xref: /freebsd/sys/dev/sdhci/fsl_sdhci.c (revision 1603881667360c015f6685131f2f25474fa67a72)
1 /*-
2  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32  *
33  * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34  */
35 
36 #include "opt_mmccam.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/bus.h>
42 #include <sys/callout.h>
43 #include <sys/kernel.h>
44 #include <sys/libkern.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mutex.h>
49 #include <sys/resource.h>
50 #include <sys/rman.h>
51 #include <sys/sysctl.h>
52 #include <sys/taskqueue.h>
53 #include <sys/time.h>
54 
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 #ifdef __arm__
58 #include <machine/intr.h>
59 
60 #include <arm/freescale/imx/imx_ccmvar.h>
61 #endif
62 
63 #ifdef __powerpc__
64 #include <powerpc/mpc85xx/mpc85xx.h>
65 #endif
66 
67 #include <dev/gpio/gpiobusvar.h>
68 
69 #include <dev/ofw/ofw_bus.h>
70 #include <dev/ofw/ofw_bus_subr.h>
71 
72 #include <dev/mmc/bridge.h>
73 
74 #include <dev/sdhci/sdhci.h>
75 #include <dev/sdhci/sdhci_fdt_gpio.h>
76 
77 #include "mmcbr_if.h"
78 #include "sdhci_if.h"
79 
80 struct fsl_sdhci_softc {
81 	device_t		dev;
82 	struct resource *	mem_res;
83 	struct resource *	irq_res;
84 	void *			intr_cookie;
85 	struct sdhci_slot	slot;
86 	struct callout		r1bfix_callout;
87 	sbintime_t		r1bfix_timeout_at;
88 	struct sdhci_fdt_gpio * gpio;
89 	uint32_t		baseclk_hz;
90 	uint32_t		cmd_and_mode;
91 	uint32_t		r1bfix_intmask;
92 	uint16_t		sdclockreg_freq_bits;
93 	uint8_t			r1bfix_type;
94 	uint8_t			hwtype;
95 	bool			slot_init_done;
96 };
97 
98 #define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
99 #define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
100 #define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
101 
102 #define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
103 #define	HWTYPE_ESDHC	1	/* fsl5x and earlier. */
104 #define	HWTYPE_USDHC	2	/* fsl6. */
105 
106 /*
107  * Freescale-specific registers, or in some cases the layout of bits within the
108  * sdhci-defined register is different on Freescale.  These names all begin with
109  * SDHC_ (not SDHCI_).
110  */
111 
112 #define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
113 #define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
114 #define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
115 #define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
116 #define	 SDHC_VEND_IPGEN	(1 << 11)
117 #define	 SDHC_VEND_HCKEN	(1 << 12)
118 #define	 SDHC_VEND_PEREN	(1 << 13)
119 
120 #define	SDHC_PRES_STATE		0x24
121 #define	  SDHC_PRES_CIHB	  (1 <<  0)
122 #define	  SDHC_PRES_CDIHB	  (1 <<  1)
123 #define	  SDHC_PRES_DLA		  (1 <<  2)
124 #define	  SDHC_PRES_SDSTB	  (1 <<  3)
125 #define	  SDHC_PRES_IPGOFF	  (1 <<  4)
126 #define	  SDHC_PRES_HCKOFF	  (1 <<  5)
127 #define	  SDHC_PRES_PEROFF	  (1 <<  6)
128 #define	  SDHC_PRES_SDOFF	  (1 <<  7)
129 #define	  SDHC_PRES_WTA		  (1 <<  8)
130 #define	  SDHC_PRES_RTA		  (1 <<  9)
131 #define	  SDHC_PRES_BWEN	  (1 << 10)
132 #define	  SDHC_PRES_BREN	  (1 << 11)
133 #define	  SDHC_PRES_RTR		  (1 << 12)
134 #define	  SDHC_PRES_CINST	  (1 << 16)
135 #define	  SDHC_PRES_CDPL	  (1 << 18)
136 #define	  SDHC_PRES_WPSPL	  (1 << 19)
137 #define	  SDHC_PRES_CLSL	  (1 << 23)
138 #define	  SDHC_PRES_DLSL_SHIFT	  24
139 #define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
140 
141 #define	SDHC_PROT_CTRL		0x28
142 #define	 SDHC_PROT_LED		(1 << 0)
143 #define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
144 #define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
145 #define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
146 #define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
147 #define	 SDHC_PROT_D3CD		(1 << 3)
148 #define	 SDHC_PROT_EMODE_BIG	(0 << 4)
149 #define	 SDHC_PROT_EMODE_HALF	(1 << 4)
150 #define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
151 #define	 SDHC_PROT_EMODE_MASK	(3 << 4)
152 #define	 SDHC_PROT_SDMA		(0 << 8)
153 #define	 SDHC_PROT_ADMA1	(1 << 8)
154 #define	 SDHC_PROT_ADMA2	(2 << 8)
155 #define	 SDHC_PROT_ADMA264	(3 << 8)
156 #define	 SDHC_PROT_DMA_MASK	(3 << 8)
157 #define	 SDHC_PROT_CDTL		(1 << 6)
158 #define	 SDHC_PROT_CDSS		(1 << 7)
159 
160 #define	SDHC_SYS_CTRL		0x2c
161 
162 /*
163  * The clock enable bits exist in different registers for ESDHC vs USDHC, but
164  * they are the same bits in both cases.  The divisor values go into the
165  * standard sdhci clock register, but in different bit positions and meanings
166    than the sdhci spec values.
167  */
168 #define	SDHC_CLK_IPGEN		(1 << 0)
169 #define	SDHC_CLK_HCKEN		(1 << 1)
170 #define	SDHC_CLK_PEREN		(1 << 2)
171 #define	SDHC_CLK_SDCLKEN	(1 << 3)
172 #define	SDHC_CLK_ENABLE_MASK	0x0000000f
173 #define	SDHC_CLK_DIVISOR_MASK	0x000000f0
174 #define	SDHC_CLK_DIVISOR_SHIFT	4
175 #define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
176 #define	SDHC_CLK_PRESCALE_SHIFT	8
177 
178 static struct ofw_compat_data compat_data[] = {
179 	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
180 	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
181 	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
182 	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
183 	{"fsl,esdhc",		HWTYPE_ESDHC},
184 	{NULL,			HWTYPE_NONE},
185 };
186 
187 static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
188 static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
189 static void fsl_sdhci_r1bfix_func(void *arg);
190 
191 static inline uint32_t
192 RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
193 {
194 
195 	return (bus_read_4(sc->mem_res, off));
196 }
197 
198 static inline void
199 WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
200 {
201 
202 	bus_write_4(sc->mem_res, off, val);
203 }
204 
205 static uint8_t
206 fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
207 {
208 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
209 	uint32_t val32, wrk32;
210 
211 	/*
212 	 * Most of the things in the standard host control register are in the
213 	 * hardware's wider protocol control register, but some of the bits are
214 	 * moved around.
215 	 */
216 	if (off == SDHCI_HOST_CONTROL) {
217 		wrk32 = RD4(sc, SDHC_PROT_CTRL);
218 		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
219 		    SDHCI_CTRL_FORCE_CARD);
220 		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
221 		case SDHC_PROT_WIDTH_1BIT:
222 			/* Value is already 0. */
223 			break;
224 		case SDHC_PROT_WIDTH_4BIT:
225 			val32 |= SDHCI_CTRL_4BITBUS;
226 			break;
227 		case SDHC_PROT_WIDTH_8BIT:
228 			val32 |= SDHCI_CTRL_8BITBUS;
229 			break;
230 		}
231 		switch (wrk32 & SDHC_PROT_DMA_MASK) {
232 		case SDHC_PROT_SDMA:
233 			/* Value is already 0. */
234 			break;
235 		case SDHC_PROT_ADMA1:
236 			/* This value is deprecated, should never appear. */
237 			break;
238 		case SDHC_PROT_ADMA2:
239 			val32 |= SDHCI_CTRL_ADMA2;
240 			break;
241 		case SDHC_PROT_ADMA264:
242 			val32 |= SDHCI_CTRL_ADMA264;
243 			break;
244 		}
245 		return val32;
246 	}
247 
248 	/*
249 	 * XXX can't find the bus power on/off knob.  For now we have to say the
250 	 * power is always on and always set to the same voltage.
251 	 */
252 	if (off == SDHCI_POWER_CONTROL) {
253 		return (SDHCI_POWER_ON | SDHCI_POWER_300);
254 	}
255 
256 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
257 }
258 
259 static uint16_t
260 fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
261 {
262 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
263 	uint32_t val32;
264 
265 	if (sc->hwtype == HWTYPE_USDHC) {
266 		/*
267 		 * The USDHC hardware has nothing in the version register, but
268 		 * it's v3 compatible with all our translation code.
269 		 */
270 		if (off == SDHCI_HOST_VERSION) {
271 			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
272 		}
273 		/*
274 		 * The USDHC hardware moved the transfer mode bits to the mixed
275 		 * control register, fetch them from there.
276 		 */
277 		if (off == SDHCI_TRANSFER_MODE)
278 			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
279 
280 	} else if (sc->hwtype == HWTYPE_ESDHC) {
281 		/*
282 		 * The ESDHC hardware has the typical 32-bit combined "command
283 		 * and mode" register that we have to cache so that command
284 		 * isn't written until after mode.  On a read, just retrieve the
285 		 * cached values last written.
286 		 */
287 		if (off == SDHCI_TRANSFER_MODE) {
288 			return (sc->cmd_and_mode & 0x0000ffff);
289 		} else if (off == SDHCI_COMMAND_FLAGS) {
290 			return (sc->cmd_and_mode >> 16);
291 		}
292 	}
293 
294 	/*
295 	 * This hardware only manages one slot.  Synthesize a slot interrupt
296 	 * status register... if there are any enabled interrupts active they
297 	 * must be coming from our one and only slot.
298 	 */
299 	if (off == SDHCI_SLOT_INT_STATUS) {
300 		val32  = RD4(sc, SDHCI_INT_STATUS);
301 		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
302 		return (val32 ? 1 : 0);
303 	}
304 
305 	/*
306 	 * Clock bits are scattered into various registers which differ by
307 	 * hardware type, complex enough to have their own function.
308 	 */
309 	if (off == SDHCI_CLOCK_CONTROL) {
310 		return (fsl_sdhc_get_clock(sc));
311 	}
312 
313 	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
314 }
315 
316 static uint32_t
317 fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
318 {
319 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
320 	uint32_t val32, wrk32;
321 
322 	val32 = RD4(sc, off);
323 
324 	/*
325 	 * The hardware leaves the base clock frequency out of the capabilities
326 	 * register, but we filled it in by setting slot->max_clk at attach time
327 	 * rather than here, because we can't represent frequencies above 63MHz
328 	 * in an sdhci 2.0 capabliities register.  The timeout clock is the same
329 	 * as the active output sdclock; we indicate that with a quirk setting
330 	 * so don't populate the timeout frequency bits.
331 	 *
332 	 * XXX Turn off (for now) features the hardware can do but this driver
333 	 * doesn't yet handle (1.8v, suspend/resume, etc).
334 	 */
335 	if (off == SDHCI_CAPABILITIES) {
336 		val32 &= ~SDHCI_CAN_VDD_180;
337 		val32 &= ~SDHCI_CAN_DO_SUSPEND;
338 		val32 |= SDHCI_CAN_DO_8BITBUS;
339 		return (val32);
340 	}
341 
342 	/*
343 	 * The hardware moves bits around in the present state register to make
344 	 * room for all 8 data line state bits.  To translate, mask out all the
345 	 * bits which are not in the same position in both registers (this also
346 	 * masks out some Freescale-specific bits in locations defined as
347 	 * reserved by sdhci), then shift the data line and retune request bits
348 	 * down to their standard locations.
349 	 */
350 	if (off == SDHCI_PRESENT_STATE) {
351 		wrk32 = val32;
352 		val32 &= 0x000F0F07;
353 		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
354 		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
355 		return (val32);
356 	}
357 
358 	/*
359 	 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
360 	 * command with an R1B response, mix it into the hardware status.
361 	 */
362 	if (off == SDHCI_INT_STATUS) {
363 		return (val32 | sc->r1bfix_intmask);
364 	}
365 
366 	return val32;
367 }
368 
369 static void
370 fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
371     uint32_t *data, bus_size_t count)
372 {
373 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
374 
375 	bus_read_multi_4(sc->mem_res, off, data, count);
376 }
377 
378 static void
379 fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
380 {
381 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
382 	uint32_t val32;
383 
384 	/*
385 	 * Most of the things in the standard host control register are in the
386 	 * hardware's wider protocol control register, but some of the bits are
387 	 * moved around.
388 	 */
389 	if (off == SDHCI_HOST_CONTROL) {
390 		val32 = RD4(sc, SDHC_PROT_CTRL);
391 		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
392 		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
393 		val32 |= (val & SDHCI_CTRL_LED);
394 		if (val & SDHCI_CTRL_8BITBUS)
395 			val32 |= SDHC_PROT_WIDTH_8BIT;
396 		else
397 			val32 |= (val & SDHCI_CTRL_4BITBUS);
398 		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
399 		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
400 		WR4(sc, SDHC_PROT_CTRL, val32);
401 		return;
402 	}
403 
404 	/* XXX I can't find the bus power on/off knob; do nothing. */
405 	if (off == SDHCI_POWER_CONTROL) {
406 		return;
407 	}
408 #ifdef __powerpc__
409 	/* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
410 	if (off == SDHCI_SOFTWARE_RESET)
411 		return;
412 #endif
413 
414 	val32 = RD4(sc, off & ~3);
415 	val32 &= ~(0xff << (off & 3) * 8);
416 	val32 |= (val << (off & 3) * 8);
417 
418 	WR4(sc, off & ~3, val32);
419 }
420 
421 static void
422 fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
423 {
424 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
425 	uint32_t val32;
426 
427 	/*
428 	 * The clock control stuff is complex enough to have its own function
429 	 * that can handle the ESDHC versus USDHC differences.
430 	 */
431 	if (off == SDHCI_CLOCK_CONTROL) {
432 		fsl_sdhc_set_clock(sc, val);
433 		return;
434 	}
435 
436 	/*
437 	 * Figure out whether we need to check the DAT0 line for busy status at
438 	 * interrupt time.  The controller should be doing this, but for some
439 	 * reason it doesn't.  There are two cases:
440 	 *  - R1B response with no data transfer should generate a DATA_END (aka
441 	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
442 	 *    there's no data transfer there's no DATA_END interrupt.  This is
443 	 *    documented; they seem to think it's a feature.
444 	 *  - R1B response after Auto-CMD12 appears to not work, even though
445 	 *    there's a control bit for it (bit 3) in the vendor register.
446 	 * When we're starting a command that needs a manual DAT0 line check at
447 	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
448 	 * can do the extra work in fsl_sdhci_intr().
449 	 */
450 	if (off == SDHCI_COMMAND_FLAGS) {
451 		if (val & SDHCI_CMD_DATA) {
452 			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
453 			val32 = RD4(sc, USDHC_MIX_CONTROL);
454 			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
455 				sc->r1bfix_type = R1BFIX_AC12;
456 		} else {
457 			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
458 				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
459 				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
460 				sc->r1bfix_type = R1BFIX_NODATA;
461 			}
462 		}
463 	}
464 
465 	/*
466 	 * The USDHC hardware moved the transfer mode bits to mixed control; we
467 	 * just write them there and we're done.  The ESDHC hardware has the
468 	 * typical combined cmd-and-mode register that allows only 32-bit
469 	 * access, so when writing the mode bits just save them, then later when
470 	 * writing the command bits, add in the saved mode bits.
471 	 */
472 	if (sc->hwtype == HWTYPE_USDHC) {
473 		if (off == SDHCI_TRANSFER_MODE) {
474 			val32 = RD4(sc, USDHC_MIX_CONTROL);
475 			val32 &= ~0x3f;
476 			val32 |= val & 0x37;
477 			// XXX acmd23 not supported here (or by sdhci driver)
478 			WR4(sc, USDHC_MIX_CONTROL, val32);
479 			return;
480 		}
481 	} else if (sc->hwtype == HWTYPE_ESDHC) {
482 		if (off == SDHCI_TRANSFER_MODE) {
483 			sc->cmd_and_mode =
484 			    (sc->cmd_and_mode & 0xffff0000) | val;
485 			return;
486 		} else if (off == SDHCI_COMMAND_FLAGS) {
487 			sc->cmd_and_mode =
488 			    (sc->cmd_and_mode & 0xffff) | (val << 16);
489 			WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
490 			return;
491 		}
492 	}
493 
494 	val32 = RD4(sc, off & ~3);
495 	val32 &= ~(0xffff << (off & 3) * 8);
496 	val32 |= ((val & 0xffff) << (off & 3) * 8);
497 	WR4(sc, off & ~3, val32);
498 }
499 
500 static void
501 fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
502 {
503 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
504 
505 	/* Clear synthesized interrupts, then pass the value to the hardware. */
506 	if (off == SDHCI_INT_STATUS) {
507 		sc->r1bfix_intmask &= ~val;
508 	}
509 
510 	WR4(sc, off, val);
511 }
512 
513 static void
514 fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
515     uint32_t *data, bus_size_t count)
516 {
517 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
518 
519 	bus_write_multi_4(sc->mem_res, off, data, count);
520 }
521 
522 static uint16_t
523 fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
524 {
525 	uint16_t val;
526 
527 	/*
528 	 * Whenever the sdhci driver writes the clock register we save a
529 	 * snapshot of just the frequency bits, so that we can play them back
530 	 * here on a register read without recalculating the frequency from the
531 	 * prescalar and divisor bits in the real register.  We'll start with
532 	 * those bits, and mix in the clock status and enable bits that come
533 	 * from different places depending on which hardware we've got.
534 	 */
535 	val = sc->sdclockreg_freq_bits;
536 
537 	/*
538 	 * The internal clock is always enabled (actually, the hardware manages
539 	 * it).  Whether the internal clock is stable yet after a frequency
540 	 * change comes from the present-state register on both hardware types.
541 	 */
542 	val |= SDHCI_CLOCK_INT_EN;
543 	if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
544 	    val |= SDHCI_CLOCK_INT_STABLE;
545 
546 	/*
547 	 * On i.MX ESDHC hardware the card bus clock enable is in the usual
548 	 * sdhci register but it's a different bit, so transcribe it (note the
549 	 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
550 	 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
551 	 * no force-off for the card bus clock (the hardware runs the clock when
552 	 * transfers are active no matter what), so we always say the clock is
553 	 * on.
554 	 * XXX Maybe we should say it's in whatever state the sdhci driver last
555 	 * set it to.
556 	 */
557 	if (sc->hwtype == HWTYPE_ESDHC) {
558 #ifdef __arm__
559 		if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
560 #endif
561 			val |= SDHCI_CLOCK_CARD_EN;
562 	} else {
563 		val |= SDHCI_CLOCK_CARD_EN;
564 	}
565 
566 	return (val);
567 }
568 
569 static void
570 fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
571 {
572 	uint32_t divisor, freq, prescale, val32;
573 
574 	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
575 
576 	/*
577 	 * Save the frequency-setting bits in SDHCI format so that we can play
578 	 * them back in get_clock without complex decoding of hardware regs,
579 	 * then deal with the freqency part of the value based on hardware type.
580 	 */
581 	sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
582 	if (sc->hwtype == HWTYPE_ESDHC) {
583 		/*
584 		 * The i.MX5 ESDHC hardware requires the driver to manually
585 		 * start and stop the sd bus clock.  If the enable bit is not
586 		 * set, turn off the clock in hardware and we're done, otherwise
587 		 * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
588 		 * the sdhci driver will use the original 8-bit divisor field
589 		 * and the "base / 2^N" divisor scheme.
590 		 */
591 		if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
592 #ifdef __arm__
593 			/* On QorIQ, this is a reserved bit. */
594 			WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
595 #endif
596 			return;
597 		}
598 		divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
599 		freq = sc->baseclk_hz >> ffs(divisor);
600 	} else {
601 		/*
602 		 * The USDHC hardware provides only "force always on" control
603 		 * over the sd bus clock, but no way to turn it off.  (If a cmd
604 		 * or data transfer is in progress the clock is on, otherwise it
605 		 * is off.)  If the clock is being disabled, we can just return
606 		 * now, otherwise we decode the requested frequency.  USDHC
607 		 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
608 		 * divisor using the "base / 2*N" divisor scheme.
609 		 */
610 		if ((val & SDHCI_CLOCK_CARD_EN) == 0)
611 			return;
612 		divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
613 		    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
614 		    SDHCI_DIVIDER_MASK_LEN;
615 		if (divisor == 0)
616 			freq = sc->baseclk_hz;
617 		else
618 			freq = sc->baseclk_hz / (2 * divisor);
619 	}
620 
621 	/*
622 	 * Get a prescaler and final divisor to achieve the desired frequency.
623 	 */
624 	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
625 		prescale <<= 1;
626 
627 	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
628 		++divisor;
629 
630 #ifdef DEBUG
631 	device_printf(sc->dev,
632 	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
633 	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
634 	    prescale, divisor);
635 #endif
636 
637 	/*
638 	 * Adjust to zero-based values, and store them to the hardware.
639 	 */
640 	prescale >>= 1;
641 	divisor -= 1;
642 
643 	val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
644 	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
645 	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
646 	val32 |= SDHC_CLK_IPGEN;
647 	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
648 }
649 
650 static boolean_t
651 fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
652 {
653 	uint32_t inhibit;
654 
655 	mtx_assert(&sc->slot.mtx, MA_OWNED);
656 
657 	/*
658 	 * Check the DAT0 line status using both the DLA (data line active) and
659 	 * CDIHB (data inhibit) bits in the present state register.  In theory
660 	 * just DLA should do the trick,  but in practice it takes both.  If the
661 	 * DAT0 line is still being held and we're not yet beyond the timeout
662 	 * point, just schedule another callout to check again later.
663 	 */
664 	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
665 
666 	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
667 		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
668 		    fsl_sdhci_r1bfix_func, sc, 0);
669 		return (false);
670 	}
671 
672 	/*
673 	 * If we reach this point with the inhibit bits still set, we've got a
674 	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
675 	 * line has been released, and we synthesize a DATA_END, and if the type
676 	 * of fix needed was on a command-without-data we also now add in the
677 	 * original INT_RESPONSE that we suppressed earlier.
678 	 */
679 	if (inhibit)
680 		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
681 	else {
682 		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
683 		if (sc->r1bfix_type == R1BFIX_NODATA)
684 			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
685 	}
686 
687 	sc->r1bfix_type = R1BFIX_NONE;
688 	return (true);
689 }
690 
691 static void
692 fsl_sdhci_r1bfix_func(void * arg)
693 {
694 	struct fsl_sdhci_softc *sc = arg;
695 	boolean_t r1bwait_done;
696 
697 	mtx_lock(&sc->slot.mtx);
698 	r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
699 	mtx_unlock(&sc->slot.mtx);
700 	if (r1bwait_done)
701 		sdhci_generic_intr(&sc->slot);
702 }
703 
704 static void
705 fsl_sdhci_intr(void *arg)
706 {
707 	struct fsl_sdhci_softc *sc = arg;
708 	uint32_t intmask;
709 
710 	mtx_lock(&sc->slot.mtx);
711 
712 	/*
713 	 * Manually check the DAT0 line for R1B response types that the
714 	 * controller fails to handle properly.  The controller asserts the done
715 	 * interrupt while the card is still asserting busy with the DAT0 line.
716 	 *
717 	 * We check DAT0 immediately because most of the time, especially on a
718 	 * read, the card will actually be done by time we get here.  If it's
719 	 * not, then the wait_done routine will schedule a callout to re-check
720 	 * periodically until it is done.  In that case we clear the interrupt
721 	 * out of the hardware now so that we can present it later when the DAT0
722 	 * line is released.
723 	 *
724 	 * If we need to wait for the DAT0 line to be released, we set up a
725 	 * timeout point 250ms in the future.  This number comes from the SD
726 	 * spec, which allows a command to take that long.  In the real world,
727 	 * cards tend to take 10-20ms for a long-running command such as a write
728 	 * or erase that spans two pages.
729 	 */
730 	switch (sc->r1bfix_type) {
731 	case R1BFIX_NODATA:
732 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
733 		break;
734 	case R1BFIX_AC12:
735 		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
736 		break;
737 	default:
738 		intmask = 0;
739 		break;
740 	}
741 	if (intmask) {
742 		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
743 		if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
744 			WR4(sc, SDHCI_INT_STATUS, intmask);
745 			bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
746 			    BUS_SPACE_BARRIER_WRITE);
747 		}
748 	}
749 
750 	mtx_unlock(&sc->slot.mtx);
751 	sdhci_generic_intr(&sc->slot);
752 }
753 
754 static int
755 fsl_sdhci_get_ro(device_t bus, device_t child)
756 {
757 	struct fsl_sdhci_softc *sc = device_get_softc(bus);
758 
759 	return (sdhci_fdt_gpio_get_readonly(sc->gpio));
760 }
761 
762 static bool
763 fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
764 {
765 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
766 
767 	return (sdhci_fdt_gpio_get_present(sc->gpio));
768 }
769 
770 #ifdef __powerpc__
771 static uint32_t
772 fsl_sdhci_get_platform_clock(device_t dev)
773 {
774 	phandle_t node;
775 	uint32_t clock;
776 
777 	node = ofw_bus_get_node(dev);
778 
779 	/* Get sdhci node properties */
780 	if((OF_getprop(node, "clock-frequency", (void *)&clock,
781 	    sizeof(clock)) <= 0) || (clock == 0)) {
782 		clock = mpc85xx_get_system_clock();
783 
784 		if (clock == 0) {
785 			device_printf(dev,"Cannot acquire correct sdhci "
786 			    "frequency from DTS.\n");
787 
788 			return (0);
789 		}
790 	}
791 
792 	if (bootverbose)
793 		device_printf(dev, "Acquired clock: %d from DTS\n", clock);
794 
795 	return (clock);
796 }
797 #endif
798 
799 static int
800 fsl_sdhci_detach(device_t dev)
801 {
802 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
803 
804 	if (sc->gpio != NULL)
805 		sdhci_fdt_gpio_teardown(sc->gpio);
806 
807 	callout_drain(&sc->r1bfix_callout);
808 
809 	if (sc->slot_init_done)
810 		sdhci_cleanup_slot(&sc->slot);
811 
812 	if (sc->intr_cookie != NULL)
813 		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
814 	if (sc->irq_res != NULL)
815 		bus_release_resource(dev, SYS_RES_IRQ,
816 		    rman_get_rid(sc->irq_res), sc->irq_res);
817 
818 	if (sc->mem_res != NULL) {
819 		bus_release_resource(dev, SYS_RES_MEMORY,
820 		    rman_get_rid(sc->mem_res), sc->mem_res);
821 	}
822 
823 	return (0);
824 }
825 
826 static int
827 fsl_sdhci_attach(device_t dev)
828 {
829 	struct fsl_sdhci_softc *sc = device_get_softc(dev);
830 	int rid, err;
831 #ifdef __powerpc__
832 	phandle_t node;
833 	uint32_t protctl;
834 #endif
835 
836 	sc->dev = dev;
837 
838 	callout_init(&sc->r1bfix_callout, 1);
839 
840 	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
841 	if (sc->hwtype == HWTYPE_NONE)
842 		panic("Impossible: not compatible in fsl_sdhci_attach()");
843 
844 	rid = 0;
845 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
846 	    RF_ACTIVE);
847 	if (!sc->mem_res) {
848 		device_printf(dev, "cannot allocate memory window\n");
849 		err = ENXIO;
850 		goto fail;
851 	}
852 
853 	rid = 0;
854 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
855 	    RF_ACTIVE);
856 	if (!sc->irq_res) {
857 		device_printf(dev, "cannot allocate interrupt\n");
858 		err = ENXIO;
859 		goto fail;
860 	}
861 
862 	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
863 	    NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
864 		device_printf(dev, "cannot setup interrupt handler\n");
865 		err = ENXIO;
866 		goto fail;
867 	}
868 
869 	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
870 
871 	/*
872 	 * DMA is not really broken, I just haven't implemented it yet.
873 	 */
874 	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
875 
876 	/*
877 	 * Set the buffer watermark level to 128 words (512 bytes) for both read
878 	 * and write.  The hardware has a restriction that when the read or
879 	 * write ready status is asserted, that means you can read exactly the
880 	 * number of words set in the watermark register before you have to
881 	 * re-check the status and potentially wait for more data.  The main
882 	 * sdhci driver provides no hook for doing status checking on less than
883 	 * a full block boundary, so we set the watermark level to be a full
884 	 * block.  Reads and writes where the block size is less than the
885 	 * watermark size will work correctly too, no need to change the
886 	 * watermark for different size blocks.  However, 128 is the maximum
887 	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
888 	 * (which works fine for SD cards, may be a problem for SDIO some day).
889 	 *
890 	 * XXX need named constants for this stuff.
891 	 */
892 	/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
893 	if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
894 		WR4(sc, SDHC_WTMK_LVL, 0x10801080);
895 	else
896 		WR4(sc, SDHC_WTMK_LVL, 0x08800880);
897 
898 	/*
899 	 * We read in native byte order in the main driver, but the register
900 	 * defaults to little endian.
901 	 */
902 #ifdef __powerpc__
903 	sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
904 #else
905 	sc->baseclk_hz = imx_ccm_sdhci_hz();
906 #endif
907 	sc->slot.max_clk = sc->baseclk_hz;
908 
909 	/*
910 	 * Set up any gpio pin handling described in the FDT data. This cannot
911 	 * fail; see comments in sdhci_fdt_gpio.h for details.
912 	 */
913 	sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
914 
915 #ifdef __powerpc__
916 	node = ofw_bus_get_node(dev);
917 	/* Default to big-endian on powerpc */
918 	protctl = RD4(sc, SDHC_PROT_CTRL);
919 	protctl &= ~SDHC_PROT_EMODE_MASK;
920 	if (OF_hasprop(node, "little-endian"))
921 		protctl |= SDHC_PROT_EMODE_LITTLE;
922 	else
923 		protctl |= SDHC_PROT_EMODE_BIG;
924 	WR4(sc, SDHC_PROT_CTRL, protctl);
925 #endif
926 
927 	sdhci_init_slot(dev, &sc->slot, 0);
928 	sc->slot_init_done = true;
929 
930 	bus_generic_probe(dev);
931 	bus_generic_attach(dev);
932 
933 	sdhci_start_slot(&sc->slot);
934 
935 	return (0);
936 
937 fail:
938 	fsl_sdhci_detach(dev);
939 	return (err);
940 }
941 
942 static int
943 fsl_sdhci_probe(device_t dev)
944 {
945 
946 	if (!ofw_bus_status_okay(dev))
947 		return (ENXIO);
948 
949 	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
950 	case HWTYPE_ESDHC:
951 		device_set_desc(dev, "Freescale eSDHC controller");
952 		return (BUS_PROBE_DEFAULT);
953 	case HWTYPE_USDHC:
954 		device_set_desc(dev, "Freescale uSDHC controller");
955 		return (BUS_PROBE_DEFAULT);
956 	default:
957 		break;
958 	}
959 	return (ENXIO);
960 }
961 
962 static device_method_t fsl_sdhci_methods[] = {
963 	/* Device interface */
964 	DEVMETHOD(device_probe,		fsl_sdhci_probe),
965 	DEVMETHOD(device_attach,	fsl_sdhci_attach),
966 	DEVMETHOD(device_detach,	fsl_sdhci_detach),
967 
968 	/* Bus interface */
969 	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
970 	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
971 
972 	/* MMC bridge interface */
973 	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
974 	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
975 	DEVMETHOD(mmcbr_get_ro,		fsl_sdhci_get_ro),
976 	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
977 	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
978 
979 	/* SDHCI accessors */
980 	DEVMETHOD(sdhci_read_1,		fsl_sdhci_read_1),
981 	DEVMETHOD(sdhci_read_2,		fsl_sdhci_read_2),
982 	DEVMETHOD(sdhci_read_4,		fsl_sdhci_read_4),
983 	DEVMETHOD(sdhci_read_multi_4,	fsl_sdhci_read_multi_4),
984 	DEVMETHOD(sdhci_write_1,	fsl_sdhci_write_1),
985 	DEVMETHOD(sdhci_write_2,	fsl_sdhci_write_2),
986 	DEVMETHOD(sdhci_write_4,	fsl_sdhci_write_4),
987 	DEVMETHOD(sdhci_write_multi_4,	fsl_sdhci_write_multi_4),
988 	DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
989 
990 	DEVMETHOD_END
991 };
992 
993 static devclass_t fsl_sdhci_devclass;
994 
995 static driver_t fsl_sdhci_driver = {
996 	"sdhci_fsl",
997 	fsl_sdhci_methods,
998 	sizeof(struct fsl_sdhci_softc),
999 };
1000 
1001 DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
1002     NULL, NULL);
1003 SDHCI_DEPEND(sdhci_fsl);
1004 
1005 #ifndef MMCCAM
1006 MMC_DECLARE_BRIDGE(sdhci_fsl);
1007 #endif
1008