1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2013 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/bio.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/disk.h> 37 #include <sys/fcntl.h> 38 #include <sys/ioccom.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/proc.h> 42 #include <sys/systm.h> 43 44 #include <dev/pci/pcivar.h> 45 46 #include <geom/geom.h> 47 48 #include "nvme_private.h" 49 50 static void nvme_bio_child_inbed(struct bio *parent, int bio_error); 51 static void nvme_bio_child_done(void *arg, 52 const struct nvme_completion *cpl); 53 static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, 54 uint32_t alignment); 55 static void nvme_free_child_bios(int num_bios, 56 struct bio **child_bios); 57 static struct bio ** nvme_allocate_child_bios(int num_bios); 58 static struct bio ** nvme_construct_child_bios(struct bio *bp, 59 uint32_t alignment, 60 int *num_bios); 61 static int nvme_ns_split_bio(struct nvme_namespace *ns, 62 struct bio *bp, 63 uint32_t alignment); 64 65 static int 66 nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 67 struct thread *td) 68 { 69 struct nvme_namespace *ns; 70 struct nvme_controller *ctrlr; 71 struct nvme_pt_command *pt; 72 73 ns = cdev->si_drv1; 74 ctrlr = ns->ctrlr; 75 76 switch (cmd) { 77 case NVME_IO_TEST: 78 case NVME_BIO_TEST: 79 nvme_ns_test(ns, cmd, arg); 80 break; 81 case NVME_PASSTHROUGH_CMD: 82 pt = (struct nvme_pt_command *)arg; 83 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 84 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); 85 case NVME_GET_NSID: 86 { 87 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 88 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 89 sizeof(gnsid->cdev)); 90 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 91 gnsid->nsid = ns->id; 92 break; 93 } 94 case DIOCGMEDIASIZE: 95 *(off_t *)arg = (off_t)nvme_ns_get_size(ns); 96 break; 97 case DIOCGSECTORSIZE: 98 *(u_int *)arg = nvme_ns_get_sector_size(ns); 99 break; 100 default: 101 return (ENOTTY); 102 } 103 104 return (0); 105 } 106 107 static int 108 nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, 109 struct thread *td) 110 { 111 int error = 0; 112 113 if (flags & FWRITE) 114 error = securelevel_gt(td->td_ucred, 0); 115 116 return (error); 117 } 118 119 static int 120 nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, 121 struct thread *td) 122 { 123 124 return (0); 125 } 126 127 static void 128 nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) 129 { 130 struct bio *bp = arg; 131 132 /* 133 * TODO: add more extensive translation of NVMe status codes 134 * to different bio error codes (i.e. EIO, EINVAL, etc.) 135 */ 136 if (nvme_completion_is_error(cpl)) { 137 bp->bio_error = EIO; 138 bp->bio_flags |= BIO_ERROR; 139 bp->bio_resid = bp->bio_bcount; 140 } else 141 bp->bio_resid = 0; 142 143 biodone(bp); 144 } 145 146 static void 147 nvme_ns_strategy(struct bio *bp) 148 { 149 struct nvme_namespace *ns; 150 int err; 151 152 ns = bp->bio_dev->si_drv1; 153 err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); 154 155 if (err) { 156 bp->bio_error = err; 157 bp->bio_flags |= BIO_ERROR; 158 bp->bio_resid = bp->bio_bcount; 159 biodone(bp); 160 } 161 162 } 163 164 static struct cdevsw nvme_ns_cdevsw = { 165 .d_version = D_VERSION, 166 .d_flags = D_DISK, 167 .d_read = physread, 168 .d_write = physwrite, 169 .d_open = nvme_ns_open, 170 .d_close = nvme_ns_close, 171 .d_strategy = nvme_ns_strategy, 172 .d_ioctl = nvme_ns_ioctl 173 }; 174 175 uint32_t 176 nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) 177 { 178 return ns->ctrlr->max_xfer_size; 179 } 180 181 uint32_t 182 nvme_ns_get_sector_size(struct nvme_namespace *ns) 183 { 184 uint8_t flbas_fmt, lbads; 185 186 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 187 NVME_NS_DATA_FLBAS_FORMAT_MASK; 188 lbads = (ns->data.lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) & 189 NVME_NS_DATA_LBAF_LBADS_MASK; 190 191 return (1 << lbads); 192 } 193 194 uint64_t 195 nvme_ns_get_num_sectors(struct nvme_namespace *ns) 196 { 197 return (ns->data.nsze); 198 } 199 200 uint64_t 201 nvme_ns_get_size(struct nvme_namespace *ns) 202 { 203 return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); 204 } 205 206 uint32_t 207 nvme_ns_get_flags(struct nvme_namespace *ns) 208 { 209 return (ns->flags); 210 } 211 212 const char * 213 nvme_ns_get_serial_number(struct nvme_namespace *ns) 214 { 215 return ((const char *)ns->ctrlr->cdata.sn); 216 } 217 218 const char * 219 nvme_ns_get_model_number(struct nvme_namespace *ns) 220 { 221 return ((const char *)ns->ctrlr->cdata.mn); 222 } 223 224 const struct nvme_namespace_data * 225 nvme_ns_get_data(struct nvme_namespace *ns) 226 { 227 228 return (&ns->data); 229 } 230 231 uint32_t 232 nvme_ns_get_stripesize(struct nvme_namespace *ns) 233 { 234 uint32_t ss; 235 236 if (((ns->data.nsfeat >> NVME_NS_DATA_NSFEAT_NPVALID_SHIFT) & 237 NVME_NS_DATA_NSFEAT_NPVALID_MASK) != 0) { 238 ss = nvme_ns_get_sector_size(ns); 239 if (ns->data.npwa != 0) 240 return ((ns->data.npwa + 1) * ss); 241 else if (ns->data.npwg != 0) 242 return ((ns->data.npwg + 1) * ss); 243 } 244 return (ns->boundary); 245 } 246 247 static void 248 nvme_ns_bio_done(void *arg, const struct nvme_completion *status) 249 { 250 struct bio *bp = arg; 251 nvme_cb_fn_t bp_cb_fn; 252 253 bp_cb_fn = bp->bio_driver1; 254 255 if (bp->bio_driver2) 256 free(bp->bio_driver2, M_NVME); 257 258 if (nvme_completion_is_error(status)) { 259 bp->bio_flags |= BIO_ERROR; 260 if (bp->bio_error == 0) 261 bp->bio_error = EIO; 262 } 263 264 if ((bp->bio_flags & BIO_ERROR) == 0) 265 bp->bio_resid = 0; 266 else 267 bp->bio_resid = bp->bio_bcount; 268 269 bp_cb_fn(bp, status); 270 } 271 272 static void 273 nvme_bio_child_inbed(struct bio *parent, int bio_error) 274 { 275 struct nvme_completion parent_cpl; 276 int children, inbed; 277 278 if (bio_error != 0) { 279 parent->bio_flags |= BIO_ERROR; 280 parent->bio_error = bio_error; 281 } 282 283 /* 284 * atomic_fetchadd will return value before adding 1, so we still 285 * must add 1 to get the updated inbed number. Save bio_children 286 * before incrementing to guard against race conditions when 287 * two children bios complete on different queues. 288 */ 289 children = atomic_load_acq_int(&parent->bio_children); 290 inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; 291 if (inbed == children) { 292 bzero(&parent_cpl, sizeof(parent_cpl)); 293 if (parent->bio_flags & BIO_ERROR) { 294 parent_cpl.status &= ~(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT); 295 parent_cpl.status |= (NVME_SC_DATA_TRANSFER_ERROR) << NVME_STATUS_SC_SHIFT; 296 } 297 nvme_ns_bio_done(parent, &parent_cpl); 298 } 299 } 300 301 static void 302 nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) 303 { 304 struct bio *child = arg; 305 struct bio *parent; 306 int bio_error; 307 308 parent = child->bio_parent; 309 g_destroy_bio(child); 310 bio_error = nvme_completion_is_error(cpl) ? EIO : 0; 311 nvme_bio_child_inbed(parent, bio_error); 312 } 313 314 static uint32_t 315 nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) 316 { 317 uint32_t num_segs, offset, remainder; 318 319 if (align == 0) 320 return (1); 321 322 KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); 323 324 num_segs = size / align; 325 remainder = size & (align - 1); 326 offset = addr & (align - 1); 327 if (remainder > 0 || offset > 0) 328 num_segs += 1 + (remainder + offset - 1) / align; 329 return (num_segs); 330 } 331 332 static void 333 nvme_free_child_bios(int num_bios, struct bio **child_bios) 334 { 335 int i; 336 337 for (i = 0; i < num_bios; i++) { 338 if (child_bios[i] != NULL) 339 g_destroy_bio(child_bios[i]); 340 } 341 342 free(child_bios, M_NVME); 343 } 344 345 static struct bio ** 346 nvme_allocate_child_bios(int num_bios) 347 { 348 struct bio **child_bios; 349 int err = 0, i; 350 351 child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); 352 if (child_bios == NULL) 353 return (NULL); 354 355 for (i = 0; i < num_bios; i++) { 356 child_bios[i] = g_new_bio(); 357 if (child_bios[i] == NULL) 358 err = ENOMEM; 359 } 360 361 if (err == ENOMEM) { 362 nvme_free_child_bios(num_bios, child_bios); 363 return (NULL); 364 } 365 366 return (child_bios); 367 } 368 369 static struct bio ** 370 nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) 371 { 372 struct bio **child_bios; 373 struct bio *child; 374 uint64_t cur_offset; 375 caddr_t data; 376 uint32_t rem_bcount; 377 int i; 378 struct vm_page **ma; 379 uint32_t ma_offset; 380 381 *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, 382 alignment); 383 child_bios = nvme_allocate_child_bios(*num_bios); 384 if (child_bios == NULL) 385 return (NULL); 386 387 bp->bio_children = *num_bios; 388 bp->bio_inbed = 0; 389 cur_offset = bp->bio_offset; 390 rem_bcount = bp->bio_bcount; 391 data = bp->bio_data; 392 ma_offset = bp->bio_ma_offset; 393 ma = bp->bio_ma; 394 395 for (i = 0; i < *num_bios; i++) { 396 child = child_bios[i]; 397 child->bio_parent = bp; 398 child->bio_cmd = bp->bio_cmd; 399 child->bio_offset = cur_offset; 400 child->bio_bcount = min(rem_bcount, 401 alignment - (cur_offset & (alignment - 1))); 402 child->bio_flags = bp->bio_flags; 403 if (bp->bio_flags & BIO_UNMAPPED) { 404 child->bio_ma_offset = ma_offset; 405 child->bio_ma = ma; 406 child->bio_ma_n = 407 nvme_get_num_segments(child->bio_ma_offset, 408 child->bio_bcount, PAGE_SIZE); 409 ma_offset = (ma_offset + child->bio_bcount) & 410 PAGE_MASK; 411 ma += child->bio_ma_n; 412 if (ma_offset != 0) 413 ma -= 1; 414 } else { 415 child->bio_data = data; 416 data += child->bio_bcount; 417 } 418 cur_offset += child->bio_bcount; 419 rem_bcount -= child->bio_bcount; 420 } 421 422 return (child_bios); 423 } 424 425 static int 426 nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, 427 uint32_t alignment) 428 { 429 struct bio *child; 430 struct bio **child_bios; 431 int err, i, num_bios; 432 433 child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); 434 if (child_bios == NULL) 435 return (ENOMEM); 436 437 for (i = 0; i < num_bios; i++) { 438 child = child_bios[i]; 439 err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); 440 if (err != 0) { 441 nvme_bio_child_inbed(bp, err); 442 g_destroy_bio(child); 443 } 444 } 445 446 free(child_bios, M_NVME); 447 return (0); 448 } 449 450 int 451 nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, 452 nvme_cb_fn_t cb_fn) 453 { 454 struct nvme_dsm_range *dsm_range; 455 uint32_t num_bios; 456 int err; 457 458 bp->bio_driver1 = cb_fn; 459 460 if (ns->boundary > 0 && 461 (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { 462 num_bios = nvme_get_num_segments(bp->bio_offset, 463 bp->bio_bcount, ns->boundary); 464 if (num_bios > 1) 465 return (nvme_ns_split_bio(ns, bp, ns->boundary)); 466 } 467 468 switch (bp->bio_cmd) { 469 case BIO_READ: 470 err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); 471 break; 472 case BIO_WRITE: 473 err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); 474 break; 475 case BIO_FLUSH: 476 err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); 477 break; 478 case BIO_DELETE: 479 dsm_range = 480 malloc(sizeof(struct nvme_dsm_range), M_NVME, 481 M_ZERO | M_NOWAIT); 482 if (!dsm_range) { 483 err = ENOMEM; 484 break; 485 } 486 dsm_range->length = 487 htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns)); 488 dsm_range->starting_lba = 489 htole64(bp->bio_offset/nvme_ns_get_sector_size(ns)); 490 bp->bio_driver2 = dsm_range; 491 err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, 492 nvme_ns_bio_done, bp); 493 if (err != 0) 494 free(dsm_range, M_NVME); 495 break; 496 default: 497 err = EOPNOTSUPP; 498 break; 499 } 500 501 return (err); 502 } 503 504 int 505 nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, 506 int flag, struct thread *td) 507 { 508 return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td)); 509 } 510 511 int 512 nvme_ns_construct(struct nvme_namespace *ns, uint32_t id, 513 struct nvme_controller *ctrlr) 514 { 515 struct make_dev_args md_args; 516 struct nvme_completion_poll_status status; 517 int res; 518 int unit; 519 uint8_t flbas_fmt; 520 uint8_t vwc_present; 521 522 ns->ctrlr = ctrlr; 523 ns->id = id; 524 525 /* 526 * Namespaces are reconstructed after a controller reset, so check 527 * to make sure we only call mtx_init once on each mtx. 528 * 529 * TODO: Move this somewhere where it gets called at controller 530 * construction time, which is not invoked as part of each 531 * controller reset. 532 */ 533 if (!mtx_initialized(&ns->lock)) 534 mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); 535 536 status.done = 0; 537 nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, 538 nvme_completion_poll_cb, &status); 539 nvme_completion_poll(&status); 540 if (nvme_completion_is_error(&status.cpl)) { 541 nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); 542 return (ENXIO); 543 } 544 545 /* Convert data to host endian */ 546 nvme_namespace_data_swapbytes(&ns->data); 547 548 /* 549 * If the size of is zero, chances are this isn't a valid 550 * namespace (eg one that's not been configured yet). The 551 * standard says the entire id will be zeros, so this is a 552 * cheap way to test for that. 553 */ 554 if (ns->data.nsze == 0) 555 return (ENXIO); 556 557 flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) & 558 NVME_NS_DATA_FLBAS_FORMAT_MASK; 559 /* 560 * Note: format is a 0-based value, so > is appropriate here, 561 * not >=. 562 */ 563 if (flbas_fmt > ns->data.nlbaf) { 564 printf("lba format %d exceeds number supported (%d)\n", 565 flbas_fmt, ns->data.nlbaf + 1); 566 return (ENXIO); 567 } 568 569 /* 570 * Older Intel devices advertise in vendor specific space an alignment 571 * that improves performance. If present use for the stripe size. NVMe 572 * 1.3 standardized this as NOIOB, and newer Intel drives use that. 573 */ 574 if ((ctrlr->quirks & QUIRK_INTEL_ALIGNMENT) != 0) { 575 if (ctrlr->cdata.vs[3] != 0) 576 ns->boundary = 577 (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size; 578 else 579 ns->boundary = 0; 580 } else { 581 ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns); 582 } 583 584 if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata)) 585 ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; 586 587 vwc_present = (ctrlr->cdata.vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) & 588 NVME_CTRLR_DATA_VWC_PRESENT_MASK; 589 if (vwc_present) 590 ns->flags |= NVME_NS_FLUSH_SUPPORTED; 591 592 /* 593 * cdev may have already been created, if we are reconstructing the 594 * namespace after a controller-level reset. 595 */ 596 if (ns->cdev != NULL) 597 return (0); 598 599 /* 600 * Namespace IDs start at 1, so we need to subtract 1 to create a 601 * correct unit number. 602 */ 603 unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; 604 605 make_dev_args_init(&md_args); 606 md_args.mda_devsw = &nvme_ns_cdevsw; 607 md_args.mda_unit = unit; 608 md_args.mda_mode = 0600; 609 md_args.mda_si_drv1 = ns; 610 res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d", 611 device_get_unit(ctrlr->dev), ns->id); 612 if (res != 0) 613 return (ENXIO); 614 615 ns->cdev->si_flags |= SI_UNMAPPED; 616 617 return (0); 618 } 619 620 void 621 nvme_ns_destruct(struct nvme_namespace *ns) 622 { 623 624 if (ns->cdev != NULL) 625 destroy_dev(ns->cdev); 626 } 627