1 /*- 2 * Copyright (c) 2017 Oliver Pinter 3 * Copyright (c) 2017 W. Dean Freeman 4 * Copyright (c) 2000-2015 Mark R V Murray 5 * Copyright (c) 2013 Arthur Mesh 6 * Copyright (c) 2004 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer 14 * in this position and unchanged. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 */ 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/ck.h> 35 #include <sys/conf.h> 36 #include <sys/epoch.h> 37 #include <sys/eventhandler.h> 38 #include <sys/hash.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/linker.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/random.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/unistd.h> 50 51 #include <machine/atomic.h> 52 #include <machine/cpu.h> 53 54 #include <crypto/rijndael/rijndael-api-fst.h> 55 #include <crypto/sha2/sha256.h> 56 57 #include <dev/random/fortuna.h> 58 #include <dev/random/hash.h> 59 #include <dev/random/randomdev.h> 60 #include <dev/random/random_harvestq.h> 61 62 #if defined(RANDOM_ENABLE_ETHER) 63 #define _RANDOM_HARVEST_ETHER_OFF 0 64 #else 65 #define _RANDOM_HARVEST_ETHER_OFF (1u << RANDOM_NET_ETHER) 66 #endif 67 #if defined(RANDOM_ENABLE_UMA) 68 #define _RANDOM_HARVEST_UMA_OFF 0 69 #else 70 #define _RANDOM_HARVEST_UMA_OFF (1u << RANDOM_UMA) 71 #endif 72 73 /* 74 * Note that random_sources_feed() will also use this to try and split up 75 * entropy into a subset of pools per iteration with the goal of feeding 76 * HARVESTSIZE into every pool at least once per second. 77 */ 78 #define RANDOM_KTHREAD_HZ 10 79 80 static void random_kthread(void); 81 static void random_sources_feed(void); 82 83 /* 84 * Random must initialize much earlier than epoch, but we can initialize the 85 * epoch code before SMP starts. Prior to SMP, we can safely bypass 86 * concurrency primitives. 87 */ 88 static __read_mostly bool epoch_inited; 89 static __read_mostly epoch_t rs_epoch; 90 91 /* 92 * How many events to queue up. We create this many items in 93 * an 'empty' queue, then transfer them to the 'harvest' queue with 94 * supplied junk. When used, they are transferred back to the 95 * 'empty' queue. 96 */ 97 #define RANDOM_RING_MAX 1024 98 #define RANDOM_ACCUM_MAX 8 99 100 /* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */ 101 volatile int random_kthread_control; 102 103 104 /* Allow the sysadmin to select the broad category of 105 * entropy types to harvest. 106 */ 107 __read_frequently u_int hc_source_mask; 108 109 struct random_sources { 110 CK_LIST_ENTRY(random_sources) rrs_entries; 111 struct random_source *rrs_source; 112 }; 113 114 static CK_LIST_HEAD(sources_head, random_sources) source_list = 115 CK_LIST_HEAD_INITIALIZER(source_list); 116 117 SYSCTL_NODE(_kern_random, OID_AUTO, harvest, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 118 "Entropy Device Parameters"); 119 120 /* 121 * Put all the harvest queue context stuff in one place. 122 * this make is a bit easier to lock and protect. 123 */ 124 static struct harvest_context { 125 /* The harvest mutex protects all of harvest_context and 126 * the related data. 127 */ 128 struct mtx hc_mtx; 129 /* Round-robin destination cache. */ 130 u_int hc_destination[ENTROPYSOURCE]; 131 /* The context of the kernel thread processing harvested entropy */ 132 struct proc *hc_kthread_proc; 133 /* 134 * Lockless ring buffer holding entropy events 135 * If ring.in == ring.out, 136 * the buffer is empty. 137 * If ring.in != ring.out, 138 * the buffer contains harvested entropy. 139 * If (ring.in + 1) == ring.out (mod RANDOM_RING_MAX), 140 * the buffer is full. 141 * 142 * NOTE: ring.in points to the last added element, 143 * and ring.out points to the last consumed element. 144 * 145 * The ring.in variable needs locking as there are multiple 146 * sources to the ring. Only the sources may change ring.in, 147 * but the consumer may examine it. 148 * 149 * The ring.out variable does not need locking as there is 150 * only one consumer. Only the consumer may change ring.out, 151 * but the sources may examine it. 152 */ 153 struct entropy_ring { 154 struct harvest_event ring[RANDOM_RING_MAX]; 155 volatile u_int in; 156 volatile u_int out; 157 } hc_entropy_ring; 158 struct fast_entropy_accumulator { 159 volatile u_int pos; 160 uint32_t buf[RANDOM_ACCUM_MAX]; 161 } hc_entropy_fast_accumulator; 162 } harvest_context; 163 164 #define RANDOM_HARVEST_INIT_LOCK() mtx_init(&harvest_context.hc_mtx, \ 165 "entropy harvest mutex", NULL, MTX_SPIN) 166 #define RANDOM_HARVEST_LOCK() mtx_lock_spin(&harvest_context.hc_mtx) 167 #define RANDOM_HARVEST_UNLOCK() mtx_unlock_spin(&harvest_context.hc_mtx) 168 169 static struct kproc_desc random_proc_kp = { 170 "rand_harvestq", 171 random_kthread, 172 &harvest_context.hc_kthread_proc, 173 }; 174 175 /* Pass the given event straight through to Fortuna/Whatever. */ 176 static __inline void 177 random_harvestq_fast_process_event(struct harvest_event *event) 178 { 179 p_random_alg_context->ra_event_processor(event); 180 explicit_bzero(event, sizeof(*event)); 181 } 182 183 static void 184 random_kthread(void) 185 { 186 u_int maxloop, ring_out, i; 187 188 /* 189 * Locking is not needed as this is the only place we modify ring.out, and 190 * we only examine ring.in without changing it. Both of these are volatile, 191 * and this is a unique thread. 192 */ 193 for (random_kthread_control = 1; random_kthread_control;) { 194 /* Deal with events, if any. Restrict the number we do in one go. */ 195 maxloop = RANDOM_RING_MAX; 196 while (harvest_context.hc_entropy_ring.out != harvest_context.hc_entropy_ring.in) { 197 ring_out = (harvest_context.hc_entropy_ring.out + 1)%RANDOM_RING_MAX; 198 random_harvestq_fast_process_event(harvest_context.hc_entropy_ring.ring + ring_out); 199 harvest_context.hc_entropy_ring.out = ring_out; 200 if (!--maxloop) 201 break; 202 } 203 random_sources_feed(); 204 /* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */ 205 for (i = 0; i < RANDOM_ACCUM_MAX; i++) { 206 if (harvest_context.hc_entropy_fast_accumulator.buf[i]) { 207 random_harvest_direct(harvest_context.hc_entropy_fast_accumulator.buf + i, sizeof(harvest_context.hc_entropy_fast_accumulator.buf[0]), RANDOM_UMA); 208 harvest_context.hc_entropy_fast_accumulator.buf[i] = 0; 209 } 210 } 211 /* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */ 212 tsleep_sbt(&harvest_context.hc_kthread_proc, 0, "-", 213 SBT_1S/RANDOM_KTHREAD_HZ, 0, C_PREL(1)); 214 } 215 random_kthread_control = -1; 216 wakeup(&harvest_context.hc_kthread_proc); 217 kproc_exit(0); 218 /* NOTREACHED */ 219 } 220 SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start, 221 &random_proc_kp); 222 _Static_assert(SI_SUB_KICK_SCHEDULER > SI_SUB_RANDOM, 223 "random kthread starting before subsystem initialization"); 224 225 static void 226 rs_epoch_init(void *dummy __unused) 227 { 228 rs_epoch = epoch_alloc("Random Sources", EPOCH_PREEMPT); 229 epoch_inited = true; 230 } 231 SYSINIT(rs_epoch_init, SI_SUB_EPOCH, SI_ORDER_ANY, rs_epoch_init, NULL); 232 233 /* 234 * Run through all fast sources reading entropy for the given 235 * number of rounds, which should be a multiple of the number 236 * of entropy accumulation pools in use; it is 32 for Fortuna. 237 */ 238 static void 239 random_sources_feed(void) 240 { 241 uint32_t entropy[HARVESTSIZE]; 242 struct epoch_tracker et; 243 struct random_sources *rrs; 244 u_int i, n, npools; 245 bool rse_warm; 246 247 rse_warm = epoch_inited; 248 249 /* 250 * Evenly-ish distribute pool population across the second based on how 251 * frequently random_kthread iterates. 252 * 253 * For Fortuna, the math currently works out as such: 254 * 255 * 64 bits * 4 pools = 256 bits per iteration 256 * 256 bits * 10 Hz = 2560 bits per second, 320 B/s 257 * 258 */ 259 npools = howmany(p_random_alg_context->ra_poolcount, RANDOM_KTHREAD_HZ); 260 261 /*- 262 * If we're not seeded yet, attempt to perform a "full seed", filling 263 * all of the PRNG's pools with entropy; if there is enough entropy 264 * available from "fast" entropy sources this will allow us to finish 265 * seeding and unblock the boot process immediately rather than being 266 * stuck for a few seconds with random_kthread gradually collecting a 267 * small chunk of entropy every 1 / RANDOM_KTHREAD_HZ seconds. 268 * 269 * We collect RANDOM_FORTUNA_DEFPOOLSIZE bytes per pool, i.e. enough 270 * to fill Fortuna's pools in the default configuration. With another 271 * PRNG or smaller pools for Fortuna, we might collect more entropy 272 * than needed to fill the pools, but this is harmless; alternatively, 273 * a different PRNG, larger pools, or fast entropy sources which are 274 * not able to provide as much entropy as we request may result in the 275 * not being fully seeded (and thus remaining blocked) but in that 276 * case we will return here after 1 / RANDOM_KTHREAD_HZ seconds and 277 * try again for a large amount of entropy. 278 */ 279 if (!p_random_alg_context->ra_seeded()) 280 npools = howmany(p_random_alg_context->ra_poolcount * 281 RANDOM_FORTUNA_DEFPOOLSIZE, sizeof(entropy)); 282 283 /* 284 * Step over all of live entropy sources, and feed their output 285 * to the system-wide RNG. 286 */ 287 if (rse_warm) 288 epoch_enter_preempt(rs_epoch, &et); 289 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) { 290 for (i = 0; i < npools; i++) { 291 n = rrs->rrs_source->rs_read(entropy, sizeof(entropy)); 292 KASSERT((n <= sizeof(entropy)), ("%s: rs_read returned too much data (%u > %zu)", __func__, n, sizeof(entropy))); 293 /* 294 * Sometimes the HW entropy source doesn't have anything 295 * ready for us. This isn't necessarily untrustworthy. 296 * We don't perform any other verification of an entropy 297 * source (i.e., length is allowed to be anywhere from 1 298 * to sizeof(entropy), quality is unchecked, etc), so 299 * don't balk verbosely at slow random sources either. 300 * There are reports that RDSEED on x86 metal falls 301 * behind the rate at which we query it, for example. 302 * But it's still a better entropy source than RDRAND. 303 */ 304 if (n == 0) 305 continue; 306 random_harvest_direct(entropy, n, rrs->rrs_source->rs_source); 307 } 308 } 309 if (rse_warm) 310 epoch_exit_preempt(rs_epoch, &et); 311 explicit_bzero(entropy, sizeof(entropy)); 312 } 313 314 static int 315 random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS) 316 { 317 static const u_int user_immutable_mask = 318 (((1 << ENTROPYSOURCE) - 1) & (-1UL << RANDOM_PURE_START)) | 319 _RANDOM_HARVEST_ETHER_OFF | _RANDOM_HARVEST_UMA_OFF; 320 321 int error; 322 u_int value, orig_value; 323 324 orig_value = value = hc_source_mask; 325 error = sysctl_handle_int(oidp, &value, 0, req); 326 if (error != 0 || req->newptr == NULL) 327 return (error); 328 329 if (flsl(value) > ENTROPYSOURCE) 330 return (EINVAL); 331 332 /* 333 * Disallow userspace modification of pure entropy sources. 334 */ 335 hc_source_mask = (value & ~user_immutable_mask) | 336 (orig_value & user_immutable_mask); 337 return (0); 338 } 339 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask, 340 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 341 random_check_uint_harvestmask, "IU", 342 "Entropy harvesting mask"); 343 344 static int 345 random_print_harvestmask(SYSCTL_HANDLER_ARGS) 346 { 347 struct sbuf sbuf; 348 int error, i; 349 350 error = sysctl_wire_old_buffer(req, 0); 351 if (error == 0) { 352 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 353 for (i = ENTROPYSOURCE - 1; i >= 0; i--) 354 sbuf_cat(&sbuf, (hc_source_mask & (1 << i)) ? "1" : "0"); 355 error = sbuf_finish(&sbuf); 356 sbuf_delete(&sbuf); 357 } 358 return (error); 359 } 360 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_bin, 361 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 362 random_print_harvestmask, "A", 363 "Entropy harvesting mask (printable)"); 364 365 static const char *random_source_descr[ENTROPYSOURCE] = { 366 [RANDOM_CACHED] = "CACHED", 367 [RANDOM_ATTACH] = "ATTACH", 368 [RANDOM_KEYBOARD] = "KEYBOARD", 369 [RANDOM_MOUSE] = "MOUSE", 370 [RANDOM_NET_TUN] = "NET_TUN", 371 [RANDOM_NET_ETHER] = "NET_ETHER", 372 [RANDOM_NET_NG] = "NET_NG", 373 [RANDOM_INTERRUPT] = "INTERRUPT", 374 [RANDOM_SWI] = "SWI", 375 [RANDOM_FS_ATIME] = "FS_ATIME", 376 [RANDOM_UMA] = "UMA", 377 [RANDOM_CALLOUT] = "CALLOUT", /* ENVIRONMENTAL_END */ 378 [RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */ 379 [RANDOM_PURE_SAFE] = "PURE_SAFE", 380 [RANDOM_PURE_GLXSB] = "PURE_GLXSB", 381 [RANDOM_PURE_HIFN] = "PURE_HIFN", 382 [RANDOM_PURE_RDRAND] = "PURE_RDRAND", 383 [RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH", 384 [RANDOM_PURE_RNDTEST] = "PURE_RNDTEST", 385 [RANDOM_PURE_VIRTIO] = "PURE_VIRTIO", 386 [RANDOM_PURE_BROADCOM] = "PURE_BROADCOM", 387 [RANDOM_PURE_CCP] = "PURE_CCP", 388 [RANDOM_PURE_DARN] = "PURE_DARN", 389 [RANDOM_PURE_TPM] = "PURE_TPM", 390 [RANDOM_PURE_VMGENID] = "PURE_VMGENID", 391 [RANDOM_PURE_QUALCOMM] = "PURE_QUALCOMM", 392 [RANDOM_PURE_ARMV8] = "PURE_ARMV8", 393 [RANDOM_PURE_ARM_TRNG] = "PURE_ARM_TRNG", 394 /* "ENTROPYSOURCE" */ 395 }; 396 397 static int 398 random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS) 399 { 400 struct sbuf sbuf; 401 int error, i; 402 bool first; 403 404 first = true; 405 error = sysctl_wire_old_buffer(req, 0); 406 if (error == 0) { 407 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 408 for (i = ENTROPYSOURCE - 1; i >= 0; i--) { 409 if (i >= RANDOM_PURE_START && 410 (hc_source_mask & (1 << i)) == 0) 411 continue; 412 if (!first) 413 sbuf_cat(&sbuf, ","); 414 sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "[" : ""); 415 sbuf_cat(&sbuf, random_source_descr[i]); 416 sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "]" : ""); 417 first = false; 418 } 419 error = sbuf_finish(&sbuf); 420 sbuf_delete(&sbuf); 421 } 422 return (error); 423 } 424 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_symbolic, 425 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 426 random_print_harvestmask_symbolic, "A", 427 "Entropy harvesting mask (symbolic)"); 428 429 static void 430 random_harvestq_init(void *unused __unused) 431 { 432 static const u_int almost_everything_mask = 433 (((1 << (RANDOM_ENVIRONMENTAL_END + 1)) - 1) & 434 ~_RANDOM_HARVEST_ETHER_OFF & ~_RANDOM_HARVEST_UMA_OFF); 435 436 hc_source_mask = almost_everything_mask; 437 RANDOM_HARVEST_INIT_LOCK(); 438 harvest_context.hc_entropy_ring.in = harvest_context.hc_entropy_ring.out = 0; 439 } 440 SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_init, NULL); 441 442 /* 443 * Subroutine to slice up a contiguous chunk of 'entropy' and feed it into the 444 * underlying algorithm. Returns number of bytes actually fed into underlying 445 * algorithm. 446 */ 447 static size_t 448 random_early_prime(char *entropy, size_t len) 449 { 450 struct harvest_event event; 451 size_t i; 452 453 len = rounddown(len, sizeof(event.he_entropy)); 454 if (len == 0) 455 return (0); 456 457 for (i = 0; i < len; i += sizeof(event.he_entropy)) { 458 event.he_somecounter = random_get_cyclecount(); 459 event.he_size = sizeof(event.he_entropy); 460 event.he_source = RANDOM_CACHED; 461 event.he_destination = 462 harvest_context.hc_destination[RANDOM_CACHED]++; 463 memcpy(event.he_entropy, entropy + i, sizeof(event.he_entropy)); 464 random_harvestq_fast_process_event(&event); 465 } 466 explicit_bzero(entropy, len); 467 return (len); 468 } 469 470 /* 471 * Subroutine to search for known loader-loaded files in memory and feed them 472 * into the underlying algorithm early in boot. Returns the number of bytes 473 * loaded (zero if none were loaded). 474 */ 475 static size_t 476 random_prime_loader_file(const char *type) 477 { 478 uint8_t *keyfile, *data; 479 size_t size; 480 481 keyfile = preload_search_by_type(type); 482 if (keyfile == NULL) 483 return (0); 484 485 data = preload_fetch_addr(keyfile); 486 size = preload_fetch_size(keyfile); 487 if (data == NULL) 488 return (0); 489 490 return (random_early_prime(data, size)); 491 } 492 493 /* 494 * This is used to prime the RNG by grabbing any early random stuff 495 * known to the kernel, and inserting it directly into the hashing 496 * module, currently Fortuna. 497 */ 498 static void 499 random_harvestq_prime(void *unused __unused) 500 { 501 size_t size; 502 503 /* 504 * Get entropy that may have been preloaded by loader(8) 505 * and use it to pre-charge the entropy harvest queue. 506 */ 507 size = random_prime_loader_file(RANDOM_CACHED_BOOT_ENTROPY_MODULE); 508 if (bootverbose) { 509 if (size > 0) 510 printf("random: read %zu bytes from preloaded cache\n", 511 size); 512 else 513 printf("random: no preloaded entropy cache\n"); 514 } 515 size = random_prime_loader_file(RANDOM_PLATFORM_BOOT_ENTROPY_MODULE); 516 if (bootverbose) { 517 if (size > 0) 518 printf("random: read %zu bytes from platform bootloader\n", 519 size); 520 else 521 printf("random: no platform bootloader entropy\n"); 522 } 523 } 524 SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_MIDDLE, random_harvestq_prime, NULL); 525 526 static void 527 random_harvestq_deinit(void *unused __unused) 528 { 529 530 /* Command the hash/reseed thread to end and wait for it to finish */ 531 random_kthread_control = 0; 532 while (random_kthread_control >= 0) 533 tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5); 534 } 535 SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_deinit, NULL); 536 537 /*- 538 * Entropy harvesting queue routine. 539 * 540 * This is supposed to be fast; do not do anything slow in here! 541 * It is also illegal (and morally reprehensible) to insert any 542 * high-rate data here. "High-rate" is defined as a data source 543 * that will usually cause lots of failures of the "Lockless read" 544 * check a few lines below. This includes the "always-on" sources 545 * like the Intel "rdrand" or the VIA Nehamiah "xstore" sources. 546 */ 547 /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle 548 * counters are built in, but on older hardware it will do a real time clock 549 * read which can be quite expensive. 550 */ 551 void 552 random_harvest_queue_(const void *entropy, u_int size, enum random_entropy_source origin) 553 { 554 struct harvest_event *event; 555 u_int ring_in; 556 557 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 558 RANDOM_HARVEST_LOCK(); 559 ring_in = (harvest_context.hc_entropy_ring.in + 1)%RANDOM_RING_MAX; 560 if (ring_in != harvest_context.hc_entropy_ring.out) { 561 /* The ring is not full */ 562 event = harvest_context.hc_entropy_ring.ring + ring_in; 563 event->he_somecounter = random_get_cyclecount(); 564 event->he_source = origin; 565 event->he_destination = harvest_context.hc_destination[origin]++; 566 if (size <= sizeof(event->he_entropy)) { 567 event->he_size = size; 568 memcpy(event->he_entropy, entropy, size); 569 } 570 else { 571 /* Big event, so squash it */ 572 event->he_size = sizeof(event->he_entropy[0]); 573 event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event); 574 } 575 harvest_context.hc_entropy_ring.in = ring_in; 576 } 577 RANDOM_HARVEST_UNLOCK(); 578 } 579 580 /*- 581 * Entropy harvesting fast routine. 582 * 583 * This is supposed to be very fast; do not do anything slow in here! 584 * This is the right place for high-rate harvested data. 585 */ 586 void 587 random_harvest_fast_(const void *entropy, u_int size) 588 { 589 u_int pos; 590 591 pos = harvest_context.hc_entropy_fast_accumulator.pos; 592 harvest_context.hc_entropy_fast_accumulator.buf[pos] ^= 593 jenkins_hash(entropy, size, random_get_cyclecount()); 594 harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX; 595 } 596 597 /*- 598 * Entropy harvesting direct routine. 599 * 600 * This is not supposed to be fast, but will only be used during 601 * (e.g.) booting when initial entropy is being gathered. 602 */ 603 void 604 random_harvest_direct_(const void *entropy, u_int size, enum random_entropy_source origin) 605 { 606 struct harvest_event event; 607 608 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 609 size = MIN(size, sizeof(event.he_entropy)); 610 event.he_somecounter = random_get_cyclecount(); 611 event.he_size = size; 612 event.he_source = origin; 613 event.he_destination = harvest_context.hc_destination[origin]++; 614 memcpy(event.he_entropy, entropy, size); 615 random_harvestq_fast_process_event(&event); 616 } 617 618 void 619 random_harvest_register_source(enum random_entropy_source source) 620 { 621 622 hc_source_mask |= (1 << source); 623 } 624 625 void 626 random_harvest_deregister_source(enum random_entropy_source source) 627 { 628 629 hc_source_mask &= ~(1 << source); 630 } 631 632 void 633 random_source_register(struct random_source *rsource) 634 { 635 struct random_sources *rrs; 636 637 KASSERT(rsource != NULL, ("invalid input to %s", __func__)); 638 639 rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK); 640 rrs->rrs_source = rsource; 641 642 random_harvest_register_source(rsource->rs_source); 643 644 printf("random: registering fast source %s\n", rsource->rs_ident); 645 646 RANDOM_HARVEST_LOCK(); 647 CK_LIST_INSERT_HEAD(&source_list, rrs, rrs_entries); 648 RANDOM_HARVEST_UNLOCK(); 649 } 650 651 void 652 random_source_deregister(struct random_source *rsource) 653 { 654 struct random_sources *rrs = NULL; 655 656 KASSERT(rsource != NULL, ("invalid input to %s", __func__)); 657 658 random_harvest_deregister_source(rsource->rs_source); 659 660 RANDOM_HARVEST_LOCK(); 661 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) 662 if (rrs->rrs_source == rsource) { 663 CK_LIST_REMOVE(rrs, rrs_entries); 664 break; 665 } 666 RANDOM_HARVEST_UNLOCK(); 667 668 if (rrs != NULL && epoch_inited) 669 epoch_wait_preempt(rs_epoch); 670 free(rrs, M_ENTROPY); 671 } 672 673 static int 674 random_source_handler(SYSCTL_HANDLER_ARGS) 675 { 676 struct epoch_tracker et; 677 struct random_sources *rrs; 678 struct sbuf sbuf; 679 int error, count; 680 681 error = sysctl_wire_old_buffer(req, 0); 682 if (error != 0) 683 return (error); 684 685 sbuf_new_for_sysctl(&sbuf, NULL, 64, req); 686 count = 0; 687 epoch_enter_preempt(rs_epoch, &et); 688 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) { 689 sbuf_cat(&sbuf, (count++ ? ",'" : "'")); 690 sbuf_cat(&sbuf, rrs->rrs_source->rs_ident); 691 sbuf_cat(&sbuf, "'"); 692 } 693 epoch_exit_preempt(rs_epoch, &et); 694 error = sbuf_finish(&sbuf); 695 sbuf_delete(&sbuf); 696 return (error); 697 } 698 SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 699 NULL, 0, random_source_handler, "A", 700 "List of active fast entropy sources."); 701 702 MODULE_VERSION(random_harvestq, 1); 703