xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_int.c (revision b0d29bc47dba79f6f38e67eabadfb4b32ffd9390)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * File : ecore_int.c
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "bcm_osal.h"
34 #include "ecore.h"
35 #include "ecore_spq.h"
36 #include "reg_addr.h"
37 #include "ecore_gtt_reg_addr.h"
38 #include "ecore_init_ops.h"
39 #include "ecore_rt_defs.h"
40 #include "ecore_int.h"
41 #include "reg_addr.h"
42 #include "ecore_hw.h"
43 #include "ecore_sriov.h"
44 #include "ecore_vf.h"
45 #include "ecore_hw_defs.h"
46 #include "ecore_hsi_common.h"
47 #include "ecore_mcp.h"
48 #include "ecore_dbg_fw_funcs.h"
49 
50 #ifdef DIAG
51 /* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
52  * and so the functions are lacking ecore prefix.
53  * If there would be other clients needing this [or if the content that isn't
54  * really optional there would increase], we'll need to re-think this.
55  */
56 enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
57 							  struct ecore_ptt *ptt,
58 							  enum block_id block,
59 							  enum dbg_attn_type attn_type,
60 							  bool clear_status,
61 							  struct dbg_attn_block_result *results);
62 
63 enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
64 							   struct dbg_attn_block_result *results);
65 
66 const char* dbg_get_status_str(enum dbg_status status);
67 
68 #define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
69 	dbg_read_attn(hwfn, ptt, id, type, clear, results)
70 #define ecore_dbg_parse_attn(hwfn, results) \
71 	dbg_parse_attn(hwfn, results)
72 #define ecore_dbg_get_status_str(status) \
73 	dbg_get_status_str(status)
74 #endif
75 
76 struct ecore_pi_info {
77 	ecore_int_comp_cb_t comp_cb;
78 	void *cookie; /* Will be sent to the completion callback function */
79 };
80 
81 struct ecore_sb_sp_info {
82 	struct ecore_sb_info sb_info;
83 	/* per protocol index data */
84 	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
85 };
86 
87 enum ecore_attention_type {
88 	ECORE_ATTN_TYPE_ATTN,
89 	ECORE_ATTN_TYPE_PARITY,
90 };
91 
92 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
93 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
94 
95 struct aeu_invert_reg_bit {
96 	char bit_name[30];
97 
98 #define ATTENTION_PARITY		(1 << 0)
99 
100 #define ATTENTION_LENGTH_MASK		(0x00000ff0)
101 #define ATTENTION_LENGTH_SHIFT		(4)
102 #define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
103 					 ATTENTION_LENGTH_SHIFT)
104 #define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
105 #define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
106 #define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
107 					 ATTENTION_PARITY)
108 
109 /* Multiple bits start with this offset */
110 #define ATTENTION_OFFSET_MASK		(0x000ff000)
111 #define ATTENTION_OFFSET_SHIFT		(12)
112 
113 #define ATTENTION_BB_MASK		(0x00700000)
114 #define ATTENTION_BB_SHIFT		(20)
115 #define ATTENTION_BB(value)		(value << ATTENTION_BB_SHIFT)
116 #define ATTENTION_BB_DIFFERENT		(1 << 23)
117 
118 #define	ATTENTION_CLEAR_ENABLE		(1 << 28)
119 	unsigned int flags;
120 
121 	/* Callback to call if attention will be triggered */
122 	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
123 
124 	enum block_id block_index;
125 };
126 
127 struct aeu_invert_reg {
128 	struct aeu_invert_reg_bit bits[32];
129 };
130 
131 #define MAX_ATTN_GRPS		(8)
132 #define NUM_ATTN_REGS		(9)
133 
134 static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
135 {
136 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
137 
138 	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
139 		tmp);
140 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
141 		 0xffffffff);
142 
143 	return ECORE_SUCCESS;
144 }
145 
146 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
147 #define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
148 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
149 #define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
150 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
151 #define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
152 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
153 #define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
154 #define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
155 #define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
156 #define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
157 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
158 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK 	(0x1)
159 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
160 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
161 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
162 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
163 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
164 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
165 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
166 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
167 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
168 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
169 #define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
170 static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
171 {
172 	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
173 
174 	/* Disabled VF access */
175 	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
176 		u32 addr, data;
177 
178 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179 				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
180 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
181 				PSWHST_REG_VF_DISABLED_ERROR_DATA);
182 		DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
183 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
184 			     ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
185 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
186 			     ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
187 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
188 			     ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
189 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
190 			     ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
191 			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
192 			     ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
193 			addr);
194 	}
195 
196 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
197 		       PSWHST_REG_INCORRECT_ACCESS_VALID);
198 	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
199 		u32 addr, data, length;
200 
201 		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202 				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
203 		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204 				PSWHST_REG_INCORRECT_ACCESS_DATA);
205 		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
206 				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
207 
208 		DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
209 			addr, length,
210 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
211 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
212 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
213 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
214 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
215 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
216 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
217 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
218 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
219 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
220 			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
221 			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
222 			data);
223 	}
224 
225 	/* TODO - We know 'some' of these are legal due to virtualization,
226 	 * but is it true for all of them?
227 	 */
228 	return ECORE_SUCCESS;
229 }
230 
231 #define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
232 #define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
233 #define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
234 #define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
235 #define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
236 #define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
237 #define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
238 #define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
239 #define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
240 #define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
241 #define ECORE_GRC_ATTENTION_PRIV_VF		(0)
242 static const char* grc_timeout_attn_master_to_str(u8 master)
243 {
244 	switch(master) {
245 	case 1: return "PXP";
246 	case 2: return "MCP";
247 	case 3: return "MSDM";
248 	case 4: return "PSDM";
249 	case 5: return "YSDM";
250 	case 6: return "USDM";
251 	case 7: return "TSDM";
252 	case 8: return "XSDM";
253 	case 9: return "DBU";
254 	case 10: return "DMAE";
255 	default:
256 		return "Unkown";
257 	}
258 }
259 
260 static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
261 {
262 	u32 tmp, tmp2;
263 
264 	/* We've already cleared the timeout interrupt register, so we learn
265 	 * of interrupts via the validity register
266 	 */
267 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
269 	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
270 		goto out;
271 
272 	/* Read the GRC timeout information */
273 	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274 		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
275 	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
276 			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
277 
278 	DP_NOTICE(p_hwfn->p_dev, false,
279 		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
280 		  tmp2, tmp,
281 		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
282 						       : "Read from",
283 		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
284 		  grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
285 						 ECORE_GRC_ATTENTION_MASTER_SHIFT),
286 		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
287 		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
288 		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
289 		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
290 		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
291 		  ECORE_GRC_ATTENTION_VF_SHIFT);
292 
293 out:
294 	/* Regardles of anything else, clean the validity bit */
295 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
296 		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
297 	return ECORE_SUCCESS;
298 }
299 
300 #define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
301 #define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
302 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
303 #define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
304 #define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
305 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
306 #define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
307 #define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
308 #define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
309 #define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
310 #define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
311 #define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
312 #define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
313 
314 enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
315 						   struct ecore_ptt *p_ptt)
316 {
317 	u32 tmp;
318 
319 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
320 	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
321 		u32 addr_lo, addr_hi, details;
322 
323 		addr_lo = ecore_rd(p_hwfn, p_ptt,
324 				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
325 		addr_hi = ecore_rd(p_hwfn, p_ptt,
326 				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
327 		details = ecore_rd(p_hwfn, p_ptt,
328 				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
329 
330 		DP_NOTICE(p_hwfn, false,
331 			  "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
332 			  addr_hi, addr_lo, details,
333 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
334 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
335 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
336 			  tmp,
337 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
338 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
339 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
340 	}
341 
342 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
343 	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
344 		u32 addr_lo, addr_hi, details;
345 
346 		addr_lo = ecore_rd(p_hwfn, p_ptt,
347 				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
348 		addr_hi = ecore_rd(p_hwfn, p_ptt,
349 				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
350 		details = ecore_rd(p_hwfn, p_ptt,
351 				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
352 
353 		DP_NOTICE(p_hwfn, false,
354 			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
355 			  addr_hi, addr_lo, details,
356 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
357 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
358 			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
359 			  tmp,
360 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
361 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
362 			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
363 	}
364 
365 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
366 	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
367 		DP_NOTICE(p_hwfn, false, "ICPL eror - %08x\n", tmp);
368 
369 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
370 	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
371 		u32 addr_hi, addr_lo;
372 
373 		addr_lo = ecore_rd(p_hwfn, p_ptt,
374 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
375 		addr_hi = ecore_rd(p_hwfn, p_ptt,
376 				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
377 
378 		DP_NOTICE(p_hwfn, false,
379 			  "ICPL eror - %08x [Address %08x:%08x]\n",
380 			  tmp, addr_hi, addr_lo);
381 	}
382 
383 	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
384 	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
385 		u32 addr_hi, addr_lo, details;
386 
387 		addr_lo = ecore_rd(p_hwfn, p_ptt,
388 				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
389 		addr_hi = ecore_rd(p_hwfn, p_ptt,
390 				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
391 		details = ecore_rd(p_hwfn, p_ptt,
392 				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
393 
394 		DP_NOTICE(p_hwfn, false,
395 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
396 			  details, tmp, addr_hi, addr_lo);
397 	}
398 
399 	/* Clear the indications */
400 	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
401 
402 	return ECORE_SUCCESS;
403 }
404 
405 static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
406 {
407 	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
408 }
409 
410 static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
411 {
412 	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
413 
414 	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
415 
416 	return ECORE_INVAL;
417 }
418 
419 static enum _ecore_status_t
420 ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
421 {
422 	DP_INFO(p_hwfn, "General attention 35!\n");
423 
424 	return ECORE_SUCCESS;
425 }
426 
427 #define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
428 #define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
429 #define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
430 #define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
431 #define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
432 
433 #define ECORE_DB_REC_COUNT			10
434 #define ECORE_DB_REC_INTERVAL			100
435 
436 /* assumes sticky overflow indication was set for this PF */
437 static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
438 					      struct ecore_ptt *p_ptt)
439 {
440 	u8 count = ECORE_DB_REC_COUNT;
441 	u32 usage = 1;
442 
443 	/* wait for usage to zero or count to run out. This is necessary since
444 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
445 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
446 	 * half an EDPM in the queue and other half dropped. Another EDPM
447 	 * doorbell to the same address (from doorbell recovery mechanism or
448 	 * from the doorbelling entity) could have first half dropped and second
449 	 * half interperted as continuation of the first. To prevent such
450 	 * malformed doorbells from reaching the device, flush the queue before
451 	 * releaseing the overflow sticky indication.
452 	 */
453 	while (count-- && usage) {
454 		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
455 		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
456 	}
457 
458 	/* should have been depleted by now */
459 	if (usage) {
460 		DP_NOTICE(p_hwfn->p_dev, false,
461 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
462 			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
463 		return ECORE_TIMEOUT;
464 	}
465 
466 	/* flush any pedning (e)dpm as they may never arrive */
467 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
468 
469 	/* release overflow sticky indication (stop silently dropping everything) */
470 	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
471 
472 	/* repeat all last doorbells (doorbell drop recovery) */
473 	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
474 
475 	return ECORE_SUCCESS;
476 }
477 
478 static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
479 {
480 	u32 int_sts, first_drop_reason, details, address, overflow,
481 		all_drops_reason;
482 	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
483 	enum _ecore_status_t rc;
484 
485 	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
486 	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
487 		  int_sts);
488 
489 	/* int_sts may be zero since all PFs were interrupted for doorbell
490 	 * overflow but another one already handled it. Can abort here. If
491 	 * This PF also requires overflow recovery we will be interrupted again.
492 	 * The masked almost full indication may also be set. Ignoring.
493 	 */
494 	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
495 		return ECORE_SUCCESS;
496 
497 	/* check if db_drop or overflow happened */
498 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
499 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
500 
501 		/* obtain data about db drop/overflow */
502 		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
503 				  DORQ_REG_DB_DROP_REASON) &
504 				  ECORE_DORQ_ATTENTION_REASON_MASK;
505 		details = ecore_rd(p_hwfn, p_ptt,
506 				   DORQ_REG_DB_DROP_DETAILS);
507 		address = ecore_rd(p_hwfn, p_ptt,
508 				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
509 		overflow = ecore_rd(p_hwfn, p_ptt,
510 				    DORQ_REG_PF_OVFL_STICKY);
511 		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
512 					    DORQ_REG_DB_DROP_DETAILS_REASON);
513 
514 		/* log info */
515 		DP_NOTICE(p_hwfn->p_dev, false,
516 			  "Doorbell drop occurred\n"
517 			  "Address\t\t0x%08x\t(second BAR address)\n"
518 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
519 			  "Size\t\t0x%04x\t\t(in bytes)\n"
520 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
521 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
522 			  "Overflow\t0x%x\t\t(a per PF indication)\n",
523 			  address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
524 			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
525 			  first_drop_reason, all_drops_reason, overflow);
526 
527 		/* if this PF caused overflow, initiate recovery */
528 		if (overflow) {
529 			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
530 			if (rc != ECORE_SUCCESS)
531 				return rc;
532 		}
533 
534 		/* clear the doorbell drop details and prepare for next drop */
535 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
536 
537 		/* mark interrupt as handeld (note: even if drop was due to a diffrent
538 		 * reason than overflow we mark as handled)
539 		 */
540 		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
541 			 DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
542 
543 		/* if there are no indications otherthan drop indications, success */
544 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
545 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
546 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
547 			return ECORE_SUCCESS;
548 	}
549 
550 	/* some other indication was present - non recoverable */
551 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
552 
553 	return ECORE_INVAL;
554 }
555 
556 static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
557 {
558 #ifndef ASIC_ONLY
559 	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
560 		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
561 				   TM_REG_INT_STS_1);
562 
563 		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
564 			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
565 			return ECORE_INVAL;
566 
567 		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
568 			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
569 			DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
570 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
571 		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
572 		       TM_REG_INT_MASK_1_PEND_TASK_SCAN;
573 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
574 
575 		return ECORE_SUCCESS;
576 	}
577 #endif
578 
579 	return ECORE_INVAL;
580 }
581 
582 /* Instead of major changes to the data-structure, we have a some 'special'
583  * identifiers for sources that changed meaning between adapters.
584  */
585 enum aeu_invert_reg_special_type {
586 	AEU_INVERT_REG_SPECIAL_CNIG_0,
587 	AEU_INVERT_REG_SPECIAL_CNIG_1,
588 	AEU_INVERT_REG_SPECIAL_CNIG_2,
589 	AEU_INVERT_REG_SPECIAL_CNIG_3,
590 	AEU_INVERT_REG_SPECIAL_MAX,
591 };
592 
593 static struct aeu_invert_reg_bit
594 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
595 	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596 	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
597 	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
598 	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
599 };
600 
601 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
602 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
603 {
604 	{
605 		{	/* After Invert 1 */
606 			{"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
607 		}
608 	},
609 
610 	{
611 		{	/* After Invert 2 */
612 			{"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613 			{"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614 			{"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
615 			{"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616 			{"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
617 			{"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
618 			{"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
619 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
620 			{"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
621 		}
622 	},
623 
624 	{
625 		{	/* After Invert 3 */
626 			{"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
627 		}
628 	},
629 
630 	{
631 		{	/* After Invert 4 */
632 			{"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
633 			{"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
634 			{"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
635 			{"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
636 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
637 			{"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
638 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
639 			{"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
640 				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
641 			{"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
642 					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
643 			{"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
644 			{"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
645 			{"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
646 			{"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
647 			{"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
648 			{"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
649 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
650 			{"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
651 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
652 			{"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
653 			{"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
654 			{"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
655 		}
656 	},
657 
658 	{
659 		{	/* After Invert 5 */
660 			{"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
661 			{"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
662 			{"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
663 			{"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
664 			{"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
665 			{"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
666 			{"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
667 			{"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
668 			{"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
669 			{"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
670 			{"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
671 			{"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
672 			{"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
673 			{"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
674 			{"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
675 			{"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
676 		}
677 	},
678 
679 	{
680 		{	/* After Invert 6 */
681 			{"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
682 			{"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
683 			{"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
684 			{"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
685 			{"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
686 			{"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
687 			{"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
688 			{"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
689 			{"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
690 			{"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
691 			{"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
692 			{"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
693 			{"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
694 			{"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
695 			{"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
696 			{"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
697 		}
698 	},
699 
700 	{
701 		{	/* After Invert 7 */
702 			{"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
703 			{"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
704 			{"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
705 			{"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
706 			{"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
707 			{"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
708 			{"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
709 			{"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
710 			{"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
711 			{"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
712 			{"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
713 			{"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
714 			{"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
715 			{"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
716 			{"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
717 			{"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
718 			{"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
719 		}
720 	},
721 
722 	{
723 		{	/* After Invert 8 */
724 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
725 			{"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
726 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
727 			{"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
728 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
729 			{"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
730 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
731 			{"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
732 			{"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
733 			{"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
734 			{"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
735 			{"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
736 			{"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
737 			{"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
738 			{"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
739 			{"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
740 			{"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
741 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
742 			{"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
743 			{"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
744 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
745 		}
746 	},
747 
748 	{
749 		{	/* After Invert 9 */
750 			{"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
752 			{"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
753 			{"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
754 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
755 		}
756 	},
757 
758 };
759 
760 static struct aeu_invert_reg_bit *
761 ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
762 			struct aeu_invert_reg_bit *p_bit)
763 {
764 	if (!ECORE_IS_BB(p_hwfn->p_dev))
765 		return p_bit;
766 
767 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
768 		return p_bit;
769 
770 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
771 				  ATTENTION_BB_SHIFT];
772 }
773 
774 static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
775 				     struct aeu_invert_reg_bit *p_bit)
776 {
777 	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
778 		  ATTENTION_PARITY);
779 }
780 
781 #define ATTN_STATE_BITS		(0xfff)
782 #define ATTN_BITS_MASKABLE	(0x3ff)
783 struct ecore_sb_attn_info {
784 	/* Virtual & Physical address of the SB */
785 	struct atten_status_block	*sb_attn;
786 	dma_addr_t			sb_phys;
787 
788 	/* Last seen running index */
789 	u16				index;
790 
791 	/* A mask of the AEU bits resulting in a parity error */
792 	u32				parity_mask[NUM_ATTN_REGS];
793 
794 	/* A pointer to the attention description structure */
795 	struct aeu_invert_reg		*p_aeu_desc;
796 
797 	/* Previously asserted attentions, which are still unasserted */
798 	u16				known_attn;
799 
800 	/* Cleanup address for the link's general hw attention */
801 	u32				mfw_attn_addr;
802 };
803 
804 static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
805 				 struct ecore_sb_attn_info *p_sb_desc)
806 {
807 	u16 rc = 0, index;
808 
809 	OSAL_MMIOWB(p_hwfn->p_dev);
810 
811 	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
812 	if (p_sb_desc->index != index) {
813 		p_sb_desc->index = index;
814 		rc = ECORE_SB_ATT_IDX;
815 	}
816 
817 	OSAL_MMIOWB(p_hwfn->p_dev);
818 
819 	return rc;
820 }
821 
822 /**
823  * @brief ecore_int_assertion - handles asserted attention bits
824  *
825  * @param p_hwfn
826  * @param asserted_bits newly asserted bits
827  * @return enum _ecore_status_t
828  */
829 static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
830 						u16 asserted_bits)
831 {
832 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
833 	u32 igu_mask;
834 
835 	/* Mask the source of the attention in the IGU */
836 	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
837 			    IGU_REG_ATTENTION_ENABLE);
838 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
839 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
840 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
841 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
842 
843 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
844 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
845 		   sb_attn_sw->known_attn,
846 		   sb_attn_sw->known_attn | asserted_bits);
847 	sb_attn_sw->known_attn |= asserted_bits;
848 
849 	/* Handle MCP events */
850 	if (asserted_bits & 0x100) {
851 		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
852 		/* Clean the MCP attention */
853 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
854 			 sb_attn_sw->mfw_attn_addr, 0);
855 	}
856 
857 	/* FIXME - this will change once we'll have GOOD gtt definitions */
858 	DIRECT_REG_WR(p_hwfn,
859 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
860 		      GTT_BAR0_MAP_REG_IGU_CMD +
861 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
862 			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
863 
864 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
865 		   asserted_bits);
866 
867 	return ECORE_SUCCESS;
868 }
869 
870 static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
871 				 enum block_id id, enum dbg_attn_type type,
872 				 bool b_clear)
873 {
874 	struct dbg_attn_block_result attn_results;
875 	enum dbg_status status;
876 
877 	OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
878 
879 	status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
880 				     b_clear, &attn_results);
881 #ifdef ATTN_DESC
882 	if (status != DBG_STATUS_OK)
883 		DP_NOTICE(p_hwfn, true,
884 			  "Failed to parse attention information [status: %s]\n",
885 			  ecore_dbg_get_status_str(status));
886 	else
887 		ecore_dbg_parse_attn(p_hwfn, &attn_results);
888 #else
889 	if (status != DBG_STATUS_OK)
890 		DP_NOTICE(p_hwfn, true,
891 			  "Failed to parse attention information [status: %d]\n",
892 			  status);
893 	else
894 		ecore_dbg_print_attn(p_hwfn, &attn_results);
895 #endif
896 }
897 
898 /**
899  * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
900  * cause of the attention
901  *
902  * @param p_hwfn
903  * @param p_aeu - descriptor of an AEU bit which caused the attention
904  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
905  *  this bit to this group.
906  * @param bit_index - index of this bit in the aeu_en_reg
907  *
908  * @return enum _ecore_status_t
909  */
910 static enum _ecore_status_t
911 ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
912 			      struct aeu_invert_reg_bit *p_aeu,
913 			      u32 aeu_en_reg,
914 			      const char *p_bit_name,
915 			      u32 bitmask)
916 {
917 	enum _ecore_status_t rc = ECORE_INVAL;
918 	bool b_fatal = false;
919 
920 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
921 		p_bit_name, bitmask);
922 
923 	/* Call callback before clearing the interrupt status */
924 	if (p_aeu->cb) {
925 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
926 			p_bit_name);
927 		rc = p_aeu->cb(p_hwfn);
928 	}
929 
930 	if (rc != ECORE_SUCCESS)
931 		b_fatal = true;
932 
933 	/* Print HW block interrupt registers */
934 	if (p_aeu->block_index != MAX_BLOCK_ID)
935 		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
936 				     ATTN_TYPE_INTERRUPT, !b_fatal);
937 
938 	/* Reach assertion if attention is fatal */
939 	if (b_fatal) {
940 		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
941 			  p_bit_name);
942 
943 		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
944 	}
945 
946 	/* Prevent this Attention from being asserted in the future */
947 	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
948 	    p_hwfn->p_dev->attn_clr_en) {
949 		u32 val;
950 		u32 mask = ~bitmask;
951 		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
952 		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
953 		DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
954 			p_bit_name);
955 	}
956 
957 	return rc;
958 }
959 
960 /**
961  * @brief ecore_int_deassertion_parity - handle a single parity AEU source
962  *
963  * @param p_hwfn
964  * @param p_aeu - descriptor of an AEU bit which caused the parity
965  * @param aeu_en_reg - address of the AEU enable register
966  * @param bit_index
967  */
968 static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
969 					 struct aeu_invert_reg_bit *p_aeu,
970 					 u32 aeu_en_reg, u8 bit_index)
971 {
972 	u32 block_id = p_aeu->block_index, mask, val;
973 
974 	DP_NOTICE(p_hwfn->p_dev, false,
975 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
976 		  p_aeu->bit_name, aeu_en_reg, bit_index);
977 
978 	if (block_id != MAX_BLOCK_ID) {
979 		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
980 
981 		/* In A0, there's a single parity bit for several blocks */
982 		if (block_id == BLOCK_BTB) {
983 			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
984 					     ATTN_TYPE_PARITY, false);
985 			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
986 					     ATTN_TYPE_PARITY, false);
987 		}
988 	}
989 
990 	/* Prevent this parity error from being re-asserted */
991 	mask = ~(0x1 << bit_index);
992 	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
993 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
994 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
995 		p_aeu->bit_name);
996 }
997 
998 /**
999  * @brief - handles deassertion of previously asserted attentions.
1000  *
1001  * @param p_hwfn
1002  * @param deasserted_bits - newly deasserted bits
1003  * @return enum _ecore_status_t
1004  *
1005  */
1006 static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1007 						  u16 deasserted_bits)
1008 {
1009 	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1010 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1011 	u8 i, j, k, bit_idx;
1012 	enum _ecore_status_t rc = ECORE_SUCCESS;
1013 
1014 	/* Read the attention registers in the AEU */
1015 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1016 		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1017 					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1018 					  i * 0x4);
1019 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1020 			   "Deasserted bits [%d]: %08x\n",
1021 			   i, aeu_inv_arr[i]);
1022 	}
1023 
1024 	/* Handle parity attentions first */
1025 	for (i = 0; i < NUM_ATTN_REGS; i++)
1026 	{
1027 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1028 		u32 parities;
1029 
1030 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1031 		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1032 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1033 
1034 		/* Skip register in which no parity bit is currently set */
1035 		if (!parities)
1036 			continue;
1037 
1038 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1039 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1040 
1041 			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1042 			    !!(parities & (1 << bit_idx)))
1043 				ecore_int_deassertion_parity(p_hwfn, p_bit,
1044 							     aeu_en, bit_idx);
1045 
1046 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1047 		}
1048 	}
1049 
1050 	/* Find non-parity cause for attention and act */
1051 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1052 		struct aeu_invert_reg_bit *p_aeu;
1053 
1054 		/* Handle only groups whose attention is currently deasserted */
1055 		if (!(deasserted_bits & (1 << k)))
1056 			continue;
1057 
1058 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1059 			u32 bits;
1060 
1061 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1062 				 i * sizeof(u32) +
1063 				 k * sizeof(u32) * NUM_ATTN_REGS;
1064 			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1065 			bits = aeu_inv_arr[i] & en;
1066 
1067 			/* Skip if no bit from this group is currently set */
1068 			if (!bits)
1069 				continue;
1070 
1071 			/* Find all set bits from current register which belong
1072 			 * to current group, making them responsible for the
1073 			 * previous assertion.
1074 			 */
1075 			for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1076 			{
1077 				long unsigned int bitmask;
1078 				u8 bit, bit_len;
1079 
1080 				/* Need to account bits with changed meaning */
1081 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1082 				p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1083 
1084 				bit = bit_idx;
1085 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1086 				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1087 					/* Skip Parity */
1088 					bit++;
1089 					bit_len--;
1090 				}
1091 
1092 				/* Find the bits relating to HW-block, then
1093 				 * shift so they'll become LSB.
1094 				 */
1095 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1096 				bitmask >>= bit;
1097 
1098 				if (bitmask) {
1099 					u32 flags = p_aeu->flags;
1100 					char bit_name[30];
1101 					u8 num;
1102 
1103 					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1104 								bit_len);
1105 
1106 					/* Some bits represent more than a
1107 					 * a single interrupt. Correctly print
1108 					 * their name.
1109 					 */
1110 					if (ATTENTION_LENGTH(flags) > 2 ||
1111 					    ((flags & ATTENTION_PAR_INT) &&
1112 					    ATTENTION_LENGTH(flags) > 1))
1113 						OSAL_SNPRINTF(bit_name, 30,
1114 							      p_aeu->bit_name,
1115 							      num);
1116 					else
1117 						OSAL_STRNCPY(bit_name,
1118 							     p_aeu->bit_name,
1119 							     30);
1120 
1121 					/* We now need to pass bitmask in its
1122 					 * correct position.
1123 					 */
1124 					bitmask <<= bit;
1125 
1126 					/* Handle source of the attention */
1127 					ecore_int_deassertion_aeu_bit(p_hwfn,
1128 								      p_aeu,
1129 								      aeu_en,
1130 								      bit_name,
1131 								      bitmask);
1132 				}
1133 
1134 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1135 			}
1136 		}
1137 	}
1138 
1139 	/* Clear IGU indication for the deasserted bits */
1140 	/* FIXME - this will change once we'll have GOOD gtt definitions */
1141 	DIRECT_REG_WR(p_hwfn,
1142 		      (u8 OSAL_IOMEM*)p_hwfn->regview +
1143 				      GTT_BAR0_MAP_REG_IGU_CMD +
1144 				      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1145 					IGU_CMD_INT_ACK_BASE) << 3),
1146 		      ~((u32)deasserted_bits));
1147 
1148 	/* Unmask deasserted attentions in IGU */
1149 	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1150 			    IGU_REG_ATTENTION_ENABLE);
1151 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1152 	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1153 
1154 	/* Clear deassertion from inner state */
1155 	sb_attn_sw->known_attn &= ~deasserted_bits;
1156 
1157 	return rc;
1158 }
1159 
1160 static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1161 {
1162 	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1163 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1164 	u16 index = 0, asserted_bits, deasserted_bits;
1165 	u32 attn_bits = 0, attn_acks = 0;
1166 	enum _ecore_status_t rc = ECORE_SUCCESS;
1167 
1168 	/* Read current attention bits/acks - safeguard against attentions
1169 	 * by guaranting work on a synchronized timeframe
1170 	 */
1171 	do {
1172 		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1173 		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1174 		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1175 	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1176 	p_sb_attn->sb_index = index;
1177 
1178 	/* Attention / Deassertion are meaningful (and in correct state)
1179 	 * only when they differ and consistent with known state - deassertion
1180 	 * when previous attention & current ack, and assertion when current
1181 	 * attention with no previous attention
1182 	 */
1183 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1184 			~p_sb_attn_sw->known_attn;
1185 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1186 			  p_sb_attn_sw->known_attn;
1187 
1188 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1189 		DP_INFO(p_hwfn,
1190 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1191 			index, attn_bits, attn_acks, asserted_bits,
1192 			deasserted_bits, p_sb_attn_sw->known_attn);
1193 	else if (asserted_bits == 0x100)
1194 		DP_INFO(p_hwfn,
1195 			"MFW indication via attention\n");
1196 	else
1197 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1198 			   "MFW indication [deassertion]\n");
1199 
1200 	if (asserted_bits) {
1201 		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1202 		if (rc)
1203 			return rc;
1204 	}
1205 
1206 	if (deasserted_bits)
1207 		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1208 
1209 	return rc;
1210 }
1211 
1212 static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1213 			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1214 {
1215 	struct igu_prod_cons_update igu_ack = { 0 };
1216 
1217 	igu_ack.sb_id_and_flags =
1218 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1219 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1220 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1221 		 (IGU_SEG_ACCESS_ATTN <<
1222 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1223 
1224 	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1225 
1226 	/* Both segments (interrupts & acks) are written to same place address;
1227 	 * Need to guarantee all commands will be received (in-order) by HW.
1228 	 */
1229 	OSAL_MMIOWB(p_hwfn->p_dev);
1230 	OSAL_BARRIER(p_hwfn->p_dev);
1231 }
1232 
1233 void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1234 {
1235 	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1236 	struct ecore_pi_info *pi_info = OSAL_NULL;
1237 	struct ecore_sb_attn_info *sb_attn;
1238 	struct ecore_sb_info *sb_info;
1239 	int arr_size;
1240 	u16 rc = 0;
1241 
1242 	if (!p_hwfn)
1243 		return;
1244 
1245 	if (!p_hwfn->p_sp_sb) {
1246 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1247 		return;
1248 	}
1249 
1250 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1251 	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1252 	if (!sb_info) {
1253 		DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1254 		return;
1255 	}
1256 
1257 	if (!p_hwfn->p_sb_attn) {
1258 		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1259 		return;
1260 	}
1261 	sb_attn =  p_hwfn->p_sb_attn;
1262 
1263 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1264 		   p_hwfn, p_hwfn->my_id);
1265 
1266 	/* Disable ack for def status block. Required both for msix +
1267 	 * inta in non-mask mode, in inta does no harm.
1268 	 */
1269 	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1270 
1271 	/* Gather Interrupts/Attentions information */
1272 	if (!sb_info->sb_virt) {
1273 		DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1274 	} else {
1275 		u32 tmp_index = sb_info->sb_ack;
1276 		rc = ecore_sb_update_sb_idx(sb_info);
1277 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1278 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1279 			   tmp_index, sb_info->sb_ack);
1280 	}
1281 
1282 	if (!sb_attn || !sb_attn->sb_attn) {
1283 		DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1284 	} else {
1285 		u16 tmp_index = sb_attn->index;
1286 
1287 		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1288 		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1289 			   "Attention indices: 0x%08x --> 0x%08x\n",
1290 			   tmp_index, sb_attn->index);
1291 	}
1292 
1293 	/* Check if we expect interrupts at this time. if not just ack them */
1294 	if (!(rc & ECORE_SB_EVENT_MASK)) {
1295 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1296 		return;
1297 	}
1298 
1299 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1300 	if (!p_hwfn->p_dpc_ptt) {
1301 		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1302 		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1303 		return;
1304 	}
1305 
1306 	if (rc & ECORE_SB_ATT_IDX)
1307 		ecore_int_attentions(p_hwfn);
1308 
1309 	if (rc & ECORE_SB_IDX) {
1310 		int pi;
1311 
1312 		/* Since we only looked at the SB index, it's possible more
1313 		 * than a single protocol-index on the SB incremented.
1314 		 * Iterate over all configured protocol indices and check
1315 		 * whether something happened for each.
1316 		 */
1317 		for (pi = 0; pi < arr_size; pi++) {
1318 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1319 			if (pi_info->comp_cb != OSAL_NULL)
1320 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1321 		}
1322 	}
1323 
1324 	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1325 		/* This should be done before the interrupts are enabled,
1326 		 * since otherwise a new attention will be generated.
1327 		 */
1328 		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1329 	}
1330 
1331 	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1332 }
1333 
1334 static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1335 {
1336 	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1337 
1338 	if (!p_sb)
1339 		return;
1340 
1341 	if (p_sb->sb_attn) {
1342 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1343 				       p_sb->sb_phys,
1344 				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1345 	}
1346 
1347 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1348 	p_hwfn->p_sb_attn = OSAL_NULL;
1349 }
1350 
1351 static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1352 				    struct ecore_ptt *p_ptt)
1353 {
1354 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1355 
1356 	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1357 
1358 	sb_info->index = 0;
1359 	sb_info->known_attn = 0;
1360 
1361 	/* Configure Attention Status Block in IGU */
1362 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1363 		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1364 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1365 		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1366 }
1367 
1368 static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1369 				   struct ecore_ptt *p_ptt,
1370 				   void *sb_virt_addr,
1371 				   dma_addr_t sb_phy_addr)
1372 {
1373 	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1374 	int i, j, k;
1375 
1376 	sb_info->sb_attn = sb_virt_addr;
1377 	sb_info->sb_phys = sb_phy_addr;
1378 
1379 	/* Set the pointer to the AEU descriptors */
1380 	sb_info->p_aeu_desc = aeu_descs;
1381 
1382 	/* Calculate Parity Masks */
1383 	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1384 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1385 		/* j is array index, k is bit index */
1386 		for (j = 0, k = 0; k < 32; j++) {
1387 			struct aeu_invert_reg_bit *p_aeu;
1388 
1389 			p_aeu = &aeu_descs[i].bits[j];
1390 			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1391 				sb_info->parity_mask[i] |= 1 << k;
1392 
1393 			k += ATTENTION_LENGTH(p_aeu->flags);
1394 		}
1395 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1396 			   "Attn Mask [Reg %d]: 0x%08x\n",
1397 			   i, sb_info->parity_mask[i]);
1398 	}
1399 
1400 	/* Set the address of cleanup for the mcp attention */
1401 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1402 				 MISC_REG_AEU_GENERAL_ATTN_0;
1403 
1404 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1405 }
1406 
1407 static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1408 						    struct ecore_ptt *p_ptt)
1409 {
1410 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1411 	struct ecore_sb_attn_info *p_sb;
1412 	dma_addr_t p_phys = 0;
1413 	void *p_virt;
1414 
1415 	/* SB struct */
1416 	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1417 	if (!p_sb) {
1418 		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1419 		return ECORE_NOMEM;
1420 	}
1421 
1422 	/* SB ring  */
1423 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1424 					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1425 	if (!p_virt) {
1426 		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1427 		OSAL_FREE(p_dev, p_sb);
1428 		return ECORE_NOMEM;
1429 	}
1430 
1431 	/* Attention setup */
1432 	p_hwfn->p_sb_attn = p_sb;
1433 	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1434 
1435 	return ECORE_SUCCESS;
1436 }
1437 
1438 /* coalescing timeout = timeset << (timer_res + 1) */
1439 #define ECORE_CAU_DEF_RX_USECS 24
1440 #define ECORE_CAU_DEF_TX_USECS 48
1441 
1442 void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1443 			     struct cau_sb_entry *p_sb_entry,
1444 			     u8 pf_id, u16 vf_number, u8 vf_valid)
1445 {
1446 	struct ecore_dev *p_dev = p_hwfn->p_dev;
1447 	u32 cau_state;
1448 	u8 timer_res;
1449 
1450 	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1451 
1452 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1453 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1454 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1455 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1456 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1457 
1458 	cau_state = CAU_HC_DISABLE_STATE;
1459 
1460 	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1461 		cau_state = CAU_HC_ENABLE_STATE;
1462 		if (!p_dev->rx_coalesce_usecs)
1463 			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1464 		if (!p_dev->tx_coalesce_usecs)
1465 			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1466 	}
1467 
1468 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1469 	if (p_dev->rx_coalesce_usecs <= 0x7F)
1470 		timer_res = 0;
1471 	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1472 		timer_res = 1;
1473 	else
1474 		timer_res = 2;
1475 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1476 
1477 	if (p_dev->tx_coalesce_usecs <= 0x7F)
1478 		timer_res = 0;
1479 	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1480 		timer_res = 1;
1481 	else
1482 		timer_res = 2;
1483 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1484 
1485 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1486 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1487 }
1488 
1489 static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1490 				   struct ecore_ptt *p_ptt,
1491 				   u16 igu_sb_id, u32 pi_index,
1492 				   enum ecore_coalescing_fsm coalescing_fsm,
1493 				   u8 timeset)
1494 {
1495 	struct cau_pi_entry pi_entry;
1496 	u32 sb_offset, pi_offset;
1497 
1498 	if (IS_VF(p_hwfn->p_dev))
1499 		return;/* @@@TBD MichalK- VF CAU... */
1500 
1501 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1502 	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1503 
1504 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1505 	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1506 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1507 	else
1508 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1509 
1510 	pi_offset = sb_offset + pi_index;
1511 	if (p_hwfn->hw_init_done) {
1512 		ecore_wr(p_hwfn, p_ptt,
1513 			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1514 			 *((u32 *)&(pi_entry)));
1515 	} else {
1516 		STORE_RT_REG(p_hwfn,
1517 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1518 			     *((u32 *)&(pi_entry)));
1519 	}
1520 }
1521 
1522 void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1523 			   struct ecore_ptt *p_ptt,
1524 			   struct ecore_sb_info *p_sb, u32 pi_index,
1525 			   enum ecore_coalescing_fsm coalescing_fsm,
1526 			   u8 timeset)
1527 {
1528 	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1529 			       pi_index, coalescing_fsm, timeset);
1530 }
1531 
1532 void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1533 			   struct ecore_ptt *p_ptt,
1534 			   dma_addr_t sb_phys, u16 igu_sb_id,
1535 			   u16 vf_number, u8 vf_valid)
1536 {
1537 	struct cau_sb_entry sb_entry;
1538 
1539 	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1540 				vf_number, vf_valid);
1541 
1542 	if (p_hwfn->hw_init_done) {
1543 		/* Wide-bus, initialize via DMAE */
1544 		u64 phys_addr = (u64)sb_phys;
1545 
1546 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1547 				    CAU_REG_SB_ADDR_MEMORY +
1548 				    igu_sb_id * sizeof(u64), 2,
1549 				    OSAL_NULL /* default parameters */);
1550 		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1551 				    CAU_REG_SB_VAR_MEMORY +
1552 				    igu_sb_id * sizeof(u64), 2,
1553 				    OSAL_NULL /* default parameters */);
1554 	} else {
1555 		/* Initialize Status Block Address */
1556 		STORE_RT_REG_AGG(p_hwfn,
1557 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1558 				 sb_phys);
1559 
1560 		STORE_RT_REG_AGG(p_hwfn,
1561 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1562 				 sb_entry);
1563 	}
1564 
1565 	/* Configure pi coalescing if set */
1566 	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1567 		/* eth will open queues for all tcs, so configure all of them
1568 		 * properly, rather than just the active ones
1569 		 */
1570 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1571 
1572 		u8 timeset, timer_res;
1573 		u8 i;
1574 
1575 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1576 		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1577 			timer_res = 0;
1578 		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1579 			timer_res = 1;
1580 		else
1581 			timer_res = 2;
1582 		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1583 		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1584 				       ECORE_COAL_RX_STATE_MACHINE,
1585 				       timeset);
1586 
1587 		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1588 			timer_res = 0;
1589 		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1590 			timer_res = 1;
1591 		else
1592 			timer_res = 2;
1593 		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1594 		for (i = 0; i < num_tc; i++) {
1595 			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1596 					       igu_sb_id, TX_PI(i),
1597 					       ECORE_COAL_TX_STATE_MACHINE,
1598 					       timeset);
1599 		}
1600 	}
1601 }
1602 
1603 void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1604 			       struct ecore_ptt *p_ptt,
1605 			       struct ecore_sb_info *sb_info)
1606 {
1607 	/* zero status block and ack counter */
1608 	sb_info->sb_ack = 0;
1609 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1610 
1611 	if (IS_PF(p_hwfn->p_dev))
1612 		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1613 				      sb_info->igu_sb_id, 0, 0);
1614 }
1615 
1616 struct ecore_igu_block *
1617 ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1618 {
1619 	struct ecore_igu_block *p_block;
1620 	u16 igu_id;
1621 
1622 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1623 	     igu_id++) {
1624 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1625 
1626 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1627 		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1628 			continue;
1629 
1630 		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1631 		    b_is_pf)
1632 			return p_block;
1633 	}
1634 
1635 	return OSAL_NULL;
1636 }
1637 
1638 static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1639 				  u16 vector_id)
1640 {
1641 	struct ecore_igu_block *p_block;
1642 	u16 igu_id;
1643 
1644 	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1645 	     igu_id++) {
1646 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1647 
1648 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1649 		    !p_block->is_pf ||
1650 		    p_block->vector_number != vector_id)
1651 			continue;
1652 
1653 		return igu_id;
1654 	}
1655 
1656 	return ECORE_SB_INVALID_IDX;
1657 }
1658 
1659 u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1660 {
1661 	u16 igu_sb_id;
1662 
1663 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1664 	if (sb_id == ECORE_SP_SB_ID)
1665 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1666 	else if (IS_PF(p_hwfn->p_dev))
1667 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1668 	else
1669 		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1670 
1671 	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1672 		DP_NOTICE(p_hwfn, true,
1673 			  "Slowpath SB vector %04x doesn't exist\n",
1674 			  sb_id);
1675 	else if (sb_id == ECORE_SP_SB_ID)
1676 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1677 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1678 	else
1679 		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1680 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1681 
1682 	return igu_sb_id;
1683 }
1684 
1685 enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1686 				       struct ecore_ptt *p_ptt,
1687 				       struct ecore_sb_info *sb_info,
1688 				       void *sb_virt_addr,
1689 				       dma_addr_t sb_phy_addr,
1690 				       u16 sb_id)
1691 {
1692 	sb_info->sb_virt = sb_virt_addr;
1693 	sb_info->sb_phys = sb_phy_addr;
1694 
1695 	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1696 
1697 	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1698 		return ECORE_INVAL;
1699 
1700 	/* Let the igu info reference the client's SB info */
1701 	if (sb_id != ECORE_SP_SB_ID) {
1702 		if (IS_PF(p_hwfn->p_dev)) {
1703 			struct ecore_igu_info *p_info;
1704 			struct ecore_igu_block *p_block;
1705 
1706 			p_info = p_hwfn->hw_info.p_igu_info;
1707 			p_block = &p_info->entry[sb_info->igu_sb_id];
1708 
1709 			p_block->sb_info = sb_info;
1710 			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1711 			p_info->usage.free_cnt--;
1712 		} else {
1713 			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1714 		}
1715 	}
1716 
1717 #ifdef ECORE_CONFIG_DIRECT_HWFN
1718 	sb_info->p_hwfn = p_hwfn;
1719 #endif
1720 	sb_info->p_dev = p_hwfn->p_dev;
1721 
1722 	/* The igu address will hold the absolute address that needs to be
1723 	 * written to for a specific status block
1724 	 */
1725 	if (IS_PF(p_hwfn->p_dev)) {
1726 		sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1727 				    GTT_BAR0_MAP_REG_IGU_CMD +
1728 				    (sb_info->igu_sb_id << 3);
1729 
1730 	} else {
1731 		sb_info->igu_addr =
1732 			(u8 OSAL_IOMEM*)p_hwfn->regview +
1733 			PXP_VF_BAR0_START_IGU +
1734 			((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1735 	}
1736 
1737 	sb_info->flags |= ECORE_SB_INFO_INIT;
1738 
1739 	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1740 
1741 	return ECORE_SUCCESS;
1742 }
1743 
1744 enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1745 					  struct ecore_sb_info *sb_info,
1746 					  u16 sb_id)
1747 {
1748 	struct ecore_igu_info *p_info;
1749 	struct ecore_igu_block *p_block;
1750 
1751 	if (sb_info == OSAL_NULL)
1752 		return ECORE_SUCCESS;
1753 
1754 	/* zero status block and ack counter */
1755 	sb_info->sb_ack = 0;
1756 	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1757 
1758 	if (IS_VF(p_hwfn->p_dev)) {
1759 		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1760 		return ECORE_SUCCESS;
1761 	}
1762 
1763 	p_info = p_hwfn->hw_info.p_igu_info;
1764 	p_block = &p_info->entry[sb_info->igu_sb_id];
1765 
1766 	/* Vector 0 is reserved to Default SB */
1767 	if (p_block->vector_number == 0) {
1768 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1769 		return ECORE_INVAL;
1770 	}
1771 
1772 	/* Lose reference to client's SB info, and fix counters */
1773 	p_block->sb_info = OSAL_NULL;
1774 	p_block->status |= ECORE_IGU_STATUS_FREE;
1775 	p_info->usage.free_cnt++;
1776 
1777 	return ECORE_SUCCESS;
1778 }
1779 
1780 static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1781 {
1782 	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1783 
1784 	if (!p_sb)
1785 		return;
1786 
1787 	if (p_sb->sb_info.sb_virt) {
1788 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1789 				       p_sb->sb_info.sb_virt,
1790 				       p_sb->sb_info.sb_phys,
1791 				       SB_ALIGNED_SIZE(p_hwfn));
1792 	}
1793 
1794 	OSAL_FREE(p_hwfn->p_dev, p_sb);
1795 	p_hwfn->p_sp_sb = OSAL_NULL;
1796 }
1797 
1798 static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1799 						  struct ecore_ptt *p_ptt)
1800 {
1801 	struct ecore_sb_sp_info *p_sb;
1802 	dma_addr_t p_phys = 0;
1803 	void *p_virt;
1804 
1805 	/* SB struct */
1806 	p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1807 	if (!p_sb) {
1808 		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1809 		return ECORE_NOMEM;
1810 	}
1811 
1812 	/* SB ring  */
1813 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1814 					 &p_phys,
1815 					 SB_ALIGNED_SIZE(p_hwfn));
1816 	if (!p_virt) {
1817 		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1818 		OSAL_FREE(p_hwfn->p_dev, p_sb);
1819 		return ECORE_NOMEM;
1820 	}
1821 
1822 
1823 	/* Status Block setup */
1824 	p_hwfn->p_sp_sb = p_sb;
1825 	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1826 			  p_virt, p_phys, ECORE_SP_SB_ID);
1827 
1828 	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1829 
1830 	return ECORE_SUCCESS;
1831 }
1832 
1833 enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1834 					   ecore_int_comp_cb_t comp_cb,
1835 					   void *cookie,
1836 					   u8 *sb_idx,
1837 					   __le16 **p_fw_cons)
1838 {
1839 	struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1840 	enum _ecore_status_t rc = ECORE_NOMEM;
1841 	u8 pi;
1842 
1843 	/* Look for a free index */
1844 	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1845 		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1846 			continue;
1847 
1848 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1849 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1850 		*sb_idx = pi;
1851 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1852 		rc = ECORE_SUCCESS;
1853 		break;
1854 	}
1855 
1856 	return rc;
1857 }
1858 
1859 enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1860 					     u8 pi)
1861 {
1862 	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1863 
1864 	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1865 		return ECORE_NOMEM;
1866 
1867 	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1868 	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1869 
1870 	return ECORE_SUCCESS;
1871 }
1872 
1873 u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1874 {
1875 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1876 }
1877 
1878 void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1879 			      struct ecore_ptt	*p_ptt,
1880 			      enum ecore_int_mode int_mode)
1881 {
1882 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1883 
1884 #ifndef ASIC_ONLY
1885 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1886 		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1887 		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1888 	}
1889 #endif
1890 
1891 	p_hwfn->p_dev->int_mode = int_mode;
1892 	switch (p_hwfn->p_dev->int_mode) {
1893 	case ECORE_INT_MODE_INTA:
1894 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1895 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1896 		break;
1897 
1898 	case ECORE_INT_MODE_MSI:
1899 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1900 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1901 		break;
1902 
1903 	case ECORE_INT_MODE_MSIX:
1904 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1905 		break;
1906 	case ECORE_INT_MODE_POLL:
1907 		break;
1908 	}
1909 
1910 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1911 }
1912 
1913 static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1914 				      struct ecore_ptt *p_ptt)
1915 {
1916 #ifndef ASIC_ONLY
1917 	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1918 		DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1919 		return;
1920 	}
1921 #endif
1922 
1923 	/* Configure AEU signal change to produce attentions */
1924 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1925 	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1926 	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1927 	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1928 
1929 	/* Flush the writes to IGU */
1930 	OSAL_MMIOWB(p_hwfn->p_dev);
1931 
1932 	/* Unmask AEU signals toward IGU */
1933 	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1934 }
1935 
1936 enum _ecore_status_t
1937 ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1938 			  enum ecore_int_mode int_mode)
1939 {
1940 	enum _ecore_status_t rc = ECORE_SUCCESS;
1941 
1942 	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1943 
1944 	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1945 		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1946 		if (rc != ECORE_SUCCESS) {
1947 			DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1948 			return ECORE_NORESOURCES;
1949 		}
1950 		p_hwfn->b_int_requested = true;
1951 	}
1952 
1953 	/* Enable interrupt Generation */
1954 	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1955 
1956 	p_hwfn->b_int_enabled = 1;
1957 
1958 	return rc;
1959 }
1960 
1961 void ecore_int_igu_disable_int(struct ecore_hwfn	*p_hwfn,
1962 			       struct ecore_ptt		*p_ptt)
1963 {
1964 	p_hwfn->b_int_enabled = 0;
1965 
1966 	if (IS_VF(p_hwfn->p_dev))
1967 		return;
1968 
1969 	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1970 }
1971 
1972 #define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1973 static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1974 				     struct ecore_ptt *p_ptt,
1975 				     u16 igu_sb_id,
1976 				     bool cleanup_set,
1977 				     u16 opaque_fid)
1978 {
1979 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1980 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1981 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1982 	u8  type = 0; /* FIXME MichalS type??? */
1983 
1984 	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1985 			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1986 
1987 	/* USE Control Command Register to perform cleanup. There is an
1988 	 * option to do this using IGU bar, but then it can't be used for VFs.
1989 	 */
1990 
1991 	/* Set the data field */
1992 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1993 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1994 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1995 
1996 	/* Set the control register */
1997 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1998 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1999 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2000 
2001 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2002 
2003 	OSAL_BARRIER(p_hwfn->p_dev);
2004 
2005 	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2006 
2007 	/* Flush the write to IGU */
2008 	OSAL_MMIOWB(p_hwfn->p_dev);
2009 
2010 	/* calculate where to read the status bit from */
2011 	sb_bit = 1 << (igu_sb_id % 32);
2012 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2013 
2014 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2015 
2016 	/* Now wait for the command to complete */
2017 	while (--sleep_cnt) {
2018 		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2019 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2020 			break;
2021 		OSAL_MSLEEP(5);
2022 	}
2023 
2024 	if (!sleep_cnt)
2025 		DP_NOTICE(p_hwfn, true,
2026 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2027 			  val, igu_sb_id);
2028 }
2029 
2030 void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2031 				       struct ecore_ptt *p_ptt,
2032 				       u16 igu_sb_id, u16 opaque, bool b_set)
2033 {
2034 	struct ecore_igu_block *p_block;
2035 	int pi, i;
2036 
2037 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2038 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2039 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2040 		   igu_sb_id, p_block->function_id, p_block->is_pf,
2041 		   p_block->vector_number);
2042 
2043 	/* Set */
2044 	if (b_set)
2045 		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2046 
2047 	/* Clear */
2048 	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2049 
2050 	/* Wait for the IGU SB to cleanup */
2051 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2052 		u32 val;
2053 
2054 		val = ecore_rd(p_hwfn, p_ptt,
2055 			       IGU_REG_WRITE_DONE_PENDING +
2056 			       ((igu_sb_id / 32) * 4));
2057 		if (val & (1 << (igu_sb_id % 32)))
2058 			OSAL_UDELAY(10);
2059 		else
2060 			break;
2061 	}
2062 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2063 		DP_NOTICE(p_hwfn, true,
2064 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2065 			  igu_sb_id);
2066 
2067 	/* Clear the CAU for the SB */
2068 	for (pi = 0; pi < 12; pi++)
2069 		ecore_wr(p_hwfn, p_ptt,
2070 			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2071 }
2072 
2073 void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2074 				 struct ecore_ptt *p_ptt,
2075 				 bool b_set,
2076 				 bool b_slowpath)
2077 {
2078 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2079 	struct ecore_igu_block *p_block;
2080 	u16 igu_sb_id = 0;
2081 	u32 val = 0;
2082 
2083 	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2084 	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2085 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2086 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2087 	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2088 	/* end temporary */
2089 
2090 	for (igu_sb_id = 0;
2091 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2092 	     igu_sb_id++) {
2093 		p_block = &p_info->entry[igu_sb_id];
2094 
2095 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2096 		    !p_block->is_pf ||
2097 		    (p_block->status & ECORE_IGU_STATUS_DSB))
2098 			continue;
2099 
2100 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2101 						  p_hwfn->hw_info.opaque_fid,
2102 						  b_set);
2103 	}
2104 
2105 	if (b_slowpath)
2106 		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2107 						  p_info->igu_dsb_id,
2108 						  p_hwfn->hw_info.opaque_fid,
2109 						  b_set);
2110 }
2111 
2112 int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2113 			    struct ecore_ptt *p_ptt)
2114 {
2115 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2116 	struct ecore_igu_block *p_block;
2117 	int pf_sbs, vf_sbs;
2118 	u16 igu_sb_id;
2119 	u32 val, rval;
2120 
2121 	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2122 		/* We're using an old MFW - have to prevent any switching
2123 		 * of SBs between PF and VFs as later driver wouldn't be
2124 		 * able to tell which belongs to which.
2125 		 */
2126 		p_info->b_allow_pf_vf_change = false;
2127 	} else {
2128 		/* Use the numbers the MFW have provided -
2129 		 * don't forget MFW accounts for the default SB as well.
2130 		 */
2131 		p_info->b_allow_pf_vf_change = true;
2132 
2133 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2134 			DP_INFO(p_hwfn,
2135 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2136 				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2137 				p_info->usage.cnt);
2138 			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2139 		}
2140 
2141 		/* TODO - how do we learn about VF SBs from MFW? */
2142 		if (IS_PF_SRIOV(p_hwfn)) {
2143 			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2144 
2145 			if (vfs != p_info->usage.iov_cnt)
2146 				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2147 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2148 					   p_info->usage.iov_cnt, vfs);
2149 
2150 			/* At this point we know how many SBs we have totally
2151 			 * in IGU + number of PF SBs. So we can validate that
2152 			 * we'd have sufficient for VF.
2153 			 */
2154 			if (vfs > p_info->usage.free_cnt +
2155 				  p_info->usage.free_cnt_iov -
2156 				  p_info->usage.cnt) {
2157 				DP_NOTICE(p_hwfn, true,
2158 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2159 					  p_info->usage.free_cnt +
2160 					  p_info->usage.free_cnt_iov,
2161 					  p_info->usage.cnt, vfs);
2162 				return ECORE_INVAL;
2163 			}
2164 		}
2165 	}
2166 
2167 	/* Cap the number of VFs SBs by the number of VFs */
2168 	if (IS_PF_SRIOV(p_hwfn))
2169 		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2170 
2171 	/* Mark all SBs as free, now in the right PF/VFs division */
2172 	p_info->usage.free_cnt = p_info->usage.cnt;
2173 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2174 	p_info->usage.orig = p_info->usage.cnt;
2175 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2176 
2177 	/* We now proceed to re-configure the IGU cam to reflect the initial
2178 	 * configuration. We can start with the Default SB.
2179 	 */
2180 	pf_sbs = p_info->usage.cnt;
2181 	vf_sbs = p_info->usage.iov_cnt;
2182 
2183 	for (igu_sb_id = p_info->igu_dsb_id;
2184 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2185 	     igu_sb_id++) {
2186 		p_block = &p_info->entry[igu_sb_id];
2187 		val = 0;
2188 
2189 		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2190 			continue;
2191 
2192 		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2193 			p_block->function_id = p_hwfn->rel_pf_id;
2194 			p_block->is_pf = 1;
2195 			p_block->vector_number = 0;
2196 			p_block->status = ECORE_IGU_STATUS_VALID |
2197 					  ECORE_IGU_STATUS_PF |
2198 					  ECORE_IGU_STATUS_DSB;
2199 		} else if (pf_sbs) {
2200 			pf_sbs--;
2201 			p_block->function_id = p_hwfn->rel_pf_id;
2202 			p_block->is_pf = 1;
2203 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2204 			p_block->status = ECORE_IGU_STATUS_VALID |
2205 					  ECORE_IGU_STATUS_PF |
2206 					  ECORE_IGU_STATUS_FREE;
2207 		} else if (vf_sbs) {
2208 			p_block->function_id =
2209 				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2210 				p_info->usage.iov_cnt - vf_sbs;
2211 			p_block->is_pf = 0;
2212 			p_block->vector_number = 0;
2213 			p_block->status = ECORE_IGU_STATUS_VALID |
2214 					  ECORE_IGU_STATUS_FREE;
2215 			vf_sbs--;
2216 		} else {
2217 			p_block->function_id = 0;
2218 			p_block->is_pf = 0;
2219 			p_block->vector_number = 0;
2220 		}
2221 
2222 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2223 			  p_block->function_id);
2224 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2225 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2226 			  p_block->vector_number);
2227 
2228 		/* VF entries would be enabled when VF is initializaed */
2229 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2230 
2231 		rval = ecore_rd(p_hwfn, p_ptt,
2232 				IGU_REG_MAPPING_MEMORY +
2233 				sizeof(u32) * igu_sb_id);
2234 
2235 		if (rval != val) {
2236 			ecore_wr(p_hwfn, p_ptt,
2237 				 IGU_REG_MAPPING_MEMORY +
2238 				 sizeof(u32) * igu_sb_id,
2239 				 val);
2240 
2241 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2242 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2243 				   igu_sb_id, p_block->function_id,
2244 				   p_block->is_pf, p_block->vector_number,
2245 				   rval, val);
2246 		}
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2253 				    struct ecore_ptt *p_ptt)
2254 {
2255 	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2256 
2257 	/* Return all the usage indications to default prior to the reset;
2258 	 * The reset expects the !orig to reflect the initial status of the
2259 	 * SBs, and would re-calculate the originals based on those.
2260 	 */
2261 	p_cnt->cnt = p_cnt->orig;
2262 	p_cnt->free_cnt = p_cnt->orig;
2263 	p_cnt->iov_cnt = p_cnt->iov_orig;
2264 	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2265 	p_cnt->orig = 0;
2266 	p_cnt->iov_orig = 0;
2267 
2268 	/* TODO - we probably need to re-configure the CAU as well... */
2269 	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2270 }
2271 
2272 static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2273 					 struct ecore_ptt *p_ptt,
2274 					 u16 igu_sb_id)
2275 {
2276 	u32 val = ecore_rd(p_hwfn, p_ptt,
2277 			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2278 	struct ecore_igu_block *p_block;
2279 
2280 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2281 
2282 	/* Fill the block information */
2283 	p_block->function_id = GET_FIELD(val,
2284 					 IGU_MAPPING_LINE_FUNCTION_NUMBER);
2285 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2286 	p_block->vector_number = GET_FIELD(val,
2287 					   IGU_MAPPING_LINE_VECTOR_NUMBER);
2288 	p_block->igu_sb_id = igu_sb_id;
2289 }
2290 
2291 enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2292 					    struct ecore_ptt *p_ptt)
2293 {
2294 	struct ecore_igu_info *p_igu_info;
2295 	struct ecore_igu_block *p_block;
2296 	u32 min_vf = 0, max_vf = 0;
2297 	u16 igu_sb_id;
2298 
2299 	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2300 						 GFP_KERNEL,
2301 						 sizeof(*p_igu_info));
2302 	if (!p_hwfn->hw_info.p_igu_info)
2303 		return ECORE_NOMEM;
2304 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2305 
2306 	/* Distinguish between existent and onn-existent default SB */
2307 	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2308 
2309 	/* Find the range of VF ids whose SB belong to this PF */
2310 	if (p_hwfn->p_dev->p_iov_info) {
2311 		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2312 
2313 		min_vf = p_iov->first_vf_in_pf;
2314 		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2315 	}
2316 
2317 	for (igu_sb_id = 0;
2318 	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2319 	     igu_sb_id++) {
2320 		/* Read current entry; Notice it might not belong to this PF */
2321 		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2322 		p_block = &p_igu_info->entry[igu_sb_id];
2323 
2324 		if ((p_block->is_pf) &&
2325 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2326 			p_block->status = ECORE_IGU_STATUS_PF |
2327 					  ECORE_IGU_STATUS_VALID |
2328 					  ECORE_IGU_STATUS_FREE;
2329 
2330 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2331 				p_igu_info->usage.cnt++;
2332 		} else if (!(p_block->is_pf) &&
2333 			   (p_block->function_id >= min_vf) &&
2334 			   (p_block->function_id < max_vf)) {
2335 			/* Available for VFs of this PF */
2336 			p_block->status = ECORE_IGU_STATUS_VALID |
2337 					  ECORE_IGU_STATUS_FREE;
2338 
2339 			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2340 				p_igu_info->usage.iov_cnt++;
2341 		}
2342 
2343 		/* Mark the First entry belonging to the PF or its VFs
2344 		 * as the default SB [we'll reset IGU prior to first usage].
2345 		 */
2346 		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2347 		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2348 			p_igu_info->igu_dsb_id = igu_sb_id;
2349 			p_block->status |= ECORE_IGU_STATUS_DSB;
2350 		}
2351 
2352 		/* While this isn't suitable for all clients, limit number
2353 		 * of prints by having each PF print only its entries with the
2354 		 * exception of PF0 which would print everything.
2355 		 */
2356 		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2357 		    (p_hwfn->abs_pf_id == 0))
2358 			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2359 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2360 				   igu_sb_id, p_block->function_id,
2361 				   p_block->is_pf, p_block->vector_number);
2362 	}
2363 
2364 	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2365 		DP_NOTICE(p_hwfn, true,
2366 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2367 			  p_igu_info->igu_dsb_id);
2368 		return ECORE_INVAL;
2369 	}
2370 
2371 	/* All non default SB are considered free at this point */
2372 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2373 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2374 
2375 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2376 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2377 		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2378 		   p_igu_info->usage.iov_cnt);
2379 
2380 	return ECORE_SUCCESS;
2381 }
2382 
2383 enum _ecore_status_t
2384 ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2385 			  u16 sb_id, bool b_to_vf)
2386 {
2387 	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2388 	struct ecore_igu_block *p_block = OSAL_NULL;
2389 	u16 igu_sb_id = 0, vf_num = 0;
2390 	u32 val = 0;
2391 
2392 	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2393 		return ECORE_INVAL;
2394 
2395 	if (sb_id == ECORE_SP_SB_ID)
2396 		return ECORE_INVAL;
2397 
2398 	if (!p_info->b_allow_pf_vf_change) {
2399 		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2400 		return ECORE_INVAL;
2401 	}
2402 
2403 	/* If we're moving a SB from PF to VF, the client had to specify
2404 	 * which vector it wants to move.
2405 	 */
2406 	if (b_to_vf) {
2407 		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2408 		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2409 			return ECORE_INVAL;
2410 	}
2411 
2412 	/* If we're moving a SB from VF to PF, need to validate there isn't
2413 	 * already a line configured for that vector.
2414 	 */
2415 	if (!b_to_vf) {
2416 		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2417 		    ECORE_SB_INVALID_IDX)
2418 			return ECORE_INVAL;
2419 	}
2420 
2421 	/* We need to validate that the SB can actually be relocated.
2422 	 * This would also handle the previous case where we've explicitly
2423 	 * stated which IGU SB needs to move.
2424 	 */
2425 	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2426 	     igu_sb_id++) {
2427 		p_block = &p_info->entry[igu_sb_id];
2428 
2429 		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2430 		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2431 		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2432 			if (b_to_vf)
2433 				return ECORE_INVAL;
2434 			else
2435 				continue;
2436 		}
2437 
2438 		break;
2439 	}
2440 
2441 	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2442 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2443 			   "Failed to find a free SB to move\n");
2444 		return ECORE_INVAL;
2445 	}
2446 
2447 	if (p_block == OSAL_NULL) {
2448 		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2449 			   "SB address (p_block) is NULL\n");
2450 		return ECORE_INVAL;
2451 	}
2452 
2453 	/* At this point, p_block points to the SB we want to relocate */
2454 	if (b_to_vf) {
2455 		p_block->status &= ~ECORE_IGU_STATUS_PF;
2456 
2457 		/* It doesn't matter which VF number we choose, since we're
2458 		 * going to disable the line; But let's keep it in range.
2459 		 */
2460 		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2461 
2462 		p_block->function_id = (u8)vf_num;
2463 		p_block->is_pf = 0;
2464 		p_block->vector_number = 0;
2465 
2466 		p_info->usage.cnt--;
2467 		p_info->usage.free_cnt--;
2468 		p_info->usage.iov_cnt++;
2469 		p_info->usage.free_cnt_iov++;
2470 
2471 		/* TODO - if SBs aren't really the limiting factor,
2472 		 * then it might not be accurate [in the since that
2473 		 * we might not need decrement the feature].
2474 		 */
2475 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2476 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2477 	} else {
2478 		p_block->status |= ECORE_IGU_STATUS_PF;
2479 		p_block->function_id = p_hwfn->rel_pf_id;
2480 		p_block->is_pf = 1;
2481 		p_block->vector_number = sb_id + 1;
2482 
2483 		p_info->usage.cnt++;
2484 		p_info->usage.free_cnt++;
2485 		p_info->usage.iov_cnt--;
2486 		p_info->usage.free_cnt_iov--;
2487 
2488 		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2489 		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2490 	}
2491 
2492 	/* Update the IGU and CAU with the new configuration */
2493 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2494 		  p_block->function_id);
2495 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2496 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2497 	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2498 		  p_block->vector_number);
2499 
2500 	ecore_wr(p_hwfn, p_ptt,
2501 		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2502 		 val);
2503 
2504 	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2505 			      igu_sb_id, vf_num,
2506 			      p_block->is_pf ? 0 : 1);
2507 
2508 	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2509 		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2510 		   igu_sb_id, p_block->function_id,
2511 		   p_block->is_pf, p_block->vector_number);
2512 
2513 	return ECORE_SUCCESS;
2514 }
2515 
2516 /**
2517  * @brief Initialize igu runtime registers
2518  *
2519  * @param p_hwfn
2520  */
2521 void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2522 {
2523 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2524 
2525 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2526 }
2527 
2528 #define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2529 			  IGU_CMD_INT_ACK_BASE)
2530 #define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2531 			  IGU_CMD_INT_ACK_BASE)
2532 u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2533 {
2534 	u32 intr_status_hi = 0, intr_status_lo = 0;
2535 	u64 intr_status = 0;
2536 
2537 	intr_status_lo = REG_RD(p_hwfn,
2538 				GTT_BAR0_MAP_REG_IGU_CMD +
2539 				LSB_IGU_CMD_ADDR * 8);
2540 	intr_status_hi = REG_RD(p_hwfn,
2541 				GTT_BAR0_MAP_REG_IGU_CMD +
2542 				MSB_IGU_CMD_ADDR * 8);
2543 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2544 
2545 	return intr_status;
2546 }
2547 
2548 static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2549 {
2550 	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2551 	p_hwfn->b_sp_dpc_enabled = true;
2552 }
2553 
2554 static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2555 {
2556 	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2557 	if (!p_hwfn->sp_dpc)
2558 		return ECORE_NOMEM;
2559 
2560 	return ECORE_SUCCESS;
2561 }
2562 
2563 static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2564 {
2565 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2566 	p_hwfn->sp_dpc = OSAL_NULL;
2567 }
2568 
2569 enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2570 				     struct ecore_ptt *p_ptt)
2571 {
2572 	enum _ecore_status_t rc = ECORE_SUCCESS;
2573 
2574 	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2575 	if (rc != ECORE_SUCCESS) {
2576 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2577 		return rc;
2578 	}
2579 
2580 	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2581 	if (rc != ECORE_SUCCESS) {
2582 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2583 		return rc;
2584 	}
2585 
2586 	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2587 	if (rc != ECORE_SUCCESS)
2588 		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2589 
2590 	return rc;
2591 }
2592 
2593 void ecore_int_free(struct ecore_hwfn *p_hwfn)
2594 {
2595 	ecore_int_sp_sb_free(p_hwfn);
2596 	ecore_int_sb_attn_free(p_hwfn);
2597 	ecore_int_sp_dpc_free(p_hwfn);
2598 }
2599 
2600 void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2601 {
2602 	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2603 		return;
2604 
2605 	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2606 	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2607 	ecore_int_sp_dpc_setup(p_hwfn);
2608 }
2609 
2610 void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2611 			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2612 {
2613 	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2614 
2615 	if (!p_igu_info || !p_sb_cnt_info)
2616 		return;
2617 
2618 	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2619 		    sizeof(*p_sb_cnt_info));
2620 }
2621 
2622 void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2623 {
2624 	int i;
2625 
2626 	for_each_hwfn(p_dev, i)
2627 		p_dev->hwfns[i].b_int_requested = false;
2628 }
2629 
2630 void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2631 {
2632 	p_dev->attn_clr_en = clr_enable;
2633 }
2634 
2635 enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2636 					     struct ecore_ptt *p_ptt,
2637 					     u8 timer_res, u16 sb_id, bool tx)
2638 {
2639 	struct cau_sb_entry sb_entry;
2640 	enum _ecore_status_t rc;
2641 
2642 	if (!p_hwfn->hw_init_done) {
2643 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2644 		return ECORE_INVAL;
2645 	}
2646 
2647 	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2648 				 sb_id * sizeof(u64),
2649 				 (u64)(osal_uintptr_t)&sb_entry, 2,
2650 				 OSAL_NULL /* default parameters */);
2651 	if (rc != ECORE_SUCCESS) {
2652 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2653 		return rc;
2654 	}
2655 
2656 	if (tx)
2657 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2658 	else
2659 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2660 
2661 	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2662 				 (u64)(osal_uintptr_t)&sb_entry,
2663 				 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2664 				 OSAL_NULL /* default parameters */);
2665 	if (rc != ECORE_SUCCESS) {
2666 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2667 		return rc;
2668 	}
2669 
2670 	return rc;
2671 }
2672 
2673 enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2674 					  struct ecore_ptt *p_ptt,
2675 					  struct ecore_sb_info *p_sb,
2676 					  struct ecore_sb_info_dbg *p_info)
2677 {
2678 	u16 sbid = p_sb->igu_sb_id;
2679 	int i;
2680 
2681 	if (IS_VF(p_hwfn->p_dev))
2682 		return ECORE_INVAL;
2683 
2684 	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2685 		return ECORE_INVAL;
2686 
2687 	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2688 				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2689 	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2690 				    IGU_REG_CONSUMER_MEM + sbid * 4);
2691 
2692 	for (i = 0; i < PIS_PER_SB_E4; i++)
2693 		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2694 					      CAU_REG_PI_MEMORY +
2695 					      sbid * 4 * PIS_PER_SB_E4 + i * 4);
2696 
2697 	return ECORE_SUCCESS;
2698 }
2699