xref: /freebsd/sys/dev/rl/if_rl.c (revision 3c4ba5f55438f7afd4f4b0b56f88f2bb505fd6a6)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 /*
48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49  * probably the worst PCI ethernet controller ever made, with the possible
50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51  * DMA, but it has a terrible interface that nullifies any performance
52  * gains that bus-master DMA usually offers.
53  *
54  * For transmission, the chip offers a series of four TX descriptor
55  * registers. Each transmit frame must be in a contiguous buffer, aligned
56  * on a longword (32-bit) boundary. This means we almost always have to
57  * do mbuf copies in order to transmit a frame, except in the unlikely
58  * case where a) the packet fits into a single mbuf, and b) the packet
59  * is 32-bit aligned within the mbuf's data area. The presence of only
60  * four descriptor registers means that we can never have more than four
61  * packets queued for transmission at any one time.
62  *
63  * Reception is not much better. The driver has to allocate a single large
64  * buffer area (up to 64K in size) into which the chip will DMA received
65  * frames. Because we don't know where within this region received packets
66  * will begin or end, we have no choice but to copy data from the buffer
67  * area into mbufs in order to pass the packets up to the higher protocol
68  * levels.
69  *
70  * It's impossible given this rotten design to really achieve decent
71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72  * some equally overmuscled CPU to drive it.
73  *
74  * On the bright side, the 8139 does have a built-in PHY, although
75  * rather than using an MDIO serial interface like most other NICs, the
76  * PHY registers are directly accessible through the 8139's register
77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78  * filter.
79  *
80  * The 8129 chip is an older version of the 8139 that uses an external PHY
81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
82  * the 8139 lets you directly access the on-board PHY registers. We need
83  * to select which interface to use depending on the chip type.
84  */
85 
86 #ifdef HAVE_KERNEL_OPTION_HEADERS
87 #include "opt_device_polling.h"
88 #endif
89 
90 #include <sys/param.h>
91 #include <sys/endian.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/if.h>
102 #include <net/if_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/mii_bitbang.h>
118 #include <dev/mii/miivar.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 
123 MODULE_DEPEND(rl, pci, 1, 1, 1);
124 MODULE_DEPEND(rl, ether, 1, 1, 1);
125 MODULE_DEPEND(rl, miibus, 1, 1, 1);
126 
127 /* "device miibus" required.  See GENERIC if you get errors here. */
128 #include "miibus_if.h"
129 
130 #include <dev/rl/if_rlreg.h>
131 
132 /*
133  * Various supported device vendors/types and their names.
134  */
135 static const struct rl_type rl_devs[] = {
136 	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
137 		"RealTek 8129 10/100BaseTX" },
138 	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
139 		"RealTek 8139 10/100BaseTX" },
140 	{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
141 		"RealTek 8139 10/100BaseTX" },
142 	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
143 		"RealTek 8139 10/100BaseTX CardBus" },
144 	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
145 		"RealTek 8100 10/100BaseTX" },
146 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
147 		"Accton MPX 5030/5038 10/100BaseTX" },
148 	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
149 		"Delta Electronics 8139 10/100BaseTX" },
150 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
151 		"Addtron Technology 8139 10/100BaseTX" },
152 	{ DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139,
153 		"D-Link DFE-520TX (rev. C1) 10/100BaseTX" },
154 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
155 		"D-Link DFE-530TX+ 10/100BaseTX" },
156 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
157 		"D-Link DFE-690TXD 10/100BaseTX" },
158 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
159 		"Nortel Networks 10/100BaseTX" },
160 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
161 		"Corega FEther CB-TXD" },
162 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
163 		"Corega FEtherII CB-TXD" },
164 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
165 		"Peppercon AG ROL-F" },
166 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
167 		"Planex FNW-3603-TX" },
168 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
169 		"Planex FNW-3800-TX" },
170 	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
171 		"Compaq HNE-300" },
172 	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
173 		"LevelOne FPC-0106TX" },
174 	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
175 		"Edimax EP-4103DL CardBus" }
176 };
177 
178 static int rl_attach(device_t);
179 static int rl_detach(device_t);
180 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181 static int rl_dma_alloc(struct rl_softc *);
182 static void rl_dma_free(struct rl_softc *);
183 static void rl_eeprom_putbyte(struct rl_softc *, int);
184 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
185 static int rl_encap(struct rl_softc *, struct mbuf **);
186 static int rl_list_tx_init(struct rl_softc *);
187 static int rl_list_rx_init(struct rl_softc *);
188 static int rl_ifmedia_upd(if_t);
189 static void rl_ifmedia_sts(if_t, struct ifmediareq *);
190 static int rl_ioctl(if_t, u_long, caddr_t);
191 static void rl_intr(void *);
192 static void rl_init(void *);
193 static void rl_init_locked(struct rl_softc *sc);
194 static int rl_miibus_readreg(device_t, int, int);
195 static void rl_miibus_statchg(device_t);
196 static int rl_miibus_writereg(device_t, int, int, int);
197 #ifdef DEVICE_POLLING
198 static int rl_poll(if_t ifp, enum poll_cmd cmd, int count);
199 static int rl_poll_locked(if_t ifp, enum poll_cmd cmd, int count);
200 #endif
201 static int rl_probe(device_t);
202 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
203 static void rl_reset(struct rl_softc *);
204 static int rl_resume(device_t);
205 static int rl_rxeof(struct rl_softc *);
206 static void rl_rxfilter(struct rl_softc *);
207 static int rl_shutdown(device_t);
208 static void rl_start(if_t);
209 static void rl_start_locked(if_t);
210 static void rl_stop(struct rl_softc *);
211 static int rl_suspend(device_t);
212 static void rl_tick(void *);
213 static void rl_txeof(struct rl_softc *);
214 static void rl_watchdog(struct rl_softc *);
215 static void rl_setwol(struct rl_softc *);
216 static void rl_clrwol(struct rl_softc *);
217 
218 /*
219  * MII bit-bang glue
220  */
221 static uint32_t rl_mii_bitbang_read(device_t);
222 static void rl_mii_bitbang_write(device_t, uint32_t);
223 
224 static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
225 	rl_mii_bitbang_read,
226 	rl_mii_bitbang_write,
227 	{
228 		RL_MII_DATAOUT,	/* MII_BIT_MDO */
229 		RL_MII_DATAIN,	/* MII_BIT_MDI */
230 		RL_MII_CLK,	/* MII_BIT_MDC */
231 		RL_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
232 		0,		/* MII_BIT_DIR_PHY_HOST */
233 	}
234 };
235 
236 static device_method_t rl_methods[] = {
237 	/* Device interface */
238 	DEVMETHOD(device_probe,		rl_probe),
239 	DEVMETHOD(device_attach,	rl_attach),
240 	DEVMETHOD(device_detach,	rl_detach),
241 	DEVMETHOD(device_suspend,	rl_suspend),
242 	DEVMETHOD(device_resume,	rl_resume),
243 	DEVMETHOD(device_shutdown,	rl_shutdown),
244 
245 	/* MII interface */
246 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
247 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
248 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
249 
250 	DEVMETHOD_END
251 };
252 
253 static driver_t rl_driver = {
254 	"rl",
255 	rl_methods,
256 	sizeof(struct rl_softc)
257 };
258 
259 DRIVER_MODULE(rl, pci, rl_driver, 0, 0);
260 MODULE_PNP_INFO("U16:vendor;U16:device", pci, rl, rl_devs,
261     nitems(rl_devs) - 1);
262 DRIVER_MODULE(rl, cardbus, rl_driver, 0, 0);
263 DRIVER_MODULE(miibus, rl, miibus_driver, 0, 0);
264 
265 #define EE_SET(x)					\
266 	CSR_WRITE_1(sc, RL_EECMD,			\
267 		CSR_READ_1(sc, RL_EECMD) | x)
268 
269 #define EE_CLR(x)					\
270 	CSR_WRITE_1(sc, RL_EECMD,			\
271 		CSR_READ_1(sc, RL_EECMD) & ~x)
272 
273 /*
274  * Send a read command and address to the EEPROM, check for ACK.
275  */
276 static void
277 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
278 {
279 	int			d, i;
280 
281 	d = addr | sc->rl_eecmd_read;
282 
283 	/*
284 	 * Feed in each bit and strobe the clock.
285 	 */
286 	for (i = 0x400; i; i >>= 1) {
287 		if (d & i) {
288 			EE_SET(RL_EE_DATAIN);
289 		} else {
290 			EE_CLR(RL_EE_DATAIN);
291 		}
292 		DELAY(100);
293 		EE_SET(RL_EE_CLK);
294 		DELAY(150);
295 		EE_CLR(RL_EE_CLK);
296 		DELAY(100);
297 	}
298 }
299 
300 /*
301  * Read a word of data stored in the EEPROM at address 'addr.'
302  */
303 static void
304 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
305 {
306 	int			i;
307 	uint16_t		word = 0;
308 
309 	/* Enter EEPROM access mode. */
310 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
311 
312 	/*
313 	 * Send address of word we want to read.
314 	 */
315 	rl_eeprom_putbyte(sc, addr);
316 
317 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
318 
319 	/*
320 	 * Start reading bits from EEPROM.
321 	 */
322 	for (i = 0x8000; i; i >>= 1) {
323 		EE_SET(RL_EE_CLK);
324 		DELAY(100);
325 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
326 			word |= i;
327 		EE_CLR(RL_EE_CLK);
328 		DELAY(100);
329 	}
330 
331 	/* Turn off EEPROM access mode. */
332 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
333 
334 	*dest = word;
335 }
336 
337 /*
338  * Read a sequence of words from the EEPROM.
339  */
340 static void
341 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
342 {
343 	int			i;
344 	uint16_t		word = 0, *ptr;
345 
346 	for (i = 0; i < cnt; i++) {
347 		rl_eeprom_getword(sc, off + i, &word);
348 		ptr = (uint16_t *)(dest + (i * 2));
349 		if (swap)
350 			*ptr = ntohs(word);
351 		else
352 			*ptr = word;
353 	}
354 }
355 
356 /*
357  * Read the MII serial port for the MII bit-bang module.
358  */
359 static uint32_t
360 rl_mii_bitbang_read(device_t dev)
361 {
362 	struct rl_softc *sc;
363 	uint32_t val;
364 
365 	sc = device_get_softc(dev);
366 
367 	val = CSR_READ_1(sc, RL_MII);
368 	CSR_BARRIER(sc, RL_MII, 1,
369 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
370 
371 	return (val);
372 }
373 
374 /*
375  * Write the MII serial port for the MII bit-bang module.
376  */
377 static void
378 rl_mii_bitbang_write(device_t dev, uint32_t val)
379 {
380 	struct rl_softc *sc;
381 
382 	sc = device_get_softc(dev);
383 
384 	CSR_WRITE_1(sc, RL_MII, val);
385 	CSR_BARRIER(sc, RL_MII, 1,
386 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
387 }
388 
389 static int
390 rl_miibus_readreg(device_t dev, int phy, int reg)
391 {
392 	struct rl_softc		*sc;
393 	uint16_t		rl8139_reg;
394 
395 	sc = device_get_softc(dev);
396 
397 	if (sc->rl_type == RL_8139) {
398 		switch (reg) {
399 		case MII_BMCR:
400 			rl8139_reg = RL_BMCR;
401 			break;
402 		case MII_BMSR:
403 			rl8139_reg = RL_BMSR;
404 			break;
405 		case MII_ANAR:
406 			rl8139_reg = RL_ANAR;
407 			break;
408 		case MII_ANER:
409 			rl8139_reg = RL_ANER;
410 			break;
411 		case MII_ANLPAR:
412 			rl8139_reg = RL_LPAR;
413 			break;
414 		case MII_PHYIDR1:
415 		case MII_PHYIDR2:
416 			return (0);
417 		/*
418 		 * Allow the rlphy driver to read the media status
419 		 * register. If we have a link partner which does not
420 		 * support NWAY, this is the register which will tell
421 		 * us the results of parallel detection.
422 		 */
423 		case RL_MEDIASTAT:
424 			return (CSR_READ_1(sc, RL_MEDIASTAT));
425 		default:
426 			device_printf(sc->rl_dev, "bad phy register\n");
427 			return (0);
428 		}
429 		return (CSR_READ_2(sc, rl8139_reg));
430 	}
431 
432 	return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
433 }
434 
435 static int
436 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
437 {
438 	struct rl_softc		*sc;
439 	uint16_t		rl8139_reg;
440 
441 	sc = device_get_softc(dev);
442 
443 	if (sc->rl_type == RL_8139) {
444 		switch (reg) {
445 		case MII_BMCR:
446 			rl8139_reg = RL_BMCR;
447 			break;
448 		case MII_BMSR:
449 			rl8139_reg = RL_BMSR;
450 			break;
451 		case MII_ANAR:
452 			rl8139_reg = RL_ANAR;
453 			break;
454 		case MII_ANER:
455 			rl8139_reg = RL_ANER;
456 			break;
457 		case MII_ANLPAR:
458 			rl8139_reg = RL_LPAR;
459 			break;
460 		case MII_PHYIDR1:
461 		case MII_PHYIDR2:
462 			return (0);
463 			break;
464 		default:
465 			device_printf(sc->rl_dev, "bad phy register\n");
466 			return (0);
467 		}
468 		CSR_WRITE_2(sc, rl8139_reg, data);
469 		return (0);
470 	}
471 
472 	mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
473 
474 	return (0);
475 }
476 
477 static void
478 rl_miibus_statchg(device_t dev)
479 {
480 	struct rl_softc		*sc;
481 	if_t			ifp;
482 	struct mii_data		*mii;
483 
484 	sc = device_get_softc(dev);
485 	mii = device_get_softc(sc->rl_miibus);
486 	ifp = sc->rl_ifp;
487 	if (mii == NULL || ifp == NULL ||
488 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
489 		return;
490 
491 	sc->rl_flags &= ~RL_FLAG_LINK;
492 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
493 	    (IFM_ACTIVE | IFM_AVALID)) {
494 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
495 		case IFM_10_T:
496 		case IFM_100_TX:
497 			sc->rl_flags |= RL_FLAG_LINK;
498 			break;
499 		default:
500 			break;
501 		}
502 	}
503 	/*
504 	 * RealTek controllers do not provide any interface to
505 	 * Tx/Rx MACs for resolved speed, duplex and flow-control
506 	 * parameters.
507 	 */
508 }
509 
510 static u_int
511 rl_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
512 {
513 	uint32_t *hashes = arg;
514 	int h;
515 
516 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
517 	if (h < 32)
518 		hashes[0] |= (1 << h);
519 	else
520 		hashes[1] |= (1 << (h - 32));
521 
522 	return (1);
523 }
524 
525 /*
526  * Program the 64-bit multicast hash filter.
527  */
528 static void
529 rl_rxfilter(struct rl_softc *sc)
530 {
531 	if_t			ifp = sc->rl_ifp;
532 	uint32_t		hashes[2] = { 0, 0 };
533 	uint32_t		rxfilt;
534 
535 	RL_LOCK_ASSERT(sc);
536 
537 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
538 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
539 	    RL_RXCFG_RX_MULTI);
540 	/* Always accept frames destined for this host. */
541 	rxfilt |= RL_RXCFG_RX_INDIV;
542 	/* Set capture broadcast bit to capture broadcast frames. */
543 	if (if_getflags(ifp) & IFF_BROADCAST)
544 		rxfilt |= RL_RXCFG_RX_BROAD;
545 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
546 		rxfilt |= RL_RXCFG_RX_MULTI;
547 		if (if_getflags(ifp) & IFF_PROMISC)
548 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
549 		hashes[0] = 0xFFFFFFFF;
550 		hashes[1] = 0xFFFFFFFF;
551 	} else {
552 		/* Now program new ones. */
553 		if_foreach_llmaddr(ifp, rl_hash_maddr, hashes);
554 		if (hashes[0] != 0 || hashes[1] != 0)
555 			rxfilt |= RL_RXCFG_RX_MULTI;
556 	}
557 
558 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
559 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
560 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
561 }
562 
563 static void
564 rl_reset(struct rl_softc *sc)
565 {
566 	int			i;
567 
568 	RL_LOCK_ASSERT(sc);
569 
570 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
571 
572 	for (i = 0; i < RL_TIMEOUT; i++) {
573 		DELAY(10);
574 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
575 			break;
576 	}
577 	if (i == RL_TIMEOUT)
578 		device_printf(sc->rl_dev, "reset never completed!\n");
579 }
580 
581 /*
582  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
583  * IDs against our list and return a device name if we find a match.
584  */
585 static int
586 rl_probe(device_t dev)
587 {
588 	const struct rl_type	*t;
589 	uint16_t		devid, revid, vendor;
590 	int			i;
591 
592 	vendor = pci_get_vendor(dev);
593 	devid = pci_get_device(dev);
594 	revid = pci_get_revid(dev);
595 
596 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
597 		if (revid == 0x20) {
598 			/* 8139C+, let re(4) take care of this device. */
599 			return (ENXIO);
600 		}
601 	}
602 	t = rl_devs;
603 	for (i = 0; i < nitems(rl_devs); i++, t++) {
604 		if (vendor == t->rl_vid && devid == t->rl_did) {
605 			device_set_desc(dev, t->rl_name);
606 			return (BUS_PROBE_DEFAULT);
607 		}
608 	}
609 
610 	return (ENXIO);
611 }
612 
613 struct rl_dmamap_arg {
614 	bus_addr_t	rl_busaddr;
615 };
616 
617 static void
618 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
619 {
620 	struct rl_dmamap_arg	*ctx;
621 
622 	if (error != 0)
623 		return;
624 
625 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
626 
627         ctx = (struct rl_dmamap_arg *)arg;
628         ctx->rl_busaddr = segs[0].ds_addr;
629 }
630 
631 /*
632  * Attach the interface. Allocate softc structures, do ifmedia
633  * setup and ethernet/BPF attach.
634  */
635 static int
636 rl_attach(device_t dev)
637 {
638 	uint8_t			eaddr[ETHER_ADDR_LEN];
639 	uint16_t		as[3];
640 	if_t			ifp;
641 	struct rl_softc		*sc;
642 	const struct rl_type	*t;
643 	struct sysctl_ctx_list	*ctx;
644 	struct sysctl_oid_list	*children;
645 	int			error = 0, hwrev, i, phy, pmc, rid;
646 	int			prefer_iomap, unit;
647 	uint16_t		rl_did = 0;
648 	char			tn[32];
649 
650 	sc = device_get_softc(dev);
651 	unit = device_get_unit(dev);
652 	sc->rl_dev = dev;
653 
654 	sc->rl_twister_enable = 0;
655 	snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
656 	TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
657 	ctx = device_get_sysctl_ctx(sc->rl_dev);
658 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
659 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
660 	   &sc->rl_twister_enable, 0, "");
661 
662 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
663 	    MTX_DEF);
664 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
665 
666 	pci_enable_busmaster(dev);
667 
668 	/*
669 	 * Map control/status registers.
670 	 * Default to using PIO access for this driver. On SMP systems,
671 	 * there appear to be problems with memory mapped mode: it looks
672 	 * like doing too many memory mapped access back to back in rapid
673 	 * succession can hang the bus. I'm inclined to blame this on
674 	 * crummy design/construction on the part of RealTek. Memory
675 	 * mapped mode does appear to work on uniprocessor systems though.
676 	 */
677 	prefer_iomap = 1;
678 	snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
679 	TUNABLE_INT_FETCH(tn, &prefer_iomap);
680 	if (prefer_iomap) {
681 		sc->rl_res_id = PCIR_BAR(0);
682 		sc->rl_res_type = SYS_RES_IOPORT;
683 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
684 		    &sc->rl_res_id, RF_ACTIVE);
685 	}
686 	if (prefer_iomap == 0 || sc->rl_res == NULL) {
687 		sc->rl_res_id = PCIR_BAR(1);
688 		sc->rl_res_type = SYS_RES_MEMORY;
689 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
690 		    &sc->rl_res_id, RF_ACTIVE);
691 	}
692 	if (sc->rl_res == NULL) {
693 		device_printf(dev, "couldn't map ports/memory\n");
694 		error = ENXIO;
695 		goto fail;
696 	}
697 
698 #ifdef notdef
699 	/*
700 	 * Detect the Realtek 8139B. For some reason, this chip is very
701 	 * unstable when left to autoselect the media
702 	 * The best workaround is to set the device to the required
703 	 * media type or to set it to the 10 Meg speed.
704 	 */
705 	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
706 		device_printf(dev,
707 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
708 #endif
709 
710 	sc->rl_btag = rman_get_bustag(sc->rl_res);
711 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
712 
713 	/* Allocate interrupt */
714 	rid = 0;
715 	sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
716 	    RF_SHAREABLE | RF_ACTIVE);
717 
718 	if (sc->rl_irq[0] == NULL) {
719 		device_printf(dev, "couldn't map interrupt\n");
720 		error = ENXIO;
721 		goto fail;
722 	}
723 
724 	sc->rl_cfg0 = RL_8139_CFG0;
725 	sc->rl_cfg1 = RL_8139_CFG1;
726 	sc->rl_cfg2 = 0;
727 	sc->rl_cfg3 = RL_8139_CFG3;
728 	sc->rl_cfg4 = RL_8139_CFG4;
729 	sc->rl_cfg5 = RL_8139_CFG5;
730 
731 	/*
732 	 * Reset the adapter. Only take the lock here as it's needed in
733 	 * order to call rl_reset().
734 	 */
735 	RL_LOCK(sc);
736 	rl_reset(sc);
737 	RL_UNLOCK(sc);
738 
739 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
740 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
741 	if (rl_did != 0x8129)
742 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
743 
744 	/*
745 	 * Get station address from the EEPROM.
746 	 */
747 	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
748 	for (i = 0; i < 3; i++) {
749 		eaddr[(i * 2) + 0] = as[i] & 0xff;
750 		eaddr[(i * 2) + 1] = as[i] >> 8;
751 	}
752 
753 	/*
754 	 * Now read the exact device type from the EEPROM to find
755 	 * out if it's an 8129 or 8139.
756 	 */
757 	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
758 
759 	t = rl_devs;
760 	sc->rl_type = 0;
761 	while(t->rl_name != NULL) {
762 		if (rl_did == t->rl_did) {
763 			sc->rl_type = t->rl_basetype;
764 			break;
765 		}
766 		t++;
767 	}
768 
769 	if (sc->rl_type == 0) {
770 		device_printf(dev, "unknown device ID: %x assuming 8139\n",
771 		    rl_did);
772 		sc->rl_type = RL_8139;
773 		/*
774 		 * Read RL_IDR register to get ethernet address as accessing
775 		 * EEPROM may not extract correct address.
776 		 */
777 		for (i = 0; i < ETHER_ADDR_LEN; i++)
778 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
779 	}
780 
781 	if ((error = rl_dma_alloc(sc)) != 0)
782 		goto fail;
783 
784 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
785 	if (ifp == NULL) {
786 		device_printf(dev, "can not if_alloc()\n");
787 		error = ENOSPC;
788 		goto fail;
789 	}
790 
791 #define	RL_PHYAD_INTERNAL	0
792 
793 	/* Do MII setup */
794 	phy = MII_PHY_ANY;
795 	if (sc->rl_type == RL_8139)
796 		phy = RL_PHYAD_INTERNAL;
797 	error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
798 	    rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
799 	if (error != 0) {
800 		device_printf(dev, "attaching PHYs failed\n");
801 		goto fail;
802 	}
803 
804 	if_setsoftc(ifp, sc);
805 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
806 	if_setmtu(ifp, ETHERMTU);
807 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
808 	if_setioctlfn(ifp, rl_ioctl);
809 	if_setstartfn(ifp, rl_start);
810 	if_setinitfn(ifp, rl_init);
811 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
812 	/* Check WOL for RTL8139B or newer controllers. */
813 	if (sc->rl_type == RL_8139 &&
814 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
815 		hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
816 		switch (hwrev) {
817 		case RL_HWREV_8139B:
818 		case RL_HWREV_8130:
819 		case RL_HWREV_8139C:
820 		case RL_HWREV_8139D:
821 		case RL_HWREV_8101:
822 		case RL_HWREV_8100:
823 			if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
824 			/* Disable WOL. */
825 			rl_clrwol(sc);
826 			break;
827 		default:
828 			break;
829 		}
830 	}
831 	if_setcapenable(ifp, if_getcapabilities(ifp));
832 	if_setcapenablebit(ifp, 0, (IFCAP_WOL_UCAST | IFCAP_WOL_MCAST));
833 #ifdef DEVICE_POLLING
834 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
835 #endif
836 	if_setsendqlen(ifp, ifqmaxlen);
837 	if_setsendqready(ifp);
838 
839 	/*
840 	 * Call MI attach routine.
841 	 */
842 	ether_ifattach(ifp, eaddr);
843 
844 	/* Hook interrupt last to avoid having to lock softc */
845 	error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
846 	    NULL, rl_intr, sc, &sc->rl_intrhand[0]);
847 	if (error) {
848 		device_printf(sc->rl_dev, "couldn't set up irq\n");
849 		ether_ifdetach(ifp);
850 	}
851 
852 fail:
853 	if (error)
854 		rl_detach(dev);
855 
856 	return (error);
857 }
858 
859 /*
860  * Shutdown hardware and free up resources. This can be called any
861  * time after the mutex has been initialized. It is called in both
862  * the error case in attach and the normal detach case so it needs
863  * to be careful about only freeing resources that have actually been
864  * allocated.
865  */
866 static int
867 rl_detach(device_t dev)
868 {
869 	struct rl_softc		*sc;
870 	if_t			ifp;
871 
872 	sc = device_get_softc(dev);
873 	ifp = sc->rl_ifp;
874 
875 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
876 
877 #ifdef DEVICE_POLLING
878 	if (if_getcapenable(ifp) & IFCAP_POLLING)
879 		ether_poll_deregister(ifp);
880 #endif
881 	/* These should only be active if attach succeeded */
882 	if (device_is_attached(dev)) {
883 		RL_LOCK(sc);
884 		rl_stop(sc);
885 		RL_UNLOCK(sc);
886 		callout_drain(&sc->rl_stat_callout);
887 		ether_ifdetach(ifp);
888 	}
889 #if 0
890 	sc->suspended = 1;
891 #endif
892 	if (sc->rl_miibus)
893 		device_delete_child(dev, sc->rl_miibus);
894 	bus_generic_detach(dev);
895 
896 	if (sc->rl_intrhand[0])
897 		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
898 	if (sc->rl_irq[0])
899 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
900 	if (sc->rl_res)
901 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
902 		    sc->rl_res);
903 
904 	if (ifp)
905 		if_free(ifp);
906 
907 	rl_dma_free(sc);
908 
909 	mtx_destroy(&sc->rl_mtx);
910 
911 	return (0);
912 }
913 
914 static int
915 rl_dma_alloc(struct rl_softc *sc)
916 {
917 	struct rl_dmamap_arg	ctx;
918 	int			error, i;
919 
920 	/*
921 	 * Allocate the parent bus DMA tag appropriate for PCI.
922 	 */
923 	error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev),	/* parent */
924 	    1, 0,			/* alignment, boundary */
925 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
926 	    BUS_SPACE_MAXADDR,		/* highaddr */
927 	    NULL, NULL,			/* filter, filterarg */
928 	    BUS_SPACE_MAXSIZE_32BIT, 0,	/* maxsize, nsegments */
929 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
930 	    0,				/* flags */
931 	    NULL, NULL,			/* lockfunc, lockarg */
932 	    &sc->rl_parent_tag);
933 	if (error) {
934                 device_printf(sc->rl_dev,
935 		    "failed to create parent DMA tag.\n");
936 		goto fail;
937 	}
938 	/* Create DMA tag for Rx memory block. */
939 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
940 	    RL_RX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
941 	    BUS_SPACE_MAXADDR,		/* lowaddr */
942 	    BUS_SPACE_MAXADDR,		/* highaddr */
943 	    NULL, NULL,			/* filter, filterarg */
944 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,	/* maxsize,nsegments */
945 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,	/* maxsegsize */
946 	    0,				/* flags */
947 	    NULL, NULL,			/* lockfunc, lockarg */
948 	    &sc->rl_cdata.rl_rx_tag);
949 	if (error) {
950                 device_printf(sc->rl_dev,
951 		    "failed to create Rx memory block DMA tag.\n");
952 		goto fail;
953 	}
954 	/* Create DMA tag for Tx buffer. */
955 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
956 	    RL_TX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
957 	    BUS_SPACE_MAXADDR,		/* lowaddr */
958 	    BUS_SPACE_MAXADDR,		/* highaddr */
959 	    NULL, NULL,			/* filter, filterarg */
960 	    MCLBYTES, 1,		/* maxsize, nsegments */
961 	    MCLBYTES,			/* maxsegsize */
962 	    0,				/* flags */
963 	    NULL, NULL,			/* lockfunc, lockarg */
964 	    &sc->rl_cdata.rl_tx_tag);
965 	if (error) {
966                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
967 		goto fail;
968 	}
969 
970 	/*
971 	 * Allocate DMA'able memory and load DMA map for Rx memory block.
972 	 */
973 	error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
974 	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
975 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
976 	if (error != 0) {
977 		device_printf(sc->rl_dev,
978 		    "failed to allocate Rx DMA memory block.\n");
979 		goto fail;
980 	}
981 	ctx.rl_busaddr = 0;
982 	error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
983 	    sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
984 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
985 	    BUS_DMA_NOWAIT);
986 	if (error != 0 || ctx.rl_busaddr == 0) {
987 		device_printf(sc->rl_dev,
988 		    "could not load Rx DMA memory block.\n");
989 		goto fail;
990 	}
991 	sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
992 
993 	/* Create DMA maps for Tx buffers. */
994 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
995 		sc->rl_cdata.rl_tx_chain[i] = NULL;
996 		sc->rl_cdata.rl_tx_dmamap[i] = NULL;
997 		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
998 		    &sc->rl_cdata.rl_tx_dmamap[i]);
999 		if (error != 0) {
1000 			device_printf(sc->rl_dev,
1001 			    "could not create Tx dmamap.\n");
1002 			goto fail;
1003 		}
1004 	}
1005 
1006 	/* Leave a few bytes before the start of the RX ring buffer. */
1007 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1008 	sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1009 
1010 fail:
1011 	return (error);
1012 }
1013 
1014 static void
1015 rl_dma_free(struct rl_softc *sc)
1016 {
1017 	int			i;
1018 
1019 	/* Rx memory block. */
1020 	if (sc->rl_cdata.rl_rx_tag != NULL) {
1021 		if (sc->rl_cdata.rl_rx_buf_paddr != 0)
1022 			bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1023 			    sc->rl_cdata.rl_rx_dmamap);
1024 		if (sc->rl_cdata.rl_rx_buf_ptr != NULL)
1025 			bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1026 			    sc->rl_cdata.rl_rx_buf_ptr,
1027 			    sc->rl_cdata.rl_rx_dmamap);
1028 		sc->rl_cdata.rl_rx_buf_ptr = NULL;
1029 		sc->rl_cdata.rl_rx_buf = NULL;
1030 		sc->rl_cdata.rl_rx_buf_paddr = 0;
1031 		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1032 		sc->rl_cdata.rl_tx_tag = NULL;
1033 	}
1034 
1035 	/* Tx buffers. */
1036 	if (sc->rl_cdata.rl_tx_tag != NULL) {
1037 		for (i = 0; i < RL_TX_LIST_CNT; i++) {
1038 			if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1039 				bus_dmamap_destroy(
1040 				    sc->rl_cdata.rl_tx_tag,
1041 				    sc->rl_cdata.rl_tx_dmamap[i]);
1042 				sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1043 			}
1044 		}
1045 		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1046 		sc->rl_cdata.rl_tx_tag = NULL;
1047 	}
1048 
1049 	if (sc->rl_parent_tag != NULL) {
1050 		bus_dma_tag_destroy(sc->rl_parent_tag);
1051 		sc->rl_parent_tag = NULL;
1052 	}
1053 }
1054 
1055 /*
1056  * Initialize the transmit descriptors.
1057  */
1058 static int
1059 rl_list_tx_init(struct rl_softc *sc)
1060 {
1061 	struct rl_chain_data	*cd;
1062 	int			i;
1063 
1064 	RL_LOCK_ASSERT(sc);
1065 
1066 	cd = &sc->rl_cdata;
1067 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1068 		cd->rl_tx_chain[i] = NULL;
1069 		CSR_WRITE_4(sc,
1070 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1071 	}
1072 
1073 	sc->rl_cdata.cur_tx = 0;
1074 	sc->rl_cdata.last_tx = 0;
1075 
1076 	return (0);
1077 }
1078 
1079 static int
1080 rl_list_rx_init(struct rl_softc *sc)
1081 {
1082 
1083 	RL_LOCK_ASSERT(sc);
1084 
1085 	bzero(sc->rl_cdata.rl_rx_buf_ptr,
1086 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1087 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1088 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1089 
1090 	return (0);
1091 }
1092 
1093 /*
1094  * A frame has been uploaded: pass the resulting mbuf chain up to
1095  * the higher level protocols.
1096  *
1097  * You know there's something wrong with a PCI bus-master chip design
1098  * when you have to use m_devget().
1099  *
1100  * The receive operation is badly documented in the datasheet, so I'll
1101  * attempt to document it here. The driver provides a buffer area and
1102  * places its base address in the RX buffer start address register.
1103  * The chip then begins copying frames into the RX buffer. Each frame
1104  * is preceded by a 32-bit RX status word which specifies the length
1105  * of the frame and certain other status bits. Each frame (starting with
1106  * the status word) is also 32-bit aligned. The frame length is in the
1107  * first 16 bits of the status word; the lower 15 bits correspond with
1108  * the 'rx status register' mentioned in the datasheet.
1109  *
1110  * Note: to make the Alpha happy, the frame payload needs to be aligned
1111  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1112  * as the offset argument to m_devget().
1113  */
1114 static int
1115 rl_rxeof(struct rl_softc *sc)
1116 {
1117 	struct mbuf		*m;
1118 	if_t			ifp = sc->rl_ifp;
1119 	uint8_t			*rxbufpos;
1120 	int			total_len = 0;
1121 	int			wrap = 0;
1122 	int			rx_npkts = 0;
1123 	uint32_t		rxstat;
1124 	uint16_t		cur_rx;
1125 	uint16_t		limit;
1126 	uint16_t		max_bytes, rx_bytes = 0;
1127 
1128 	RL_LOCK_ASSERT(sc);
1129 
1130 	bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1131 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1132 
1133 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1134 
1135 	/* Do not try to read past this point. */
1136 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1137 
1138 	if (limit < cur_rx)
1139 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1140 	else
1141 		max_bytes = limit - cur_rx;
1142 
1143 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1144 #ifdef DEVICE_POLLING
1145 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1146 			if (sc->rxcycles <= 0)
1147 				break;
1148 			sc->rxcycles--;
1149 		}
1150 #endif
1151 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1152 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1153 
1154 		/*
1155 		 * Here's a totally undocumented fact for you. When the
1156 		 * RealTek chip is in the process of copying a packet into
1157 		 * RAM for you, the length will be 0xfff0. If you spot a
1158 		 * packet header with this value, you need to stop. The
1159 		 * datasheet makes absolutely no mention of this and
1160 		 * RealTek should be shot for this.
1161 		 */
1162 		total_len = rxstat >> 16;
1163 		if (total_len == RL_RXSTAT_UNFINISHED)
1164 			break;
1165 
1166 		if (!(rxstat & RL_RXSTAT_RXOK) ||
1167 		    total_len < ETHER_MIN_LEN ||
1168 		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1169 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1170 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1171 			rl_init_locked(sc);
1172 			return (rx_npkts);
1173 		}
1174 
1175 		/* No errors; receive the packet. */
1176 		rx_bytes += total_len + 4;
1177 
1178 		/*
1179 		 * XXX The RealTek chip includes the CRC with every
1180 		 * received frame, and there's no way to turn this
1181 		 * behavior off (at least, I can't find anything in
1182 		 * the manual that explains how to do it) so we have
1183 		 * to trim off the CRC manually.
1184 		 */
1185 		total_len -= ETHER_CRC_LEN;
1186 
1187 		/*
1188 		 * Avoid trying to read more bytes than we know
1189 		 * the chip has prepared for us.
1190 		 */
1191 		if (rx_bytes > max_bytes)
1192 			break;
1193 
1194 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1195 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1196 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1197 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1198 
1199 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1200 		if (total_len > wrap) {
1201 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1202 			    NULL);
1203 			if (m != NULL)
1204 				m_copyback(m, wrap, total_len - wrap,
1205 					sc->rl_cdata.rl_rx_buf);
1206 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1207 		} else {
1208 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1209 			    NULL);
1210 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1211 		}
1212 
1213 		/* Round up to 32-bit boundary. */
1214 		cur_rx = (cur_rx + 3) & ~3;
1215 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1216 
1217 		if (m == NULL) {
1218 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1219 			continue;
1220 		}
1221 
1222 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1223 		RL_UNLOCK(sc);
1224 		if_input(ifp, m);
1225 		RL_LOCK(sc);
1226 		rx_npkts++;
1227 	}
1228 
1229 	/* No need to sync Rx memory block as we didn't modify it. */
1230 	return (rx_npkts);
1231 }
1232 
1233 /*
1234  * A frame was downloaded to the chip. It's safe for us to clean up
1235  * the list buffers.
1236  */
1237 static void
1238 rl_txeof(struct rl_softc *sc)
1239 {
1240 	if_t			ifp = sc->rl_ifp;
1241 	uint32_t		txstat;
1242 
1243 	RL_LOCK_ASSERT(sc);
1244 
1245 	/*
1246 	 * Go through our tx list and free mbufs for those
1247 	 * frames that have been uploaded.
1248 	 */
1249 	do {
1250 		if (RL_LAST_TXMBUF(sc) == NULL)
1251 			break;
1252 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1253 		if (!(txstat & (RL_TXSTAT_TX_OK|
1254 		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1255 			break;
1256 
1257 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & RL_TXSTAT_COLLCNT) >> 24);
1258 
1259 		bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1260 		    BUS_DMASYNC_POSTWRITE);
1261 		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1262 		m_freem(RL_LAST_TXMBUF(sc));
1263 		RL_LAST_TXMBUF(sc) = NULL;
1264 		/*
1265 		 * If there was a transmit underrun, bump the TX threshold.
1266 		 * Make sure not to overflow the 63 * 32byte we can address
1267 		 * with the 6 available bit.
1268 		 */
1269 		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1270 		    (sc->rl_txthresh < 2016))
1271 			sc->rl_txthresh += 32;
1272 		if (txstat & RL_TXSTAT_TX_OK)
1273 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1274 		else {
1275 			int			oldthresh;
1276 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1277 			if ((txstat & RL_TXSTAT_TXABRT) ||
1278 			    (txstat & RL_TXSTAT_OUTOFWIN))
1279 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1280 			oldthresh = sc->rl_txthresh;
1281 			/* error recovery */
1282 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1283 			rl_init_locked(sc);
1284 			/* restore original threshold */
1285 			sc->rl_txthresh = oldthresh;
1286 			return;
1287 		}
1288 		RL_INC(sc->rl_cdata.last_tx);
1289 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1290 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1291 
1292 	if (RL_LAST_TXMBUF(sc) == NULL)
1293 		sc->rl_watchdog_timer = 0;
1294 }
1295 
1296 static void
1297 rl_twister_update(struct rl_softc *sc)
1298 {
1299 	uint16_t linktest;
1300 	/*
1301 	 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1302 	 * Linux driver.  Values undocumented otherwise.
1303 	 */
1304 	static const uint32_t param[4][4] = {
1305 		{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1306 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1307 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1308 		{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1309 	};
1310 
1311 	/*
1312 	 * Tune the so-called twister registers of the RTL8139.  These
1313 	 * are used to compensate for impedance mismatches.  The
1314 	 * method for tuning these registers is undocumented and the
1315 	 * following procedure is collected from public sources.
1316 	 */
1317 	switch (sc->rl_twister)
1318 	{
1319 	case CHK_LINK:
1320 		/*
1321 		 * If we have a sufficient link, then we can proceed in
1322 		 * the state machine to the next stage.  If not, then
1323 		 * disable further tuning after writing sane defaults.
1324 		 */
1325 		if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1326 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1327 			sc->rl_twister = FIND_ROW;
1328 		} else {
1329 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1330 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1331 			CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1332 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1333 			sc->rl_twister = DONE;
1334 		}
1335 		break;
1336 	case FIND_ROW:
1337 		/*
1338 		 * Read how long it took to see the echo to find the tuning
1339 		 * row to use.
1340 		 */
1341 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1342 		if (linktest == RL_CSCFG_ROW3)
1343 			sc->rl_twist_row = 3;
1344 		else if (linktest == RL_CSCFG_ROW2)
1345 			sc->rl_twist_row = 2;
1346 		else if (linktest == RL_CSCFG_ROW1)
1347 			sc->rl_twist_row = 1;
1348 		else
1349 			sc->rl_twist_row = 0;
1350 		sc->rl_twist_col = 0;
1351 		sc->rl_twister = SET_PARAM;
1352 		break;
1353 	case SET_PARAM:
1354 		if (sc->rl_twist_col == 0)
1355 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1356 		CSR_WRITE_4(sc, RL_PARA7C,
1357 		    param[sc->rl_twist_row][sc->rl_twist_col]);
1358 		if (++sc->rl_twist_col == 4) {
1359 			if (sc->rl_twist_row == 3)
1360 				sc->rl_twister = RECHK_LONG;
1361 			else
1362 				sc->rl_twister = DONE;
1363 		}
1364 		break;
1365 	case RECHK_LONG:
1366 		/*
1367 		 * For long cables, we have to double check to make sure we
1368 		 * don't mistune.
1369 		 */
1370 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1371 		if (linktest == RL_CSCFG_ROW3)
1372 			sc->rl_twister = DONE;
1373 		else {
1374 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1375 			sc->rl_twister = RETUNE;
1376 		}
1377 		break;
1378 	case RETUNE:
1379 		/* Retune for a shorter cable (try column 2) */
1380 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1381 		CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1382 		CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1383 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1384 		sc->rl_twist_row--;
1385 		sc->rl_twist_col = 0;
1386 		sc->rl_twister = SET_PARAM;
1387 		break;
1388 
1389 	case DONE:
1390 		break;
1391 	}
1392 
1393 }
1394 
1395 static void
1396 rl_tick(void *xsc)
1397 {
1398 	struct rl_softc		*sc = xsc;
1399 	struct mii_data		*mii;
1400 	int ticks;
1401 
1402 	RL_LOCK_ASSERT(sc);
1403 	/*
1404 	 * If we're doing the twister cable calibration, then we need to defer
1405 	 * watchdog timeouts.  This is a no-op in normal operations, but
1406 	 * can falsely trigger when the cable calibration takes a while and
1407 	 * there was traffic ready to go when rl was started.
1408 	 *
1409 	 * We don't defer mii_tick since that updates the mii status, which
1410 	 * helps the twister process, at least according to similar patches
1411 	 * for the Linux driver I found online while doing the fixes.  Worst
1412 	 * case is a few extra mii reads during calibration.
1413 	 */
1414 	mii = device_get_softc(sc->rl_miibus);
1415 	mii_tick(mii);
1416 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1417 		rl_miibus_statchg(sc->rl_dev);
1418 	if (sc->rl_twister_enable) {
1419 		if (sc->rl_twister == DONE)
1420 			rl_watchdog(sc);
1421 		else
1422 			rl_twister_update(sc);
1423 		if (sc->rl_twister == DONE)
1424 			ticks = hz;
1425 		else
1426 			ticks = hz / 10;
1427 	} else {
1428 		rl_watchdog(sc);
1429 		ticks = hz;
1430 	}
1431 
1432 	callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1433 }
1434 
1435 #ifdef DEVICE_POLLING
1436 static int
1437 rl_poll(if_t ifp, enum poll_cmd cmd, int count)
1438 {
1439 	struct rl_softc *sc = if_getsoftc(ifp);
1440 	int rx_npkts = 0;
1441 
1442 	RL_LOCK(sc);
1443 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1444 		rx_npkts = rl_poll_locked(ifp, cmd, count);
1445 	RL_UNLOCK(sc);
1446 	return (rx_npkts);
1447 }
1448 
1449 static int
1450 rl_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
1451 {
1452 	struct rl_softc *sc = if_getsoftc(ifp);
1453 	int rx_npkts;
1454 
1455 	RL_LOCK_ASSERT(sc);
1456 
1457 	sc->rxcycles = count;
1458 	rx_npkts = rl_rxeof(sc);
1459 	rl_txeof(sc);
1460 
1461 	if (!if_sendq_empty(ifp))
1462 		rl_start_locked(ifp);
1463 
1464 	if (cmd == POLL_AND_CHECK_STATUS) {
1465 		uint16_t	status;
1466 
1467 		/* We should also check the status register. */
1468 		status = CSR_READ_2(sc, RL_ISR);
1469 		if (status == 0xffff)
1470 			return (rx_npkts);
1471 		if (status != 0)
1472 			CSR_WRITE_2(sc, RL_ISR, status);
1473 
1474 		/* XXX We should check behaviour on receiver stalls. */
1475 
1476 		if (status & RL_ISR_SYSTEM_ERR) {
1477 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1478 			rl_init_locked(sc);
1479 		}
1480 	}
1481 	return (rx_npkts);
1482 }
1483 #endif /* DEVICE_POLLING */
1484 
1485 static void
1486 rl_intr(void *arg)
1487 {
1488 	struct rl_softc		*sc = arg;
1489 	if_t			ifp = sc->rl_ifp;
1490 	uint16_t		status;
1491 	int			count;
1492 
1493 	RL_LOCK(sc);
1494 
1495 	if (sc->suspended)
1496 		goto done_locked;
1497 
1498 #ifdef DEVICE_POLLING
1499 	if  (if_getcapenable(ifp) & IFCAP_POLLING)
1500 		goto done_locked;
1501 #endif
1502 
1503 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1504 		goto done_locked2;
1505 	status = CSR_READ_2(sc, RL_ISR);
1506 	if (status == 0xffff || (status & RL_INTRS) == 0)
1507 		goto done_locked;
1508 	/*
1509 	 * Ours, disable further interrupts.
1510 	 */
1511 	CSR_WRITE_2(sc, RL_IMR, 0);
1512 	for (count = 16; count > 0; count--) {
1513 		CSR_WRITE_2(sc, RL_ISR, status);
1514 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1515 			if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
1516 				rl_rxeof(sc);
1517 			if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
1518 				rl_txeof(sc);
1519 			if (status & RL_ISR_SYSTEM_ERR) {
1520 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1521 				rl_init_locked(sc);
1522 				RL_UNLOCK(sc);
1523 				return;
1524 			}
1525 		}
1526 		status = CSR_READ_2(sc, RL_ISR);
1527 		/* If the card has gone away, the read returns 0xffff. */
1528 		if (status == 0xffff || (status & RL_INTRS) == 0)
1529 			break;
1530 	}
1531 
1532 	if (!if_sendq_empty(ifp))
1533 		rl_start_locked(ifp);
1534 
1535 done_locked2:
1536 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1537 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1538 done_locked:
1539 	RL_UNLOCK(sc);
1540 }
1541 
1542 /*
1543  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1544  * pointers to the fragment pointers.
1545  */
1546 static int
1547 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1548 {
1549 	struct mbuf		*m;
1550 	bus_dma_segment_t	txsegs[1];
1551 	int			error, nsegs, padlen;
1552 
1553 	RL_LOCK_ASSERT(sc);
1554 
1555 	m = *m_head;
1556 	padlen = 0;
1557 	/*
1558 	 * Hardware doesn't auto-pad, so we have to make sure
1559 	 * pad short frames out to the minimum frame length.
1560 	 */
1561 	if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1562 		padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1563 	/*
1564 	 * The RealTek is brain damaged and wants longword-aligned
1565 	 * TX buffers, plus we can only have one fragment buffer
1566 	 * per packet. We have to copy pretty much all the time.
1567 	 */
1568 	if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1569 	    (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1570 		m = m_defrag(*m_head, M_NOWAIT);
1571 		if (m == NULL) {
1572 			m_freem(*m_head);
1573 			*m_head = NULL;
1574 			return (ENOMEM);
1575 		}
1576 	}
1577 	*m_head = m;
1578 
1579 	if (padlen > 0) {
1580 		/*
1581 		 * Make security-conscious people happy: zero out the
1582 		 * bytes in the pad area, since we don't know what
1583 		 * this mbuf cluster buffer's previous user might
1584 		 * have left in it.
1585 		 */
1586 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1587 		m->m_pkthdr.len += padlen;
1588 		m->m_len = m->m_pkthdr.len;
1589 	}
1590 
1591 	error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1592 	    RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1593 	if (error != 0)
1594 		return (error);
1595 	if (nsegs == 0) {
1596 		m_freem(*m_head);
1597 		*m_head = NULL;
1598 		return (EIO);
1599 	}
1600 
1601 	RL_CUR_TXMBUF(sc) = m;
1602 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1603 	    BUS_DMASYNC_PREWRITE);
1604 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1605 
1606 	return (0);
1607 }
1608 
1609 /*
1610  * Main transmit routine.
1611  */
1612 static void
1613 rl_start(if_t ifp)
1614 {
1615 	struct rl_softc		*sc = if_getsoftc(ifp);
1616 
1617 	RL_LOCK(sc);
1618 	rl_start_locked(ifp);
1619 	RL_UNLOCK(sc);
1620 }
1621 
1622 static void
1623 rl_start_locked(if_t ifp)
1624 {
1625 	struct rl_softc		*sc = if_getsoftc(ifp);
1626 	struct mbuf		*m_head = NULL;
1627 
1628 	RL_LOCK_ASSERT(sc);
1629 
1630 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1631 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1632 		return;
1633 
1634 	while (RL_CUR_TXMBUF(sc) == NULL) {
1635 		m_head = if_dequeue(ifp);
1636 
1637 		if (m_head == NULL)
1638 			break;
1639 
1640 		if (rl_encap(sc, &m_head)) {
1641 			if (m_head == NULL)
1642 				break;
1643 			if_sendq_prepend(ifp, m_head);
1644 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1645 			break;
1646 		}
1647 
1648 		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1649 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1650 
1651 		/* Transmit the frame. */
1652 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1653 		    RL_TXTHRESH(sc->rl_txthresh) |
1654 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1655 
1656 		RL_INC(sc->rl_cdata.cur_tx);
1657 
1658 		/* Set a timeout in case the chip goes out to lunch. */
1659 		sc->rl_watchdog_timer = 5;
1660 	}
1661 
1662 	/*
1663 	 * We broke out of the loop because all our TX slots are
1664 	 * full. Mark the NIC as busy until it drains some of the
1665 	 * packets from the queue.
1666 	 */
1667 	if (RL_CUR_TXMBUF(sc) != NULL)
1668 		if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1669 }
1670 
1671 static void
1672 rl_init(void *xsc)
1673 {
1674 	struct rl_softc		*sc = xsc;
1675 
1676 	RL_LOCK(sc);
1677 	rl_init_locked(sc);
1678 	RL_UNLOCK(sc);
1679 }
1680 
1681 static void
1682 rl_init_locked(struct rl_softc *sc)
1683 {
1684 	if_t			ifp = sc->rl_ifp;
1685 	struct mii_data		*mii;
1686 	uint32_t		eaddr[2];
1687 
1688 	RL_LOCK_ASSERT(sc);
1689 
1690 	mii = device_get_softc(sc->rl_miibus);
1691 
1692 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1693 		return;
1694 
1695 	/*
1696 	 * Cancel pending I/O and free all RX/TX buffers.
1697 	 */
1698 	rl_stop(sc);
1699 
1700 	rl_reset(sc);
1701 	if (sc->rl_twister_enable) {
1702 		/*
1703 		 * Reset twister register tuning state.  The twister
1704 		 * registers and their tuning are undocumented, but
1705 		 * are necessary to cope with bad links.  rl_twister =
1706 		 * DONE here will disable this entirely.
1707 		 */
1708 		sc->rl_twister = CHK_LINK;
1709 	}
1710 
1711 	/*
1712 	 * Init our MAC address.  Even though the chipset
1713 	 * documentation doesn't mention it, we need to enter "Config
1714 	 * register write enable" mode to modify the ID registers.
1715 	 */
1716 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1717 	bzero(eaddr, sizeof(eaddr));
1718 	bcopy(if_getlladdr(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1719 	CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1720 	CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1721 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1722 
1723 	/* Init the RX memory block pointer register. */
1724 	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1725 	    RL_RX_8139_BUF_RESERVE);
1726 	/* Init TX descriptors. */
1727 	rl_list_tx_init(sc);
1728 	/* Init Rx memory block. */
1729 	rl_list_rx_init(sc);
1730 
1731 	/*
1732 	 * Enable transmit and receive.
1733 	 */
1734 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1735 
1736 	/*
1737 	 * Set the initial TX and RX configuration.
1738 	 */
1739 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1740 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1741 
1742 	/* Set RX filter. */
1743 	rl_rxfilter(sc);
1744 
1745 #ifdef DEVICE_POLLING
1746 	/* Disable interrupts if we are polling. */
1747 	if (if_getcapenable(ifp) & IFCAP_POLLING)
1748 		CSR_WRITE_2(sc, RL_IMR, 0);
1749 	else
1750 #endif
1751 	/* Enable interrupts. */
1752 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1753 
1754 	/* Set initial TX threshold */
1755 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1756 
1757 	/* Start RX/TX process. */
1758 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1759 
1760 	/* Enable receiver and transmitter. */
1761 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1762 
1763 	sc->rl_flags &= ~RL_FLAG_LINK;
1764 	mii_mediachg(mii);
1765 
1766 	CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1767 
1768 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1769 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1770 
1771 	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1772 }
1773 
1774 /*
1775  * Set media options.
1776  */
1777 static int
1778 rl_ifmedia_upd(if_t ifp)
1779 {
1780 	struct rl_softc		*sc = if_getsoftc(ifp);
1781 	struct mii_data		*mii;
1782 
1783 	mii = device_get_softc(sc->rl_miibus);
1784 
1785 	RL_LOCK(sc);
1786 	mii_mediachg(mii);
1787 	RL_UNLOCK(sc);
1788 
1789 	return (0);
1790 }
1791 
1792 /*
1793  * Report current media status.
1794  */
1795 static void
1796 rl_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1797 {
1798 	struct rl_softc		*sc = if_getsoftc(ifp);
1799 	struct mii_data		*mii;
1800 
1801 	mii = device_get_softc(sc->rl_miibus);
1802 
1803 	RL_LOCK(sc);
1804 	mii_pollstat(mii);
1805 	ifmr->ifm_active = mii->mii_media_active;
1806 	ifmr->ifm_status = mii->mii_media_status;
1807 	RL_UNLOCK(sc);
1808 }
1809 
1810 static int
1811 rl_ioctl(if_t ifp, u_long command, caddr_t data)
1812 {
1813 	struct ifreq		*ifr = (struct ifreq *)data;
1814 	struct mii_data		*mii;
1815 	struct rl_softc		*sc = if_getsoftc(ifp);
1816 	int			error = 0, mask;
1817 
1818 	switch (command) {
1819 	case SIOCSIFFLAGS:
1820 		RL_LOCK(sc);
1821 		if (if_getflags(ifp) & IFF_UP) {
1822 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
1823 			    ((if_getflags(ifp) ^ sc->rl_if_flags) &
1824                             (IFF_PROMISC | IFF_ALLMULTI)))
1825 				rl_rxfilter(sc);
1826                         else
1827 				rl_init_locked(sc);
1828                 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
1829 			rl_stop(sc);
1830 		sc->rl_if_flags = if_getflags(ifp);
1831 		RL_UNLOCK(sc);
1832 		break;
1833 	case SIOCADDMULTI:
1834 	case SIOCDELMULTI:
1835 		RL_LOCK(sc);
1836 		rl_rxfilter(sc);
1837 		RL_UNLOCK(sc);
1838 		break;
1839 	case SIOCGIFMEDIA:
1840 	case SIOCSIFMEDIA:
1841 		mii = device_get_softc(sc->rl_miibus);
1842 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1843 		break;
1844 	case SIOCSIFCAP:
1845 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1846 #ifdef DEVICE_POLLING
1847 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1848 		    !(if_getcapenable(ifp) & IFCAP_POLLING)) {
1849 			error = ether_poll_register(rl_poll, ifp);
1850 			if (error)
1851 				return(error);
1852 			RL_LOCK(sc);
1853 			/* Disable interrupts */
1854 			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1855 			if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1856 			RL_UNLOCK(sc);
1857 			return (error);
1858 
1859 		}
1860 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1861 		    if_getcapenable(ifp) & IFCAP_POLLING) {
1862 			error = ether_poll_deregister(ifp);
1863 			/* Enable interrupts. */
1864 			RL_LOCK(sc);
1865 			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1866 			if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1867 			RL_UNLOCK(sc);
1868 			return (error);
1869 		}
1870 #endif /* DEVICE_POLLING */
1871 		if ((mask & IFCAP_WOL) != 0 &&
1872 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
1873 			if ((mask & IFCAP_WOL_UCAST) != 0)
1874 				if_togglecapenable(ifp, IFCAP_WOL_UCAST);
1875 			if ((mask & IFCAP_WOL_MCAST) != 0)
1876 				if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1877 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1878 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1879 		}
1880 		break;
1881 	default:
1882 		error = ether_ioctl(ifp, command, data);
1883 		break;
1884 	}
1885 
1886 	return (error);
1887 }
1888 
1889 static void
1890 rl_watchdog(struct rl_softc *sc)
1891 {
1892 
1893 	RL_LOCK_ASSERT(sc);
1894 
1895 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1896 		return;
1897 
1898 	device_printf(sc->rl_dev, "watchdog timeout\n");
1899 	if_inc_counter(sc->rl_ifp, IFCOUNTER_OERRORS, 1);
1900 
1901 	rl_txeof(sc);
1902 	rl_rxeof(sc);
1903 	if_setdrvflagbits(sc->rl_ifp, 0, IFF_DRV_RUNNING);
1904 	rl_init_locked(sc);
1905 }
1906 
1907 /*
1908  * Stop the adapter and free any mbufs allocated to the
1909  * RX and TX lists.
1910  */
1911 static void
1912 rl_stop(struct rl_softc *sc)
1913 {
1914 	int			i;
1915 	if_t			ifp = sc->rl_ifp;
1916 
1917 	RL_LOCK_ASSERT(sc);
1918 
1919 	sc->rl_watchdog_timer = 0;
1920 	callout_stop(&sc->rl_stat_callout);
1921 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1922 	sc->rl_flags &= ~RL_FLAG_LINK;
1923 
1924 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1925 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1926 	for (i = 0; i < RL_TIMEOUT; i++) {
1927 		DELAY(10);
1928 		if ((CSR_READ_1(sc, RL_COMMAND) &
1929 		    (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
1930 			break;
1931 	}
1932 	if (i == RL_TIMEOUT)
1933 		device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
1934 
1935 	/*
1936 	 * Free the TX list buffers.
1937 	 */
1938 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1939 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1940 			bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
1941 			    sc->rl_cdata.rl_tx_dmamap[i],
1942 			    BUS_DMASYNC_POSTWRITE);
1943 			bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1944 			    sc->rl_cdata.rl_tx_dmamap[i]);
1945 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1946 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1947 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1948 			    0x0000000);
1949 		}
1950 	}
1951 }
1952 
1953 /*
1954  * Device suspend routine.  Stop the interface and save some PCI
1955  * settings in case the BIOS doesn't restore them properly on
1956  * resume.
1957  */
1958 static int
1959 rl_suspend(device_t dev)
1960 {
1961 	struct rl_softc		*sc;
1962 
1963 	sc = device_get_softc(dev);
1964 
1965 	RL_LOCK(sc);
1966 	rl_stop(sc);
1967 	rl_setwol(sc);
1968 	sc->suspended = 1;
1969 	RL_UNLOCK(sc);
1970 
1971 	return (0);
1972 }
1973 
1974 /*
1975  * Device resume routine.  Restore some PCI settings in case the BIOS
1976  * doesn't, re-enable busmastering, and restart the interface if
1977  * appropriate.
1978  */
1979 static int
1980 rl_resume(device_t dev)
1981 {
1982 	struct rl_softc		*sc;
1983 	if_t			ifp;
1984 	int			pmc;
1985 	uint16_t		pmstat;
1986 
1987 	sc = device_get_softc(dev);
1988 	ifp = sc->rl_ifp;
1989 
1990 	RL_LOCK(sc);
1991 
1992 	if ((if_getcapabilities(ifp) & IFCAP_WOL) != 0 &&
1993 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
1994 		/* Disable PME and clear PME status. */
1995 		pmstat = pci_read_config(sc->rl_dev,
1996 		    pmc + PCIR_POWER_STATUS, 2);
1997 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1998 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1999 			pci_write_config(sc->rl_dev,
2000 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2001 		}
2002 		/*
2003 		 * Clear WOL matching such that normal Rx filtering
2004 		 * wouldn't interfere with WOL patterns.
2005 		 */
2006 		rl_clrwol(sc);
2007 	}
2008 
2009 	/* reinitialize interface if necessary */
2010 	if (if_getflags(ifp) & IFF_UP)
2011 		rl_init_locked(sc);
2012 
2013 	sc->suspended = 0;
2014 
2015 	RL_UNLOCK(sc);
2016 
2017 	return (0);
2018 }
2019 
2020 /*
2021  * Stop all chip I/O so that the kernel's probe routines don't
2022  * get confused by errant DMAs when rebooting.
2023  */
2024 static int
2025 rl_shutdown(device_t dev)
2026 {
2027 	struct rl_softc		*sc;
2028 
2029 	sc = device_get_softc(dev);
2030 
2031 	RL_LOCK(sc);
2032 	rl_stop(sc);
2033 	/*
2034 	 * Mark interface as down since otherwise we will panic if
2035 	 * interrupt comes in later on, which can happen in some
2036 	 * cases.
2037 	 */
2038 	if_setflagbits(sc->rl_ifp, 0, IFF_UP);
2039 	rl_setwol(sc);
2040 	RL_UNLOCK(sc);
2041 
2042 	return (0);
2043 }
2044 
2045 static void
2046 rl_setwol(struct rl_softc *sc)
2047 {
2048 	if_t			ifp;
2049 	int			pmc;
2050 	uint16_t		pmstat;
2051 	uint8_t			v;
2052 
2053 	RL_LOCK_ASSERT(sc);
2054 
2055 	ifp = sc->rl_ifp;
2056 	if ((if_getcapabilities(ifp) & IFCAP_WOL) == 0)
2057 		return;
2058 	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2059 		return;
2060 
2061 	/* Enable config register write. */
2062 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2063 
2064 	/* Enable PME. */
2065 	v = CSR_READ_1(sc, sc->rl_cfg1);
2066 	v &= ~RL_CFG1_PME;
2067 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2068 		v |= RL_CFG1_PME;
2069 	CSR_WRITE_1(sc, sc->rl_cfg1, v);
2070 
2071 	v = CSR_READ_1(sc, sc->rl_cfg3);
2072 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2073 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2074 		v |= RL_CFG3_WOL_MAGIC;
2075 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2076 
2077 	v = CSR_READ_1(sc, sc->rl_cfg5);
2078 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2079 	v &= ~RL_CFG5_WOL_LANWAKE;
2080 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2081 		v |= RL_CFG5_WOL_UCAST;
2082 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2083 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2084 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2085 		v |= RL_CFG5_WOL_LANWAKE;
2086 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2087 
2088 	/* Config register write done. */
2089 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2090 
2091 	/* Request PME if WOL is requested. */
2092 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2093 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2094 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2095 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2096 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2097 }
2098 
2099 static void
2100 rl_clrwol(struct rl_softc *sc)
2101 {
2102 	if_t			ifp;
2103 	uint8_t			v;
2104 
2105 	ifp = sc->rl_ifp;
2106 	if ((if_getcapabilities(ifp) & IFCAP_WOL) == 0)
2107 		return;
2108 
2109 	/* Enable config register write. */
2110 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2111 
2112 	v = CSR_READ_1(sc, sc->rl_cfg3);
2113 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2114 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2115 
2116 	/* Config register write done. */
2117 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2118 
2119 	v = CSR_READ_1(sc, sc->rl_cfg5);
2120 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2121 	v &= ~RL_CFG5_WOL_LANWAKE;
2122 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2123 }
2124