xref: /freebsd/sys/dev/qlnx/qlnxe/ecore_hw.c (revision b9f654b163bce26de79705e77b872427c9f2afa1)
1 /*
2  * Copyright (c) 2017-2018 Cavium, Inc.
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File : ecore_hw.c
30  */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "bcm_osal.h"
35 #include "ecore_hsi_common.h"
36 #include "ecore_status.h"
37 #include "ecore.h"
38 #include "ecore_hw.h"
39 #include "reg_addr.h"
40 #include "ecore_utils.h"
41 #include "ecore_iov_api.h"
42 
43 #ifdef _NTDDK_
44 #pragma warning(push)
45 #pragma warning(disable : 28167)
46 #pragma warning(disable : 28123)
47 #pragma warning(disable : 28121)
48 #endif
49 
50 #ifndef ASIC_ONLY
51 #define ECORE_EMUL_FACTOR 2000
52 #define ECORE_FPGA_FACTOR 200
53 #endif
54 
55 #define ECORE_BAR_ACQUIRE_TIMEOUT 1000
56 
57 /* Invalid values */
58 #define ECORE_BAR_INVALID_OFFSET	(OSAL_CPU_TO_LE32(-1))
59 
60 struct ecore_ptt {
61 	osal_list_entry_t	list_entry;
62 	unsigned int		idx;
63 	struct pxp_ptt_entry	pxp;
64 	u8			hwfn_id;
65 };
66 
67 struct ecore_ptt_pool {
68 	osal_list_t		free_list;
69 	osal_spinlock_t		lock; /* ptt synchronized access */
70 	struct ecore_ptt	ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
71 };
72 
73 static void __ecore_ptt_pool_free(struct ecore_hwfn *p_hwfn)
74 {
75 	OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_ptt_pool);
76 	p_hwfn->p_ptt_pool = OSAL_NULL;
77 }
78 
79 enum _ecore_status_t ecore_ptt_pool_alloc(struct ecore_hwfn *p_hwfn)
80 {
81 	struct ecore_ptt_pool *p_pool = OSAL_ALLOC(p_hwfn->p_dev,
82 						   GFP_KERNEL,
83 						   sizeof(*p_pool));
84 	int i;
85 
86 	if (!p_pool)
87 		return ECORE_NOMEM;
88 
89 	OSAL_LIST_INIT(&p_pool->free_list);
90 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
91 		p_pool->ptts[i].idx = i;
92 		p_pool->ptts[i].pxp.offset = ECORE_BAR_INVALID_OFFSET;
93 		p_pool->ptts[i].pxp.pretend.control = 0;
94 		p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
95 
96 		/* There are special PTT entries that are taken only by design.
97 		 * The rest are added ot the list for general usage.
98 		 */
99 		if (i >= RESERVED_PTT_MAX)
100 			OSAL_LIST_PUSH_HEAD(&p_pool->ptts[i].list_entry,
101 					    &p_pool->free_list);
102 	}
103 
104 	p_hwfn->p_ptt_pool = p_pool;
105 #ifdef CONFIG_ECORE_LOCK_ALLOC
106 	if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_pool->lock)) {
107 		__ecore_ptt_pool_free(p_hwfn);
108 		return ECORE_NOMEM;
109 	}
110 #endif
111 	OSAL_SPIN_LOCK_INIT(&p_pool->lock);
112 	return ECORE_SUCCESS;
113 }
114 
115 void ecore_ptt_invalidate(struct ecore_hwfn *p_hwfn)
116 {
117 	struct ecore_ptt *p_ptt;
118 	int i;
119 
120 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
121 		p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
122 		p_ptt->pxp.offset = ECORE_BAR_INVALID_OFFSET;
123 	}
124 }
125 
126 void ecore_ptt_pool_free(struct ecore_hwfn *p_hwfn)
127 {
128 #ifdef CONFIG_ECORE_LOCK_ALLOC
129 	if (p_hwfn->p_ptt_pool)
130 		OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->p_ptt_pool->lock);
131 #endif
132 	__ecore_ptt_pool_free(p_hwfn);
133 }
134 
135 struct ecore_ptt *ecore_ptt_acquire(struct ecore_hwfn *p_hwfn)
136 {
137 	struct ecore_ptt *p_ptt;
138 	unsigned int i;
139 
140 	/* Take the free PTT from the list */
141 	for (i = 0; i < ECORE_BAR_ACQUIRE_TIMEOUT; i++) {
142 		OSAL_SPIN_LOCK(&p_hwfn->p_ptt_pool->lock);
143 
144 		if (!OSAL_LIST_IS_EMPTY(&p_hwfn->p_ptt_pool->free_list)) {
145 			p_ptt = OSAL_LIST_FIRST_ENTRY(&p_hwfn->p_ptt_pool->free_list,
146 						      struct ecore_ptt, list_entry);
147 			OSAL_LIST_REMOVE_ENTRY(&p_ptt->list_entry,
148 					       &p_hwfn->p_ptt_pool->free_list);
149 
150 			OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
151 
152 			DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
153 				   "allocated ptt %d\n", p_ptt->idx);
154 
155 			return p_ptt;
156 		}
157 
158 		OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
159 		OSAL_MSLEEP(1);
160 	}
161 
162 	DP_NOTICE(p_hwfn, true, "PTT acquire timeout - failed to allocate PTT\n");
163 	return OSAL_NULL;
164 }
165 
166 void ecore_ptt_release(struct ecore_hwfn *p_hwfn,
167 		       struct ecore_ptt *p_ptt) {
168 	/* This PTT should not be set to pretend if it is being released */
169 	/* TODO - add some pretend sanity checks, to make sure pretend isn't set on this ptt */
170 
171 	OSAL_SPIN_LOCK(&p_hwfn->p_ptt_pool->lock);
172 	OSAL_LIST_PUSH_HEAD(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
173 	OSAL_SPIN_UNLOCK(&p_hwfn->p_ptt_pool->lock);
174 }
175 
176 static u32 ecore_ptt_get_hw_addr(struct ecore_ptt *p_ptt)
177 {
178 	/* The HW is using DWORDS and we need to translate it to Bytes */
179 	return OSAL_LE32_TO_CPU(p_ptt->pxp.offset) << 2;
180 }
181 
182 static u32 ecore_ptt_config_addr(struct ecore_ptt *p_ptt)
183 {
184 	return PXP_PF_WINDOW_ADMIN_PER_PF_START +
185 	       p_ptt->idx * sizeof(struct pxp_ptt_entry);
186 }
187 
188 u32 ecore_ptt_get_bar_addr(struct ecore_ptt *p_ptt)
189 {
190 	return PXP_EXTERNAL_BAR_PF_WINDOW_START +
191 	       p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
192 }
193 
194 void ecore_ptt_set_win(struct ecore_hwfn *p_hwfn,
195 		       struct ecore_ptt *p_ptt,
196 		       u32 new_hw_addr)
197 {
198 	u32 prev_hw_addr;
199 
200 	prev_hw_addr = ecore_ptt_get_hw_addr(p_ptt);
201 
202 	if (new_hw_addr == prev_hw_addr)
203 		return;
204 
205 	/* Update PTT entery in admin window */
206 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
207 		   "Updating PTT entry %d to offset 0x%x\n",
208 		   p_ptt->idx, new_hw_addr);
209 
210 	/* The HW is using DWORDS and the address is in Bytes */
211 	p_ptt->pxp.offset = OSAL_CPU_TO_LE32(new_hw_addr >> 2);
212 
213 	REG_WR(p_hwfn,
214 	       ecore_ptt_config_addr(p_ptt) +
215 	       OFFSETOF(struct pxp_ptt_entry, offset),
216 	       OSAL_LE32_TO_CPU(p_ptt->pxp.offset));
217 }
218 
219 static u32 ecore_set_ptt(struct ecore_hwfn *p_hwfn,
220 			 struct ecore_ptt *p_ptt,
221 			 u32 hw_addr)
222 {
223 	u32 win_hw_addr = ecore_ptt_get_hw_addr(p_ptt);
224 	u32 offset;
225 
226 	offset = hw_addr - win_hw_addr;
227 
228 	if (p_ptt->hwfn_id != p_hwfn->my_id)
229 		DP_NOTICE(p_hwfn, true,
230 			  "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
231 			  p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
232 
233 	/* Verify the address is within the window */
234 	if (hw_addr < win_hw_addr ||
235 	    offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
236 		ecore_ptt_set_win(p_hwfn, p_ptt, hw_addr);
237 		offset = 0;
238 	}
239 
240 	return ecore_ptt_get_bar_addr(p_ptt) + offset;
241 }
242 
243 struct ecore_ptt *ecore_get_reserved_ptt(struct ecore_hwfn *p_hwfn,
244 					 enum reserved_ptts ptt_idx)
245 {
246 	if (ptt_idx >= RESERVED_PTT_MAX) {
247 		DP_NOTICE(p_hwfn, true,
248 			  "Requested PTT %d is out of range\n", ptt_idx);
249 		return OSAL_NULL;
250 	}
251 
252 	return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
253 }
254 
255 static bool ecore_is_reg_fifo_empty(struct ecore_hwfn *p_hwfn,
256 				    struct ecore_ptt *p_ptt)
257 {
258 	bool is_empty = true;
259 	u32 bar_addr;
260 
261 	if (!p_hwfn->p_dev->chk_reg_fifo)
262 		goto out;
263 
264 	/* ecore_rd() cannot be used here since it calls this function */
265 	bar_addr = ecore_set_ptt(p_hwfn, p_ptt, GRC_REG_TRACE_FIFO_VALID_DATA);
266 	is_empty = REG_RD(p_hwfn, bar_addr) == 0;
267 
268 #ifndef ASIC_ONLY
269 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
270 		OSAL_UDELAY(100);
271 #endif
272 
273 out:
274 	return is_empty;
275 }
276 
277 void ecore_wr(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 hw_addr,
278 	      u32 val)
279 {
280 	bool prev_fifo_err;
281 	u32 bar_addr;
282 
283 	prev_fifo_err = !ecore_is_reg_fifo_empty(p_hwfn, p_ptt);
284 
285 	bar_addr = ecore_set_ptt(p_hwfn, p_ptt, hw_addr);
286 	REG_WR(p_hwfn, bar_addr, val);
287 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
288 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
289 		   bar_addr, hw_addr, val);
290 
291 #ifndef ASIC_ONLY
292 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
293 		OSAL_UDELAY(100);
294 #endif
295 
296 	OSAL_WARN(!prev_fifo_err && !ecore_is_reg_fifo_empty(p_hwfn, p_ptt),
297 		  "reg_fifo error was caused by a call to ecore_wr(0x%x, 0x%x)\n",
298 		  hw_addr, val);
299 }
300 
301 u32 ecore_rd(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 hw_addr)
302 {
303 	bool prev_fifo_err;
304 	u32 bar_addr, val;
305 
306 	prev_fifo_err = !ecore_is_reg_fifo_empty(p_hwfn, p_ptt);
307 
308 	bar_addr = ecore_set_ptt(p_hwfn, p_ptt, hw_addr);
309 	val = REG_RD(p_hwfn, bar_addr);
310 
311 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
312 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
313 		   bar_addr, hw_addr, val);
314 
315 #ifndef ASIC_ONLY
316 	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev))
317 		OSAL_UDELAY(100);
318 #endif
319 
320 	OSAL_WARN(!prev_fifo_err && !ecore_is_reg_fifo_empty(p_hwfn, p_ptt),
321 		  "reg_fifo error was caused by a call to ecore_rd(0x%x)\n",
322 		  hw_addr);
323 
324 	return val;
325 }
326 
327 static void ecore_memcpy_hw(struct ecore_hwfn *p_hwfn,
328 			    struct ecore_ptt *p_ptt,
329 			    void *addr,
330 			    u32 hw_addr,
331 			    osal_size_t n,
332 			    bool to_device)
333 {
334 	u32 dw_count, *host_addr, hw_offset;
335 	osal_size_t quota, done = 0;
336 	u32 OSAL_IOMEM *reg_addr;
337 
338 	while (done < n) {
339 		quota = OSAL_MIN_T(osal_size_t, n - done,
340 				   PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
341 
342 		if (IS_PF(p_hwfn->p_dev)) {
343 			ecore_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
344 			hw_offset = ecore_ptt_get_bar_addr(p_ptt);
345 		} else {
346 			hw_offset = hw_addr + done;
347 		}
348 
349 		dw_count = quota / 4;
350 		host_addr = (u32 *)((u8 *)addr + done);
351 		reg_addr = (u32 OSAL_IOMEM *)OSAL_REG_ADDR(p_hwfn, hw_offset);
352 
353 		if (to_device)
354 			while (dw_count--)
355 				DIRECT_REG_WR(p_hwfn, reg_addr++, *host_addr++);
356 		else
357 			while (dw_count--)
358 				*host_addr++ = DIRECT_REG_RD(p_hwfn,
359 							     reg_addr++);
360 
361 		done += quota;
362 	}
363 }
364 
365 void ecore_memcpy_from(struct ecore_hwfn *p_hwfn,
366 		       struct ecore_ptt *p_ptt,
367 		       void *dest, u32 hw_addr, osal_size_t n)
368 {
369 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
370 		   "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
371 		   hw_addr, dest, hw_addr, (unsigned long) n);
372 
373 	ecore_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
374 }
375 
376 void ecore_memcpy_to(struct ecore_hwfn *p_hwfn,
377 		     struct ecore_ptt *p_ptt,
378 		     u32 hw_addr, void *src, osal_size_t n)
379 {
380 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
381 		   "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
382 		   hw_addr, hw_addr, src, (unsigned long)n);
383 
384 	ecore_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
385 }
386 
387 void ecore_fid_pretend(struct ecore_hwfn *p_hwfn,
388 		       struct ecore_ptt *p_ptt, u16 fid)
389 {
390 	u16 control = 0;
391 
392 	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
393 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
394 
395 	/* Every pretend undos previous pretends, including
396 	 * previous port pretend.
397 	 */
398 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
399 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
400 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
401 
402 	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
403 		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
404 
405 	p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
406 	p_ptt->pxp.pretend.fid.concrete_fid.fid = OSAL_CPU_TO_LE16(fid);
407 
408 	REG_WR(p_hwfn,
409 	       ecore_ptt_config_addr(p_ptt) +
410 	       OFFSETOF(struct pxp_ptt_entry, pretend),
411 	       *(u32 *)&p_ptt->pxp.pretend);
412 }
413 
414 void ecore_port_pretend(struct ecore_hwfn *p_hwfn,
415 			struct ecore_ptt *p_ptt, u8 port_id)
416 {
417 	u16 control = 0;
418 
419 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
420 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
421 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
422 	p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
423 
424 	REG_WR(p_hwfn,
425 	       ecore_ptt_config_addr(p_ptt) +
426 	       OFFSETOF(struct pxp_ptt_entry, pretend),
427 	       *(u32 *)&p_ptt->pxp.pretend);
428 }
429 
430 void ecore_port_unpretend(struct ecore_hwfn *p_hwfn,
431 			  struct ecore_ptt *p_ptt)
432 {
433 	u16 control = 0;
434 
435 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
436 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
437 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
438 
439 	p_ptt->pxp.pretend.control = OSAL_CPU_TO_LE16(control);
440 
441 	REG_WR(p_hwfn,
442 	       ecore_ptt_config_addr(p_ptt) +
443 	       OFFSETOF(struct pxp_ptt_entry, pretend),
444 	       *(u32 *)&p_ptt->pxp.pretend);
445 }
446 
447 u32 ecore_vfid_to_concrete(struct ecore_hwfn *p_hwfn, u8 vfid)
448 {
449 	u32 concrete_fid = 0;
450 
451 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
452 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
453 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
454 
455 	return concrete_fid;
456 }
457 
458 #if 0
459 /* Ecore HW lock
460  * =============
461  * Although the implemention is ready, today we don't have any flow that
462  * utliizes said locks - and we want to keep it this way.
463  * If this changes, this needs to be revisted.
464  */
465 #define HW_LOCK_MAX_RETRIES 1000
466 enum _ecore_status_t ecore_hw_lock(struct ecore_hwfn		*p_hwfn,
467 				   struct ecore_ptt		*p_ptt,
468 				   u8                           resource,
469 				   bool				block)
470 {
471 	u32 cnt, lock_status, hw_lock_cntr_reg;
472 	enum _ecore_status_t ecore_status;
473 
474 	/* Locate the proper lock register for this function.
475 	 * Note This code assumes all the H/W lock registers are sequential
476 	 * in memory.
477 	 */
478 	hw_lock_cntr_reg = MISCS_REG_DRIVER_CONTROL_0 +
479 			   p_hwfn->rel_pf_id *
480 			   MISCS_REG_DRIVER_CONTROL_0_SIZE * sizeof(u32);
481 
482 	/* Validate that the resource is not already taken */
483 	lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
484 
485 	if (lock_status & resource) {
486 		DP_NOTICE(p_hwfn, true,
487 			  "Resource already locked: lock_status=0x%x resource=0x%x\n",
488 			  lock_status, resource);
489 
490 		return ECORE_BUSY;
491 	}
492 
493 	/* Register for the lock */
494 	ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg + sizeof(u32), resource);
495 
496 	/* Try for 5 seconds every 5ms */
497 	for (cnt = 0; cnt < HW_LOCK_MAX_RETRIES; cnt++) {
498 		lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
499 
500 		if (lock_status & resource)
501 			return ECORE_SUCCESS;
502 
503 		if (!block) {
504 			ecore_status = ECORE_BUSY;
505 			break;
506 		}
507 
508 		OSAL_MSLEEP(5);
509 	}
510 
511 	if (cnt == HW_LOCK_MAX_RETRIES) {
512 		DP_NOTICE(p_hwfn, true, "Lock timeout resource=0x%x\n",
513 			  resource);
514 		ecore_status = ECORE_TIMEOUT;
515 	}
516 
517 	/* Clear the pending request */
518 	ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg, resource);
519 
520 	return ecore_status;
521 }
522 
523 enum _ecore_status_t ecore_hw_unlock(struct ecore_hwfn		*p_hwfn,
524 				     struct ecore_ptt		*p_ptt,
525 				     u8                         resource)
526 {
527 	u32 lock_status, hw_lock_cntr_reg;
528 
529 	/* Locate the proper lock register for this function.
530 	 * Note This code assumes all the H/W lock registers are sequential
531 	 * in memory.
532 	 */
533 	hw_lock_cntr_reg = MISCS_REG_DRIVER_CONTROL_0 +
534 			   p_hwfn->rel_pf_id *
535 			   MISCS_REG_DRIVER_CONTROL_0_SIZE * sizeof(u32);
536 
537 	/*  Validate that the resource is currently taken */
538 	lock_status = ecore_rd(p_hwfn, p_ptt, hw_lock_cntr_reg);
539 
540 	if (!(lock_status & resource)) {
541 		DP_NOTICE(p_hwfn, true,
542 			  "resource 0x%x was not taken (lock status 0x%x)\n",
543 			  resource, lock_status);
544 
545 		return ECORE_NODEV;
546 	}
547 
548 	/* clear lock for resource */
549 	ecore_wr(p_hwfn, p_ptt, hw_lock_cntr_reg, resource);
550 	return ECORE_SUCCESS;
551 }
552 #endif /* HW locks logic */
553 
554 /* DMAE */
555 
556 #define ECORE_DMAE_FLAGS_IS_SET(params, flag)	\
557 	((params) != OSAL_NULL && ((params)->flags & ECORE_DMAE_FLAG_##flag))
558 
559 static void ecore_dmae_opcode(struct ecore_hwfn	*p_hwfn,
560 			      const u8	is_src_type_grc,
561 			      const u8	is_dst_type_grc,
562 			      struct ecore_dmae_params *p_params)
563 {
564 	u8 src_pfid, dst_pfid, port_id;
565 	u16 opcode_b = 0;
566 	u32 opcode = 0;
567 
568 	/* Whether the source is the PCIe or the GRC.
569 	 * 0- The source is the PCIe
570 	 * 1- The source is the GRC.
571 	 */
572 	opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
573 				   : DMAE_CMD_SRC_MASK_PCIE) <<
574 		  DMAE_CMD_SRC_SHIFT;
575 	src_pfid = ECORE_DMAE_FLAGS_IS_SET(p_params, PF_SRC) ?
576 		   p_params->src_pfid : p_hwfn->rel_pf_id;
577 	opcode |= (src_pfid & DMAE_CMD_SRC_PF_ID_MASK) <<
578 		  DMAE_CMD_SRC_PF_ID_SHIFT;
579 
580 	/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
581 	opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
582 				   : DMAE_CMD_DST_MASK_PCIE) <<
583 		  DMAE_CMD_DST_SHIFT;
584 	dst_pfid = ECORE_DMAE_FLAGS_IS_SET(p_params, PF_DST) ?
585 		   p_params->dst_pfid : p_hwfn->rel_pf_id;
586 	opcode |= (dst_pfid & DMAE_CMD_DST_PF_ID_MASK) <<
587 		  DMAE_CMD_DST_PF_ID_SHIFT;
588 
589 	/* DMAE_E4_TODO need to check which value to specify here. */
590 	/* opcode |= (!b_complete_to_host)<< DMAE_CMD_C_DST_SHIFT;*/
591 
592 	/* Whether to write a completion word to the completion destination:
593 	 * 0-Do not write a completion word
594 	 * 1-Write the completion word
595 	 */
596 	opcode |= DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT;
597 	opcode |= DMAE_CMD_SRC_ADDR_RESET_MASK <<
598 		  DMAE_CMD_SRC_ADDR_RESET_SHIFT;
599 
600 	if (ECORE_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
601 		opcode |= 1 << DMAE_CMD_COMP_FUNC_SHIFT;
602 
603 	/* swapping mode 3 - big endian there should be a define ifdefed in
604 	 * the HSI somewhere. Since it is currently
605 	 */
606 	opcode |= DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT;
607 
608 	port_id = (ECORE_DMAE_FLAGS_IS_SET(p_params, PORT)) ?
609 		  p_params->port_id : p_hwfn->port_id;
610 	opcode |= port_id << DMAE_CMD_PORT_ID_SHIFT;
611 
612 	/* reset source address in next go */
613 	opcode |= DMAE_CMD_SRC_ADDR_RESET_MASK <<
614 		  DMAE_CMD_SRC_ADDR_RESET_SHIFT;
615 
616 	/* reset dest address in next go */
617 	opcode |= DMAE_CMD_DST_ADDR_RESET_MASK <<
618 		  DMAE_CMD_DST_ADDR_RESET_SHIFT;
619 
620 	/* SRC/DST VFID: all 1's - pf, otherwise VF id */
621 	if (ECORE_DMAE_FLAGS_IS_SET(p_params, VF_SRC)) {
622 		opcode |= (1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT);
623 		opcode_b |= (p_params->src_vfid <<  DMAE_CMD_SRC_VF_ID_SHIFT);
624 	} else {
625 		opcode_b |= (DMAE_CMD_SRC_VF_ID_MASK <<
626 			     DMAE_CMD_SRC_VF_ID_SHIFT);
627 	}
628 	if (ECORE_DMAE_FLAGS_IS_SET(p_params, VF_DST)) {
629 		opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
630 		opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
631 	} else {
632 		opcode_b |= DMAE_CMD_DST_VF_ID_MASK <<
633 			    DMAE_CMD_DST_VF_ID_SHIFT;
634 	}
635 
636 	p_hwfn->dmae_info.p_dmae_cmd->opcode = OSAL_CPU_TO_LE32(opcode);
637 	p_hwfn->dmae_info.p_dmae_cmd->opcode_b = OSAL_CPU_TO_LE16(opcode_b);
638 }
639 
640 static u32 ecore_dmae_idx_to_go_cmd(u8 idx)
641 {
642 	OSAL_BUILD_BUG_ON((DMAE_REG_GO_C31 - DMAE_REG_GO_C0) !=
643 			  31 * 4);
644 
645 	/* All the DMAE 'go' registers form an array in internal memory */
646 	return DMAE_REG_GO_C0 + (idx << 2);
647 }
648 
649 static enum _ecore_status_t ecore_dmae_post_command(struct ecore_hwfn *p_hwfn,
650 						    struct ecore_ptt *p_ptt)
651 {
652 	struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
653 	u8 idx_cmd = p_hwfn->dmae_info.channel, i;
654 	enum _ecore_status_t ecore_status = ECORE_SUCCESS;
655 
656 	/* verify address is not OSAL_NULL */
657 	if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
658 	     ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
659 		DP_NOTICE(p_hwfn, true,
660 			  "source or destination address 0 idx_cmd=%d\n"
661 			  "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
662 			  idx_cmd,
663 			  OSAL_LE32_TO_CPU(p_command->opcode),
664 			  OSAL_LE16_TO_CPU(p_command->opcode_b),
665 			  OSAL_LE16_TO_CPU(p_command->length_dw),
666 			  OSAL_LE32_TO_CPU(p_command->src_addr_hi),
667 			  OSAL_LE32_TO_CPU(p_command->src_addr_lo),
668 			  OSAL_LE32_TO_CPU(p_command->dst_addr_hi),
669 			  OSAL_LE32_TO_CPU(p_command->dst_addr_lo));
670 
671 		return ECORE_INVAL;
672 	}
673 
674 	DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
675 		   "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
676 		   idx_cmd,
677 		   OSAL_LE32_TO_CPU(p_command->opcode),
678 		   OSAL_LE16_TO_CPU(p_command->opcode_b),
679 		   OSAL_LE16_TO_CPU(p_command->length_dw),
680 		   OSAL_LE32_TO_CPU(p_command->src_addr_hi),
681 		   OSAL_LE32_TO_CPU(p_command->src_addr_lo),
682 		   OSAL_LE32_TO_CPU(p_command->dst_addr_hi),
683 		   OSAL_LE32_TO_CPU(p_command->dst_addr_lo));
684 
685 	/* Copy the command to DMAE - need to do it before every call
686 	 * for source/dest address no reset.
687 	 * The number of commands have been increased to 16 (previous was 14)
688 	 * The first 9 DWs are the command registers, the 10 DW is the
689 	 * GO register, and
690 	 * the rest are result registers (which are read only by the client).
691 	 */
692 	for (i = 0; i < DMAE_CMD_SIZE; i++) {
693 		u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
694 			    *(((u32 *)p_command) + i) : 0;
695 
696 		ecore_wr(p_hwfn, p_ptt,
697 			 DMAE_REG_CMD_MEM +
698 			 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
699 			 (i * sizeof(u32)), data);
700 	}
701 
702 	ecore_wr(p_hwfn, p_ptt,
703 		 ecore_dmae_idx_to_go_cmd(idx_cmd),
704 		 DMAE_GO_VALUE);
705 
706 	return ecore_status;
707 }
708 
709 enum _ecore_status_t ecore_dmae_info_alloc(struct ecore_hwfn *p_hwfn)
710 {
711 	dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
712 	struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
713 	u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
714 	u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
715 
716 	*p_comp = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr, sizeof(u32));
717 	if (*p_comp == OSAL_NULL) {
718 		DP_NOTICE(p_hwfn, false,
719 			  "Failed to allocate `p_completion_word'\n");
720 		goto err;
721 	}
722 
723 	p_addr =  &p_hwfn->dmae_info.dmae_cmd_phys_addr;
724 	*p_cmd = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr,
725 					 sizeof(struct dmae_cmd));
726 	if (*p_cmd == OSAL_NULL) {
727 		DP_NOTICE(p_hwfn, false,
728 			  "Failed to allocate `struct dmae_cmd'\n");
729 		goto err;
730 	}
731 
732 	p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
733 	*p_buff = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, p_addr,
734 					  sizeof(u32) * DMAE_MAX_RW_SIZE);
735 	if (*p_buff == OSAL_NULL) {
736 		DP_NOTICE(p_hwfn, false,
737 			  "Failed to allocate `intermediate_buffer'\n");
738 		goto err;
739 	}
740 
741 		p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
742 		p_hwfn->dmae_info.b_mem_ready = true;
743 
744 	return ECORE_SUCCESS;
745 err:
746 	ecore_dmae_info_free(p_hwfn);
747 	return ECORE_NOMEM;
748 }
749 
750 void ecore_dmae_info_free(struct ecore_hwfn *p_hwfn)
751 {
752 	dma_addr_t p_phys;
753 
754 	OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
755 	p_hwfn->dmae_info.b_mem_ready = false;
756 	OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
757 
758 	if (p_hwfn->dmae_info.p_completion_word != OSAL_NULL) {
759 		p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
760 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
761 				       p_hwfn->dmae_info.p_completion_word,
762 				       p_phys, sizeof(u32));
763 		p_hwfn->dmae_info.p_completion_word = OSAL_NULL;
764 	}
765 
766 	if (p_hwfn->dmae_info.p_dmae_cmd != OSAL_NULL) {
767 		p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
768 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
769 				       p_hwfn->dmae_info.p_dmae_cmd,
770 				       p_phys, sizeof(struct dmae_cmd));
771 		p_hwfn->dmae_info.p_dmae_cmd = OSAL_NULL;
772 	}
773 
774 	if (p_hwfn->dmae_info.p_intermediate_buffer != OSAL_NULL) {
775 		p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
776 		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
777 				       p_hwfn->dmae_info.p_intermediate_buffer,
778 				       p_phys, sizeof(u32) * DMAE_MAX_RW_SIZE);
779 		p_hwfn->dmae_info.p_intermediate_buffer = OSAL_NULL;
780 	}
781 }
782 
783 static enum _ecore_status_t
784 ecore_dmae_operation_wait(struct ecore_hwfn *p_hwfn)
785 {
786 	u32 wait_cnt_limit = 10000, wait_cnt = 0;
787 	enum _ecore_status_t ecore_status = ECORE_SUCCESS;
788 
789 #ifndef ASIC_ONLY
790 	u32 factor = (CHIP_REV_IS_EMUL(p_hwfn->p_dev) ?
791 		      ECORE_EMUL_FACTOR :
792 		      (CHIP_REV_IS_FPGA(p_hwfn->p_dev) ?
793 		       ECORE_FPGA_FACTOR : 1));
794 
795 	wait_cnt_limit *= factor;
796 #endif
797 
798 	/* DMAE_E4_TODO : TODO check if we have to call any other function
799 	 * other than BARRIER to sync the completion_word since we are not
800 	 * using the volatile keyword for this
801 	 */
802 	OSAL_BARRIER(p_hwfn->p_dev);
803 	while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
804 		OSAL_UDELAY(DMAE_MIN_WAIT_TIME);
805 		if (++wait_cnt > wait_cnt_limit) {
806 			DP_NOTICE(p_hwfn->p_dev, ECORE_MSG_HW,
807 				  "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
808 				  *(p_hwfn->dmae_info.p_completion_word),
809 				  DMAE_COMPLETION_VAL);
810 			ecore_status = ECORE_TIMEOUT;
811 			break;
812 		}
813 
814 		/* to sync the completion_word since we are not
815 		 * using the volatile keyword for p_completion_word
816 		 */
817 		OSAL_BARRIER(p_hwfn->p_dev);
818 	}
819 
820 	if (ecore_status == ECORE_SUCCESS)
821 		*p_hwfn->dmae_info.p_completion_word = 0;
822 
823 	return ecore_status;
824 }
825 
826 static enum _ecore_status_t ecore_dmae_execute_sub_operation(struct ecore_hwfn *p_hwfn,
827 							     struct ecore_ptt *p_ptt,
828 							     u64 src_addr,
829 							     u64 dst_addr,
830 							     u8 src_type,
831 							     u8 dst_type,
832 							     u32 length_dw)
833 {
834 	dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
835 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
836 	enum _ecore_status_t ecore_status = ECORE_SUCCESS;
837 
838 	switch (src_type) {
839 	case ECORE_DMAE_ADDRESS_GRC:
840 	case ECORE_DMAE_ADDRESS_HOST_PHYS:
841 		cmd->src_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(src_addr));
842 		cmd->src_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(src_addr));
843 		break;
844 	/* for virtual source addresses we use the intermediate buffer. */
845 	case ECORE_DMAE_ADDRESS_HOST_VIRT:
846 		cmd->src_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
847 		cmd->src_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
848 		OSAL_MEMCPY(&(p_hwfn->dmae_info.p_intermediate_buffer[0]),
849 			    (void *)(osal_uintptr_t)src_addr,
850 			    length_dw * sizeof(u32));
851 		break;
852 	default:
853 		return ECORE_INVAL;
854 	}
855 
856 	switch (dst_type) {
857 	case ECORE_DMAE_ADDRESS_GRC:
858 	case ECORE_DMAE_ADDRESS_HOST_PHYS:
859 		cmd->dst_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(dst_addr));
860 		cmd->dst_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(dst_addr));
861 		break;
862 	/* for virtual destination addresses we use the intermediate buffer. */
863 	case ECORE_DMAE_ADDRESS_HOST_VIRT:
864 		cmd->dst_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
865 		cmd->dst_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
866 		break;
867 	default:
868 		return ECORE_INVAL;
869 	}
870 
871 	cmd->length_dw = OSAL_CPU_TO_LE16((u16)length_dw);
872 #ifndef __EXTRACT__LINUX__
873 	if (src_type == ECORE_DMAE_ADDRESS_HOST_VIRT ||
874 	    src_type == ECORE_DMAE_ADDRESS_HOST_PHYS)
875 		OSAL_DMA_SYNC(p_hwfn->p_dev,
876 			      (void *)HILO_U64(cmd->src_addr_hi,
877 					       cmd->src_addr_lo),
878 			      length_dw * sizeof(u32), false);
879 #endif
880 
881 	ecore_dmae_post_command(p_hwfn, p_ptt);
882 
883 	ecore_status = ecore_dmae_operation_wait(p_hwfn);
884 
885 #ifndef __EXTRACT__LINUX__
886 	/* TODO - is it true ? */
887 	if (src_type == ECORE_DMAE_ADDRESS_HOST_VIRT ||
888 	    src_type == ECORE_DMAE_ADDRESS_HOST_PHYS)
889 		OSAL_DMA_SYNC(p_hwfn->p_dev,
890 			      (void *)HILO_U64(cmd->src_addr_hi,
891 					       cmd->src_addr_lo),
892 			      length_dw * sizeof(u32), true);
893 #endif
894 
895 	if (ecore_status != ECORE_SUCCESS) {
896 		DP_NOTICE(p_hwfn, ECORE_MSG_HW,
897 			  "Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x, intermediate buffer 0x%llx.\n",
898 			  (unsigned long long)src_addr, (unsigned long long)dst_addr, length_dw,
899 			  (unsigned long long)p_hwfn->dmae_info.intermediate_buffer_phys_addr);
900 		return ecore_status;
901 	}
902 
903 	if (dst_type == ECORE_DMAE_ADDRESS_HOST_VIRT)
904 		OSAL_MEMCPY((void *)(osal_uintptr_t)(dst_addr),
905 			    &p_hwfn->dmae_info.p_intermediate_buffer[0],
906 			    length_dw * sizeof(u32));
907 
908 	return ECORE_SUCCESS;
909 }
910 
911 static enum _ecore_status_t ecore_dmae_execute_command(struct ecore_hwfn *p_hwfn,
912 						       struct ecore_ptt *p_ptt,
913 						       u64 src_addr, u64 dst_addr,
914 						       u8 src_type, u8 dst_type,
915 						       u32 size_in_dwords,
916 						       struct ecore_dmae_params *p_params)
917 {
918 	dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
919 	u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
920 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
921 	u64 src_addr_split = 0, dst_addr_split = 0;
922 	u16 length_limit = DMAE_MAX_RW_SIZE;
923 	enum _ecore_status_t ecore_status = ECORE_SUCCESS;
924 	u32 offset = 0;
925 
926 	if (!p_hwfn->dmae_info.b_mem_ready) {
927 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
928 			   "No buffers allocated. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
929 			   (unsigned long long)src_addr, src_type, (unsigned long long)dst_addr, dst_type,
930 			   size_in_dwords);
931 		return ECORE_NOMEM;
932 	}
933 
934 	if (p_hwfn->p_dev->recov_in_prog) {
935 		DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
936 			   "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
937 			   (unsigned long long)src_addr, src_type, (unsigned long long)dst_addr, dst_type,
938 			   size_in_dwords);
939 		/* Return success to let the flow to be completed successfully
940 		 * w/o any error handling.
941 		 */
942 		return ECORE_SUCCESS;
943 	}
944 
945 	if (!cmd) {
946 		DP_NOTICE(p_hwfn, true,
947 			  "ecore_dmae_execute_sub_operation failed. Invalid state. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
948 			  (unsigned long long)src_addr, (unsigned long long)dst_addr, length_cur);
949 		return ECORE_INVAL;
950 	}
951 
952 	ecore_dmae_opcode(p_hwfn,
953 			  (src_type == ECORE_DMAE_ADDRESS_GRC),
954 			  (dst_type == ECORE_DMAE_ADDRESS_GRC),
955 			  p_params);
956 
957 	cmd->comp_addr_lo = OSAL_CPU_TO_LE32(DMA_LO(phys));
958 	cmd->comp_addr_hi = OSAL_CPU_TO_LE32(DMA_HI(phys));
959 	cmd->comp_val = OSAL_CPU_TO_LE32(DMAE_COMPLETION_VAL);
960 
961 	/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
962 	cnt_split = size_in_dwords / length_limit;
963 	length_mod = size_in_dwords % length_limit;
964 
965 	src_addr_split = src_addr;
966 	dst_addr_split = dst_addr;
967 
968 	for (i = 0; i <= cnt_split; i++) {
969 		offset = length_limit * i;
970 
971 		if (!ECORE_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
972 			if (src_type == ECORE_DMAE_ADDRESS_GRC)
973 				src_addr_split = src_addr + offset;
974 			else
975 				src_addr_split = src_addr + (offset*4);
976 		}
977 
978 		if (dst_type == ECORE_DMAE_ADDRESS_GRC)
979 			dst_addr_split = dst_addr + offset;
980 		else
981 			dst_addr_split = dst_addr + (offset*4);
982 
983 		length_cur = (cnt_split == i) ? length_mod : length_limit;
984 
985 		/* might be zero on last iteration */
986 		if (!length_cur)
987 			continue;
988 
989 		ecore_status = ecore_dmae_execute_sub_operation(p_hwfn,
990 								p_ptt,
991 								src_addr_split,
992 								dst_addr_split,
993 								src_type,
994 								dst_type,
995 								length_cur);
996 		if (ecore_status != ECORE_SUCCESS) {
997 			DP_NOTICE(p_hwfn, false,
998 				  "ecore_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
999 				  ecore_status, (unsigned long long)src_addr, (unsigned long long)dst_addr, length_cur);
1000 
1001 			ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_DMAE_FAIL);
1002 			break;
1003 		}
1004 	}
1005 
1006 	return ecore_status;
1007 }
1008 
1009 enum _ecore_status_t ecore_dmae_host2grc(struct ecore_hwfn *p_hwfn,
1010 					 struct ecore_ptt *p_ptt,
1011 					 u64 source_addr,
1012 					 u32 grc_addr,
1013 					 u32 size_in_dwords,
1014 					 struct ecore_dmae_params *p_params)
1015 {
1016 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
1017 	enum _ecore_status_t rc;
1018 
1019 	OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
1020 
1021 	rc = ecore_dmae_execute_command(p_hwfn, p_ptt, source_addr,
1022 					grc_addr_in_dw,
1023 					ECORE_DMAE_ADDRESS_HOST_VIRT,
1024 					ECORE_DMAE_ADDRESS_GRC,
1025 					size_in_dwords, p_params);
1026 
1027 	OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
1028 
1029 	return rc;
1030 }
1031 
1032 enum _ecore_status_t ecore_dmae_grc2host(struct ecore_hwfn *p_hwfn,
1033 					 struct ecore_ptt *p_ptt,
1034 					 u32 grc_addr,
1035 					 dma_addr_t dest_addr,
1036 					 u32 size_in_dwords,
1037 					 struct ecore_dmae_params *p_params)
1038 {
1039 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
1040 	enum _ecore_status_t rc;
1041 
1042 	OSAL_SPIN_LOCK(&(p_hwfn->dmae_info.lock));
1043 
1044 	rc = ecore_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
1045 					dest_addr, ECORE_DMAE_ADDRESS_GRC,
1046 					ECORE_DMAE_ADDRESS_HOST_VIRT,
1047 					size_in_dwords, p_params);
1048 
1049 	OSAL_SPIN_UNLOCK(&(p_hwfn->dmae_info.lock));
1050 
1051 	return rc;
1052 }
1053 
1054 enum _ecore_status_t ecore_dmae_host2host(struct ecore_hwfn *p_hwfn,
1055 					  struct ecore_ptt *p_ptt,
1056 					  dma_addr_t source_addr,
1057 					  dma_addr_t dest_addr,
1058 					  u32 size_in_dwords,
1059 					  struct ecore_dmae_params *p_params)
1060 {
1061 	enum _ecore_status_t rc;
1062 
1063 	OSAL_SPIN_LOCK(&p_hwfn->dmae_info.lock);
1064 
1065 	rc = ecore_dmae_execute_command(p_hwfn, p_ptt, source_addr,
1066 					dest_addr,
1067 					ECORE_DMAE_ADDRESS_HOST_PHYS,
1068 					ECORE_DMAE_ADDRESS_HOST_PHYS,
1069 					size_in_dwords,
1070 					p_params);
1071 
1072 	OSAL_SPIN_UNLOCK(&p_hwfn->dmae_info.lock);
1073 
1074 	return rc;
1075 }
1076 
1077 void ecore_hw_err_notify(struct ecore_hwfn *p_hwfn,
1078 			 enum ecore_hw_err_type err_type)
1079 {
1080 	/* Fan failure cannot be masked by handling of another HW error */
1081 	if (p_hwfn->p_dev->recov_in_prog && err_type != ECORE_HW_ERR_FAN_FAIL) {
1082 		DP_VERBOSE(p_hwfn, ECORE_MSG_DRV,
1083 			   "Recovery is in progress. Avoid notifying about HW error %d.\n",
1084 			   err_type);
1085 		return;
1086 	}
1087 
1088 	OSAL_HW_ERROR_OCCURRED(p_hwfn, err_type);
1089 }
1090 
1091 enum _ecore_status_t ecore_dmae_sanity(struct ecore_hwfn *p_hwfn,
1092 				       struct ecore_ptt *p_ptt,
1093 				       const char *phase)
1094 {
1095 	u32 size = OSAL_PAGE_SIZE / 2, val;
1096 	enum _ecore_status_t rc = ECORE_SUCCESS;
1097 	dma_addr_t p_phys;
1098 	void *p_virt;
1099 	u32 *p_tmp;
1100 
1101 	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, &p_phys, 2 * size);
1102 	if (!p_virt) {
1103 		DP_NOTICE(p_hwfn, false,
1104 			  "DMAE sanity [%s]: failed to allocate memory\n",
1105 			  phase);
1106 		return ECORE_NOMEM;
1107 	}
1108 
1109 	/* Fill the bottom half of the allocated memory with a known pattern */
1110 	for (p_tmp = (u32 *)p_virt;
1111 	     p_tmp < (u32 *)((u8 *)p_virt + size);
1112 	     p_tmp++) {
1113 		/* Save the address itself as the value */
1114 		val = (u32)(osal_uintptr_t)p_tmp;
1115 		*p_tmp = val;
1116 	}
1117 
1118 	/* Zero the top half of the allocated memory */
1119 	OSAL_MEM_ZERO((u8 *)p_virt + size, size);
1120 
1121 	DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1122 		   "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
1123 		   phase, (unsigned long long)p_phys, p_virt,
1124 		   (unsigned long long)(p_phys + size), (u8 *)p_virt + size,
1125 		   size);
1126 
1127 	rc = ecore_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
1128 				  size / 4 /* size_in_dwords */,
1129 				  OSAL_NULL /* default parameters */);
1130 	if (rc != ECORE_SUCCESS) {
1131 		DP_NOTICE(p_hwfn, false,
1132 			  "DMAE sanity [%s]: ecore_dmae_host2host() failed. rc = %d.\n",
1133 			  phase, rc);
1134 		goto out;
1135 	}
1136 
1137 	/* Verify that the top half of the allocated memory has the pattern */
1138 	for (p_tmp = (u32 *)((u8 *)p_virt + size);
1139 	     p_tmp < (u32 *)((u8 *)p_virt + (2 * size));
1140 	     p_tmp++) {
1141 		/* The corresponding address in the bottom half */
1142 		val = (u32)(osal_uintptr_t)p_tmp - size;
1143 
1144 		if (*p_tmp != val) {
1145 			DP_NOTICE(p_hwfn, false,
1146 				  "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
1147 				  phase,
1148 				  (unsigned long long)(p_phys + (u32)((u8 *)p_tmp - (u8 *)p_virt)),
1149 				  p_tmp, *p_tmp, val);
1150 			rc = ECORE_UNKNOWN_ERROR;
1151 			goto out;
1152 		}
1153 	}
1154 
1155 out:
1156 	OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_virt, p_phys, 2 * size);
1157 	return rc;
1158 }
1159 
1160 void ecore_ppfid_wr(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1161 		    u8 abs_ppfid, u32 hw_addr, u32 val)
1162 {
1163 	u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
1164 
1165 	ecore_fid_pretend(p_hwfn, p_ptt,
1166 			  pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1167 	ecore_wr(p_hwfn, p_ptt, hw_addr, val);
1168 	ecore_fid_pretend(p_hwfn, p_ptt,
1169 			  p_hwfn->rel_pf_id <<
1170 			  PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1171 }
1172 
1173 u32 ecore_ppfid_rd(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1174 		   u8 abs_ppfid, u32 hw_addr)
1175 {
1176 	u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
1177 	u32 val;
1178 
1179 	ecore_fid_pretend(p_hwfn, p_ptt,
1180 			  pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1181 	val = ecore_rd(p_hwfn, p_ptt, hw_addr);
1182 	ecore_fid_pretend(p_hwfn, p_ptt,
1183 			  p_hwfn->rel_pf_id <<
1184 			  PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
1185 
1186 	return val;
1187 }
1188 
1189 #ifdef _NTDDK_
1190 #pragma warning(pop)
1191 #endif
1192