1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_cam.h" 33 #include "opt_nvme.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/buf.h> 38 #include <sys/bus.h> 39 #include <sys/conf.h> 40 #include <sys/ioccom.h> 41 #include <sys/proc.h> 42 #include <sys/smp.h> 43 #include <sys/uio.h> 44 #include <sys/sbuf.h> 45 #include <sys/endian.h> 46 #include <machine/stdarg.h> 47 #include <vm/vm.h> 48 49 #include "nvme_private.h" 50 51 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 52 53 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 54 struct nvme_async_event_request *aer); 55 56 static void 57 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags) 58 { 59 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags); 60 } 61 62 static void 63 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 64 { 65 struct sbuf sb; 66 va_list ap; 67 int error; 68 69 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 70 return; 71 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 72 va_start(ap, msg); 73 sbuf_vprintf(&sb, msg, ap); 74 va_end(ap); 75 error = sbuf_finish(&sb); 76 if (error == 0) 77 printf("%s\n", sbuf_data(&sb)); 78 79 sbuf_clear(&sb); 80 sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev)); 81 va_start(ap, msg); 82 sbuf_vprintf(&sb, msg, ap); 83 va_end(ap); 84 sbuf_printf(&sb, "\""); 85 error = sbuf_finish(&sb); 86 if (error == 0) 87 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 88 sbuf_delete(&sb); 89 } 90 91 static int 92 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 93 { 94 struct nvme_qpair *qpair; 95 uint32_t num_entries; 96 int error; 97 98 qpair = &ctrlr->adminq; 99 qpair->id = 0; 100 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 101 qpair->domain = ctrlr->domain; 102 103 num_entries = NVME_ADMIN_ENTRIES; 104 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 105 /* 106 * If admin_entries was overridden to an invalid value, revert it 107 * back to our default value. 108 */ 109 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 110 num_entries > NVME_MAX_ADMIN_ENTRIES) { 111 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 112 "specified\n", num_entries); 113 num_entries = NVME_ADMIN_ENTRIES; 114 } 115 116 /* 117 * The admin queue's max xfer size is treated differently than the 118 * max I/O xfer size. 16KB is sufficient here - maybe even less? 119 */ 120 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 121 ctrlr); 122 return (error); 123 } 124 125 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 126 127 static int 128 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 129 { 130 struct nvme_qpair *qpair; 131 uint32_t cap_lo; 132 uint16_t mqes; 133 int c, error, i, n; 134 int num_entries, num_trackers, max_entries; 135 136 /* 137 * NVMe spec sets a hard limit of 64K max entries, but devices may 138 * specify a smaller limit, so we need to check the MQES field in the 139 * capabilities register. We have to cap the number of entries to the 140 * current stride allows for in BAR 0/1, otherwise the remainder entries 141 * are inaccessable. MQES should reflect this, and this is just a 142 * fail-safe. 143 */ 144 max_entries = 145 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 146 (1 << (ctrlr->dstrd + 1)); 147 num_entries = NVME_IO_ENTRIES; 148 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 149 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 150 mqes = NVME_CAP_LO_MQES(cap_lo); 151 num_entries = min(num_entries, mqes + 1); 152 num_entries = min(num_entries, max_entries); 153 154 num_trackers = NVME_IO_TRACKERS; 155 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 156 157 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 158 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 159 /* 160 * No need to have more trackers than entries in the submit queue. Note 161 * also that for a queue size of N, we can only have (N-1) commands 162 * outstanding, hence the "-1" here. 163 */ 164 num_trackers = min(num_trackers, (num_entries-1)); 165 166 /* 167 * Our best estimate for the maximum number of I/Os that we should 168 * normally have in flight at one time. This should be viewed as a hint, 169 * not a hard limit and will need to be revisited when the upper layers 170 * of the storage system grows multi-queue support. 171 */ 172 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 173 174 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 175 M_NVME, M_ZERO | M_WAITOK); 176 177 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 178 qpair = &ctrlr->ioq[i]; 179 180 /* 181 * Admin queue has ID=0. IO queues start at ID=1 - 182 * hence the 'i+1' here. 183 */ 184 qpair->id = i + 1; 185 if (ctrlr->num_io_queues > 1) { 186 /* Find number of CPUs served by this queue. */ 187 for (n = 1; QP(ctrlr, c + n) == i; n++) 188 ; 189 /* Shuffle multiple NVMe devices between CPUs. */ 190 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 191 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 192 } else { 193 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 194 qpair->domain = ctrlr->domain; 195 } 196 197 /* 198 * For I/O queues, use the controller-wide max_xfer_size 199 * calculated in nvme_attach(). 200 */ 201 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 202 ctrlr); 203 if (error) 204 return (error); 205 206 /* 207 * Do not bother binding interrupts if we only have one I/O 208 * interrupt thread for this controller. 209 */ 210 if (ctrlr->num_io_queues > 1) 211 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 212 } 213 214 return (0); 215 } 216 217 static void 218 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 219 { 220 int i; 221 222 ctrlr->is_failed = true; 223 nvme_admin_qpair_disable(&ctrlr->adminq); 224 nvme_qpair_fail(&ctrlr->adminq); 225 if (ctrlr->ioq != NULL) { 226 for (i = 0; i < ctrlr->num_io_queues; i++) { 227 nvme_io_qpair_disable(&ctrlr->ioq[i]); 228 nvme_qpair_fail(&ctrlr->ioq[i]); 229 } 230 } 231 nvme_notify_fail_consumers(ctrlr); 232 } 233 234 void 235 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 236 struct nvme_request *req) 237 { 238 239 mtx_lock(&ctrlr->lock); 240 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 241 mtx_unlock(&ctrlr->lock); 242 if (!ctrlr->is_dying) 243 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 244 } 245 246 static void 247 nvme_ctrlr_fail_req_task(void *arg, int pending) 248 { 249 struct nvme_controller *ctrlr = arg; 250 struct nvme_request *req; 251 252 mtx_lock(&ctrlr->lock); 253 while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) { 254 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 255 mtx_unlock(&ctrlr->lock); 256 nvme_qpair_manual_complete_request(req->qpair, req, 257 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); 258 mtx_lock(&ctrlr->lock); 259 } 260 mtx_unlock(&ctrlr->lock); 261 } 262 263 /* 264 * Wait for RDY to change. 265 * 266 * Starts sleeping for 1us and geometrically increases it the longer we wait, 267 * capped at 1ms. 268 */ 269 static int 270 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 271 { 272 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms); 273 sbintime_t delta_t = SBT_1US; 274 uint32_t csts; 275 276 while (1) { 277 csts = nvme_mmio_read_4(ctrlr, csts); 278 if (csts == NVME_GONE) /* Hot unplug. */ 279 return (ENXIO); 280 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) 281 == desired_val) 282 break; 283 if (timeout - ticks < 0) { 284 nvme_printf(ctrlr, "controller ready did not become %d " 285 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 286 return (ENXIO); 287 } 288 289 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1)); 290 delta_t = min(SBT_1MS, delta_t * 3 / 2); 291 } 292 293 return (0); 294 } 295 296 static int 297 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 298 { 299 uint32_t cc; 300 uint32_t csts; 301 uint8_t en, rdy; 302 int err; 303 304 cc = nvme_mmio_read_4(ctrlr, cc); 305 csts = nvme_mmio_read_4(ctrlr, csts); 306 307 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 308 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 309 310 /* 311 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 312 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 313 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 314 * isn't the desired value. Short circuit if we're already disabled. 315 */ 316 if (en == 0) { 317 /* Wait for RDY == 0 or timeout & fail */ 318 if (rdy == 0) 319 return (0); 320 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 321 } 322 if (rdy == 0) { 323 /* EN == 1, wait for RDY == 1 or timeout & fail */ 324 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 325 if (err != 0) 326 return (err); 327 } 328 329 cc &= ~NVME_CC_REG_EN_MASK; 330 nvme_mmio_write_4(ctrlr, cc, cc); 331 332 /* 333 * A few drives have firmware bugs that freeze the drive if we access 334 * the mmio too soon after we disable. 335 */ 336 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 337 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS)); 338 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 339 } 340 341 static int 342 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 343 { 344 uint32_t cc; 345 uint32_t csts; 346 uint32_t aqa; 347 uint32_t qsize; 348 uint8_t en, rdy; 349 int err; 350 351 cc = nvme_mmio_read_4(ctrlr, cc); 352 csts = nvme_mmio_read_4(ctrlr, csts); 353 354 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 355 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 356 357 /* 358 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 359 */ 360 if (en == 1) { 361 if (rdy == 1) 362 return (0); 363 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 364 } 365 366 /* EN == 0 already wait for RDY == 0 or timeout & fail */ 367 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 368 if (err != 0) 369 return (err); 370 371 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 372 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 373 374 /* acqs and asqs are 0-based. */ 375 qsize = ctrlr->adminq.num_entries - 1; 376 377 aqa = 0; 378 aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; 379 aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; 380 nvme_mmio_write_4(ctrlr, aqa, aqa); 381 382 /* Initialization values for CC */ 383 cc = 0; 384 cc |= 1 << NVME_CC_REG_EN_SHIFT; 385 cc |= 0 << NVME_CC_REG_CSS_SHIFT; 386 cc |= 0 << NVME_CC_REG_AMS_SHIFT; 387 cc |= 0 << NVME_CC_REG_SHN_SHIFT; 388 cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ 389 cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ 390 391 /* 392 * Use the Memory Page Size selected during device initialization. Note 393 * that value stored in mps is suitable to use here without adjusting by 394 * NVME_MPS_SHIFT. 395 */ 396 cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT; 397 398 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE); 399 nvme_mmio_write_4(ctrlr, cc, cc); 400 401 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 402 } 403 404 static void 405 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 406 { 407 int i; 408 409 nvme_admin_qpair_disable(&ctrlr->adminq); 410 /* 411 * I/O queues are not allocated before the initial HW 412 * reset, so do not try to disable them. Use is_initialized 413 * to determine if this is the initial HW reset. 414 */ 415 if (ctrlr->is_initialized) { 416 for (i = 0; i < ctrlr->num_io_queues; i++) 417 nvme_io_qpair_disable(&ctrlr->ioq[i]); 418 } 419 } 420 421 static int 422 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 423 { 424 int err; 425 426 TSENTER(); 427 428 nvme_ctrlr_disable_qpairs(ctrlr); 429 430 err = nvme_ctrlr_disable(ctrlr); 431 if (err != 0) 432 return err; 433 434 err = nvme_ctrlr_enable(ctrlr); 435 TSEXIT(); 436 return (err); 437 } 438 439 void 440 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 441 { 442 int cmpset; 443 444 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 445 446 if (cmpset == 0 || ctrlr->is_failed) 447 /* 448 * Controller is already resetting or has failed. Return 449 * immediately since there is no need to kick off another 450 * reset in these cases. 451 */ 452 return; 453 454 if (!ctrlr->is_dying) 455 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 456 } 457 458 static int 459 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 460 { 461 struct nvme_completion_poll_status status; 462 463 status.done = 0; 464 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 465 nvme_completion_poll_cb, &status); 466 nvme_completion_poll(&status); 467 if (nvme_completion_is_error(&status.cpl)) { 468 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 469 return (ENXIO); 470 } 471 472 /* Convert data to host endian */ 473 nvme_controller_data_swapbytes(&ctrlr->cdata); 474 475 /* 476 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 477 * controller supports. 478 */ 479 if (ctrlr->cdata.mdts > 0) 480 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 481 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT + 482 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi))); 483 484 return (0); 485 } 486 487 static int 488 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 489 { 490 struct nvme_completion_poll_status status; 491 int cq_allocated, sq_allocated; 492 493 status.done = 0; 494 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 495 nvme_completion_poll_cb, &status); 496 nvme_completion_poll(&status); 497 if (nvme_completion_is_error(&status.cpl)) { 498 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 499 return (ENXIO); 500 } 501 502 /* 503 * Data in cdw0 is 0-based. 504 * Lower 16-bits indicate number of submission queues allocated. 505 * Upper 16-bits indicate number of completion queues allocated. 506 */ 507 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 508 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 509 510 /* 511 * Controller may allocate more queues than we requested, 512 * so use the minimum of the number requested and what was 513 * actually allocated. 514 */ 515 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 516 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 517 if (ctrlr->num_io_queues > vm_ndomains) 518 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 519 520 return (0); 521 } 522 523 static int 524 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 525 { 526 struct nvme_completion_poll_status status; 527 struct nvme_qpair *qpair; 528 int i; 529 530 for (i = 0; i < ctrlr->num_io_queues; i++) { 531 qpair = &ctrlr->ioq[i]; 532 533 status.done = 0; 534 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 535 nvme_completion_poll_cb, &status); 536 nvme_completion_poll(&status); 537 if (nvme_completion_is_error(&status.cpl)) { 538 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 539 return (ENXIO); 540 } 541 542 status.done = 0; 543 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 544 nvme_completion_poll_cb, &status); 545 nvme_completion_poll(&status); 546 if (nvme_completion_is_error(&status.cpl)) { 547 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 548 return (ENXIO); 549 } 550 } 551 552 return (0); 553 } 554 555 static int 556 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 557 { 558 struct nvme_completion_poll_status status; 559 struct nvme_qpair *qpair; 560 561 for (int i = 0; i < ctrlr->num_io_queues; i++) { 562 qpair = &ctrlr->ioq[i]; 563 564 status.done = 0; 565 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 566 nvme_completion_poll_cb, &status); 567 nvme_completion_poll(&status); 568 if (nvme_completion_is_error(&status.cpl)) { 569 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 570 return (ENXIO); 571 } 572 573 status.done = 0; 574 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 575 nvme_completion_poll_cb, &status); 576 nvme_completion_poll(&status); 577 if (nvme_completion_is_error(&status.cpl)) { 578 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 579 return (ENXIO); 580 } 581 } 582 583 return (0); 584 } 585 586 static int 587 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 588 { 589 struct nvme_namespace *ns; 590 uint32_t i; 591 592 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 593 ns = &ctrlr->ns[i]; 594 nvme_ns_construct(ns, i+1, ctrlr); 595 } 596 597 return (0); 598 } 599 600 static bool 601 is_log_page_id_valid(uint8_t page_id) 602 { 603 604 switch (page_id) { 605 case NVME_LOG_ERROR: 606 case NVME_LOG_HEALTH_INFORMATION: 607 case NVME_LOG_FIRMWARE_SLOT: 608 case NVME_LOG_CHANGED_NAMESPACE: 609 case NVME_LOG_COMMAND_EFFECT: 610 case NVME_LOG_RES_NOTIFICATION: 611 case NVME_LOG_SANITIZE_STATUS: 612 return (true); 613 } 614 615 return (false); 616 } 617 618 static uint32_t 619 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 620 { 621 uint32_t log_page_size; 622 623 switch (page_id) { 624 case NVME_LOG_ERROR: 625 log_page_size = min( 626 sizeof(struct nvme_error_information_entry) * 627 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 628 break; 629 case NVME_LOG_HEALTH_INFORMATION: 630 log_page_size = sizeof(struct nvme_health_information_page); 631 break; 632 case NVME_LOG_FIRMWARE_SLOT: 633 log_page_size = sizeof(struct nvme_firmware_page); 634 break; 635 case NVME_LOG_CHANGED_NAMESPACE: 636 log_page_size = sizeof(struct nvme_ns_list); 637 break; 638 case NVME_LOG_COMMAND_EFFECT: 639 log_page_size = sizeof(struct nvme_command_effects_page); 640 break; 641 case NVME_LOG_RES_NOTIFICATION: 642 log_page_size = sizeof(struct nvme_res_notification_page); 643 break; 644 case NVME_LOG_SANITIZE_STATUS: 645 log_page_size = sizeof(struct nvme_sanitize_status_page); 646 break; 647 default: 648 log_page_size = 0; 649 break; 650 } 651 652 return (log_page_size); 653 } 654 655 static void 656 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 657 uint8_t state) 658 { 659 660 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 661 nvme_ctrlr_devctl_log(ctrlr, "critical", 662 "available spare space below threshold"); 663 664 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 665 nvme_ctrlr_devctl_log(ctrlr, "critical", 666 "temperature above threshold"); 667 668 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 669 nvme_ctrlr_devctl_log(ctrlr, "critical", 670 "device reliability degraded"); 671 672 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 673 nvme_ctrlr_devctl_log(ctrlr, "critical", 674 "media placed in read only mode"); 675 676 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 677 nvme_ctrlr_devctl_log(ctrlr, "critical", 678 "volatile memory backup device failed"); 679 680 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 681 nvme_ctrlr_devctl_log(ctrlr, "critical", 682 "unknown critical warning(s): state = 0x%02x", state); 683 } 684 685 static void 686 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 687 { 688 struct nvme_async_event_request *aer = arg; 689 struct nvme_health_information_page *health_info; 690 struct nvme_ns_list *nsl; 691 struct nvme_error_information_entry *err; 692 int i; 693 694 /* 695 * If the log page fetch for some reason completed with an error, 696 * don't pass log page data to the consumers. In practice, this case 697 * should never happen. 698 */ 699 if (nvme_completion_is_error(cpl)) 700 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 701 aer->log_page_id, NULL, 0); 702 else { 703 /* Convert data to host endian */ 704 switch (aer->log_page_id) { 705 case NVME_LOG_ERROR: 706 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 707 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 708 nvme_error_information_entry_swapbytes(err++); 709 break; 710 case NVME_LOG_HEALTH_INFORMATION: 711 nvme_health_information_page_swapbytes( 712 (struct nvme_health_information_page *)aer->log_page_buffer); 713 break; 714 case NVME_LOG_FIRMWARE_SLOT: 715 nvme_firmware_page_swapbytes( 716 (struct nvme_firmware_page *)aer->log_page_buffer); 717 break; 718 case NVME_LOG_CHANGED_NAMESPACE: 719 nvme_ns_list_swapbytes( 720 (struct nvme_ns_list *)aer->log_page_buffer); 721 break; 722 case NVME_LOG_COMMAND_EFFECT: 723 nvme_command_effects_page_swapbytes( 724 (struct nvme_command_effects_page *)aer->log_page_buffer); 725 break; 726 case NVME_LOG_RES_NOTIFICATION: 727 nvme_res_notification_page_swapbytes( 728 (struct nvme_res_notification_page *)aer->log_page_buffer); 729 break; 730 case NVME_LOG_SANITIZE_STATUS: 731 nvme_sanitize_status_page_swapbytes( 732 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 733 break; 734 case INTEL_LOG_TEMP_STATS: 735 intel_log_temp_stats_swapbytes( 736 (struct intel_log_temp_stats *)aer->log_page_buffer); 737 break; 738 default: 739 break; 740 } 741 742 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 743 health_info = (struct nvme_health_information_page *) 744 aer->log_page_buffer; 745 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 746 health_info->critical_warning); 747 /* 748 * Critical warnings reported through the 749 * SMART/health log page are persistent, so 750 * clear the associated bits in the async event 751 * config so that we do not receive repeated 752 * notifications for the same event. 753 */ 754 aer->ctrlr->async_event_config &= 755 ~health_info->critical_warning; 756 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 757 aer->ctrlr->async_event_config, NULL, NULL); 758 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && 759 !nvme_use_nvd) { 760 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 761 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 762 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 763 break; 764 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 765 } 766 } 767 768 /* 769 * Pass the cpl data from the original async event completion, 770 * not the log page fetch. 771 */ 772 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 773 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 774 } 775 776 /* 777 * Repost another asynchronous event request to replace the one 778 * that just completed. 779 */ 780 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 781 } 782 783 static void 784 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 785 { 786 struct nvme_async_event_request *aer = arg; 787 788 if (nvme_completion_is_error(cpl)) { 789 /* 790 * Do not retry failed async event requests. This avoids 791 * infinite loops where a new async event request is submitted 792 * to replace the one just failed, only to fail again and 793 * perpetuate the loop. 794 */ 795 return; 796 } 797 798 /* Associated log page is in bits 23:16 of completion entry dw0. */ 799 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 800 801 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 802 " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8, 803 aer->log_page_id); 804 805 if (is_log_page_id_valid(aer->log_page_id)) { 806 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 807 aer->log_page_id); 808 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 809 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 810 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 811 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 812 aer); 813 /* Wait to notify consumers until after log page is fetched. */ 814 } else { 815 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 816 NULL, 0); 817 818 /* 819 * Repost another asynchronous event request to replace the one 820 * that just completed. 821 */ 822 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 823 } 824 } 825 826 static void 827 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 828 struct nvme_async_event_request *aer) 829 { 830 struct nvme_request *req; 831 832 aer->ctrlr = ctrlr; 833 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 834 aer->req = req; 835 836 /* 837 * Disable timeout here, since asynchronous event requests should by 838 * nature never be timed out. 839 */ 840 req->timeout = false; 841 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 842 nvme_ctrlr_submit_admin_request(ctrlr, req); 843 } 844 845 static void 846 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 847 { 848 struct nvme_completion_poll_status status; 849 struct nvme_async_event_request *aer; 850 uint32_t i; 851 852 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 853 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 854 NVME_CRIT_WARN_ST_READ_ONLY | 855 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 856 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 857 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE | 858 NVME_ASYNC_EVENT_FW_ACTIVATE; 859 860 status.done = 0; 861 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 862 0, NULL, 0, nvme_completion_poll_cb, &status); 863 nvme_completion_poll(&status); 864 if (nvme_completion_is_error(&status.cpl) || 865 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 866 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 867 nvme_printf(ctrlr, "temperature threshold not supported\n"); 868 } else 869 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 870 871 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 872 ctrlr->async_event_config, NULL, NULL); 873 874 /* aerl is a zero-based value, so we need to add 1 here. */ 875 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 876 877 for (i = 0; i < ctrlr->num_aers; i++) { 878 aer = &ctrlr->aer[i]; 879 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 880 } 881 } 882 883 static void 884 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 885 { 886 887 ctrlr->int_coal_time = 0; 888 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 889 &ctrlr->int_coal_time); 890 891 ctrlr->int_coal_threshold = 0; 892 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 893 &ctrlr->int_coal_threshold); 894 895 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 896 ctrlr->int_coal_threshold, NULL, NULL); 897 } 898 899 static void 900 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 901 { 902 struct nvme_hmb_chunk *hmbc; 903 int i; 904 905 if (ctrlr->hmb_desc_paddr) { 906 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 907 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 908 ctrlr->hmb_desc_map); 909 ctrlr->hmb_desc_paddr = 0; 910 } 911 if (ctrlr->hmb_desc_tag) { 912 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 913 ctrlr->hmb_desc_tag = NULL; 914 } 915 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 916 hmbc = &ctrlr->hmb_chunks[i]; 917 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 918 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 919 hmbc->hmbc_map); 920 } 921 ctrlr->hmb_nchunks = 0; 922 if (ctrlr->hmb_tag) { 923 bus_dma_tag_destroy(ctrlr->hmb_tag); 924 ctrlr->hmb_tag = NULL; 925 } 926 if (ctrlr->hmb_chunks) { 927 free(ctrlr->hmb_chunks, M_NVME); 928 ctrlr->hmb_chunks = NULL; 929 } 930 } 931 932 static void 933 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 934 { 935 struct nvme_hmb_chunk *hmbc; 936 size_t pref, min, minc, size; 937 int err, i; 938 uint64_t max; 939 940 /* Limit HMB to 5% of RAM size per device by default. */ 941 max = (uint64_t)physmem * PAGE_SIZE / 20; 942 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 943 944 /* 945 * Units of Host Memory Buffer in the Identify info are always in terms 946 * of 4k units. 947 */ 948 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS; 949 if (max == 0 || max < min) 950 return; 951 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max); 952 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size); 953 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 954 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 955 ctrlr->hmb_chunk = pref; 956 957 again: 958 /* 959 * However, the chunk sizes, number of chunks, and alignment of chunks 960 * are all based on the current MPS (ctrlr->page_size). 961 */ 962 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size); 963 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 964 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 965 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 966 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 967 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 968 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 969 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 970 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 971 if (err != 0) { 972 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 973 nvme_ctrlr_hmb_free(ctrlr); 974 return; 975 } 976 977 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 978 hmbc = &ctrlr->hmb_chunks[i]; 979 if (bus_dmamem_alloc(ctrlr->hmb_tag, 980 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 981 &hmbc->hmbc_map)) { 982 nvme_printf(ctrlr, "failed to alloc HMB\n"); 983 break; 984 } 985 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 986 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 987 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 988 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 989 hmbc->hmbc_map); 990 nvme_printf(ctrlr, "failed to load HMB\n"); 991 break; 992 } 993 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 994 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 995 } 996 997 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 998 ctrlr->hmb_chunk / 2 >= minc) { 999 ctrlr->hmb_nchunks = i; 1000 nvme_ctrlr_hmb_free(ctrlr); 1001 ctrlr->hmb_chunk /= 2; 1002 goto again; 1003 } 1004 ctrlr->hmb_nchunks = i; 1005 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 1006 nvme_ctrlr_hmb_free(ctrlr); 1007 return; 1008 } 1009 1010 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 1011 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 1012 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1013 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 1014 if (err != 0) { 1015 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 1016 nvme_ctrlr_hmb_free(ctrlr); 1017 return; 1018 } 1019 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 1020 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 1021 &ctrlr->hmb_desc_map)) { 1022 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 1023 nvme_ctrlr_hmb_free(ctrlr); 1024 return; 1025 } 1026 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1027 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 1028 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 1029 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 1030 ctrlr->hmb_desc_map); 1031 nvme_printf(ctrlr, "failed to load HMB desc\n"); 1032 nvme_ctrlr_hmb_free(ctrlr); 1033 return; 1034 } 1035 1036 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 1037 ctrlr->hmb_desc_vaddr[i].addr = 1038 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 1039 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size); 1040 } 1041 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1042 BUS_DMASYNC_PREWRITE); 1043 1044 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 1045 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 1046 / 1024 / 1024); 1047 } 1048 1049 static void 1050 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 1051 { 1052 struct nvme_completion_poll_status status; 1053 uint32_t cdw11; 1054 1055 cdw11 = 0; 1056 if (enable) 1057 cdw11 |= 1; 1058 if (memret) 1059 cdw11 |= 2; 1060 status.done = 0; 1061 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 1062 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size, 1063 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, 1064 ctrlr->hmb_nchunks, NULL, 0, 1065 nvme_completion_poll_cb, &status); 1066 nvme_completion_poll(&status); 1067 if (nvme_completion_is_error(&status.cpl)) 1068 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 1069 } 1070 1071 static void 1072 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 1073 { 1074 struct nvme_controller *ctrlr = ctrlr_arg; 1075 uint32_t old_num_io_queues; 1076 int i; 1077 1078 TSENTER(); 1079 1080 /* 1081 * Only reset adminq here when we are restarting the 1082 * controller after a reset. During initialization, 1083 * we have already submitted admin commands to get 1084 * the number of I/O queues supported, so cannot reset 1085 * the adminq again here. 1086 */ 1087 if (resetting) { 1088 nvme_qpair_reset(&ctrlr->adminq); 1089 nvme_admin_qpair_enable(&ctrlr->adminq); 1090 } 1091 1092 if (ctrlr->ioq != NULL) { 1093 for (i = 0; i < ctrlr->num_io_queues; i++) 1094 nvme_qpair_reset(&ctrlr->ioq[i]); 1095 } 1096 1097 /* 1098 * If it was a reset on initialization command timeout, just 1099 * return here, letting initialization code fail gracefully. 1100 */ 1101 if (resetting && !ctrlr->is_initialized) 1102 return; 1103 1104 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1105 nvme_ctrlr_fail(ctrlr); 1106 return; 1107 } 1108 1109 /* 1110 * The number of qpairs are determined during controller initialization, 1111 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1112 * HW limit. We call SET_FEATURES again here so that it gets called 1113 * after any reset for controllers that depend on the driver to 1114 * explicit specify how many queues it will use. This value should 1115 * never change between resets, so panic if somehow that does happen. 1116 */ 1117 if (resetting) { 1118 old_num_io_queues = ctrlr->num_io_queues; 1119 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1120 nvme_ctrlr_fail(ctrlr); 1121 return; 1122 } 1123 1124 if (old_num_io_queues != ctrlr->num_io_queues) { 1125 panic("num_io_queues changed from %u to %u", 1126 old_num_io_queues, ctrlr->num_io_queues); 1127 } 1128 } 1129 1130 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1131 nvme_ctrlr_hmb_alloc(ctrlr); 1132 if (ctrlr->hmb_nchunks > 0) 1133 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1134 } else if (ctrlr->hmb_nchunks > 0) 1135 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1136 1137 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1138 nvme_ctrlr_fail(ctrlr); 1139 return; 1140 } 1141 1142 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1143 nvme_ctrlr_fail(ctrlr); 1144 return; 1145 } 1146 1147 nvme_ctrlr_configure_aer(ctrlr); 1148 nvme_ctrlr_configure_int_coalescing(ctrlr); 1149 1150 for (i = 0; i < ctrlr->num_io_queues; i++) 1151 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1152 TSEXIT(); 1153 } 1154 1155 void 1156 nvme_ctrlr_start_config_hook(void *arg) 1157 { 1158 struct nvme_controller *ctrlr = arg; 1159 1160 TSENTER(); 1161 1162 if (nvme_ctrlr_hw_reset(ctrlr) != 0) { 1163 fail: 1164 nvme_ctrlr_fail(ctrlr); 1165 config_intrhook_disestablish(&ctrlr->config_hook); 1166 return; 1167 } 1168 1169 #ifdef NVME_2X_RESET 1170 /* 1171 * Reset controller twice to ensure we do a transition from cc.en==1 to 1172 * cc.en==0. This is because we don't really know what status the 1173 * controller was left in when boot handed off to OS. Linux doesn't do 1174 * this, however, and when the controller is in state cc.en == 0, no 1175 * I/O can happen. 1176 */ 1177 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1178 goto fail; 1179 #endif 1180 1181 nvme_qpair_reset(&ctrlr->adminq); 1182 nvme_admin_qpair_enable(&ctrlr->adminq); 1183 1184 if (nvme_ctrlr_identify(ctrlr) == 0 && 1185 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1186 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1187 nvme_ctrlr_start(ctrlr, false); 1188 else 1189 goto fail; 1190 1191 nvme_sysctl_initialize_ctrlr(ctrlr); 1192 config_intrhook_disestablish(&ctrlr->config_hook); 1193 1194 ctrlr->is_initialized = 1; 1195 nvme_notify_new_controller(ctrlr); 1196 TSEXIT(); 1197 } 1198 1199 static void 1200 nvme_ctrlr_reset_task(void *arg, int pending) 1201 { 1202 struct nvme_controller *ctrlr = arg; 1203 int status; 1204 1205 nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller"); 1206 status = nvme_ctrlr_hw_reset(ctrlr); 1207 /* 1208 * Use pause instead of DELAY, so that we yield to any nvme interrupt 1209 * handlers on this CPU that were blocked on a qpair lock. We want 1210 * all nvme interrupts completed before proceeding with restarting the 1211 * controller. 1212 * 1213 * XXX - any way to guarantee the interrupt handlers have quiesced? 1214 */ 1215 pause("nvmereset", hz / 10); 1216 if (status == 0) 1217 nvme_ctrlr_start(ctrlr, true); 1218 else 1219 nvme_ctrlr_fail(ctrlr); 1220 1221 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1222 } 1223 1224 /* 1225 * Poll all the queues enabled on the device for completion. 1226 */ 1227 void 1228 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1229 { 1230 int i; 1231 1232 nvme_qpair_process_completions(&ctrlr->adminq); 1233 1234 for (i = 0; i < ctrlr->num_io_queues; i++) 1235 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1236 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1237 } 1238 1239 /* 1240 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1241 * there's only a single vector. While we're polling, we mask further 1242 * interrupts in the controller. 1243 */ 1244 void 1245 nvme_ctrlr_shared_handler(void *arg) 1246 { 1247 struct nvme_controller *ctrlr = arg; 1248 1249 nvme_mmio_write_4(ctrlr, intms, 1); 1250 nvme_ctrlr_poll(ctrlr); 1251 nvme_mmio_write_4(ctrlr, intmc, 1); 1252 } 1253 1254 static void 1255 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1256 { 1257 struct nvme_pt_command *pt = arg; 1258 struct mtx *mtx = pt->driver_lock; 1259 uint16_t status; 1260 1261 bzero(&pt->cpl, sizeof(pt->cpl)); 1262 pt->cpl.cdw0 = cpl->cdw0; 1263 1264 status = cpl->status; 1265 status &= ~NVME_STATUS_P_MASK; 1266 pt->cpl.status = status; 1267 1268 mtx_lock(mtx); 1269 pt->driver_lock = NULL; 1270 wakeup(pt); 1271 mtx_unlock(mtx); 1272 } 1273 1274 int 1275 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1276 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1277 int is_admin_cmd) 1278 { 1279 struct nvme_request *req; 1280 struct mtx *mtx; 1281 struct buf *buf = NULL; 1282 int ret = 0; 1283 1284 if (pt->len > 0) { 1285 if (pt->len > ctrlr->max_xfer_size) { 1286 nvme_printf(ctrlr, "pt->len (%d) " 1287 "exceeds max_xfer_size (%d)\n", pt->len, 1288 ctrlr->max_xfer_size); 1289 return EIO; 1290 } 1291 if (is_user_buffer) { 1292 /* 1293 * Ensure the user buffer is wired for the duration of 1294 * this pass-through command. 1295 */ 1296 PHOLD(curproc); 1297 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1298 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1299 if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) { 1300 ret = EFAULT; 1301 goto err; 1302 } 1303 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1304 nvme_pt_done, pt); 1305 } else 1306 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1307 nvme_pt_done, pt); 1308 } else 1309 req = nvme_allocate_request_null(nvme_pt_done, pt); 1310 1311 /* Assume user space already converted to little-endian */ 1312 req->cmd.opc = pt->cmd.opc; 1313 req->cmd.fuse = pt->cmd.fuse; 1314 req->cmd.rsvd2 = pt->cmd.rsvd2; 1315 req->cmd.rsvd3 = pt->cmd.rsvd3; 1316 req->cmd.cdw10 = pt->cmd.cdw10; 1317 req->cmd.cdw11 = pt->cmd.cdw11; 1318 req->cmd.cdw12 = pt->cmd.cdw12; 1319 req->cmd.cdw13 = pt->cmd.cdw13; 1320 req->cmd.cdw14 = pt->cmd.cdw14; 1321 req->cmd.cdw15 = pt->cmd.cdw15; 1322 1323 req->cmd.nsid = htole32(nsid); 1324 1325 mtx = mtx_pool_find(mtxpool_sleep, pt); 1326 pt->driver_lock = mtx; 1327 1328 if (is_admin_cmd) 1329 nvme_ctrlr_submit_admin_request(ctrlr, req); 1330 else 1331 nvme_ctrlr_submit_io_request(ctrlr, req); 1332 1333 mtx_lock(mtx); 1334 while (pt->driver_lock != NULL) 1335 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1336 mtx_unlock(mtx); 1337 1338 err: 1339 if (buf != NULL) { 1340 uma_zfree(pbuf_zone, buf); 1341 PRELE(curproc); 1342 } 1343 1344 return (ret); 1345 } 1346 1347 static int 1348 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1349 struct thread *td) 1350 { 1351 struct nvme_controller *ctrlr; 1352 struct nvme_pt_command *pt; 1353 1354 ctrlr = cdev->si_drv1; 1355 1356 switch (cmd) { 1357 case NVME_RESET_CONTROLLER: 1358 nvme_ctrlr_reset(ctrlr); 1359 break; 1360 case NVME_PASSTHROUGH_CMD: 1361 pt = (struct nvme_pt_command *)arg; 1362 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1363 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1364 case NVME_GET_NSID: 1365 { 1366 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1367 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1368 sizeof(gnsid->cdev)); 1369 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 1370 gnsid->nsid = 0; 1371 break; 1372 } 1373 case NVME_GET_MAX_XFER_SIZE: 1374 *(uint64_t *)arg = ctrlr->max_xfer_size; 1375 break; 1376 default: 1377 return (ENOTTY); 1378 } 1379 1380 return (0); 1381 } 1382 1383 static struct cdevsw nvme_ctrlr_cdevsw = { 1384 .d_version = D_VERSION, 1385 .d_flags = 0, 1386 .d_ioctl = nvme_ctrlr_ioctl 1387 }; 1388 1389 int 1390 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1391 { 1392 struct make_dev_args md_args; 1393 uint32_t cap_lo; 1394 uint32_t cap_hi; 1395 uint32_t to, vs, pmrcap; 1396 int status, timeout_period; 1397 1398 ctrlr->dev = dev; 1399 1400 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1401 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1402 ctrlr->domain = 0; 1403 1404 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1405 if (bootverbose) { 1406 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1407 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1408 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1409 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1410 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1411 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1412 NVME_CAP_LO_TO(cap_lo)); 1413 } 1414 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1415 if (bootverbose) { 1416 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1417 "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi, 1418 NVME_CAP_HI_DSTRD(cap_hi), 1419 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1420 NVME_CAP_HI_CSS(cap_hi), 1421 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1422 NVME_CAP_HI_MPSMIN(cap_hi), 1423 NVME_CAP_HI_MPSMAX(cap_hi), 1424 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1425 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : ""); 1426 } 1427 if (bootverbose) { 1428 vs = nvme_mmio_read_4(ctrlr, vs); 1429 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1430 NVME_MAJOR(vs), NVME_MINOR(vs)); 1431 } 1432 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1433 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1434 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1435 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1436 NVME_PMRCAP_BIR(pmrcap), 1437 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1438 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1439 NVME_PMRCAP_PMRTU(pmrcap), 1440 NVME_PMRCAP_PMRWBM(pmrcap), 1441 NVME_PMRCAP_PMRTO(pmrcap), 1442 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1443 } 1444 1445 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1446 1447 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi); 1448 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps); 1449 1450 /* Get ready timeout value from controller, in units of 500ms. */ 1451 to = NVME_CAP_LO_TO(cap_lo) + 1; 1452 ctrlr->ready_timeout_in_ms = to * 500; 1453 1454 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1455 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1456 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1457 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1458 ctrlr->timeout_period = timeout_period; 1459 1460 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1461 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1462 1463 ctrlr->enable_aborts = 0; 1464 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1465 1466 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */ 1467 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size)); 1468 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1469 return (ENXIO); 1470 1471 /* 1472 * Create 2 threads for the taskqueue. The reset thread will block when 1473 * it detects that the controller has failed until all I/O has been 1474 * failed up the stack. The fail_req task needs to be able to run in 1475 * this case to finish the request failure for some cases. 1476 * 1477 * We could partially solve this race by draining the failed requeust 1478 * queue before proceding to free the sim, though nothing would stop 1479 * new I/O from coming in after we do that drain, but before we reach 1480 * cam_sim_free, so this big hammer is used instead. 1481 */ 1482 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1483 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1484 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1485 1486 ctrlr->is_resetting = 0; 1487 ctrlr->is_initialized = 0; 1488 ctrlr->notification_sent = 0; 1489 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1490 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1491 STAILQ_INIT(&ctrlr->fail_req); 1492 ctrlr->is_failed = false; 1493 1494 make_dev_args_init(&md_args); 1495 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1496 md_args.mda_uid = UID_ROOT; 1497 md_args.mda_gid = GID_WHEEL; 1498 md_args.mda_mode = 0600; 1499 md_args.mda_unit = device_get_unit(dev); 1500 md_args.mda_si_drv1 = (void *)ctrlr; 1501 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", 1502 device_get_unit(dev)); 1503 if (status != 0) 1504 return (ENXIO); 1505 1506 return (0); 1507 } 1508 1509 void 1510 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1511 { 1512 int gone, i; 1513 1514 ctrlr->is_dying = true; 1515 1516 if (ctrlr->resource == NULL) 1517 goto nores; 1518 if (!mtx_initialized(&ctrlr->adminq.lock)) 1519 goto noadminq; 1520 1521 /* 1522 * Check whether it is a hot unplug or a clean driver detach. 1523 * If device is not there any more, skip any shutdown commands. 1524 */ 1525 gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1526 if (gone) 1527 nvme_ctrlr_fail(ctrlr); 1528 else 1529 nvme_notify_fail_consumers(ctrlr); 1530 1531 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1532 nvme_ns_destruct(&ctrlr->ns[i]); 1533 1534 if (ctrlr->cdev) 1535 destroy_dev(ctrlr->cdev); 1536 1537 if (ctrlr->is_initialized) { 1538 if (!gone) { 1539 if (ctrlr->hmb_nchunks > 0) 1540 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1541 nvme_ctrlr_delete_qpairs(ctrlr); 1542 } 1543 nvme_ctrlr_hmb_free(ctrlr); 1544 } 1545 if (ctrlr->ioq != NULL) { 1546 for (i = 0; i < ctrlr->num_io_queues; i++) 1547 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1548 free(ctrlr->ioq, M_NVME); 1549 } 1550 nvme_admin_qpair_destroy(&ctrlr->adminq); 1551 1552 /* 1553 * Notify the controller of a shutdown, even though this is due to 1554 * a driver unload, not a system shutdown (this path is not invoked 1555 * during shutdown). This ensures the controller receives a 1556 * shutdown notification in case the system is shutdown before 1557 * reloading the driver. 1558 */ 1559 if (!gone) 1560 nvme_ctrlr_shutdown(ctrlr); 1561 1562 if (!gone) 1563 nvme_ctrlr_disable(ctrlr); 1564 1565 noadminq: 1566 if (ctrlr->taskqueue) 1567 taskqueue_free(ctrlr->taskqueue); 1568 1569 if (ctrlr->tag) 1570 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1571 1572 if (ctrlr->res) 1573 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1574 rman_get_rid(ctrlr->res), ctrlr->res); 1575 1576 if (ctrlr->bar4_resource != NULL) { 1577 bus_release_resource(dev, SYS_RES_MEMORY, 1578 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1579 } 1580 1581 bus_release_resource(dev, SYS_RES_MEMORY, 1582 ctrlr->resource_id, ctrlr->resource); 1583 1584 nores: 1585 mtx_destroy(&ctrlr->lock); 1586 } 1587 1588 void 1589 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1590 { 1591 uint32_t cc; 1592 uint32_t csts; 1593 int timeout; 1594 1595 cc = nvme_mmio_read_4(ctrlr, cc); 1596 cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); 1597 cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; 1598 nvme_mmio_write_4(ctrlr, cc, cc); 1599 1600 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1601 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1602 while (1) { 1603 csts = nvme_mmio_read_4(ctrlr, csts); 1604 if (csts == NVME_GONE) /* Hot unplug. */ 1605 break; 1606 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1607 break; 1608 if (timeout - ticks < 0) { 1609 nvme_printf(ctrlr, "shutdown timeout\n"); 1610 break; 1611 } 1612 pause("nvmeshut", 1); 1613 } 1614 } 1615 1616 void 1617 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1618 struct nvme_request *req) 1619 { 1620 1621 nvme_qpair_submit_request(&ctrlr->adminq, req); 1622 } 1623 1624 void 1625 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1626 struct nvme_request *req) 1627 { 1628 struct nvme_qpair *qpair; 1629 1630 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1631 nvme_qpair_submit_request(qpair, req); 1632 } 1633 1634 device_t 1635 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1636 { 1637 1638 return (ctrlr->dev); 1639 } 1640 1641 const struct nvme_controller_data * 1642 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1643 { 1644 1645 return (&ctrlr->cdata); 1646 } 1647 1648 int 1649 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1650 { 1651 int to = hz; 1652 1653 /* 1654 * Can't touch failed controllers, so it's already suspended. 1655 */ 1656 if (ctrlr->is_failed) 1657 return (0); 1658 1659 /* 1660 * We don't want the reset taskqueue running, since it does similar 1661 * things, so prevent it from running after we start. Wait for any reset 1662 * that may have been started to complete. The reset process we follow 1663 * will ensure that any new I/O will queue and be given to the hardware 1664 * after we resume (though there should be none). 1665 */ 1666 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1667 pause("nvmesusp", 1); 1668 if (to <= 0) { 1669 nvme_printf(ctrlr, 1670 "Competing reset task didn't finish. Try again later.\n"); 1671 return (EWOULDBLOCK); 1672 } 1673 1674 if (ctrlr->hmb_nchunks > 0) 1675 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1676 1677 /* 1678 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1679 * delete the hardware I/O queues, and then shutdown. This properly 1680 * flushes any metadata the drive may have stored so it can survive 1681 * having its power removed and prevents the unsafe shutdown count from 1682 * incriminating. Once we delete the qpairs, we have to disable them 1683 * before shutting down. 1684 */ 1685 nvme_ctrlr_delete_qpairs(ctrlr); 1686 nvme_ctrlr_disable_qpairs(ctrlr); 1687 nvme_ctrlr_shutdown(ctrlr); 1688 1689 return (0); 1690 } 1691 1692 int 1693 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1694 { 1695 1696 /* 1697 * Can't touch failed controllers, so nothing to do to resume. 1698 */ 1699 if (ctrlr->is_failed) 1700 return (0); 1701 1702 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1703 goto fail; 1704 #ifdef NVME_2X_RESET 1705 /* 1706 * Prior to FreeBSD 13.1, FreeBSD's nvme driver reset the hardware twice 1707 * to get it into a known good state. However, the hardware's state is 1708 * good and we don't need to do this for proper functioning. 1709 */ 1710 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1711 goto fail; 1712 #endif 1713 1714 /* 1715 * Now that we've reset the hardware, we can restart the controller. Any 1716 * I/O that was pending is requeued. Any admin commands are aborted with 1717 * an error. Once we've restarted, take the controller out of reset. 1718 */ 1719 nvme_ctrlr_start(ctrlr, true); 1720 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1721 1722 return (0); 1723 fail: 1724 /* 1725 * Since we can't bring the controller out of reset, announce and fail 1726 * the controller. However, we have to return success for the resume 1727 * itself, due to questionable APIs. 1728 */ 1729 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1730 nvme_ctrlr_fail(ctrlr); 1731 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1732 return (0); 1733 } 1734