1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <sys/disk.h> 35 #include <sys/fcntl.h> 36 #include <sys/ioccom.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/proc.h> 40 #include <sys/systm.h> 41 42 #include <dev/pci/pcivar.h> 43 44 #include <geom/geom.h> 45 46 #include "nvme_private.h" 47 48 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 49 static void nvme_bio_child_done(void *arg, 50 const struct nvme_completion *cpl); 51 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 52 uint32_t alignment); 53 static void nvme_free_child_bios(int num_bios, 54 struct bio **child_bios); 55 static struct bio ** nvme_allocate_child_bios(int num_bios); 56 static struct bio ** nvme_construct_child_bios(struct bio *bp, 57 uint32_t alignment, 58 int *num_bios); 59 static int nvme_ns_split_bio(struct nvme_namespace *ns, 60 struct bio *bp, 61 uint32_t alignment); 62 63 static int 64 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 65 struct thread *td) 66 { 67 struct nvme_namespace *ns; 68 struct nvme_controller *ctrlr; 69 struct nvme_pt_command *pt; 70 71 ns = cdev->si_drv1; 72 ctrlr = ns->ctrlr; 73 74 switch (cmd) { 75 case NVME_IO_TEST: 76 case NVME_BIO_TEST: 77 nvme_ns_test(ns, cmd, arg); 78 break; 79 case NVME_PASSTHROUGH_CMD: 80 pt = (struct nvme_pt_command *)arg; 81 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 82 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 83 case NVME_GET_NSID: 84 { 85 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 86 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 87 sizeof(gnsid->cdev)); 88 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 89 gnsid->nsid = ns->id; 90 break; 91 } 92 case DIOCGMEDIASIZE: 93 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 94 break; 95 case DIOCGSECTORSIZE: 96 *(u_int *)arg = nvme_ns_get_sector_size(ns); 97 break; 98 default: 99 return (ENOTTY); 100 } 101 102 return (0); 103 } 104 105 static int 106 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 107 struct thread *td) 108 { 109 int error = 0; 110 111 if (flags & FWRITE) 112 error = securelevel_gt(td->td_ucred, 0); 113 114 return (error); 115 } 116 117 static int 118 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 119 struct thread *td) 120 { 121 122 return (0); 123 } 124 125 static void 126 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 127 { 128 struct bio *bp = arg; 129 130 /* 131 * TODO: add more extensive translation of NVMe status codes 132 * to different bio error codes (i.e. EIO, EINVAL, etc.) 133 */ 134 if (nvme_completion_is_error(cpl)) { 135 bp->bio_error = EIO; 136 bp->bio_flags |= BIO_ERROR; 137 bp->bio_resid = bp->bio_bcount; 138 } else 139 bp->bio_resid = 0; 140 141 biodone(bp); 142 } 143 144 static void 145 nvme_ns_strategy(struct bio *bp) 146 { 147 struct nvme_namespace *ns; 148 int err; 149 150 ns = bp->bio_dev->si_drv1; 151 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 152 153 if (err) { 154 bp->bio_error = err; 155 bp->bio_flags |= BIO_ERROR; 156 bp->bio_resid = bp->bio_bcount; 157 biodone(bp); 158 } 159 160 } 161 162 static struct cdevsw nvme_ns_cdevsw = { 163 .d_version = D_VERSION, 164 .d_flags = D_DISK, 165 .d_read = physread, 166 .d_write = physwrite, 167 .d_open = nvme_ns_open, 168 .d_close = nvme_ns_close, 169 .d_strategy = nvme_ns_strategy, 170 .d_ioctl = nvme_ns_ioctl 171 }; 172 173 uint32_t 174 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 175 { 176 return ns->ctrlr->max_xfer_size; 177 } 178 179 uint32_t 180 nvme_ns_get_sector_size(struct nvme_namespace *ns) 181 { 182 uint8_t flbas_fmt, lbads; 183 184 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 185 NVME_NS_DATA_FLBAS_FORMAT_MASK; 186 lbads = (ns->data.lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) & 187 NVME_NS_DATA_LBAF_LBADS_MASK; 188 189 return (1 << lbads); 190 } 191 192 uint64_t 193 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 194 { 195 return (ns->data.nsze); 196 } 197 198 uint64_t 199 nvme_ns_get_size(struct nvme_namespace *ns) 200 { 201 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 202 } 203 204 uint32_t 205 nvme_ns_get_flags(struct nvme_namespace *ns) 206 { 207 return (ns->flags); 208 } 209 210 const char * 211 nvme_ns_get_serial_number(struct nvme_namespace *ns) 212 { 213 return ((const char *)ns->ctrlr->cdata.sn); 214 } 215 216 const char * 217 nvme_ns_get_model_number(struct nvme_namespace *ns) 218 { 219 return ((const char *)ns->ctrlr->cdata.mn); 220 } 221 222 const struct nvme_namespace_data * 223 nvme_ns_get_data(struct nvme_namespace *ns) 224 { 225 226 return (&ns->data); 227 } 228 229 uint32_t 230 nvme_ns_get_stripesize(struct nvme_namespace *ns) 231 { 232 uint32_t ss; 233 234 if (((ns->data.nsfeat >> NVME_NS_DATA_NSFEAT_NPVALID_SHIFT) & 235 NVME_NS_DATA_NSFEAT_NPVALID_MASK) != 0) { 236 ss = nvme_ns_get_sector_size(ns); 237 if (ns->data.npwa != 0) 238 return ((ns->data.npwa + 1) * ss); 239 else if (ns->data.npwg != 0) 240 return ((ns->data.npwg + 1) * ss); 241 } 242 return (ns->boundary); 243 } 244 245 static void 246 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 247 { 248 struct bio *bp = arg; 249 nvme_cb_fn_t bp_cb_fn; 250 251 bp_cb_fn = bp->bio_driver1; 252 253 if (bp->bio_driver2) 254 free(bp->bio_driver2, M_NVME); 255 256 if (nvme_completion_is_error(status)) { 257 bp->bio_flags |= BIO_ERROR; 258 if (bp->bio_error == 0) 259 bp->bio_error = EIO; 260 } 261 262 if ((bp->bio_flags & BIO_ERROR) == 0) 263 bp->bio_resid = 0; 264 else 265 bp->bio_resid = bp->bio_bcount; 266 267 bp_cb_fn(bp, status); 268 } 269 270 static void 271 nvme_bio_child_inbed(struct bio *parent, int bio_error) 272 { 273 struct nvme_completion parent_cpl; 274 int children, inbed; 275 276 if (bio_error != 0) { 277 parent->bio_flags |= BIO_ERROR; 278 parent->bio_error = bio_error; 279 } 280 281 /* 282 * atomic_fetchadd will return value before adding 1, so we still 283 * must add 1 to get the updated inbed number. Save bio_children 284 * before incrementing to guard against race conditions when 285 * two children bios complete on different queues. 286 */ 287 children = atomic_load_acq_int(&parent->bio_children); 288 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 289 if (inbed == children) { 290 bzero(&parent_cpl, sizeof(parent_cpl)); 291 if (parent->bio_flags & BIO_ERROR) { 292 parent_cpl.status &= ~(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT); 293 parent_cpl.status |= (NVME_SC_DATA_TRANSFER_ERROR) << NVME_STATUS_SC_SHIFT; 294 } 295 nvme_ns_bio_done(parent, &parent_cpl); 296 } 297 } 298 299 static void 300 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 301 { 302 struct bio *child = arg; 303 struct bio *parent; 304 int bio_error; 305 306 parent = child->bio_parent; 307 g_destroy_bio(child); 308 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 309 nvme_bio_child_inbed(parent, bio_error); 310 } 311 312 static uint32_t 313 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 314 { 315 uint32_t num_segs, offset, remainder; 316 317 if (align == 0) 318 return (1); 319 320 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 321 322 num_segs = size / align; 323 remainder = size & (align - 1); 324 offset = addr & (align - 1); 325 if (remainder > 0 || offset > 0) 326 num_segs += 1 + (remainder + offset - 1) / align; 327 return (num_segs); 328 } 329 330 static void 331 nvme_free_child_bios(int num_bios, struct bio **child_bios) 332 { 333 int i; 334 335 for (i = 0; i < num_bios; i++) { 336 if (child_bios[i] != NULL) 337 g_destroy_bio(child_bios[i]); 338 } 339 340 free(child_bios, M_NVME); 341 } 342 343 static struct bio ** 344 nvme_allocate_child_bios(int num_bios) 345 { 346 struct bio **child_bios; 347 int err = 0, i; 348 349 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 350 if (child_bios == NULL) 351 return (NULL); 352 353 for (i = 0; i < num_bios; i++) { 354 child_bios[i] = g_new_bio(); 355 if (child_bios[i] == NULL) 356 err = ENOMEM; 357 } 358 359 if (err == ENOMEM) { 360 nvme_free_child_bios(num_bios, child_bios); 361 return (NULL); 362 } 363 364 return (child_bios); 365 } 366 367 static struct bio ** 368 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 369 { 370 struct bio **child_bios; 371 struct bio *child; 372 uint64_t cur_offset; 373 caddr_t data; 374 uint32_t rem_bcount; 375 int i; 376 struct vm_page **ma; 377 uint32_t ma_offset; 378 379 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 380 alignment); 381 child_bios = nvme_allocate_child_bios(*num_bios); 382 if (child_bios == NULL) 383 return (NULL); 384 385 bp->bio_children = *num_bios; 386 bp->bio_inbed = 0; 387 cur_offset = bp->bio_offset; 388 rem_bcount = bp->bio_bcount; 389 data = bp->bio_data; 390 ma_offset = bp->bio_ma_offset; 391 ma = bp->bio_ma; 392 393 for (i = 0; i < *num_bios; i++) { 394 child = child_bios[i]; 395 child->bio_parent = bp; 396 child->bio_cmd = bp->bio_cmd; 397 child->bio_offset = cur_offset; 398 child->bio_bcount = min(rem_bcount, 399 alignment - (cur_offset & (alignment - 1))); 400 child->bio_flags = bp->bio_flags; 401 if (bp->bio_flags & BIO_UNMAPPED) { 402 child->bio_ma_offset = ma_offset; 403 child->bio_ma = ma; 404 child->bio_ma_n = 405 nvme_get_num_segments(child->bio_ma_offset, 406 child->bio_bcount, PAGE_SIZE); 407 ma_offset = (ma_offset + child->bio_bcount) & 408 PAGE_MASK; 409 ma += child->bio_ma_n; 410 if (ma_offset != 0) 411 ma -= 1; 412 } else { 413 child->bio_data = data; 414 data += child->bio_bcount; 415 } 416 cur_offset += child->bio_bcount; 417 rem_bcount -= child->bio_bcount; 418 } 419 420 return (child_bios); 421 } 422 423 static int 424 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 425 uint32_t alignment) 426 { 427 struct bio *child; 428 struct bio **child_bios; 429 int err, i, num_bios; 430 431 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 432 if (child_bios == NULL) 433 return (ENOMEM); 434 435 for (i = 0; i < num_bios; i++) { 436 child = child_bios[i]; 437 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 438 if (err != 0) { 439 nvme_bio_child_inbed(bp, err); 440 g_destroy_bio(child); 441 } 442 } 443 444 free(child_bios, M_NVME); 445 return (0); 446 } 447 448 int 449 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 450 nvme_cb_fn_t cb_fn) 451 { 452 struct nvme_dsm_range *dsm_range; 453 uint32_t num_bios; 454 int err; 455 456 bp->bio_driver1 = cb_fn; 457 458 if (ns->boundary > 0 && 459 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 460 num_bios = nvme_get_num_segments(bp->bio_offset, 461 bp->bio_bcount, ns->boundary); 462 if (num_bios > 1) 463 return (nvme_ns_split_bio(ns, bp, ns->boundary)); 464 } 465 466 switch (bp->bio_cmd) { 467 case BIO_READ: 468 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 469 break; 470 case BIO_WRITE: 471 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 472 break; 473 case BIO_FLUSH: 474 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 475 break; 476 case BIO_DELETE: 477 dsm_range = 478 malloc(sizeof(struct nvme_dsm_range), M_NVME, 479 M_ZERO | M_NOWAIT); 480 if (!dsm_range) { 481 err = ENOMEM; 482 break; 483 } 484 dsm_range->length = 485 htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); 486 dsm_range->starting_lba = 487 htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); 488 bp->bio_driver2 = dsm_range; 489 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 490 nvme_ns_bio_done, bp); 491 if (err != 0) 492 free(dsm_range, M_NVME); 493 break; 494 default: 495 err = EOPNOTSUPP; 496 break; 497 } 498 499 return (err); 500 } 501 502 int 503 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, 504 int flag, struct thread *td) 505 { 506 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); 507 } 508 509 int 510 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 511 struct nvme_controller *ctrlr) 512 { 513 struct make_dev_args md_args; 514 struct nvme_completion_poll_status status; 515 int res; 516 int unit; 517 uint8_t flbas_fmt; 518 uint8_t vwc_present; 519 520 ns->ctrlr = ctrlr; 521 ns->id = id; 522 523 /* 524 * Namespaces are reconstructed after a controller reset, so check 525 * to make sure we only call mtx_init once on each mtx. 526 * 527 * TODO: Move this somewhere where it gets called at controller 528 * construction time, which is not invoked as part of each 529 * controller reset. 530 */ 531 if (!mtx_initialized(&ns->lock)) 532 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 533 534 status.done = 0; 535 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 536 nvme_completion_poll_cb, &status); 537 nvme_completion_poll(&status); 538 if (nvme_completion_is_error(&status.cpl)) { 539 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 540 return (ENXIO); 541 } 542 543 /* Convert data to host endian */ 544 nvme_namespace_data_swapbytes(&ns->data); 545 546 /* 547 * If the size of is zero, chances are this isn't a valid 548 * namespace (eg one that's not been configured yet). The 549 * standard says the entire id will be zeros, so this is a 550 * cheap way to test for that. 551 */ 552 if (ns->data.nsze == 0) 553 return (ENXIO); 554 555 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 556 NVME_NS_DATA_FLBAS_FORMAT_MASK; 557 /* 558 * Note: format is a 0-based value, so > is appropriate here, 559 * not >=. 560 */ 561 if (flbas_fmt > ns->data.nlbaf) { 562 nvme_printf(ctrlr, 563 "lba format %d exceeds number supported (%d)\n", 564 flbas_fmt, ns->data.nlbaf + 1); 565 return (ENXIO); 566 } 567 568 /* 569 * Older Intel devices (like the PC35xxx and P45xx series) advertise in 570 * vendor specific space an alignment that improves performance. If 571 * present use for the stripe size. NVMe 1.3 standardized this as 572 * NOIOB, and newer Intel drives use that. 573 */ 574 if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) { 575 if (ctrlr->cdata.vs[3] != 0) 576 ns->boundary = 577 1 << (ctrlr->cdata.vs[3] + NVME_MPS_SHIFT + 578 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)); 579 else 580 ns->boundary = 0; 581 } else { 582 ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns); 583 } 584 585 if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) 586 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 587 588 vwc_present = (ctrlr->cdata.vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) & 589 NVME_CTRLR_DATA_VWC_PRESENT_MASK; 590 if (vwc_present) 591 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 592 593 /* 594 * cdev may have already been created, if we are reconstructing the 595 * namespace after a controller-level reset. 596 */ 597 if (ns->cdev != NULL) 598 return (0); 599 600 /* 601 * Namespace IDs start at 1, so we need to subtract 1 to create a 602 * correct unit number. 603 */ 604 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 605 606 make_dev_args_init(&md_args); 607 md_args.mda_devsw = &nvme_ns_cdevsw; 608 md_args.mda_unit = unit; 609 md_args.mda_mode = 0600; 610 md_args.mda_si_drv1 = ns; 611 res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", 612 device_get_unit(ctrlr->dev), ns->id); 613 if (res != 0) 614 return (ENXIO); 615 616 ns->cdev->si_flags |= SI_UNMAPPED; 617 618 return (0); 619 } 620 621 void 622 nvme_ns_destruct(struct nvme_namespace *ns) 623 { 624 625 if (ns->cdev != NULL) 626 destroy_dev(ns->cdev); 627 } 628