1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/disk.h> 37 #include <sys/fcntl.h> 38 #include <sys/ioccom.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/proc.h> 42 #include <sys/systm.h> 43 44 #include <dev/pci/pcivar.h> 45 46 #include <geom/geom.h> 47 48 #include "nvme_private.h" 49 50 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 51 static void nvme_bio_child_done(void *arg, 52 const struct nvme_completion *cpl); 53 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 54 uint32_t alignment); 55 static void nvme_free_child_bios(int num_bios, 56 struct bio **child_bios); 57 static struct bio ** nvme_allocate_child_bios(int num_bios); 58 static struct bio ** nvme_construct_child_bios(struct bio *bp, 59 uint32_t alignment, 60 int *num_bios); 61 static int nvme_ns_split_bio(struct nvme_namespace *ns, 62 struct bio *bp, 63 uint32_t alignment); 64 65 static int 66 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 67 struct thread *td) 68 { 69 struct nvme_namespace *ns; 70 struct nvme_controller *ctrlr; 71 struct nvme_pt_command *pt; 72 73 ns = cdev->si_drv1; 74 ctrlr = ns->ctrlr; 75 76 switch (cmd) { 77 case NVME_IO_TEST: 78 case NVME_BIO_TEST: 79 nvme_ns_test(ns, cmd, arg); 80 break; 81 case NVME_PASSTHROUGH_CMD: 82 pt = (struct nvme_pt_command *)arg; 83 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 84 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 85 case NVME_GET_NSID: 86 { 87 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 88 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 89 sizeof(gnsid->cdev)); 90 gnsid->nsid = ns->id; 91 break; 92 } 93 case DIOCGMEDIASIZE: 94 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 95 break; 96 case DIOCGSECTORSIZE: 97 *(u_int *)arg = nvme_ns_get_sector_size(ns); 98 break; 99 default: 100 return (ENOTTY); 101 } 102 103 return (0); 104 } 105 106 static int 107 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 108 struct thread *td) 109 { 110 int error = 0; 111 112 if (flags & FWRITE) 113 error = securelevel_gt(td->td_ucred, 0); 114 115 return (error); 116 } 117 118 static int 119 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 120 struct thread *td) 121 { 122 123 return (0); 124 } 125 126 static void 127 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 128 { 129 struct bio *bp = arg; 130 131 /* 132 * TODO: add more extensive translation of NVMe status codes 133 * to different bio error codes (i.e. EIO, EINVAL, etc.) 134 */ 135 if (nvme_completion_is_error(cpl)) { 136 bp->bio_error = EIO; 137 bp->bio_flags |= BIO_ERROR; 138 bp->bio_resid = bp->bio_bcount; 139 } else 140 bp->bio_resid = 0; 141 142 biodone(bp); 143 } 144 145 static void 146 nvme_ns_strategy(struct bio *bp) 147 { 148 struct nvme_namespace *ns; 149 int err; 150 151 ns = bp->bio_dev->si_drv1; 152 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 153 154 if (err) { 155 bp->bio_error = err; 156 bp->bio_flags |= BIO_ERROR; 157 bp->bio_resid = bp->bio_bcount; 158 biodone(bp); 159 } 160 161 } 162 163 static struct cdevsw nvme_ns_cdevsw = { 164 .d_version = D_VERSION, 165 .d_flags = D_DISK, 166 .d_read = physread, 167 .d_write = physwrite, 168 .d_open = nvme_ns_open, 169 .d_close = nvme_ns_close, 170 .d_strategy = nvme_ns_strategy, 171 .d_ioctl = nvme_ns_ioctl 172 }; 173 174 uint32_t 175 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 176 { 177 return ns->ctrlr->max_xfer_size; 178 } 179 180 uint32_t 181 nvme_ns_get_sector_size(struct nvme_namespace *ns) 182 { 183 uint8_t flbas_fmt, lbads; 184 185 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 186 NVME_NS_DATA_FLBAS_FORMAT_MASK; 187 lbads = (ns->data.lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) & 188 NVME_NS_DATA_LBAF_LBADS_MASK; 189 190 return (1 << lbads); 191 } 192 193 uint64_t 194 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 195 { 196 return (ns->data.nsze); 197 } 198 199 uint64_t 200 nvme_ns_get_size(struct nvme_namespace *ns) 201 { 202 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 203 } 204 205 uint32_t 206 nvme_ns_get_flags(struct nvme_namespace *ns) 207 { 208 return (ns->flags); 209 } 210 211 const char * 212 nvme_ns_get_serial_number(struct nvme_namespace *ns) 213 { 214 return ((const char *)ns->ctrlr->cdata.sn); 215 } 216 217 const char * 218 nvme_ns_get_model_number(struct nvme_namespace *ns) 219 { 220 return ((const char *)ns->ctrlr->cdata.mn); 221 } 222 223 const struct nvme_namespace_data * 224 nvme_ns_get_data(struct nvme_namespace *ns) 225 { 226 227 return (&ns->data); 228 } 229 230 uint32_t 231 nvme_ns_get_stripesize(struct nvme_namespace *ns) 232 { 233 234 return (ns->stripesize); 235 } 236 237 static void 238 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 239 { 240 struct bio *bp = arg; 241 nvme_cb_fn_t bp_cb_fn; 242 243 bp_cb_fn = bp->bio_driver1; 244 245 if (bp->bio_driver2) 246 free(bp->bio_driver2, M_NVME); 247 248 if (nvme_completion_is_error(status)) { 249 bp->bio_flags |= BIO_ERROR; 250 if (bp->bio_error == 0) 251 bp->bio_error = EIO; 252 } 253 254 if ((bp->bio_flags & BIO_ERROR) == 0) 255 bp->bio_resid = 0; 256 else 257 bp->bio_resid = bp->bio_bcount; 258 259 bp_cb_fn(bp, status); 260 } 261 262 static void 263 nvme_bio_child_inbed(struct bio *parent, int bio_error) 264 { 265 struct nvme_completion parent_cpl; 266 int children, inbed; 267 268 if (bio_error != 0) { 269 parent->bio_flags |= BIO_ERROR; 270 parent->bio_error = bio_error; 271 } 272 273 /* 274 * atomic_fetchadd will return value before adding 1, so we still 275 * must add 1 to get the updated inbed number. Save bio_children 276 * before incrementing to guard against race conditions when 277 * two children bios complete on different queues. 278 */ 279 children = atomic_load_acq_int(&parent->bio_children); 280 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 281 if (inbed == children) { 282 bzero(&parent_cpl, sizeof(parent_cpl)); 283 if (parent->bio_flags & BIO_ERROR) { 284 parent_cpl.status &= ~(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT); 285 parent_cpl.status |= (NVME_SC_DATA_TRANSFER_ERROR) << NVME_STATUS_SC_SHIFT; 286 } 287 nvme_ns_bio_done(parent, &parent_cpl); 288 } 289 } 290 291 static void 292 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 293 { 294 struct bio *child = arg; 295 struct bio *parent; 296 int bio_error; 297 298 parent = child->bio_parent; 299 g_destroy_bio(child); 300 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 301 nvme_bio_child_inbed(parent, bio_error); 302 } 303 304 static uint32_t 305 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 306 { 307 uint32_t num_segs, offset, remainder; 308 309 if (align == 0) 310 return (1); 311 312 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 313 314 num_segs = size / align; 315 remainder = size & (align - 1); 316 offset = addr & (align - 1); 317 if (remainder > 0 || offset > 0) 318 num_segs += 1 + (remainder + offset - 1) / align; 319 return (num_segs); 320 } 321 322 static void 323 nvme_free_child_bios(int num_bios, struct bio **child_bios) 324 { 325 int i; 326 327 for (i = 0; i < num_bios; i++) { 328 if (child_bios[i] != NULL) 329 g_destroy_bio(child_bios[i]); 330 } 331 332 free(child_bios, M_NVME); 333 } 334 335 static struct bio ** 336 nvme_allocate_child_bios(int num_bios) 337 { 338 struct bio **child_bios; 339 int err = 0, i; 340 341 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 342 if (child_bios == NULL) 343 return (NULL); 344 345 for (i = 0; i < num_bios; i++) { 346 child_bios[i] = g_new_bio(); 347 if (child_bios[i] == NULL) 348 err = ENOMEM; 349 } 350 351 if (err == ENOMEM) { 352 nvme_free_child_bios(num_bios, child_bios); 353 return (NULL); 354 } 355 356 return (child_bios); 357 } 358 359 static struct bio ** 360 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 361 { 362 struct bio **child_bios; 363 struct bio *child; 364 uint64_t cur_offset; 365 caddr_t data; 366 uint32_t rem_bcount; 367 int i; 368 struct vm_page **ma; 369 uint32_t ma_offset; 370 371 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 372 alignment); 373 child_bios = nvme_allocate_child_bios(*num_bios); 374 if (child_bios == NULL) 375 return (NULL); 376 377 bp->bio_children = *num_bios; 378 bp->bio_inbed = 0; 379 cur_offset = bp->bio_offset; 380 rem_bcount = bp->bio_bcount; 381 data = bp->bio_data; 382 ma_offset = bp->bio_ma_offset; 383 ma = bp->bio_ma; 384 385 for (i = 0; i < *num_bios; i++) { 386 child = child_bios[i]; 387 child->bio_parent = bp; 388 child->bio_cmd = bp->bio_cmd; 389 child->bio_offset = cur_offset; 390 child->bio_bcount = min(rem_bcount, 391 alignment - (cur_offset & (alignment - 1))); 392 child->bio_flags = bp->bio_flags; 393 if (bp->bio_flags & BIO_UNMAPPED) { 394 child->bio_ma_offset = ma_offset; 395 child->bio_ma = ma; 396 child->bio_ma_n = 397 nvme_get_num_segments(child->bio_ma_offset, 398 child->bio_bcount, PAGE_SIZE); 399 ma_offset = (ma_offset + child->bio_bcount) & 400 PAGE_MASK; 401 ma += child->bio_ma_n; 402 if (ma_offset != 0) 403 ma -= 1; 404 } else { 405 child->bio_data = data; 406 data += child->bio_bcount; 407 } 408 cur_offset += child->bio_bcount; 409 rem_bcount -= child->bio_bcount; 410 } 411 412 return (child_bios); 413 } 414 415 static int 416 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 417 uint32_t alignment) 418 { 419 struct bio *child; 420 struct bio **child_bios; 421 int err, i, num_bios; 422 423 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 424 if (child_bios == NULL) 425 return (ENOMEM); 426 427 for (i = 0; i < num_bios; i++) { 428 child = child_bios[i]; 429 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 430 if (err != 0) { 431 nvme_bio_child_inbed(bp, err); 432 g_destroy_bio(child); 433 } 434 } 435 436 free(child_bios, M_NVME); 437 return (0); 438 } 439 440 int 441 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 442 nvme_cb_fn_t cb_fn) 443 { 444 struct nvme_dsm_range *dsm_range; 445 uint32_t num_bios; 446 int err; 447 448 bp->bio_driver1 = cb_fn; 449 450 if (ns->stripesize > 0 && 451 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 452 num_bios = nvme_get_num_segments(bp->bio_offset, 453 bp->bio_bcount, ns->stripesize); 454 if (num_bios > 1) 455 return (nvme_ns_split_bio(ns, bp, ns->stripesize)); 456 } 457 458 switch (bp->bio_cmd) { 459 case BIO_READ: 460 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 461 break; 462 case BIO_WRITE: 463 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 464 break; 465 case BIO_FLUSH: 466 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 467 break; 468 case BIO_DELETE: 469 dsm_range = 470 malloc(sizeof(struct nvme_dsm_range), M_NVME, 471 M_ZERO | M_WAITOK); 472 if (!dsm_range) { 473 err = ENOMEM; 474 break; 475 } 476 dsm_range->length = 477 htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); 478 dsm_range->starting_lba = 479 htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); 480 bp->bio_driver2 = dsm_range; 481 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 482 nvme_ns_bio_done, bp); 483 if (err != 0) 484 free(dsm_range, M_NVME); 485 break; 486 default: 487 err = EIO; 488 break; 489 } 490 491 return (err); 492 } 493 494 int 495 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, 496 int flag, struct thread *td) 497 { 498 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); 499 } 500 501 int 502 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 503 struct nvme_controller *ctrlr) 504 { 505 struct make_dev_args md_args; 506 struct nvme_completion_poll_status status; 507 int res; 508 int unit; 509 uint8_t flbas_fmt; 510 uint8_t vwc_present; 511 512 ns->ctrlr = ctrlr; 513 ns->id = id; 514 ns->stripesize = 0; 515 516 /* 517 * Older Intel devices advertise in vendor specific space an alignment 518 * that improves performance. If present use for the stripe size. NVMe 519 * 1.3 standardized this as NOIOB, and newer Intel drives use that. 520 */ 521 switch (pci_get_devid(ctrlr->dev)) { 522 case 0x09538086: /* Intel DC PC3500 */ 523 case 0x0a538086: /* Intel DC PC3520 */ 524 case 0x0a548086: /* Intel DC PC4500 */ 525 case 0x0a558086: /* Dell Intel P4600 */ 526 if (ctrlr->cdata.vs[3] != 0) 527 ns->stripesize = 528 (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size; 529 break; 530 default: 531 break; 532 } 533 534 /* 535 * Namespaces are reconstructed after a controller reset, so check 536 * to make sure we only call mtx_init once on each mtx. 537 * 538 * TODO: Move this somewhere where it gets called at controller 539 * construction time, which is not invoked as part of each 540 * controller reset. 541 */ 542 if (!mtx_initialized(&ns->lock)) 543 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 544 545 status.done = 0; 546 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 547 nvme_completion_poll_cb, &status); 548 while (!atomic_load_acq_int(&status.done)) 549 pause("nvme", 1); 550 if (nvme_completion_is_error(&status.cpl)) { 551 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 552 return (ENXIO); 553 } 554 555 /* Convert data to host endian */ 556 nvme_namespace_data_swapbytes(&ns->data); 557 558 /* 559 * If the size of is zero, chances are this isn't a valid 560 * namespace (eg one that's not been configured yet). The 561 * standard says the entire id will be zeros, so this is a 562 * cheap way to test for that. 563 */ 564 if (ns->data.nsze == 0) 565 return (ENXIO); 566 567 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 568 NVME_NS_DATA_FLBAS_FORMAT_MASK; 569 /* 570 * Note: format is a 0-based value, so > is appropriate here, 571 * not >=. 572 */ 573 if (flbas_fmt > ns->data.nlbaf) { 574 printf("lba format %d exceeds number supported (%d)\n", 575 flbas_fmt, ns->data.nlbaf + 1); 576 return (ENXIO); 577 } 578 579 if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) 580 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 581 582 vwc_present = (ctrlr->cdata.vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) & 583 NVME_CTRLR_DATA_VWC_PRESENT_MASK; 584 if (vwc_present) 585 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 586 587 /* 588 * cdev may have already been created, if we are reconstructing the 589 * namespace after a controller-level reset. 590 */ 591 if (ns->cdev != NULL) 592 return (0); 593 594 /* 595 * Namespace IDs start at 1, so we need to subtract 1 to create a 596 * correct unit number. 597 */ 598 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 599 600 make_dev_args_init(&md_args); 601 md_args.mda_devsw = &nvme_ns_cdevsw; 602 md_args.mda_unit = unit; 603 md_args.mda_mode = 0600; 604 md_args.mda_si_drv1 = ns; 605 res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", 606 device_get_unit(ctrlr->dev), ns->id); 607 if (res != 0) 608 return (ENXIO); 609 610 ns->cdev->si_flags |= SI_UNMAPPED; 611 612 return (0); 613 } 614 615 void nvme_ns_destruct(struct nvme_namespace *ns) 616 { 617 618 if (ns->cdev != NULL) 619 destroy_dev(ns->cdev); 620 } 621