1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org> 5 * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/callout.h> 36 #include <sys/conf.h> 37 #include <sys/kernel.h> 38 #include <sys/kobj.h> 39 #include <sys/libkern.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/mutex.h> 44 #include <sys/resource.h> 45 #include <sys/rman.h> 46 #include <sys/sysctl.h> 47 #include <sys/taskqueue.h> 48 49 #include <machine/bus.h> 50 #include <machine/resource.h> 51 #include <machine/stdarg.h> 52 53 #include <dev/mmc/bridge.h> 54 #include <dev/mmc/mmcreg.h> 55 #include <dev/mmc/mmcbrvar.h> 56 57 #include <dev/sdhci/sdhci.h> 58 59 #include <cam/cam.h> 60 #include <cam/cam_ccb.h> 61 #include <cam/cam_debug.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt_sim.h> 64 65 #include "mmcbr_if.h" 66 #include "sdhci_if.h" 67 68 #include "opt_mmccam.h" 69 70 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD, 0, "sdhci driver"); 71 72 static int sdhci_debug = 0; 73 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0, 74 "Debug level"); 75 u_int sdhci_quirk_clear = 0; 76 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear, 77 0, "Mask of quirks to clear"); 78 u_int sdhci_quirk_set = 0; 79 SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0, 80 "Mask of quirks to set"); 81 82 #define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off)) 83 #define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off)) 84 #define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off)) 85 #define RD_MULTI_4(slot, off, ptr, count) \ 86 SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 87 88 #define WR1(slot, off, val) SDHCI_WRITE_1((slot)->bus, (slot), (off), (val)) 89 #define WR2(slot, off, val) SDHCI_WRITE_2((slot)->bus, (slot), (off), (val)) 90 #define WR4(slot, off, val) SDHCI_WRITE_4((slot)->bus, (slot), (off), (val)) 91 #define WR_MULTI_4(slot, off, ptr, count) \ 92 SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) 93 94 static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err); 95 static void sdhci_card_poll(void *arg); 96 static void sdhci_card_task(void *arg, int pending); 97 static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask); 98 static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask); 99 static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset); 100 static void sdhci_handle_card_present_locked(struct sdhci_slot *slot, 101 bool is_present); 102 static void sdhci_finish_command(struct sdhci_slot *slot); 103 static void sdhci_init(struct sdhci_slot *slot); 104 static void sdhci_read_block_pio(struct sdhci_slot *slot); 105 static void sdhci_req_done(struct sdhci_slot *slot); 106 static void sdhci_req_wakeup(struct mmc_request *req); 107 static void sdhci_reset(struct sdhci_slot *slot, uint8_t mask); 108 static void sdhci_retune(void *arg); 109 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock); 110 static void sdhci_set_power(struct sdhci_slot *slot, u_char power); 111 static void sdhci_set_transfer_mode(struct sdhci_slot *slot, 112 const struct mmc_data *data); 113 static void sdhci_start(struct sdhci_slot *slot); 114 static void sdhci_timeout(void *arg); 115 static void sdhci_start_command(struct sdhci_slot *slot, 116 struct mmc_command *cmd); 117 static void sdhci_start_data(struct sdhci_slot *slot, 118 const struct mmc_data *data); 119 static void sdhci_write_block_pio(struct sdhci_slot *slot); 120 static void sdhci_transfer_pio(struct sdhci_slot *slot); 121 122 #ifdef MMCCAM 123 /* CAM-related */ 124 static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb); 125 static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, 126 int proposed_clock); 127 static void sdhci_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb); 128 static void sdhci_cam_poll(struct cam_sim *sim); 129 static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb); 130 static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb); 131 static int sdhci_cam_update_ios(struct sdhci_slot *slot); 132 #endif 133 134 /* helper routines */ 135 static int sdhci_dma_alloc(struct sdhci_slot *slot); 136 static void sdhci_dma_free(struct sdhci_slot *slot); 137 static void sdhci_dumpregs(struct sdhci_slot *slot); 138 static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, 139 int error); 140 static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) 141 __printflike(2, 3); 142 static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot); 143 144 #define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx) 145 #define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx) 146 #define SDHCI_LOCK_INIT(_slot) \ 147 mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF) 148 #define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx); 149 #define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED); 150 #define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED); 151 152 #define SDHCI_DEFAULT_MAX_FREQ 50 153 154 #define SDHCI_200_MAX_DIVIDER 256 155 #define SDHCI_300_MAX_DIVIDER 2046 156 157 #define SDHCI_CARD_PRESENT_TICKS (hz / 5) 158 #define SDHCI_INSERT_DELAY_TICKS (hz / 2) 159 160 /* 161 * Broadcom BCM577xx Controller Constants 162 */ 163 /* Maximum divider supported by the default clock source. */ 164 #define BCM577XX_DEFAULT_MAX_DIVIDER 256 165 /* Alternative clock's base frequency. */ 166 #define BCM577XX_ALT_CLOCK_BASE 63000000 167 168 #define BCM577XX_HOST_CONTROL 0x198 169 #define BCM577XX_CTRL_CLKSEL_MASK 0xFFFFCFFF 170 #define BCM577XX_CTRL_CLKSEL_SHIFT 12 171 #define BCM577XX_CTRL_CLKSEL_DEFAULT 0x0 172 #define BCM577XX_CTRL_CLKSEL_64MHZ 0x3 173 174 static void 175 sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 176 { 177 178 if (error != 0) { 179 printf("getaddr: error %d\n", error); 180 return; 181 } 182 *(bus_addr_t *)arg = segs[0].ds_addr; 183 } 184 185 static int 186 slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) 187 { 188 va_list ap; 189 int retval; 190 191 retval = printf("%s-slot%d: ", 192 device_get_nameunit(slot->bus), slot->num); 193 194 va_start(ap, fmt); 195 retval += vprintf(fmt, ap); 196 va_end(ap); 197 return (retval); 198 } 199 200 static void 201 sdhci_dumpregs(struct sdhci_slot *slot) 202 { 203 204 slot_printf(slot, 205 "============== REGISTER DUMP ==============\n"); 206 207 slot_printf(slot, "Sys addr: 0x%08x | Version: 0x%08x\n", 208 RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION)); 209 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", 210 RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT)); 211 slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n", 212 RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE)); 213 slot_printf(slot, "Present: 0x%08x | Host ctl: 0x%08x\n", 214 RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL)); 215 slot_printf(slot, "Power: 0x%08x | Blk gap: 0x%08x\n", 216 RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL)); 217 slot_printf(slot, "Wake-up: 0x%08x | Clock: 0x%08x\n", 218 RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL)); 219 slot_printf(slot, "Timeout: 0x%08x | Int stat: 0x%08x\n", 220 RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS)); 221 slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n", 222 RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE)); 223 slot_printf(slot, "AC12 err: 0x%08x | Host ctl2:0x%08x\n", 224 RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2)); 225 slot_printf(slot, "Caps: 0x%08x | Caps2: 0x%08x\n", 226 RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2)); 227 slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n", 228 RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR)); 229 slot_printf(slot, "ADMA addr:0x%08x | Slot int: 0x%08x\n", 230 RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS)); 231 232 slot_printf(slot, 233 "===========================================\n"); 234 } 235 236 static void 237 sdhci_reset(struct sdhci_slot *slot, uint8_t mask) 238 { 239 int timeout; 240 uint32_t clock; 241 242 if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { 243 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot)) 244 return; 245 } 246 247 /* Some controllers need this kick or reset won't work. */ 248 if ((mask & SDHCI_RESET_ALL) == 0 && 249 (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) { 250 /* This is to force an update */ 251 clock = slot->clock; 252 slot->clock = 0; 253 sdhci_set_clock(slot, clock); 254 } 255 256 if (mask & SDHCI_RESET_ALL) { 257 slot->clock = 0; 258 slot->power = 0; 259 } 260 261 WR1(slot, SDHCI_SOFTWARE_RESET, mask); 262 263 if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) { 264 /* 265 * Resets on TI OMAPs and AM335x are incompatible with SDHCI 266 * specification. The reset bit has internal propagation delay, 267 * so a fast read after write returns 0 even if reset process is 268 * in progress. The workaround is to poll for 1 before polling 269 * for 0. In the worst case, if we miss seeing it asserted the 270 * time we spent waiting is enough to ensure the reset finishes. 271 */ 272 timeout = 10000; 273 while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) { 274 if (timeout <= 0) 275 break; 276 timeout--; 277 DELAY(1); 278 } 279 } 280 281 /* Wait max 100 ms */ 282 timeout = 10000; 283 /* Controller clears the bits when it's done */ 284 while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) { 285 if (timeout <= 0) { 286 slot_printf(slot, "Reset 0x%x never completed.\n", 287 mask); 288 sdhci_dumpregs(slot); 289 return; 290 } 291 timeout--; 292 DELAY(10); 293 } 294 } 295 296 static uint32_t 297 sdhci_tuning_intmask(const struct sdhci_slot *slot) 298 { 299 uint32_t intmask; 300 301 intmask = 0; 302 if (slot->opt & SDHCI_TUNING_ENABLED) { 303 intmask |= SDHCI_INT_TUNEERR; 304 if (slot->retune_mode == SDHCI_RETUNE_MODE_2 || 305 slot->retune_mode == SDHCI_RETUNE_MODE_3) 306 intmask |= SDHCI_INT_RETUNE; 307 } 308 return (intmask); 309 } 310 311 static void 312 sdhci_init(struct sdhci_slot *slot) 313 { 314 315 sdhci_reset(slot, SDHCI_RESET_ALL); 316 317 /* Enable interrupts. */ 318 slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | 319 SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | 320 SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | 321 SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 322 SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE | 323 SDHCI_INT_ACMD12ERR; 324 325 if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 326 !(slot->opt & SDHCI_NON_REMOVABLE)) { 327 slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT; 328 } 329 330 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 331 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 332 } 333 334 static void 335 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock) 336 { 337 uint32_t clk_base; 338 uint32_t clk_sel; 339 uint32_t res; 340 uint16_t clk; 341 uint16_t div; 342 int timeout; 343 344 if (clock == slot->clock) 345 return; 346 slot->clock = clock; 347 348 /* Turn off the clock. */ 349 clk = RD2(slot, SDHCI_CLOCK_CONTROL); 350 WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN); 351 /* If no clock requested - leave it so. */ 352 if (clock == 0) 353 return; 354 355 /* Determine the clock base frequency */ 356 clk_base = slot->max_clk; 357 if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) { 358 clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) & 359 BCM577XX_CTRL_CLKSEL_MASK; 360 361 /* 362 * Select clock source appropriate for the requested frequency. 363 */ 364 if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) { 365 clk_base = BCM577XX_ALT_CLOCK_BASE; 366 clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ << 367 BCM577XX_CTRL_CLKSEL_SHIFT); 368 } else { 369 clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT << 370 BCM577XX_CTRL_CLKSEL_SHIFT); 371 } 372 373 WR2(slot, BCM577XX_HOST_CONTROL, clk_sel); 374 } 375 376 /* Recalculate timeout clock frequency based on the new sd clock. */ 377 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) 378 slot->timeout_clk = slot->clock / 1000; 379 380 if (slot->version < SDHCI_SPEC_300) { 381 /* Looking for highest freq <= clock. */ 382 res = clk_base; 383 for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) { 384 if (res <= clock) 385 break; 386 res >>= 1; 387 } 388 /* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */ 389 div >>= 1; 390 } else { 391 /* Version 3.0 divisors are multiples of two up to 1023 * 2 */ 392 if (clock >= clk_base) 393 div = 0; 394 else { 395 for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) { 396 if ((clk_base / div) <= clock) 397 break; 398 } 399 } 400 div >>= 1; 401 } 402 403 if (bootverbose || sdhci_debug) 404 slot_printf(slot, "Divider %d for freq %d (base %d)\n", 405 div, clock, clk_base); 406 407 /* Now we have got divider, set it. */ 408 clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT; 409 clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK) 410 << SDHCI_DIVIDER_HI_SHIFT; 411 412 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 413 /* Enable clock. */ 414 clk |= SDHCI_CLOCK_INT_EN; 415 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 416 /* Wait up to 10 ms until it stabilize. */ 417 timeout = 10; 418 while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL)) 419 & SDHCI_CLOCK_INT_STABLE)) { 420 if (timeout == 0) { 421 slot_printf(slot, 422 "Internal clock never stabilised.\n"); 423 sdhci_dumpregs(slot); 424 return; 425 } 426 timeout--; 427 DELAY(1000); 428 } 429 /* Pass clock signal to the bus. */ 430 clk |= SDHCI_CLOCK_CARD_EN; 431 WR2(slot, SDHCI_CLOCK_CONTROL, clk); 432 } 433 434 static void 435 sdhci_set_power(struct sdhci_slot *slot, u_char power) 436 { 437 int i; 438 uint8_t pwr; 439 440 if (slot->power == power) 441 return; 442 443 slot->power = power; 444 445 /* Turn off the power. */ 446 pwr = 0; 447 WR1(slot, SDHCI_POWER_CONTROL, pwr); 448 /* If power down requested - leave it so. */ 449 if (power == 0) 450 return; 451 /* Set voltage. */ 452 switch (1 << power) { 453 case MMC_OCR_LOW_VOLTAGE: 454 pwr |= SDHCI_POWER_180; 455 break; 456 case MMC_OCR_290_300: 457 case MMC_OCR_300_310: 458 pwr |= SDHCI_POWER_300; 459 break; 460 case MMC_OCR_320_330: 461 case MMC_OCR_330_340: 462 pwr |= SDHCI_POWER_330; 463 break; 464 } 465 WR1(slot, SDHCI_POWER_CONTROL, pwr); 466 /* 467 * Turn on VDD1 power. Note that at least some Intel controllers can 468 * fail to enable bus power on the first try after transiting from D3 469 * to D0, so we give them up to 2 ms. 470 */ 471 pwr |= SDHCI_POWER_ON; 472 for (i = 0; i < 20; i++) { 473 WR1(slot, SDHCI_POWER_CONTROL, pwr); 474 if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON) 475 break; 476 DELAY(100); 477 } 478 if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)) 479 slot_printf(slot, "Bus power failed to enable"); 480 481 if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) { 482 WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10); 483 DELAY(10); 484 WR1(slot, SDHCI_POWER_CONTROL, pwr); 485 DELAY(300); 486 } 487 } 488 489 static void 490 sdhci_read_block_pio(struct sdhci_slot *slot) 491 { 492 uint32_t data; 493 char *buffer; 494 size_t left; 495 496 buffer = slot->curcmd->data->data; 497 buffer += slot->offset; 498 /* Transfer one block at a time. */ 499 left = min(512, slot->curcmd->data->len - slot->offset); 500 slot->offset += left; 501 502 /* If we are too fast, broken controllers return zeroes. */ 503 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) 504 DELAY(10); 505 /* Handle unaligned and aligned buffer cases. */ 506 if ((intptr_t)buffer & 3) { 507 while (left > 3) { 508 data = RD4(slot, SDHCI_BUFFER); 509 buffer[0] = data; 510 buffer[1] = (data >> 8); 511 buffer[2] = (data >> 16); 512 buffer[3] = (data >> 24); 513 buffer += 4; 514 left -= 4; 515 } 516 } else { 517 RD_MULTI_4(slot, SDHCI_BUFFER, 518 (uint32_t *)buffer, left >> 2); 519 left &= 3; 520 } 521 /* Handle uneven size case. */ 522 if (left > 0) { 523 data = RD4(slot, SDHCI_BUFFER); 524 while (left > 0) { 525 *(buffer++) = data; 526 data >>= 8; 527 left--; 528 } 529 } 530 } 531 532 static void 533 sdhci_write_block_pio(struct sdhci_slot *slot) 534 { 535 uint32_t data = 0; 536 char *buffer; 537 size_t left; 538 539 buffer = slot->curcmd->data->data; 540 buffer += slot->offset; 541 /* Transfer one block at a time. */ 542 left = min(512, slot->curcmd->data->len - slot->offset); 543 slot->offset += left; 544 545 /* Handle unaligned and aligned buffer cases. */ 546 if ((intptr_t)buffer & 3) { 547 while (left > 3) { 548 data = buffer[0] + 549 (buffer[1] << 8) + 550 (buffer[2] << 16) + 551 (buffer[3] << 24); 552 left -= 4; 553 buffer += 4; 554 WR4(slot, SDHCI_BUFFER, data); 555 } 556 } else { 557 WR_MULTI_4(slot, SDHCI_BUFFER, 558 (uint32_t *)buffer, left >> 2); 559 left &= 3; 560 } 561 /* Handle uneven size case. */ 562 if (left > 0) { 563 while (left > 0) { 564 data <<= 8; 565 data += *(buffer++); 566 left--; 567 } 568 WR4(slot, SDHCI_BUFFER, data); 569 } 570 } 571 572 static void 573 sdhci_transfer_pio(struct sdhci_slot *slot) 574 { 575 576 /* Read as many blocks as possible. */ 577 if (slot->curcmd->data->flags & MMC_DATA_READ) { 578 while (RD4(slot, SDHCI_PRESENT_STATE) & 579 SDHCI_DATA_AVAILABLE) { 580 sdhci_read_block_pio(slot); 581 if (slot->offset >= slot->curcmd->data->len) 582 break; 583 } 584 } else { 585 while (RD4(slot, SDHCI_PRESENT_STATE) & 586 SDHCI_SPACE_AVAILABLE) { 587 sdhci_write_block_pio(slot); 588 if (slot->offset >= slot->curcmd->data->len) 589 break; 590 } 591 } 592 } 593 594 static void 595 sdhci_card_task(void *arg, int pending __unused) 596 { 597 struct sdhci_slot *slot = arg; 598 device_t d; 599 600 SDHCI_LOCK(slot); 601 if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) { 602 #ifdef MMCCAM 603 if (slot->card_present == 0) { 604 #else 605 if (slot->dev == NULL) { 606 #endif 607 /* If card is present - attach mmc bus. */ 608 if (bootverbose || sdhci_debug) 609 slot_printf(slot, "Card inserted\n"); 610 #ifdef MMCCAM 611 slot->card_present = 1; 612 union ccb *ccb; 613 uint32_t pathid; 614 pathid = cam_sim_path(slot->sim); 615 ccb = xpt_alloc_ccb_nowait(); 616 if (ccb == NULL) { 617 slot_printf(slot, "Unable to alloc CCB for rescan\n"); 618 SDHCI_UNLOCK(slot); 619 return; 620 } 621 622 /* 623 * We create a rescan request for BUS:0:0, since the card 624 * will be at lun 0. 625 */ 626 if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, 627 /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) { 628 slot_printf(slot, "Unable to create path for rescan\n"); 629 SDHCI_UNLOCK(slot); 630 xpt_free_ccb(ccb); 631 return; 632 } 633 SDHCI_UNLOCK(slot); 634 xpt_rescan(ccb); 635 #else 636 d = slot->dev = device_add_child(slot->bus, "mmc", -1); 637 SDHCI_UNLOCK(slot); 638 if (d) { 639 device_set_ivars(d, slot); 640 (void)device_probe_and_attach(d); 641 } 642 #endif 643 } else 644 SDHCI_UNLOCK(slot); 645 } else { 646 #ifdef MMCCAM 647 if (slot->card_present == 1) { 648 #else 649 if (slot->dev != NULL) { 650 #endif 651 /* If no card present - detach mmc bus. */ 652 if (bootverbose || sdhci_debug) 653 slot_printf(slot, "Card removed\n"); 654 d = slot->dev; 655 slot->dev = NULL; 656 #ifdef MMCCAM 657 slot->card_present = 0; 658 union ccb *ccb; 659 uint32_t pathid; 660 pathid = cam_sim_path(slot->sim); 661 ccb = xpt_alloc_ccb_nowait(); 662 if (ccb == NULL) { 663 slot_printf(slot, "Unable to alloc CCB for rescan\n"); 664 SDHCI_UNLOCK(slot); 665 return; 666 } 667 668 /* 669 * We create a rescan request for BUS:0:0, since the card 670 * will be at lun 0. 671 */ 672 if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid, 673 /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) { 674 slot_printf(slot, "Unable to create path for rescan\n"); 675 SDHCI_UNLOCK(slot); 676 xpt_free_ccb(ccb); 677 return; 678 } 679 SDHCI_UNLOCK(slot); 680 xpt_rescan(ccb); 681 #else 682 slot->intmask &= ~sdhci_tuning_intmask(slot); 683 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 684 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 685 slot->opt &= ~SDHCI_TUNING_ENABLED; 686 SDHCI_UNLOCK(slot); 687 callout_drain(&slot->retune_callout); 688 device_delete_child(slot->bus, d); 689 #endif 690 } else 691 SDHCI_UNLOCK(slot); 692 } 693 } 694 695 static void 696 sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present) 697 { 698 bool was_present; 699 700 /* 701 * If there was no card and now there is one, schedule the task to 702 * create the child device after a short delay. The delay is to 703 * debounce the card insert (sometimes the card detect pin stabilizes 704 * before the other pins have made good contact). 705 * 706 * If there was a card present and now it's gone, immediately schedule 707 * the task to delete the child device. No debouncing -- gone is gone, 708 * because once power is removed, a full card re-init is needed, and 709 * that happens by deleting and recreating the child device. 710 */ 711 #ifdef MMCCAM 712 was_present = slot->card_present; 713 #else 714 was_present = slot->dev != NULL; 715 #endif 716 if (!was_present && is_present) { 717 taskqueue_enqueue_timeout(taskqueue_swi_giant, 718 &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS); 719 } else if (was_present && !is_present) { 720 taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task); 721 } 722 } 723 724 void 725 sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present) 726 { 727 728 SDHCI_LOCK(slot); 729 sdhci_handle_card_present_locked(slot, is_present); 730 SDHCI_UNLOCK(slot); 731 } 732 733 static void 734 sdhci_card_poll(void *arg) 735 { 736 struct sdhci_slot *slot = arg; 737 738 sdhci_handle_card_present(slot, 739 SDHCI_GET_CARD_PRESENT(slot->bus, slot)); 740 callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS, 741 sdhci_card_poll, slot); 742 } 743 744 static int 745 sdhci_dma_alloc(struct sdhci_slot *slot) 746 { 747 int err; 748 749 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) { 750 if (MAXPHYS <= 1024 * 4) 751 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K; 752 else if (MAXPHYS <= 1024 * 8) 753 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K; 754 else if (MAXPHYS <= 1024 * 16) 755 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K; 756 else if (MAXPHYS <= 1024 * 32) 757 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K; 758 else if (MAXPHYS <= 1024 * 64) 759 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K; 760 else if (MAXPHYS <= 1024 * 128) 761 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K; 762 else if (MAXPHYS <= 1024 * 256) 763 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K; 764 else 765 slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K; 766 } 767 slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary); 768 769 /* 770 * Allocate the DMA tag for an SDMA bounce buffer. 771 * Note that the SDHCI specification doesn't state any alignment 772 * constraint for the SDMA system address. However, controllers 773 * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when 774 * forming the actual address of data, requiring the SDMA buffer to 775 * be aligned to the SDMA boundary. 776 */ 777 err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz, 778 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 779 slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW, 780 NULL, NULL, &slot->dmatag); 781 if (err != 0) { 782 slot_printf(slot, "Can't create DMA tag for SDMA\n"); 783 return (err); 784 } 785 /* Allocate DMA memory for the SDMA bounce buffer. */ 786 err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem, 787 BUS_DMA_NOWAIT, &slot->dmamap); 788 if (err != 0) { 789 slot_printf(slot, "Can't alloc DMA memory for SDMA\n"); 790 bus_dma_tag_destroy(slot->dmatag); 791 return (err); 792 } 793 /* Map the memory of the SDMA bounce buffer. */ 794 err = bus_dmamap_load(slot->dmatag, slot->dmamap, 795 (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr, 796 &slot->paddr, 0); 797 if (err != 0 || slot->paddr == 0) { 798 slot_printf(slot, "Can't load DMA memory for SDMA\n"); 799 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 800 bus_dma_tag_destroy(slot->dmatag); 801 if (err) 802 return (err); 803 else 804 return (EFAULT); 805 } 806 807 return (0); 808 } 809 810 static void 811 sdhci_dma_free(struct sdhci_slot *slot) 812 { 813 814 bus_dmamap_unload(slot->dmatag, slot->dmamap); 815 bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); 816 bus_dma_tag_destroy(slot->dmatag); 817 } 818 819 int 820 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num) 821 { 822 kobjop_desc_t kobj_desc; 823 kobj_method_t *kobj_method; 824 uint32_t caps, caps2, freq, host_caps; 825 int err; 826 827 SDHCI_LOCK_INIT(slot); 828 829 slot->num = num; 830 slot->bus = dev; 831 832 slot->version = (RD2(slot, SDHCI_HOST_VERSION) 833 >> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK; 834 if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) { 835 caps = slot->caps; 836 caps2 = slot->caps2; 837 } else { 838 caps = RD4(slot, SDHCI_CAPABILITIES); 839 if (slot->version >= SDHCI_SPEC_300) 840 caps2 = RD4(slot, SDHCI_CAPABILITIES2); 841 else 842 caps2 = 0; 843 } 844 if (slot->version >= SDHCI_SPEC_300) { 845 if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE && 846 (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) { 847 slot_printf(slot, 848 "Driver doesn't support shared bus slots\n"); 849 SDHCI_LOCK_DESTROY(slot); 850 return (ENXIO); 851 } else if ((caps & SDHCI_SLOTTYPE_MASK) == 852 SDHCI_SLOTTYPE_EMBEDDED) { 853 slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE; 854 } 855 } 856 /* Calculate base clock frequency. */ 857 if (slot->version >= SDHCI_SPEC_300) 858 freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >> 859 SDHCI_CLOCK_BASE_SHIFT; 860 else 861 freq = (caps & SDHCI_CLOCK_BASE_MASK) >> 862 SDHCI_CLOCK_BASE_SHIFT; 863 if (freq != 0) 864 slot->max_clk = freq * 1000000; 865 /* 866 * If the frequency wasn't in the capabilities and the hardware driver 867 * hasn't already set max_clk we're probably not going to work right 868 * with an assumption, so complain about it. 869 */ 870 if (slot->max_clk == 0) { 871 slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000; 872 slot_printf(slot, "Hardware doesn't specify base clock " 873 "frequency, using %dMHz as default.\n", 874 SDHCI_DEFAULT_MAX_FREQ); 875 } 876 /* Calculate/set timeout clock frequency. */ 877 if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) { 878 slot->timeout_clk = slot->max_clk / 1000; 879 } else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) { 880 slot->timeout_clk = 1000; 881 } else { 882 slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >> 883 SDHCI_TIMEOUT_CLK_SHIFT; 884 if (caps & SDHCI_TIMEOUT_CLK_UNIT) 885 slot->timeout_clk *= 1000; 886 } 887 /* 888 * If the frequency wasn't in the capabilities and the hardware driver 889 * hasn't already set timeout_clk we'll probably work okay using the 890 * max timeout, but still mention it. 891 */ 892 if (slot->timeout_clk == 0) { 893 slot_printf(slot, "Hardware doesn't specify timeout clock " 894 "frequency, setting BROKEN_TIMEOUT quirk.\n"); 895 slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 896 } 897 898 slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot); 899 slot->host.f_max = slot->max_clk; 900 slot->host.host_ocr = 0; 901 if (caps & SDHCI_CAN_VDD_330) 902 slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340; 903 if (caps & SDHCI_CAN_VDD_300) 904 slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310; 905 /* 1.8V VDD is not supposed to be used for removable cards. */ 906 if ((caps & SDHCI_CAN_VDD_180) && (slot->opt & SDHCI_SLOT_EMBEDDED)) 907 slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE; 908 if (slot->host.host_ocr == 0) { 909 slot_printf(slot, "Hardware doesn't report any " 910 "support voltages.\n"); 911 } 912 913 host_caps = MMC_CAP_4_BIT_DATA; 914 if (caps & SDHCI_CAN_DO_8BITBUS) 915 host_caps |= MMC_CAP_8_BIT_DATA; 916 if (caps & SDHCI_CAN_DO_HISPD) 917 host_caps |= MMC_CAP_HSPEED; 918 if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC) 919 host_caps |= MMC_CAP_BOOT_NOACC; 920 if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY) 921 host_caps |= MMC_CAP_WAIT_WHILE_BUSY; 922 923 /* Determine supported UHS-I and eMMC modes. */ 924 if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50)) 925 host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; 926 if (caps2 & SDHCI_CAN_SDR104) { 927 host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; 928 if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200)) 929 host_caps |= MMC_CAP_MMC_HS200; 930 } else if (caps2 & SDHCI_CAN_SDR50) 931 host_caps |= MMC_CAP_UHS_SDR50; 932 if (caps2 & SDHCI_CAN_DDR50 && 933 !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50)) 934 host_caps |= MMC_CAP_UHS_DDR50; 935 if (slot->quirks & SDHCI_QUIRK_MMC_DDR52) 936 host_caps |= MMC_CAP_MMC_DDR52; 937 if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 && 938 caps2 & SDHCI_CAN_MMC_HS400) 939 host_caps |= MMC_CAP_MMC_HS400; 940 if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 && 941 caps2 & SDHCI_CAN_SDR104) 942 host_caps |= MMC_CAP_MMC_HS400; 943 944 /* 945 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the 946 * default NULL implementation. 947 */ 948 kobj_desc = &sdhci_set_uhs_timing_desc; 949 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 950 kobj_desc); 951 if (kobj_method == &kobj_desc->deflt) 952 host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 953 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 954 MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400); 955 956 #define SDHCI_CAP_MODES_TUNING(caps2) \ 957 (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) | \ 958 MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 | \ 959 MMC_CAP_MMC_HS400) 960 961 /* 962 * Disable UHS-I and eMMC modes that require (re-)tuning if either 963 * the tune or re-tune method is the default NULL implementation. 964 */ 965 kobj_desc = &mmcbr_tune_desc; 966 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 967 kobj_desc); 968 if (kobj_method == &kobj_desc->deflt) 969 goto no_tuning; 970 kobj_desc = &mmcbr_retune_desc; 971 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 972 kobj_desc); 973 if (kobj_method == &kobj_desc->deflt) { 974 no_tuning: 975 host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2)); 976 } 977 978 /* Allocate tuning structures and determine tuning parameters. */ 979 if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) { 980 slot->opt |= SDHCI_TUNING_SUPPORTED; 981 slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF, 982 M_WAITOK); 983 slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF, 984 M_WAITOK); 985 slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF, 986 M_WAITOK); 987 if (caps2 & SDHCI_TUNE_SDR50) 988 slot->opt |= SDHCI_SDR50_NEEDS_TUNING; 989 slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >> 990 SDHCI_RETUNE_MODES_SHIFT; 991 if (slot->retune_mode == SDHCI_RETUNE_MODE_1) { 992 slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >> 993 SDHCI_RETUNE_CNT_SHIFT; 994 if (slot->retune_count > 0xb) { 995 slot_printf(slot, "Unknown re-tuning count " 996 "%x, using 1 sec\n", slot->retune_count); 997 slot->retune_count = 1; 998 } else if (slot->retune_count != 0) 999 slot->retune_count = 1000 1 << (slot->retune_count - 1); 1001 } 1002 } 1003 1004 #undef SDHCI_CAP_MODES_TUNING 1005 1006 /* Determine supported VCCQ signaling levels. */ 1007 host_caps |= MMC_CAP_SIGNALING_330; 1008 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 1009 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | 1010 MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 | 1011 MMC_CAP_MMC_HS400_180)) 1012 host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180; 1013 1014 /* 1015 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the 1016 * default NULL implementation. Disable 1.2 V support if it's the 1017 * generic SDHCI implementation. 1018 */ 1019 kobj_desc = &mmcbr_switch_vccq_desc; 1020 kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, 1021 kobj_desc); 1022 if (kobj_method == &kobj_desc->deflt) 1023 host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180); 1024 else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq) 1025 host_caps &= ~MMC_CAP_SIGNALING_120; 1026 1027 /* Determine supported driver types (type B is always mandatory). */ 1028 if (caps2 & SDHCI_CAN_DRIVE_TYPE_A) 1029 host_caps |= MMC_CAP_DRIVER_TYPE_A; 1030 if (caps2 & SDHCI_CAN_DRIVE_TYPE_C) 1031 host_caps |= MMC_CAP_DRIVER_TYPE_C; 1032 if (caps2 & SDHCI_CAN_DRIVE_TYPE_D) 1033 host_caps |= MMC_CAP_DRIVER_TYPE_D; 1034 slot->host.caps = host_caps; 1035 1036 /* Decide if we have usable DMA. */ 1037 if (caps & SDHCI_CAN_DO_DMA) 1038 slot->opt |= SDHCI_HAVE_DMA; 1039 1040 if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA) 1041 slot->opt &= ~SDHCI_HAVE_DMA; 1042 if (slot->quirks & SDHCI_QUIRK_FORCE_DMA) 1043 slot->opt |= SDHCI_HAVE_DMA; 1044 if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE) 1045 slot->opt |= SDHCI_NON_REMOVABLE; 1046 1047 /* 1048 * Use platform-provided transfer backend 1049 * with PIO as a fallback mechanism 1050 */ 1051 if (slot->opt & SDHCI_PLATFORM_TRANSFER) 1052 slot->opt &= ~SDHCI_HAVE_DMA; 1053 1054 if (slot->opt & SDHCI_HAVE_DMA) { 1055 err = sdhci_dma_alloc(slot); 1056 if (err != 0) { 1057 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 1058 free(slot->tune_req, M_DEVBUF); 1059 free(slot->tune_cmd, M_DEVBUF); 1060 free(slot->tune_data, M_DEVBUF); 1061 } 1062 SDHCI_LOCK_DESTROY(slot); 1063 return (err); 1064 } 1065 } 1066 1067 if (bootverbose || sdhci_debug) { 1068 slot_printf(slot, 1069 "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n", 1070 slot->max_clk / 1000000, 1071 (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "", 1072 (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" : 1073 ((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"), 1074 (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "", 1075 (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "", 1076 ((caps & SDHCI_CAN_VDD_180) && 1077 (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "", 1078 (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "", 1079 (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "", 1080 (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "", 1081 (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "", 1082 (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "", 1083 (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO", 1084 (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" : 1085 (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" : 1086 "removable"); 1087 if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | 1088 MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) 1089 slot_printf(slot, "eMMC:%s%s%s%s\n", 1090 (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "", 1091 (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "", 1092 (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "", 1093 ((host_caps & 1094 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) == 1095 (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ? 1096 " HS400ES" : ""); 1097 if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | 1098 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104)) 1099 slot_printf(slot, "UHS-I:%s%s%s%s%s\n", 1100 (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "", 1101 (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "", 1102 (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "", 1103 (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "", 1104 (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : ""); 1105 if (slot->opt & SDHCI_TUNING_SUPPORTED) 1106 slot_printf(slot, "Re-tuning count %d secs, mode %d\n", 1107 slot->retune_count, slot->retune_mode + 1); 1108 sdhci_dumpregs(slot); 1109 } 1110 1111 slot->timeout = 10; 1112 SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus), 1113 SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO, 1114 "timeout", CTLFLAG_RW, &slot->timeout, 0, 1115 "Maximum timeout for SDHCI transfers (in secs)"); 1116 TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot); 1117 TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0, 1118 sdhci_card_task, slot); 1119 callout_init(&slot->card_poll_callout, 1); 1120 callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0); 1121 callout_init_mtx(&slot->retune_callout, &slot->mtx, 0); 1122 1123 if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && 1124 !(slot->opt & SDHCI_NON_REMOVABLE)) { 1125 callout_reset(&slot->card_poll_callout, 1126 SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot); 1127 } 1128 1129 sdhci_init(slot); 1130 1131 return (0); 1132 } 1133 1134 #ifndef MMCCAM 1135 void 1136 sdhci_start_slot(struct sdhci_slot *slot) 1137 { 1138 1139 sdhci_card_task(slot, 0); 1140 } 1141 #endif 1142 1143 int 1144 sdhci_cleanup_slot(struct sdhci_slot *slot) 1145 { 1146 device_t d; 1147 1148 callout_drain(&slot->timeout_callout); 1149 callout_drain(&slot->card_poll_callout); 1150 callout_drain(&slot->retune_callout); 1151 taskqueue_drain(taskqueue_swi_giant, &slot->card_task); 1152 taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task); 1153 1154 SDHCI_LOCK(slot); 1155 d = slot->dev; 1156 slot->dev = NULL; 1157 SDHCI_UNLOCK(slot); 1158 if (d != NULL) 1159 device_delete_child(slot->bus, d); 1160 1161 SDHCI_LOCK(slot); 1162 sdhci_reset(slot, SDHCI_RESET_ALL); 1163 SDHCI_UNLOCK(slot); 1164 if (slot->opt & SDHCI_HAVE_DMA) 1165 sdhci_dma_free(slot); 1166 if (slot->opt & SDHCI_TUNING_SUPPORTED) { 1167 free(slot->tune_req, M_DEVBUF); 1168 free(slot->tune_cmd, M_DEVBUF); 1169 free(slot->tune_data, M_DEVBUF); 1170 } 1171 1172 SDHCI_LOCK_DESTROY(slot); 1173 1174 return (0); 1175 } 1176 1177 int 1178 sdhci_generic_suspend(struct sdhci_slot *slot) 1179 { 1180 1181 /* 1182 * We expect the MMC layer to issue initial tuning after resume. 1183 * Otherwise, we'd need to indicate re-tuning including circuit reset 1184 * being required at least for re-tuning modes 1 and 2 ourselves. 1185 */ 1186 callout_drain(&slot->retune_callout); 1187 SDHCI_LOCK(slot); 1188 slot->opt &= ~SDHCI_TUNING_ENABLED; 1189 sdhci_reset(slot, SDHCI_RESET_ALL); 1190 SDHCI_UNLOCK(slot); 1191 1192 return (0); 1193 } 1194 1195 int 1196 sdhci_generic_resume(struct sdhci_slot *slot) 1197 { 1198 1199 SDHCI_LOCK(slot); 1200 sdhci_init(slot); 1201 SDHCI_UNLOCK(slot); 1202 1203 return (0); 1204 } 1205 1206 uint32_t 1207 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot) 1208 { 1209 1210 if (slot->version >= SDHCI_SPEC_300) 1211 return (slot->max_clk / SDHCI_300_MAX_DIVIDER); 1212 else 1213 return (slot->max_clk / SDHCI_200_MAX_DIVIDER); 1214 } 1215 1216 bool 1217 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot) 1218 { 1219 1220 if (slot->opt & SDHCI_NON_REMOVABLE) 1221 return true; 1222 1223 return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); 1224 } 1225 1226 void 1227 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot) 1228 { 1229 const struct mmc_ios *ios; 1230 uint16_t hostctrl2; 1231 1232 if (slot->version < SDHCI_SPEC_300) 1233 return; 1234 1235 SDHCI_ASSERT_LOCKED(slot); 1236 ios = &slot->host.ios; 1237 sdhci_set_clock(slot, 0); 1238 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1239 hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK; 1240 if (ios->clock > SD_SDR50_MAX) { 1241 if (ios->timing == bus_timing_mmc_hs400 || 1242 ios->timing == bus_timing_mmc_hs400es) 1243 hostctrl2 |= SDHCI_CTRL2_MMC_HS400; 1244 else 1245 hostctrl2 |= SDHCI_CTRL2_UHS_SDR104; 1246 } 1247 else if (ios->clock > SD_SDR25_MAX) 1248 hostctrl2 |= SDHCI_CTRL2_UHS_SDR50; 1249 else if (ios->clock > SD_SDR12_MAX) { 1250 if (ios->timing == bus_timing_uhs_ddr50 || 1251 ios->timing == bus_timing_mmc_ddr52) 1252 hostctrl2 |= SDHCI_CTRL2_UHS_DDR50; 1253 else 1254 hostctrl2 |= SDHCI_CTRL2_UHS_SDR25; 1255 } else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY) 1256 hostctrl2 |= SDHCI_CTRL2_UHS_SDR12; 1257 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1258 sdhci_set_clock(slot, ios->clock); 1259 } 1260 1261 int 1262 sdhci_generic_update_ios(device_t brdev, device_t reqdev) 1263 { 1264 struct sdhci_slot *slot = device_get_ivars(reqdev); 1265 struct mmc_ios *ios = &slot->host.ios; 1266 1267 SDHCI_LOCK(slot); 1268 /* Do full reset on bus power down to clear from any state. */ 1269 if (ios->power_mode == power_off) { 1270 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 1271 sdhci_init(slot); 1272 } 1273 /* Configure the bus. */ 1274 sdhci_set_clock(slot, ios->clock); 1275 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 1276 if (ios->bus_width == bus_width_8) { 1277 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 1278 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1279 } else if (ios->bus_width == bus_width_4) { 1280 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1281 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 1282 } else if (ios->bus_width == bus_width_1) { 1283 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 1284 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 1285 } else { 1286 panic("Invalid bus width: %d", ios->bus_width); 1287 } 1288 if (ios->clock > SD_SDR12_MAX && 1289 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 1290 slot->hostctrl |= SDHCI_CTRL_HISPD; 1291 else 1292 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 1293 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 1294 SDHCI_SET_UHS_TIMING(brdev, slot); 1295 /* Some controllers like reset after bus changes. */ 1296 if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 1297 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1298 1299 SDHCI_UNLOCK(slot); 1300 return (0); 1301 } 1302 1303 int 1304 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev) 1305 { 1306 struct sdhci_slot *slot = device_get_ivars(reqdev); 1307 enum mmc_vccq vccq; 1308 int err; 1309 uint16_t hostctrl2; 1310 1311 if (slot->version < SDHCI_SPEC_300) 1312 return (0); 1313 1314 err = 0; 1315 vccq = slot->host.ios.vccq; 1316 SDHCI_LOCK(slot); 1317 sdhci_set_clock(slot, 0); 1318 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1319 switch (vccq) { 1320 case vccq_330: 1321 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1322 goto done; 1323 hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE; 1324 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1325 DELAY(5000); 1326 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1327 if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) 1328 goto done; 1329 err = EAGAIN; 1330 break; 1331 case vccq_180: 1332 if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) { 1333 err = EINVAL; 1334 goto done; 1335 } 1336 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1337 goto done; 1338 hostctrl2 |= SDHCI_CTRL2_S18_ENABLE; 1339 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); 1340 DELAY(5000); 1341 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1342 if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) 1343 goto done; 1344 err = EAGAIN; 1345 break; 1346 default: 1347 slot_printf(slot, 1348 "Attempt to set unsupported signaling voltage\n"); 1349 err = EINVAL; 1350 break; 1351 } 1352 done: 1353 sdhci_set_clock(slot, slot->host.ios.clock); 1354 SDHCI_UNLOCK(slot); 1355 return (err); 1356 } 1357 1358 int 1359 sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400) 1360 { 1361 struct sdhci_slot *slot = device_get_ivars(reqdev); 1362 const struct mmc_ios *ios = &slot->host.ios; 1363 struct mmc_command *tune_cmd; 1364 struct mmc_data *tune_data; 1365 uint32_t opcode; 1366 int err; 1367 1368 if (!(slot->opt & SDHCI_TUNING_SUPPORTED)) 1369 return (0); 1370 1371 slot->retune_ticks = slot->retune_count * hz; 1372 opcode = MMC_SEND_TUNING_BLOCK; 1373 SDHCI_LOCK(slot); 1374 switch (ios->timing) { 1375 case bus_timing_mmc_hs400: 1376 slot_printf(slot, "HS400 must be tuned in HS200 mode\n"); 1377 SDHCI_UNLOCK(slot); 1378 return (EINVAL); 1379 case bus_timing_mmc_hs200: 1380 /* 1381 * In HS400 mode, controllers use the data strobe line to 1382 * latch data from the devices so periodic re-tuning isn't 1383 * expected to be required. 1384 */ 1385 if (hs400) 1386 slot->retune_ticks = 0; 1387 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1388 break; 1389 case bus_timing_uhs_ddr50: 1390 case bus_timing_uhs_sdr104: 1391 break; 1392 case bus_timing_uhs_sdr50: 1393 if (slot->opt & SDHCI_SDR50_NEEDS_TUNING) 1394 break; 1395 /* FALLTHROUGH */ 1396 default: 1397 SDHCI_UNLOCK(slot); 1398 return (0); 1399 } 1400 1401 tune_cmd = slot->tune_cmd; 1402 memset(tune_cmd, 0, sizeof(*tune_cmd)); 1403 tune_cmd->opcode = opcode; 1404 tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1405 tune_data = tune_cmd->data = slot->tune_data; 1406 memset(tune_data, 0, sizeof(*tune_data)); 1407 tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 && 1408 ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 : 1409 MMC_TUNING_LEN; 1410 tune_data->flags = MMC_DATA_READ; 1411 tune_data->mrq = tune_cmd->mrq = slot->tune_req; 1412 1413 slot->opt &= ~SDHCI_TUNING_ENABLED; 1414 err = sdhci_exec_tuning(slot, true); 1415 if (err == 0) { 1416 slot->opt |= SDHCI_TUNING_ENABLED; 1417 slot->intmask |= sdhci_tuning_intmask(slot); 1418 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 1419 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1420 if (slot->retune_ticks) { 1421 callout_reset(&slot->retune_callout, slot->retune_ticks, 1422 sdhci_retune, slot); 1423 } 1424 } 1425 SDHCI_UNLOCK(slot); 1426 return (err); 1427 } 1428 1429 int 1430 sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset) 1431 { 1432 struct sdhci_slot *slot = device_get_ivars(reqdev); 1433 int err; 1434 1435 if (!(slot->opt & SDHCI_TUNING_ENABLED)) 1436 return (0); 1437 1438 /* HS400 must be tuned in HS200 mode. */ 1439 if (slot->host.ios.timing == bus_timing_mmc_hs400) 1440 return (EINVAL); 1441 1442 SDHCI_LOCK(slot); 1443 err = sdhci_exec_tuning(slot, reset); 1444 /* 1445 * There are two ways sdhci_exec_tuning() can fail: 1446 * EBUSY should not actually happen when requests are only issued 1447 * with the host properly acquired, and 1448 * EIO re-tuning failed (but it did work initially). 1449 * 1450 * In both cases, we should retry at later point if periodic re-tuning 1451 * is enabled. Note that due to slot->retune_req not being cleared in 1452 * these failure cases, the MMC layer should trigger another attempt at 1453 * re-tuning with the next request anyway, though. 1454 */ 1455 if (slot->retune_ticks) { 1456 callout_reset(&slot->retune_callout, slot->retune_ticks, 1457 sdhci_retune, slot); 1458 } 1459 SDHCI_UNLOCK(slot); 1460 return (err); 1461 } 1462 1463 static int 1464 sdhci_exec_tuning(struct sdhci_slot *slot, bool reset) 1465 { 1466 struct mmc_request *tune_req; 1467 struct mmc_command *tune_cmd; 1468 int i; 1469 uint32_t intmask; 1470 uint16_t hostctrl2; 1471 u_char opt; 1472 1473 SDHCI_ASSERT_LOCKED(slot); 1474 if (slot->req != NULL) 1475 return (EBUSY); 1476 1477 /* Tuning doesn't work with DMA enabled. */ 1478 opt = slot->opt; 1479 slot->opt = opt & ~SDHCI_HAVE_DMA; 1480 1481 /* 1482 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only 1483 * kind of interrupt we receive in response to a tuning request. 1484 */ 1485 intmask = slot->intmask; 1486 slot->intmask = SDHCI_INT_DATA_AVAIL; 1487 WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL); 1488 WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL); 1489 1490 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1491 if (reset) 1492 hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK; 1493 else 1494 hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK; 1495 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING); 1496 1497 tune_req = slot->tune_req; 1498 tune_cmd = slot->tune_cmd; 1499 for (i = 0; i < MMC_TUNING_MAX; i++) { 1500 memset(tune_req, 0, sizeof(*tune_req)); 1501 tune_req->cmd = tune_cmd; 1502 tune_req->done = sdhci_req_wakeup; 1503 tune_req->done_data = slot; 1504 slot->req = tune_req; 1505 slot->flags = 0; 1506 sdhci_start(slot); 1507 while (!(tune_req->flags & MMC_REQ_DONE)) 1508 msleep(tune_req, &slot->mtx, 0, "sdhciet", 0); 1509 if (!(tune_req->flags & MMC_TUNE_DONE)) 1510 break; 1511 hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); 1512 if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING)) 1513 break; 1514 if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK) 1515 DELAY(1000); 1516 } 1517 1518 /* 1519 * Restore DMA usage and interrupts. 1520 * Note that the interrupt aggregation code might have cleared 1521 * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask 1522 * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE 1523 * doesn't lose these. 1524 */ 1525 slot->opt = opt; 1526 slot->intmask = intmask; 1527 WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END | 1528 SDHCI_INT_RESPONSE); 1529 WR4(slot, SDHCI_SIGNAL_ENABLE, intmask); 1530 1531 if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING | 1532 SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) { 1533 slot->retune_req = 0; 1534 return (0); 1535 } 1536 1537 slot_printf(slot, "Tuning failed, using fixed sampling clock\n"); 1538 WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING | 1539 SDHCI_CTRL2_SAMPLING_CLOCK)); 1540 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1541 return (EIO); 1542 } 1543 1544 static void 1545 sdhci_retune(void *arg) 1546 { 1547 struct sdhci_slot *slot = arg; 1548 1549 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 1550 } 1551 1552 #ifdef MMCCAM 1553 static void 1554 sdhci_req_done(struct sdhci_slot *slot) 1555 { 1556 union ccb *ccb; 1557 1558 if (__predict_false(sdhci_debug > 1)) 1559 slot_printf(slot, "%s\n", __func__); 1560 if (slot->ccb != NULL && slot->curcmd != NULL) { 1561 callout_stop(&slot->timeout_callout); 1562 ccb = slot->ccb; 1563 slot->ccb = NULL; 1564 slot->curcmd = NULL; 1565 1566 /* Tell CAM the request is finished */ 1567 struct ccb_mmcio *mmcio; 1568 mmcio = &ccb->mmcio; 1569 1570 ccb->ccb_h.status = 1571 (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR); 1572 xpt_done(ccb); 1573 } 1574 } 1575 #else 1576 static void 1577 sdhci_req_done(struct sdhci_slot *slot) 1578 { 1579 struct mmc_request *req; 1580 1581 if (slot->req != NULL && slot->curcmd != NULL) { 1582 callout_stop(&slot->timeout_callout); 1583 req = slot->req; 1584 slot->req = NULL; 1585 slot->curcmd = NULL; 1586 req->done(req); 1587 } 1588 } 1589 #endif 1590 1591 static void 1592 sdhci_req_wakeup(struct mmc_request *req) 1593 { 1594 struct sdhci_slot *slot; 1595 1596 slot = req->done_data; 1597 req->flags |= MMC_REQ_DONE; 1598 wakeup(req); 1599 } 1600 1601 static void 1602 sdhci_timeout(void *arg) 1603 { 1604 struct sdhci_slot *slot = arg; 1605 1606 if (slot->curcmd != NULL) { 1607 slot_printf(slot, "Controller timeout\n"); 1608 sdhci_dumpregs(slot); 1609 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 1610 slot->curcmd->error = MMC_ERR_TIMEOUT; 1611 sdhci_req_done(slot); 1612 } else { 1613 slot_printf(slot, "Spurious timeout - no active command\n"); 1614 } 1615 } 1616 1617 static void 1618 sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data) 1619 { 1620 uint16_t mode; 1621 1622 if (data == NULL) 1623 return; 1624 1625 mode = SDHCI_TRNS_BLK_CNT_EN; 1626 if (data->len > 512) { 1627 mode |= SDHCI_TRNS_MULTI; 1628 if (__predict_true( 1629 #ifdef MMCCAM 1630 slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION && 1631 #else 1632 slot->req->stop != NULL && 1633 #endif 1634 !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP))) 1635 mode |= SDHCI_TRNS_ACMD12; 1636 } 1637 if (data->flags & MMC_DATA_READ) 1638 mode |= SDHCI_TRNS_READ; 1639 if (slot->flags & SDHCI_USE_DMA) 1640 mode |= SDHCI_TRNS_DMA; 1641 1642 WR2(slot, SDHCI_TRANSFER_MODE, mode); 1643 } 1644 1645 static void 1646 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd) 1647 { 1648 int flags, timeout; 1649 uint32_t mask; 1650 1651 slot->curcmd = cmd; 1652 slot->cmd_done = 0; 1653 1654 cmd->error = MMC_ERR_NONE; 1655 1656 /* This flags combination is not supported by controller. */ 1657 if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { 1658 slot_printf(slot, "Unsupported response type!\n"); 1659 cmd->error = MMC_ERR_FAILED; 1660 sdhci_req_done(slot); 1661 return; 1662 } 1663 1664 /* 1665 * Do not issue command if there is no card, clock or power. 1666 * Controller will not detect timeout without clock active. 1667 */ 1668 if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) || 1669 slot->power == 0 || 1670 slot->clock == 0) { 1671 slot_printf(slot, 1672 "Cannot issue a command (power=%d clock=%d)", 1673 slot->power, slot->clock); 1674 cmd->error = MMC_ERR_FAILED; 1675 sdhci_req_done(slot); 1676 return; 1677 } 1678 /* Always wait for free CMD bus. */ 1679 mask = SDHCI_CMD_INHIBIT; 1680 /* Wait for free DAT if we have data or busy signal. */ 1681 if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY)) 1682 mask |= SDHCI_DAT_INHIBIT; 1683 /* 1684 * We shouldn't wait for DAT for stop commands or CMD19/CMD21. Note 1685 * that these latter are also special in that SDHCI_CMD_DATA should 1686 * be set below but no actual data is ever read from the controller. 1687 */ 1688 #ifdef MMCCAM 1689 if (cmd == &slot->ccb->mmcio.stop || 1690 #else 1691 if (cmd == slot->req->stop || 1692 #endif 1693 __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK || 1694 cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)) 1695 mask &= ~SDHCI_DAT_INHIBIT; 1696 /* 1697 * Wait for bus no more then 250 ms. Typically there will be no wait 1698 * here at all, but when writing a crash dump we may be bypassing the 1699 * host platform's interrupt handler, and in some cases that handler 1700 * may be working around hardware quirks such as not respecting r1b 1701 * busy indications. In those cases, this wait-loop serves the purpose 1702 * of waiting for the prior command and data transfers to be done, and 1703 * SD cards are allowed to take up to 250ms for write and erase ops. 1704 * (It's usually more like 20-30ms in the real world.) 1705 */ 1706 timeout = 250; 1707 while (mask & RD4(slot, SDHCI_PRESENT_STATE)) { 1708 if (timeout == 0) { 1709 slot_printf(slot, "Controller never released " 1710 "inhibit bit(s).\n"); 1711 sdhci_dumpregs(slot); 1712 cmd->error = MMC_ERR_FAILED; 1713 sdhci_req_done(slot); 1714 return; 1715 } 1716 timeout--; 1717 DELAY(1000); 1718 } 1719 1720 /* Prepare command flags. */ 1721 if (!(cmd->flags & MMC_RSP_PRESENT)) 1722 flags = SDHCI_CMD_RESP_NONE; 1723 else if (cmd->flags & MMC_RSP_136) 1724 flags = SDHCI_CMD_RESP_LONG; 1725 else if (cmd->flags & MMC_RSP_BUSY) 1726 flags = SDHCI_CMD_RESP_SHORT_BUSY; 1727 else 1728 flags = SDHCI_CMD_RESP_SHORT; 1729 if (cmd->flags & MMC_RSP_CRC) 1730 flags |= SDHCI_CMD_CRC; 1731 if (cmd->flags & MMC_RSP_OPCODE) 1732 flags |= SDHCI_CMD_INDEX; 1733 if (cmd->data != NULL) 1734 flags |= SDHCI_CMD_DATA; 1735 if (cmd->opcode == MMC_STOP_TRANSMISSION) 1736 flags |= SDHCI_CMD_TYPE_ABORT; 1737 /* Prepare data. */ 1738 sdhci_start_data(slot, cmd->data); 1739 /* 1740 * Interrupt aggregation: To reduce total number of interrupts 1741 * group response interrupt with data interrupt when possible. 1742 * If there going to be data interrupt, mask response one. 1743 */ 1744 if (slot->data_done == 0) { 1745 WR4(slot, SDHCI_SIGNAL_ENABLE, 1746 slot->intmask &= ~SDHCI_INT_RESPONSE); 1747 } 1748 /* Set command argument. */ 1749 WR4(slot, SDHCI_ARGUMENT, cmd->arg); 1750 /* Set data transfer mode. */ 1751 sdhci_set_transfer_mode(slot, cmd->data); 1752 if (__predict_false(sdhci_debug > 1)) 1753 slot_printf(slot, "Starting command!\n"); 1754 /* Start command. */ 1755 WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff)); 1756 /* Start timeout callout. */ 1757 callout_reset(&slot->timeout_callout, slot->timeout * hz, 1758 sdhci_timeout, slot); 1759 } 1760 1761 static void 1762 sdhci_finish_command(struct sdhci_slot *slot) 1763 { 1764 int i; 1765 uint32_t val; 1766 uint8_t extra; 1767 1768 if (__predict_false(sdhci_debug > 1)) 1769 slot_printf(slot, "%s: called, err %d flags %d\n", 1770 __func__, slot->curcmd->error, slot->curcmd->flags); 1771 slot->cmd_done = 1; 1772 /* 1773 * Interrupt aggregation: Restore command interrupt. 1774 * Main restore point for the case when command interrupt 1775 * happened first. 1776 */ 1777 if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK && 1778 slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)) 1779 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= 1780 SDHCI_INT_RESPONSE); 1781 /* In case of error - reset host and return. */ 1782 if (slot->curcmd->error) { 1783 if (slot->curcmd->error == MMC_ERR_BADCRC) 1784 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1785 sdhci_reset(slot, SDHCI_RESET_CMD); 1786 sdhci_reset(slot, SDHCI_RESET_DATA); 1787 sdhci_start(slot); 1788 return; 1789 } 1790 /* If command has response - fetch it. */ 1791 if (slot->curcmd->flags & MMC_RSP_PRESENT) { 1792 if (slot->curcmd->flags & MMC_RSP_136) { 1793 /* CRC is stripped so we need one byte shift. */ 1794 extra = 0; 1795 for (i = 0; i < 4; i++) { 1796 val = RD4(slot, SDHCI_RESPONSE + i * 4); 1797 if (slot->quirks & 1798 SDHCI_QUIRK_DONT_SHIFT_RESPONSE) 1799 slot->curcmd->resp[3 - i] = val; 1800 else { 1801 slot->curcmd->resp[3 - i] = 1802 (val << 8) | extra; 1803 extra = val >> 24; 1804 } 1805 } 1806 } else 1807 slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE); 1808 } 1809 if (__predict_false(sdhci_debug > 1)) 1810 printf("Resp: %02x %02x %02x %02x\n", 1811 slot->curcmd->resp[0], slot->curcmd->resp[1], 1812 slot->curcmd->resp[2], slot->curcmd->resp[3]); 1813 1814 /* If data ready - finish. */ 1815 if (slot->data_done) 1816 sdhci_start(slot); 1817 } 1818 1819 static void 1820 sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data) 1821 { 1822 uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout; 1823 uint8_t div; 1824 1825 if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 1826 slot->data_done = 1; 1827 return; 1828 } 1829 1830 slot->data_done = 0; 1831 1832 /* Calculate and set data timeout.*/ 1833 /* XXX: We should have this from mmc layer, now assume 1 sec. */ 1834 if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) { 1835 div = 0xE; 1836 } else { 1837 target_timeout = 1000000; 1838 div = 0; 1839 current_timeout = (1 << 13) * 1000 / slot->timeout_clk; 1840 while (current_timeout < target_timeout && div < 0xE) { 1841 ++div; 1842 current_timeout <<= 1; 1843 } 1844 /* Compensate for an off-by-one error in the CaFe chip.*/ 1845 if (div < 0xE && 1846 (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) { 1847 ++div; 1848 } 1849 } 1850 WR1(slot, SDHCI_TIMEOUT_CONTROL, div); 1851 1852 if (data == NULL) 1853 return; 1854 1855 /* Use DMA if possible. */ 1856 if ((slot->opt & SDHCI_HAVE_DMA)) 1857 slot->flags |= SDHCI_USE_DMA; 1858 /* If data is small, broken DMA may return zeroes instead of data. */ 1859 if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) && 1860 (data->len <= 512)) 1861 slot->flags &= ~SDHCI_USE_DMA; 1862 /* Some controllers require even block sizes. */ 1863 if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) && 1864 ((data->len) & 0x3)) 1865 slot->flags &= ~SDHCI_USE_DMA; 1866 /* Load DMA buffer. */ 1867 if (slot->flags & SDHCI_USE_DMA) { 1868 sdma_bbufsz = slot->sdma_bbufsz; 1869 if (data->flags & MMC_DATA_READ) 1870 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1871 BUS_DMASYNC_PREREAD); 1872 else { 1873 memcpy(slot->dmamem, data->data, ulmin(data->len, 1874 sdma_bbufsz)); 1875 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1876 BUS_DMASYNC_PREWRITE); 1877 } 1878 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 1879 /* 1880 * Interrupt aggregation: Mask border interrupt for the last 1881 * bounce buffer and unmask otherwise. 1882 */ 1883 if (data->len == sdma_bbufsz) 1884 slot->intmask &= ~SDHCI_INT_DMA_END; 1885 else 1886 slot->intmask |= SDHCI_INT_DMA_END; 1887 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 1888 } 1889 /* Current data offset for both PIO and DMA. */ 1890 slot->offset = 0; 1891 /* Set block size and request border interrupts on the SDMA boundary. */ 1892 blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512)); 1893 WR2(slot, SDHCI_BLOCK_SIZE, blksz); 1894 /* Set block count. */ 1895 blkcnt = howmany(data->len, 512); 1896 WR2(slot, SDHCI_BLOCK_COUNT, blkcnt); 1897 if (__predict_false(sdhci_debug > 1)) 1898 slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", 1899 blksz, blkcnt); 1900 } 1901 1902 void 1903 sdhci_finish_data(struct sdhci_slot *slot) 1904 { 1905 struct mmc_data *data = slot->curcmd->data; 1906 size_t left; 1907 1908 /* Interrupt aggregation: Restore command interrupt. 1909 * Auxiliary restore point for the case when data interrupt 1910 * happened first. */ 1911 if (!slot->cmd_done) { 1912 WR4(slot, SDHCI_SIGNAL_ENABLE, 1913 slot->intmask |= SDHCI_INT_RESPONSE); 1914 } 1915 /* Unload rest of data from DMA buffer. */ 1916 if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) && 1917 slot->curcmd->data != NULL) { 1918 if (data->flags & MMC_DATA_READ) { 1919 left = data->len - slot->offset; 1920 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1921 BUS_DMASYNC_POSTREAD); 1922 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 1923 ulmin(left, slot->sdma_bbufsz)); 1924 } else 1925 bus_dmamap_sync(slot->dmatag, slot->dmamap, 1926 BUS_DMASYNC_POSTWRITE); 1927 } 1928 slot->data_done = 1; 1929 /* If there was error - reset the host. */ 1930 if (slot->curcmd->error) { 1931 if (slot->curcmd->error == MMC_ERR_BADCRC) 1932 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 1933 sdhci_reset(slot, SDHCI_RESET_CMD); 1934 sdhci_reset(slot, SDHCI_RESET_DATA); 1935 sdhci_start(slot); 1936 return; 1937 } 1938 /* If we already have command response - finish. */ 1939 if (slot->cmd_done) 1940 sdhci_start(slot); 1941 } 1942 1943 #ifdef MMCCAM 1944 static void 1945 sdhci_start(struct sdhci_slot *slot) 1946 { 1947 union ccb *ccb; 1948 struct ccb_mmcio *mmcio; 1949 1950 ccb = slot->ccb; 1951 if (ccb == NULL) 1952 return; 1953 1954 mmcio = &ccb->mmcio; 1955 if (!(slot->flags & CMD_STARTED)) { 1956 slot->flags |= CMD_STARTED; 1957 sdhci_start_command(slot, &mmcio->cmd); 1958 return; 1959 } 1960 1961 /* 1962 * Old stack doesn't use this! 1963 * Enabling this code causes significant performance degradation 1964 * and IRQ storms on BBB, Wandboard behaves fine. 1965 * Not using this code does no harm... 1966 if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) { 1967 slot->flags |= STOP_STARTED; 1968 sdhci_start_command(slot, &mmcio->stop); 1969 return; 1970 } 1971 */ 1972 if (__predict_false(sdhci_debug > 1)) 1973 slot_printf(slot, "result: %d\n", mmcio->cmd.error); 1974 if (mmcio->cmd.error == 0 && 1975 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) { 1976 sdhci_reset(slot, SDHCI_RESET_CMD); 1977 sdhci_reset(slot, SDHCI_RESET_DATA); 1978 } 1979 1980 sdhci_req_done(slot); 1981 } 1982 #else 1983 static void 1984 sdhci_start(struct sdhci_slot *slot) 1985 { 1986 const struct mmc_request *req; 1987 1988 req = slot->req; 1989 if (req == NULL) 1990 return; 1991 1992 if (!(slot->flags & CMD_STARTED)) { 1993 slot->flags |= CMD_STARTED; 1994 sdhci_start_command(slot, req->cmd); 1995 return; 1996 } 1997 if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) && 1998 !(slot->flags & STOP_STARTED) && req->stop) { 1999 slot->flags |= STOP_STARTED; 2000 sdhci_start_command(slot, req->stop); 2001 return; 2002 } 2003 if (__predict_false(sdhci_debug > 1)) 2004 slot_printf(slot, "result: %d\n", req->cmd->error); 2005 if (!req->cmd->error && 2006 ((slot->curcmd == req->stop && 2007 (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) || 2008 (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) { 2009 sdhci_reset(slot, SDHCI_RESET_CMD); 2010 sdhci_reset(slot, SDHCI_RESET_DATA); 2011 } 2012 2013 sdhci_req_done(slot); 2014 } 2015 #endif 2016 2017 int 2018 sdhci_generic_request(device_t brdev __unused, device_t reqdev, 2019 struct mmc_request *req) 2020 { 2021 struct sdhci_slot *slot = device_get_ivars(reqdev); 2022 2023 SDHCI_LOCK(slot); 2024 if (slot->req != NULL) { 2025 SDHCI_UNLOCK(slot); 2026 return (EBUSY); 2027 } 2028 if (__predict_false(sdhci_debug > 1)) { 2029 slot_printf(slot, 2030 "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", 2031 req->cmd->opcode, req->cmd->arg, req->cmd->flags, 2032 (req->cmd->data)?(u_int)req->cmd->data->len:0, 2033 (req->cmd->data)?req->cmd->data->flags:0); 2034 } 2035 slot->req = req; 2036 slot->flags = 0; 2037 sdhci_start(slot); 2038 SDHCI_UNLOCK(slot); 2039 if (dumping) { 2040 while (slot->req != NULL) { 2041 sdhci_generic_intr(slot); 2042 DELAY(10); 2043 } 2044 } 2045 return (0); 2046 } 2047 2048 int 2049 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev) 2050 { 2051 struct sdhci_slot *slot = device_get_ivars(reqdev); 2052 uint32_t val; 2053 2054 SDHCI_LOCK(slot); 2055 val = RD4(slot, SDHCI_PRESENT_STATE); 2056 SDHCI_UNLOCK(slot); 2057 return (!(val & SDHCI_WRITE_PROTECT)); 2058 } 2059 2060 int 2061 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev) 2062 { 2063 struct sdhci_slot *slot = device_get_ivars(reqdev); 2064 int err = 0; 2065 2066 SDHCI_LOCK(slot); 2067 while (slot->bus_busy) 2068 msleep(slot, &slot->mtx, 0, "sdhciah", 0); 2069 slot->bus_busy++; 2070 /* Activate led. */ 2071 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED); 2072 SDHCI_UNLOCK(slot); 2073 return (err); 2074 } 2075 2076 int 2077 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev) 2078 { 2079 struct sdhci_slot *slot = device_get_ivars(reqdev); 2080 2081 SDHCI_LOCK(slot); 2082 /* Deactivate led. */ 2083 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED); 2084 slot->bus_busy--; 2085 SDHCI_UNLOCK(slot); 2086 wakeup(slot); 2087 return (0); 2088 } 2089 2090 static void 2091 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask) 2092 { 2093 2094 if (!slot->curcmd) { 2095 slot_printf(slot, "Got command interrupt 0x%08x, but " 2096 "there is no active command.\n", intmask); 2097 sdhci_dumpregs(slot); 2098 return; 2099 } 2100 if (intmask & SDHCI_INT_TIMEOUT) 2101 slot->curcmd->error = MMC_ERR_TIMEOUT; 2102 else if (intmask & SDHCI_INT_CRC) 2103 slot->curcmd->error = MMC_ERR_BADCRC; 2104 else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) 2105 slot->curcmd->error = MMC_ERR_FIFO; 2106 2107 sdhci_finish_command(slot); 2108 } 2109 2110 static void 2111 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask) 2112 { 2113 struct mmc_data *data; 2114 size_t left; 2115 uint32_t sdma_bbufsz; 2116 2117 if (!slot->curcmd) { 2118 slot_printf(slot, "Got data interrupt 0x%08x, but " 2119 "there is no active command.\n", intmask); 2120 sdhci_dumpregs(slot); 2121 return; 2122 } 2123 if (slot->curcmd->data == NULL && 2124 (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { 2125 slot_printf(slot, "Got data interrupt 0x%08x, but " 2126 "there is no active data operation.\n", 2127 intmask); 2128 sdhci_dumpregs(slot); 2129 return; 2130 } 2131 if (intmask & SDHCI_INT_DATA_TIMEOUT) 2132 slot->curcmd->error = MMC_ERR_TIMEOUT; 2133 else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT)) 2134 slot->curcmd->error = MMC_ERR_BADCRC; 2135 if (slot->curcmd->data == NULL && 2136 (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | 2137 SDHCI_INT_DMA_END))) { 2138 slot_printf(slot, "Got data interrupt 0x%08x, but " 2139 "there is busy-only command.\n", intmask); 2140 sdhci_dumpregs(slot); 2141 slot->curcmd->error = MMC_ERR_INVALID; 2142 } 2143 if (slot->curcmd->error) { 2144 /* No need to continue after any error. */ 2145 goto done; 2146 } 2147 2148 /* Handle tuning completion interrupt. */ 2149 if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) && 2150 (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK || 2151 slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) { 2152 slot->req->flags |= MMC_TUNE_DONE; 2153 sdhci_finish_command(slot); 2154 sdhci_finish_data(slot); 2155 return; 2156 } 2157 /* Handle PIO interrupt. */ 2158 if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) { 2159 if ((slot->opt & SDHCI_PLATFORM_TRANSFER) && 2160 SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) { 2161 SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot, 2162 &intmask); 2163 slot->flags |= PLATFORM_DATA_STARTED; 2164 } else 2165 sdhci_transfer_pio(slot); 2166 } 2167 /* Handle DMA border. */ 2168 if (intmask & SDHCI_INT_DMA_END) { 2169 data = slot->curcmd->data; 2170 sdma_bbufsz = slot->sdma_bbufsz; 2171 2172 /* Unload DMA buffer ... */ 2173 left = data->len - slot->offset; 2174 if (data->flags & MMC_DATA_READ) { 2175 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2176 BUS_DMASYNC_POSTREAD); 2177 memcpy((u_char*)data->data + slot->offset, slot->dmamem, 2178 ulmin(left, sdma_bbufsz)); 2179 } else { 2180 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2181 BUS_DMASYNC_POSTWRITE); 2182 } 2183 /* ... and reload it again. */ 2184 slot->offset += sdma_bbufsz; 2185 left = data->len - slot->offset; 2186 if (data->flags & MMC_DATA_READ) { 2187 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2188 BUS_DMASYNC_PREREAD); 2189 } else { 2190 memcpy(slot->dmamem, (u_char*)data->data + slot->offset, 2191 ulmin(left, sdma_bbufsz)); 2192 bus_dmamap_sync(slot->dmatag, slot->dmamap, 2193 BUS_DMASYNC_PREWRITE); 2194 } 2195 /* 2196 * Interrupt aggregation: Mask border interrupt for the last 2197 * bounce buffer. 2198 */ 2199 if (left == sdma_bbufsz) { 2200 slot->intmask &= ~SDHCI_INT_DMA_END; 2201 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2202 } 2203 /* Restart DMA. */ 2204 WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); 2205 } 2206 /* We have got all data. */ 2207 if (intmask & SDHCI_INT_DATA_END) { 2208 if (slot->flags & PLATFORM_DATA_STARTED) { 2209 slot->flags &= ~PLATFORM_DATA_STARTED; 2210 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2211 } else 2212 sdhci_finish_data(slot); 2213 } 2214 done: 2215 if (slot->curcmd != NULL && slot->curcmd->error != 0) { 2216 if (slot->flags & PLATFORM_DATA_STARTED) { 2217 slot->flags &= ~PLATFORM_DATA_STARTED; 2218 SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); 2219 } else 2220 sdhci_finish_data(slot); 2221 } 2222 } 2223 2224 static void 2225 sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err) 2226 { 2227 2228 if (!slot->curcmd) { 2229 slot_printf(slot, "Got AutoCMD12 error 0x%04x, but " 2230 "there is no active command.\n", acmd_err); 2231 sdhci_dumpregs(slot); 2232 return; 2233 } 2234 slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err); 2235 sdhci_reset(slot, SDHCI_RESET_CMD); 2236 } 2237 2238 void 2239 sdhci_generic_intr(struct sdhci_slot *slot) 2240 { 2241 uint32_t intmask, present; 2242 uint16_t val16; 2243 2244 SDHCI_LOCK(slot); 2245 /* Read slot interrupt status. */ 2246 intmask = RD4(slot, SDHCI_INT_STATUS); 2247 if (intmask == 0 || intmask == 0xffffffff) { 2248 SDHCI_UNLOCK(slot); 2249 return; 2250 } 2251 if (__predict_false(sdhci_debug > 2)) 2252 slot_printf(slot, "Interrupt %#x\n", intmask); 2253 2254 /* Handle tuning error interrupt. */ 2255 if (__predict_false(intmask & SDHCI_INT_TUNEERR)) { 2256 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR); 2257 slot_printf(slot, "Tuning error indicated\n"); 2258 slot->retune_req |= SDHCI_RETUNE_REQ_RESET; 2259 if (slot->curcmd) { 2260 slot->curcmd->error = MMC_ERR_BADCRC; 2261 sdhci_finish_command(slot); 2262 } 2263 } 2264 /* Handle re-tuning interrupt. */ 2265 if (__predict_false(intmask & SDHCI_INT_RETUNE)) 2266 slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; 2267 /* Handle card presence interrupts. */ 2268 if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { 2269 present = (intmask & SDHCI_INT_CARD_INSERT) != 0; 2270 slot->intmask &= 2271 ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); 2272 slot->intmask |= present ? SDHCI_INT_CARD_REMOVE : 2273 SDHCI_INT_CARD_INSERT; 2274 WR4(slot, SDHCI_INT_ENABLE, slot->intmask); 2275 WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); 2276 WR4(slot, SDHCI_INT_STATUS, intmask & 2277 (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)); 2278 sdhci_handle_card_present_locked(slot, present); 2279 } 2280 /* Handle command interrupts. */ 2281 if (intmask & SDHCI_INT_CMD_MASK) { 2282 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK); 2283 sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK); 2284 } 2285 /* Handle data interrupts. */ 2286 if (intmask & SDHCI_INT_DATA_MASK) { 2287 WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK); 2288 /* Don't call data_irq in case of errored command. */ 2289 if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0) 2290 sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK); 2291 } 2292 /* Handle AutoCMD12 error interrupt. */ 2293 if (intmask & SDHCI_INT_ACMD12ERR) { 2294 /* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */ 2295 val16 = RD2(slot, SDHCI_ACMD12_ERR); 2296 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR); 2297 sdhci_acmd_irq(slot, val16); 2298 } 2299 /* Handle bus power interrupt. */ 2300 if (intmask & SDHCI_INT_BUS_POWER) { 2301 WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER); 2302 slot_printf(slot, "Card is consuming too much power!\n"); 2303 } 2304 intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE | 2305 SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK | 2306 SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER); 2307 /* The rest is unknown. */ 2308 if (intmask) { 2309 WR4(slot, SDHCI_INT_STATUS, intmask); 2310 slot_printf(slot, "Unexpected interrupt 0x%08x.\n", 2311 intmask); 2312 sdhci_dumpregs(slot); 2313 } 2314 2315 SDHCI_UNLOCK(slot); 2316 } 2317 2318 int 2319 sdhci_generic_read_ivar(device_t bus, device_t child, int which, 2320 uintptr_t *result) 2321 { 2322 const struct sdhci_slot *slot = device_get_ivars(child); 2323 2324 switch (which) { 2325 default: 2326 return (EINVAL); 2327 case MMCBR_IVAR_BUS_MODE: 2328 *result = slot->host.ios.bus_mode; 2329 break; 2330 case MMCBR_IVAR_BUS_WIDTH: 2331 *result = slot->host.ios.bus_width; 2332 break; 2333 case MMCBR_IVAR_CHIP_SELECT: 2334 *result = slot->host.ios.chip_select; 2335 break; 2336 case MMCBR_IVAR_CLOCK: 2337 *result = slot->host.ios.clock; 2338 break; 2339 case MMCBR_IVAR_F_MIN: 2340 *result = slot->host.f_min; 2341 break; 2342 case MMCBR_IVAR_F_MAX: 2343 *result = slot->host.f_max; 2344 break; 2345 case MMCBR_IVAR_HOST_OCR: 2346 *result = slot->host.host_ocr; 2347 break; 2348 case MMCBR_IVAR_MODE: 2349 *result = slot->host.mode; 2350 break; 2351 case MMCBR_IVAR_OCR: 2352 *result = slot->host.ocr; 2353 break; 2354 case MMCBR_IVAR_POWER_MODE: 2355 *result = slot->host.ios.power_mode; 2356 break; 2357 case MMCBR_IVAR_VDD: 2358 *result = slot->host.ios.vdd; 2359 break; 2360 case MMCBR_IVAR_RETUNE_REQ: 2361 if (slot->opt & SDHCI_TUNING_ENABLED) { 2362 if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) { 2363 *result = retune_req_reset; 2364 break; 2365 } 2366 if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) { 2367 *result = retune_req_normal; 2368 break; 2369 } 2370 } 2371 *result = retune_req_none; 2372 break; 2373 case MMCBR_IVAR_VCCQ: 2374 *result = slot->host.ios.vccq; 2375 break; 2376 case MMCBR_IVAR_CAPS: 2377 *result = slot->host.caps; 2378 break; 2379 case MMCBR_IVAR_TIMING: 2380 *result = slot->host.ios.timing; 2381 break; 2382 case MMCBR_IVAR_MAX_DATA: 2383 /* 2384 * Re-tuning modes 1 and 2 restrict the maximum data length 2385 * per read/write command to 4 MiB. 2386 */ 2387 if (slot->opt & SDHCI_TUNING_ENABLED && 2388 (slot->retune_mode == SDHCI_RETUNE_MODE_1 || 2389 slot->retune_mode == SDHCI_RETUNE_MODE_2)) { 2390 *result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; 2391 break; 2392 } 2393 *result = 65535; 2394 break; 2395 case MMCBR_IVAR_MAX_BUSY_TIMEOUT: 2396 /* 2397 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs. 2398 */ 2399 *result = 1000000; 2400 break; 2401 } 2402 return (0); 2403 } 2404 2405 int 2406 sdhci_generic_write_ivar(device_t bus, device_t child, int which, 2407 uintptr_t value) 2408 { 2409 struct sdhci_slot *slot = device_get_ivars(child); 2410 uint32_t clock, max_clock; 2411 int i; 2412 2413 if (sdhci_debug > 1) 2414 slot_printf(slot, "%s: var=%d\n", __func__, which); 2415 switch (which) { 2416 default: 2417 return (EINVAL); 2418 case MMCBR_IVAR_BUS_MODE: 2419 slot->host.ios.bus_mode = value; 2420 break; 2421 case MMCBR_IVAR_BUS_WIDTH: 2422 slot->host.ios.bus_width = value; 2423 break; 2424 case MMCBR_IVAR_CHIP_SELECT: 2425 slot->host.ios.chip_select = value; 2426 break; 2427 case MMCBR_IVAR_CLOCK: 2428 if (value > 0) { 2429 max_clock = slot->max_clk; 2430 clock = max_clock; 2431 2432 if (slot->version < SDHCI_SPEC_300) { 2433 for (i = 0; i < SDHCI_200_MAX_DIVIDER; 2434 i <<= 1) { 2435 if (clock <= value) 2436 break; 2437 clock >>= 1; 2438 } 2439 } else { 2440 for (i = 0; i < SDHCI_300_MAX_DIVIDER; 2441 i += 2) { 2442 if (clock <= value) 2443 break; 2444 clock = max_clock / (i + 2); 2445 } 2446 } 2447 2448 slot->host.ios.clock = clock; 2449 } else 2450 slot->host.ios.clock = 0; 2451 break; 2452 case MMCBR_IVAR_MODE: 2453 slot->host.mode = value; 2454 break; 2455 case MMCBR_IVAR_OCR: 2456 slot->host.ocr = value; 2457 break; 2458 case MMCBR_IVAR_POWER_MODE: 2459 slot->host.ios.power_mode = value; 2460 break; 2461 case MMCBR_IVAR_VDD: 2462 slot->host.ios.vdd = value; 2463 break; 2464 case MMCBR_IVAR_VCCQ: 2465 slot->host.ios.vccq = value; 2466 break; 2467 case MMCBR_IVAR_TIMING: 2468 slot->host.ios.timing = value; 2469 break; 2470 case MMCBR_IVAR_CAPS: 2471 case MMCBR_IVAR_HOST_OCR: 2472 case MMCBR_IVAR_F_MIN: 2473 case MMCBR_IVAR_F_MAX: 2474 case MMCBR_IVAR_MAX_DATA: 2475 case MMCBR_IVAR_RETUNE_REQ: 2476 return (EINVAL); 2477 } 2478 return (0); 2479 } 2480 2481 #ifdef MMCCAM 2482 void 2483 sdhci_start_slot(struct sdhci_slot *slot) 2484 { 2485 2486 if ((slot->devq = cam_simq_alloc(1)) == NULL) 2487 goto fail; 2488 2489 mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF); 2490 slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll, 2491 "sdhci_slot", slot, device_get_unit(slot->bus), 2492 &slot->sim_mtx, 1, 1, slot->devq); 2493 2494 if (slot->sim == NULL) { 2495 cam_simq_free(slot->devq); 2496 slot_printf(slot, "cannot allocate CAM SIM\n"); 2497 goto fail; 2498 } 2499 2500 mtx_lock(&slot->sim_mtx); 2501 if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) { 2502 slot_printf(slot, "cannot register SCSI pass-through bus\n"); 2503 cam_sim_free(slot->sim, FALSE); 2504 cam_simq_free(slot->devq); 2505 mtx_unlock(&slot->sim_mtx); 2506 goto fail; 2507 } 2508 mtx_unlock(&slot->sim_mtx); 2509 2510 /* End CAM-specific init */ 2511 slot->card_present = 0; 2512 sdhci_card_task(slot, 0); 2513 return; 2514 2515 fail: 2516 if (slot->sim != NULL) { 2517 mtx_lock(&slot->sim_mtx); 2518 xpt_bus_deregister(cam_sim_path(slot->sim)); 2519 cam_sim_free(slot->sim, FALSE); 2520 mtx_unlock(&slot->sim_mtx); 2521 } 2522 2523 if (slot->devq != NULL) 2524 cam_simq_free(slot->devq); 2525 } 2526 2527 static void 2528 sdhci_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb) 2529 { 2530 struct sdhci_slot *slot; 2531 2532 slot = cam_sim_softc(sim); 2533 2534 sdhci_cam_request(slot, ccb); 2535 } 2536 2537 void 2538 sdhci_cam_action(struct cam_sim *sim, union ccb *ccb) 2539 { 2540 struct sdhci_slot *slot; 2541 2542 slot = cam_sim_softc(sim); 2543 if (slot == NULL) { 2544 ccb->ccb_h.status = CAM_SEL_TIMEOUT; 2545 xpt_done(ccb); 2546 return; 2547 } 2548 2549 mtx_assert(&slot->sim_mtx, MA_OWNED); 2550 2551 switch (ccb->ccb_h.func_code) { 2552 case XPT_PATH_INQ: 2553 { 2554 struct ccb_pathinq *cpi; 2555 2556 cpi = &ccb->cpi; 2557 cpi->version_num = 1; 2558 cpi->hba_inquiry = 0; 2559 cpi->target_sprt = 0; 2560 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN; 2561 cpi->hba_eng_cnt = 0; 2562 cpi->max_target = 0; 2563 cpi->max_lun = 0; 2564 cpi->initiator_id = 1; 2565 cpi->maxio = MAXPHYS; 2566 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 2567 strncpy(cpi->hba_vid, "Deglitch Networks", HBA_IDLEN); 2568 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); 2569 cpi->unit_number = cam_sim_unit(sim); 2570 cpi->bus_id = cam_sim_bus(sim); 2571 cpi->base_transfer_speed = 100; /* XXX WTF? */ 2572 cpi->protocol = PROTO_MMCSD; 2573 cpi->protocol_version = SCSI_REV_0; 2574 cpi->transport = XPORT_MMCSD; 2575 cpi->transport_version = 0; 2576 2577 cpi->ccb_h.status = CAM_REQ_CMP; 2578 break; 2579 } 2580 case XPT_GET_TRAN_SETTINGS: 2581 { 2582 struct ccb_trans_settings *cts = &ccb->cts; 2583 2584 if (sdhci_debug > 1) 2585 slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n"); 2586 2587 cts->protocol = PROTO_MMCSD; 2588 cts->protocol_version = 1; 2589 cts->transport = XPORT_MMCSD; 2590 cts->transport_version = 1; 2591 cts->xport_specific.valid = 0; 2592 cts->proto_specific.mmc.host_ocr = slot->host.host_ocr; 2593 cts->proto_specific.mmc.host_f_min = slot->host.f_min; 2594 cts->proto_specific.mmc.host_f_max = slot->host.f_max; 2595 cts->proto_specific.mmc.host_caps = slot->host.caps; 2596 memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios)); 2597 ccb->ccb_h.status = CAM_REQ_CMP; 2598 break; 2599 } 2600 case XPT_SET_TRAN_SETTINGS: 2601 { 2602 if (sdhci_debug > 1) 2603 slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n"); 2604 sdhci_cam_settran_settings(slot, ccb); 2605 ccb->ccb_h.status = CAM_REQ_CMP; 2606 break; 2607 } 2608 case XPT_RESET_BUS: 2609 if (sdhci_debug > 1) 2610 slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n"); 2611 ccb->ccb_h.status = CAM_REQ_CMP; 2612 break; 2613 case XPT_MMC_IO: 2614 /* 2615 * Here is the HW-dependent part of 2616 * sending the command to the underlying h/w 2617 * At some point in the future an interrupt comes. 2618 * Then the request will be marked as completed. 2619 */ 2620 if (__predict_false(sdhci_debug > 1)) 2621 slot_printf(slot, "Got XPT_MMC_IO\n"); 2622 ccb->ccb_h.status = CAM_REQ_INPROG; 2623 2624 sdhci_cam_handle_mmcio(sim, ccb); 2625 return; 2626 /* NOTREACHED */ 2627 break; 2628 default: 2629 ccb->ccb_h.status = CAM_REQ_INVALID; 2630 break; 2631 } 2632 xpt_done(ccb); 2633 return; 2634 } 2635 2636 void 2637 sdhci_cam_poll(struct cam_sim *sim) 2638 { 2639 return; 2640 } 2641 2642 static int 2643 sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, 2644 int proposed_clock) 2645 { 2646 int max_clock, clock, i; 2647 2648 if (proposed_clock == 0) 2649 return 0; 2650 max_clock = slot->max_clk; 2651 clock = max_clock; 2652 2653 if (slot->version < SDHCI_SPEC_300) { 2654 for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) { 2655 if (clock <= proposed_clock) 2656 break; 2657 clock >>= 1; 2658 } 2659 } else { 2660 for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) { 2661 if (clock <= proposed_clock) 2662 break; 2663 clock = max_clock / (i + 2); 2664 } 2665 } 2666 return clock; 2667 } 2668 2669 static int 2670 sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb) 2671 { 2672 struct mmc_ios *ios; 2673 const struct mmc_ios *new_ios; 2674 const struct ccb_trans_settings_mmc *cts; 2675 2676 ios = &slot->host.ios; 2677 cts = &ccb->cts.proto_specific.mmc; 2678 new_ios = &cts->ios; 2679 2680 /* Update only requested fields */ 2681 if (cts->ios_valid & MMC_CLK) { 2682 ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock); 2683 slot_printf(slot, "Clock => %d\n", ios->clock); 2684 } 2685 if (cts->ios_valid & MMC_VDD) { 2686 ios->vdd = new_ios->vdd; 2687 slot_printf(slot, "VDD => %d\n", ios->vdd); 2688 } 2689 if (cts->ios_valid & MMC_CS) { 2690 ios->chip_select = new_ios->chip_select; 2691 slot_printf(slot, "CS => %d\n", ios->chip_select); 2692 } 2693 if (cts->ios_valid & MMC_BW) { 2694 ios->bus_width = new_ios->bus_width; 2695 slot_printf(slot, "Bus width => %d\n", ios->bus_width); 2696 } 2697 if (cts->ios_valid & MMC_PM) { 2698 ios->power_mode = new_ios->power_mode; 2699 slot_printf(slot, "Power mode => %d\n", ios->power_mode); 2700 } 2701 if (cts->ios_valid & MMC_BT) { 2702 ios->timing = new_ios->timing; 2703 slot_printf(slot, "Timing => %d\n", ios->timing); 2704 } 2705 if (cts->ios_valid & MMC_BM) { 2706 ios->bus_mode = new_ios->bus_mode; 2707 slot_printf(slot, "Bus mode => %d\n", ios->bus_mode); 2708 } 2709 2710 /* XXX Provide a way to call a chip-specific IOS update, required for TI */ 2711 return (sdhci_cam_update_ios(slot)); 2712 } 2713 2714 static int 2715 sdhci_cam_update_ios(struct sdhci_slot *slot) 2716 { 2717 struct mmc_ios *ios = &slot->host.ios; 2718 2719 slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n", 2720 __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing); 2721 SDHCI_LOCK(slot); 2722 /* Do full reset on bus power down to clear from any state. */ 2723 if (ios->power_mode == power_off) { 2724 WR4(slot, SDHCI_SIGNAL_ENABLE, 0); 2725 sdhci_init(slot); 2726 } 2727 /* Configure the bus. */ 2728 sdhci_set_clock(slot, ios->clock); 2729 sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); 2730 if (ios->bus_width == bus_width_8) { 2731 slot->hostctrl |= SDHCI_CTRL_8BITBUS; 2732 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2733 } else if (ios->bus_width == bus_width_4) { 2734 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2735 slot->hostctrl |= SDHCI_CTRL_4BITBUS; 2736 } else if (ios->bus_width == bus_width_1) { 2737 slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; 2738 slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; 2739 } else { 2740 panic("Invalid bus width: %d", ios->bus_width); 2741 } 2742 if (ios->timing == bus_timing_hs && 2743 !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) 2744 slot->hostctrl |= SDHCI_CTRL_HISPD; 2745 else 2746 slot->hostctrl &= ~SDHCI_CTRL_HISPD; 2747 WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); 2748 /* Some controllers like reset after bus changes. */ 2749 if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) 2750 sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); 2751 2752 SDHCI_UNLOCK(slot); 2753 return (0); 2754 } 2755 2756 static int 2757 sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb) 2758 { 2759 const struct ccb_mmcio *mmcio; 2760 2761 mmcio = &ccb->mmcio; 2762 2763 SDHCI_LOCK(slot); 2764 /* if (slot->req != NULL) { 2765 SDHCI_UNLOCK(slot); 2766 return (EBUSY); 2767 } 2768 */ 2769 if (__predict_false(sdhci_debug > 1)) { 2770 slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", 2771 mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags, 2772 mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0, 2773 mmcio->cmd.data != NULL ? mmcio->cmd.data->flags: 0); 2774 } 2775 if (mmcio->cmd.data != NULL) { 2776 if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0) 2777 panic("data->len = %d, data->flags = %d -- something is b0rked", 2778 (int)mmcio->cmd.data->len, mmcio->cmd.data->flags); 2779 } 2780 slot->ccb = ccb; 2781 slot->flags = 0; 2782 sdhci_start(slot); 2783 SDHCI_UNLOCK(slot); 2784 if (dumping) { 2785 while (slot->ccb != NULL) { 2786 sdhci_generic_intr(slot); 2787 DELAY(10); 2788 } 2789 } 2790 return (0); 2791 } 2792 #endif /* MMCCAM */ 2793 2794 MODULE_VERSION(sdhci, SDHCI_VERSION); 2795