}
3249 		}
3250 	}
3251 
3252 	/* Set station address */
3253 	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3254 	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3255 	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3256 	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3257 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3258 
3259 	if (ifp->if_flags & IFF_BROADCAST) {
3260 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3261 	} else {
3262 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3263 	}
3264 
3265 	/* We don't need the FCS appended to the packet. */
3266 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3267 
3268 	/* We want short frames padded to 60 bytes. */
3269 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3270 
3271 	/*
3272 	 * Enable the reception of all error frames. This is is
3273 	 * a necessary evil due to the design of the XMAC. The
3274 	 * XMAC's receive FIFO is only 8K in size, however jumbo
3275 	 * frames can be up to 9000 bytes in length. When bad
3276 	 * frame filtering is enabled, the XMAC's RX FIFO operates
3277 	 * in 'store and forward' mode. For this to work, the
3278 	 * entire frame has to fit into the FIFO, but that means
3279 	 * that jumbo frames larger than 8192 bytes will be
3280 	 * truncated. Disabling all bad frame filtering causes
3281 	 * the RX FIFO to operate in streaming mode, in which
3282 	 * case the XMAC will start transfering frames out of the
3283 	 * RX FIFO as soon as the FIFO threshold is reached.
3284 	 */
3285 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3286 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3287 		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3288 		    XM_MODE_RX_INRANGELEN);
3289 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3290 	} else
3291 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3292 
3293 	/*
3294 	 * Bump up the transmit threshold. This helps hold off transmit
3295 	 * underruns when we're blasting traffic from both ports at once.
3296 	 */
3297 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3298 
3299 	/* Set Rx filter */
3300 	sk_rxfilter_genesis(sc_if);
3301 
3302 	/* Clear and enable interrupts */
3303 	SK_XM_READ_2(sc_if, XM_ISR);
3304 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3305 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3306 	else
3307 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3308 
3309 	/* Configure MAC arbiter */
3310 	switch(sc_if->sk_xmac_rev) {
3311 	case XM_XMAC_REV_B2:
3312 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3313 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3314 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3315 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3316 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3317 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3318 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3319 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3320 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3321 		break;
3322 	case XM_XMAC_REV_C1:
3323 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3324 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3325 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3326 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3327 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3328 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3329 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3330 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3331 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3332 		break;
3333 	default:
3334 		break;
3335 	}
3336 	sk_win_write_2(sc, SK_MACARB_CTL,
3337 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3338 
3339 	sc_if->sk_link = 1;
3340 
3341 	return;
3342 }
3343 
3344 static void
3345 sk_init_yukon(sc_if)
3346 	struct sk_if_softc	*sc_if;
3347 {
3348 	u_int32_t		phy, v;
3349 	u_int16_t		reg;
3350 	struct sk_softc		*sc;
3351 	struct ifnet		*ifp;
3352 	u_int8_t		*eaddr;
3353 	int			i;
3354 
3355 	SK_IF_LOCK_ASSERT(sc_if);
3356 
3357 	sc = sc_if->sk_softc;
3358 	ifp = sc_if->sk_ifp;
3359 
3360 	if (sc->sk_type == SK_YUKON_LITE &&
3361 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3362 		/*
3363 		 * Workaround code for COMA mode, set PHY reset.
3364 		 * Otherwise it will not correctly take chip out of
3365 		 * powerdown (coma)
3366 		 */
3367 		v = sk_win_read_4(sc, SK_GPIO);
3368 		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3369 		sk_win_write_4(sc, SK_GPIO, v);
3370 	}
3371 
3372 	/* GMAC and GPHY Reset */
3373 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3374 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3375 	DELAY(1000);
3376 
3377 	if (sc->sk_type == SK_YUKON_LITE &&
3378 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3379 		/*
3380 		 * Workaround code for COMA mode, clear PHY reset
3381 		 */
3382 		v = sk_win_read_4(sc, SK_GPIO);
3383 		v |= SK_GPIO_DIR9;
3384 		v &= ~SK_GPIO_DAT9;
3385 		sk_win_write_4(sc, SK_GPIO, v);
3386 	}
3387 
3388 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3389 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3390 
3391 	if (sc->sk_coppertype)
3392 		phy |= SK_GPHY_COPPER;
3393 	else
3394 		phy |= SK_GPHY_FIBER;
3395 
3396 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3397 	DELAY(1000);
3398 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3399 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3400 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3401 
3402 	/* unused read of the interrupt source register */
3403 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3404 
3405 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3406 
3407 	/* MIB Counter Clear Mode set */
3408 	reg |= YU_PAR_MIB_CLR;
3409 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3410 
3411 	/* MIB Counter Clear Mode clear */
3412 	reg &= ~YU_PAR_MIB_CLR;
3413 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3414 
3415 	/* receive control reg */
3416 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3417 
3418 	/* transmit parameter register */
3419 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3420 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3421 
3422 	/* serial mode register */
3423 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3424 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3425 		reg |= YU_SMR_MFL_JUMBO;
3426 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3427 
3428 	/* Setup Yukon's station address */
3429 	eaddr = IF_LLADDR(sc_if->sk_ifp);
3430 	for (i = 0; i < 3; i++)
3431 		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3432 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3433 	/* Set GMAC source address of flow control. */
3434 	for (i = 0; i < 3; i++)
3435 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3436 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3437 	/* Set GMAC virtual address. */
3438 	for (i = 0; i < 3; i++)
3439 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3440 		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3441 
3442 	/* Set Rx filter */
3443 	sk_rxfilter_yukon(sc_if);
3444 
3445 	/* enable interrupt mask for counter overflows */
3446 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3447 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3448 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3449 
3450 	/* Configure RX MAC FIFO Flush Mask */
3451 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3452 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3453 	    YU_RXSTAT_JABBER;
3454 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3455 
3456 	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3457 	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3458 		v = SK_TFCTL_OPERATION_ON;
3459 	else
3460 		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3461 	/* Configure RX MAC FIFO */
3462 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3463 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3464 
3465 	/* Increase flush threshould to 64 bytes */
3466 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3467 	    SK_RFCTL_FIFO_THRESHOLD + 1);
3468 
3469 	/* Configure TX MAC FIFO */
3470 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3471 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3472 }
3473 
3474 /*
3475  * Note that to properly initialize any part of the GEnesis chip,
3476  * you first have to take it out of reset mode.
3477  */
3478 static void
3479 sk_init(xsc)
3480 	void			*xsc;
3481 {
3482 	struct sk_if_softc	*sc_if = xsc;
3483 
3484 	SK_IF_LOCK(sc_if);
3485 	sk_init_locked(sc_if);
3486 	SK_IF_UNLOCK(sc_if);
3487 
3488 	return;
3489 }
3490 
3491 static void
3492 sk_init_locked(sc_if)
3493 	struct sk_if_softc	*sc_if;
3494 {
3495 	struct sk_softc		*sc;
3496 	struct ifnet		*ifp;
3497 	struct mii_data		*mii;
3498 	u_int16_t		reg;
3499 	u_int32_t		imr;
3500 	int			error;
3501 
3502 	SK_IF_LOCK_ASSERT(sc_if);
3503 
3504 	ifp = sc_if->sk_ifp;
3505 	sc = sc_if->sk_softc;
3506 	mii = device_get_softc(sc_if->sk_miibus);
3507 
3508 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3509 		return;
3510 
3511 	/* Cancel pending I/O and free all RX/TX buffers. */
3512 	sk_stop(sc_if);
3513 
3514 	if (sc->sk_type == SK_GENESIS) {
3515 		/* Configure LINK_SYNC LED */
3516 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3517 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3518 			SK_LINKLED_LINKSYNC_ON);
3519 
3520 		/* Configure RX LED */
3521 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3522 			SK_RXLEDCTL_COUNTER_START);
3523 
3524 		/* Configure TX LED */
3525 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3526 			SK_TXLEDCTL_COUNTER_START);
3527 	}
3528 
3529 	/*
3530 	 * Configure descriptor poll timer
3531 	 *
3532 	 * SK-NET GENESIS data sheet says that possibility of losing Start
3533 	 * transmit command due to CPU/cache related interim storage problems
3534 	 * under certain conditions. The document recommends a polling
3535 	 * mechanism to send a Start transmit command to initiate transfer
3536 	 * of ready descriptors regulary. To cope with this issue sk(4) now
3537 	 * enables descriptor poll timer to initiate descriptor processing
3538 	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3539 	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3540 	 * command instead of waiting for next descriptor polling time.
3541 	 * The same rule may apply to Rx side too but it seems that is not
3542 	 * needed at the moment.
3543 	 * Since sk(4) uses descriptor polling as a last resort there is no
3544 	 * need to set smaller polling time than maximum allowable one.
3545 	 */
3546 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3547 
3548 	/* Configure I2C registers */
3549 
3550 	/* Configure XMAC(s) */
3551 	switch (sc->sk_type) {
3552 	case SK_GENESIS:
3553 		sk_init_xmac(sc_if);
3554 		break;
3555 	case SK_YUKON:
3556 	case SK_YUKON_LITE:
3557 	case SK_YUKON_LP:
3558 		sk_init_yukon(sc_if);
3559 		break;
3560 	}
3561 	mii_mediachg(mii);
3562 
3563 	if (sc->sk_type == SK_GENESIS) {
3564 		/* Configure MAC FIFOs */
3565 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3566 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3567 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3568 
3569 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3570 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3571 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3572 	}
3573 
3574 	/* Configure transmit arbiter(s) */
3575 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3576 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3577 
3578 	/* Configure RAMbuffers */
3579 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3580 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3581 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3582 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3583 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3584 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3585 
3586 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3587 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3588 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3589 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3590 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3591 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3592 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3593 
3594 	/* Configure BMUs */
3595 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3596 	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3597 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3598 		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3599 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3600 		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3601 	} else {
3602 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3603 		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3604 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3605 		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3606 	}
3607 
3608 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3609 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3610 	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3611 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3612 	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3613 
3614 	/* Init descriptors */
3615 	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3616 		error = sk_init_jumbo_rx_ring(sc_if);
3617 	else
3618 		error = sk_init_rx_ring(sc_if);
3619 	if (error != 0) {
3620 		device_printf(sc_if->sk_if_dev,
3621 		    "initialization failed: no memory for rx buffers\n");
3622 		sk_stop(sc_if);
3623 		return;
3624 	}
3625 	sk_init_tx_ring(sc_if);
3626 
3627 	/* Set interrupt moderation if changed via sysctl. */
3628 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3629 	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3630 		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3631 		    sc->sk_int_ticks));
3632 		if (bootverbose)
3633 			device_printf(sc_if->sk_if_dev,
3634 			    "interrupt moderation is %d us.\n",
3635 			    sc->sk_int_mod);
3636 	}
3637 
3638 	/* Configure interrupt handling */
3639 	CSR_READ_4(sc, SK_ISSR);
3640 	if (sc_if->sk_port == SK_PORT_A)
3641 		sc->sk_intrmask |= SK_INTRS1;
3642 	else
3643 		sc->sk_intrmask |= SK_INTRS2;
3644 
3645 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3646 
3647 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3648 
3649 	/* Start BMUs. */
3650 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3651 
3652 	switch(sc->sk_type) {
3653 	case SK_GENESIS:
3654 		/* Enable XMACs TX and RX state machines */
3655 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3656 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3657 		break;
3658 	case SK_YUKON:
3659 	case SK_YUKON_LITE:
3660 	case SK_YUKON_LP:
3661 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3662 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3663 #if 0
3664 		/* XXX disable 100Mbps and full duplex mode? */
3665 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3666 #endif
3667 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3668 	}
3669 
3670 	/* Activate descriptor polling timer */
3671 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3672 	/* start transfer of Tx descriptors */
3673 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3674 
3675 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3676 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3677 
3678 	switch (sc->sk_type) {
3679 	case SK_YUKON:
3680 	case SK_YUKON_LITE:
3681 	case SK_YUKON_LP:
3682 		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3683 		break;
3684 	}
3685 
3686 	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3687 
3688 	return;
3689 }
3690 
3691 static void
3692 sk_stop(sc_if)
3693 	struct sk_if_softc	*sc_if;
3694 {
3695 	int			i;
3696 	struct sk_softc		*sc;
3697 	struct sk_txdesc	*txd;
3698 	struct sk_rxdesc	*rxd;
3699 	struct sk_rxdesc	*jrxd;
3700 	struct ifnet		*ifp;
3701 	u_int32_t		val;
3702 
3703 	SK_IF_LOCK_ASSERT(sc_if);
3704 	sc = sc_if->sk_softc;
3705 	ifp = sc_if->sk_ifp;
3706 
3707 	callout_stop(&sc_if->sk_tick_ch);
3708 	callout_stop(&sc_if->sk_watchdog_ch);
3709 
3710 	/* stop Tx descriptor polling timer */
3711 	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3712 	/* stop transfer of Tx descriptors */
3713 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3714 	for (i = 0; i < SK_TIMEOUT; i++) {
3715 		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3716 		if ((val & SK_TXBMU_TX_STOP) == 0)
3717 			break;
3718 		DELAY(1);
3719 	}
3720 	if (i == SK_TIMEOUT)
3721 		device_printf(sc_if->sk_if_dev,
3722 		    "can not stop transfer of Tx descriptor\n");
3723 	/* stop transfer of Rx descriptors */
3724 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3725 	for (i = 0; i < SK_TIMEOUT; i++) {
3726 		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3727 		if ((val & SK_RXBMU_RX_STOP) == 0)
3728 			break;
3729 		DELAY(1);
3730 	}
3731 	if (i == SK_TIMEOUT)
3732 		device_printf(sc_if->sk_if_dev,
3733 		    "can not stop transfer of Rx descriptor\n");
3734 
3735 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3736 		/* Put PHY back into reset. */
3737 		val = sk_win_read_4(sc, SK_GPIO);
3738 		if (sc_if->sk_port == SK_PORT_A) {
3739 			val |= SK_GPIO_DIR0;
3740 			val &= ~SK_GPIO_DAT0;
3741 		} else {
3742 			val |= SK_GPIO_DIR2;
3743 			val &= ~SK_GPIO_DAT2;
3744 		}
3745 		sk_win_write_4(sc, SK_GPIO, val);
3746 	}
3747 
3748 	/* Turn off various components of this interface. */
3749 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3750 	switch (sc->sk_type) {
3751 	case SK_GENESIS:
3752 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3753 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3754 		break;
3755 	case SK_YUKON:
3756 	case SK_YUKON_LITE:
3757 	case SK_YUKON_LP:
3758 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3759 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3760 		break;
3761 	}
3762 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3764 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3765 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3766 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3767 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3768 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3769 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3770 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3771 
3772 	/* Disable interrupts */
3773 	if (sc_if->sk_port == SK_PORT_A)
3774 		sc->sk_intrmask &= ~SK_INTRS1;
3775 	else
3776 		sc->sk_intrmask &= ~SK_INTRS2;
3777 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3778 
3779 	SK_XM_READ_2(sc_if, XM_ISR);
3780 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3781 
3782 	/* Free RX and TX mbufs still in the queues. */
3783 	for (i = 0; i < SK_RX_RING_CNT; i++) {
3784 		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3785 		if (rxd->rx_m != NULL) {
3786 			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3787 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3788 			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3789 			    rxd->rx_dmamap);
3790 			m_freem(rxd->rx_m);
3791 			rxd->rx_m = NULL;
3792 		}
3793 	}
3794 	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3795 		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3796 		if (jrxd->rx_m != NULL) {
3797 			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3798 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3799 			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3800 			    jrxd->rx_dmamap);
3801 			m_freem(jrxd->rx_m);
3802 			jrxd->rx_m = NULL;
3803 		}
3804 	}
3805 	for (i = 0; i < SK_TX_RING_CNT; i++) {
3806 		txd = &sc_if->sk_cdata.sk_txdesc[i];
3807 		if (txd->tx_m != NULL) {
3808 			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3809 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3810 			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3811 			    txd->tx_dmamap);
3812 			m_freem(txd->tx_m);
3813 			txd->tx_m = NULL;
3814 		}
3815 	}
3816 
3817 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3818 
3819 	return;
3820 }
3821 
3822 static int
3823 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3824 {
3825 	int error, value;
3826 
3827 	if (!arg1)
3828 		return (EINVAL);
3829 	value = *(int *)arg1;
3830 	error = sysctl_handle_int(oidp, &value, 0, req);
3831 	if (error || !req->newptr)
3832 		return (error);
3833 	if (value < low || value > high)
3834 		return (EINVAL);
3835 	*(int *)arg1 = value;
3836 	return (0);
3837 }
3838 
3839 static int
3840 sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3841 {
3842 	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3843 }
3844