xref: /freebsd/sys/dev/nvd/nvd.c (revision 7c43148a974877188a930e4078a164f83da8e652)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  * Copyright (C) 2018-2020 Alexander Motin <mav@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include <sys/param.h>
32 #include <sys/bio.h>
33 #include <sys/devicestat.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/queue.h>
38 #include <sys/sysctl.h>
39 #include <sys/systm.h>
40 #include <sys/taskqueue.h>
41 #include <machine/atomic.h>
42 
43 #include <geom/geom.h>
44 #include <geom/geom_disk.h>
45 
46 #include <dev/nvme/nvme.h>
47 #include <dev/nvme/nvme_private.h>
48 
49 #include <dev/pci/pcivar.h>
50 
51 #define NVD_STR		"nvd"
52 
53 struct nvd_disk;
54 struct nvd_controller;
55 
56 static disk_ioctl_t nvd_ioctl;
57 static disk_strategy_t nvd_strategy;
58 static dumper_t nvd_dump;
59 static disk_getattr_t nvd_getattr;
60 
61 static void nvd_done(void *arg, const struct nvme_completion *cpl);
62 static void nvd_gone(struct nvd_disk *ndisk);
63 
64 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr);
65 
66 static void *nvd_new_controller(struct nvme_controller *ctrlr);
67 static void nvd_controller_fail(void *ctrlr);
68 
69 static int nvd_load(void);
70 static void nvd_unload(void);
71 
72 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations");
73 
74 struct nvme_consumer *consumer_handle;
75 
76 struct nvd_disk {
77 	struct nvd_controller	*ctrlr;
78 
79 	struct bio_queue_head	bioq;
80 	struct task		bioqtask;
81 	struct mtx		bioqlock;
82 
83 	struct disk		*disk;
84 	struct taskqueue	*tq;
85 	struct nvme_namespace	*ns;
86 
87 	uint32_t		cur_depth;
88 #define	NVD_ODEPTH	(1 << 30)
89 	uint32_t		ordered_in_flight;
90 	u_int			unit;
91 
92 	TAILQ_ENTRY(nvd_disk)	global_tailq;
93 	TAILQ_ENTRY(nvd_disk)	ctrlr_tailq;
94 };
95 
96 struct nvd_controller {
97 	struct nvme_controller		*ctrlr;
98 	TAILQ_ENTRY(nvd_controller)	tailq;
99 	TAILQ_HEAD(, nvd_disk)		disk_head;
100 };
101 
102 static struct mtx			nvd_lock;
103 static TAILQ_HEAD(, nvd_controller)	ctrlr_head;
104 static TAILQ_HEAD(disk_list, nvd_disk)	disk_head;
105 
106 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
107     "nvd driver parameters");
108 /*
109  * The NVMe specification does not define a maximum or optimal delete size, so
110  *  technically max delete size is min(full size of the namespace, 2^32 - 1
111  *  LBAs).  A single delete for a multi-TB NVMe namespace though may take much
112  *  longer to complete than the nvme(4) I/O timeout period.  So choose a sensible
113  *  default here that is still suitably large to minimize the number of overall
114  *  delete operations.
115  */
116 static uint64_t nvd_delete_max = (1024 * 1024 * 1024);  /* 1GB */
117 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0,
118 	     "nvd maximum BIO_DELETE size in bytes");
119 
120 static int nvd_modevent(module_t mod, int type, void *arg)
121 {
122 	int error = 0;
123 
124 	switch (type) {
125 	case MOD_LOAD:
126 		error = nvd_load();
127 		break;
128 	case MOD_UNLOAD:
129 		nvd_unload();
130 		break;
131 	default:
132 		break;
133 	}
134 
135 	return (error);
136 }
137 
138 moduledata_t nvd_mod = {
139 	NVD_STR,
140 	(modeventhand_t)nvd_modevent,
141 	0
142 };
143 
144 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY);
145 MODULE_VERSION(nvd, 1);
146 MODULE_DEPEND(nvd, nvme, 1, 1, 1);
147 
148 static int
149 nvd_load(void)
150 {
151 	if (!nvme_use_nvd)
152 		return 0;
153 
154 	mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF);
155 	TAILQ_INIT(&ctrlr_head);
156 	TAILQ_INIT(&disk_head);
157 
158 	consumer_handle = nvme_register_consumer(nvd_new_disk,
159 	    nvd_new_controller, NULL, nvd_controller_fail);
160 
161 	return (consumer_handle != NULL ? 0 : -1);
162 }
163 
164 static void
165 nvd_unload(void)
166 {
167 	struct nvd_controller	*ctrlr;
168 	struct nvd_disk		*ndisk;
169 
170 	if (!nvme_use_nvd)
171 		return;
172 
173 	mtx_lock(&nvd_lock);
174 	while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) {
175 		TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
176 		TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
177 			nvd_gone(ndisk);
178 		while (!TAILQ_EMPTY(&ctrlr->disk_head))
179 			msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0);
180 		free(ctrlr, M_NVD);
181 	}
182 	mtx_unlock(&nvd_lock);
183 
184 	nvme_unregister_consumer(consumer_handle);
185 
186 	mtx_destroy(&nvd_lock);
187 }
188 
189 static void
190 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp)
191 {
192 	int err;
193 
194 	bp->bio_driver1 = NULL;
195 	if (__predict_false(bp->bio_flags & BIO_ORDERED))
196 		atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH);
197 	else
198 		atomic_add_int(&ndisk->cur_depth, 1);
199 	err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done);
200 	if (err) {
201 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
202 			atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
203 			atomic_add_int(&ndisk->ordered_in_flight, -1);
204 			wakeup(&ndisk->cur_depth);
205 		} else {
206 			if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
207 			    __predict_false(ndisk->ordered_in_flight != 0))
208 				wakeup(&ndisk->cur_depth);
209 		}
210 		bp->bio_error = err;
211 		bp->bio_flags |= BIO_ERROR;
212 		bp->bio_resid = bp->bio_bcount;
213 		biodone(bp);
214 	}
215 }
216 
217 static void
218 nvd_strategy(struct bio *bp)
219 {
220 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
221 
222 	/*
223 	 * bio with BIO_ORDERED flag must be executed after all previous
224 	 * bios in the queue, and before any successive bios.
225 	 */
226 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
227 		if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 &&
228 		    ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) {
229 			nvd_bio_submit(ndisk, bp);
230 			return;
231 		}
232 	} else if (__predict_true(ndisk->ordered_in_flight == 0)) {
233 		nvd_bio_submit(ndisk, bp);
234 		return;
235 	}
236 
237 	/*
238 	 * There are ordered bios in flight, so we need to submit
239 	 *  bios through the task queue to enforce ordering.
240 	 */
241 	mtx_lock(&ndisk->bioqlock);
242 	bioq_insert_tail(&ndisk->bioq, bp);
243 	mtx_unlock(&ndisk->bioqlock);
244 	taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask);
245 }
246 
247 static void
248 nvd_gone(struct nvd_disk *ndisk)
249 {
250 	struct bio	*bp;
251 
252 	printf(NVD_STR"%u: detached\n", ndisk->unit);
253 	mtx_lock(&ndisk->bioqlock);
254 	disk_gone(ndisk->disk);
255 	while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) {
256 		if (__predict_false(bp->bio_flags & BIO_ORDERED))
257 			atomic_add_int(&ndisk->ordered_in_flight, -1);
258 		bp->bio_error = ENXIO;
259 		bp->bio_flags |= BIO_ERROR;
260 		bp->bio_resid = bp->bio_bcount;
261 		biodone(bp);
262 	}
263 	mtx_unlock(&ndisk->bioqlock);
264 }
265 
266 static void
267 nvd_gonecb(struct disk *dp)
268 {
269 	struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1;
270 
271 	disk_destroy(ndisk->disk);
272 	mtx_lock(&nvd_lock);
273 	TAILQ_REMOVE(&disk_head, ndisk, global_tailq);
274 	TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq);
275 	if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head))
276 		wakeup(&ndisk->ctrlr->disk_head);
277 	mtx_unlock(&nvd_lock);
278 	taskqueue_free(ndisk->tq);
279 	mtx_destroy(&ndisk->bioqlock);
280 	free(ndisk, M_NVD);
281 }
282 
283 static int
284 nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag,
285     struct thread *td)
286 {
287 	struct nvd_disk		*ndisk = dp->d_drv1;
288 
289 	return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td));
290 }
291 
292 static int
293 nvd_dump(void *arg, void *virt, off_t offset, size_t len)
294 {
295 	struct disk *dp = arg;
296 	struct nvd_disk *ndisk = dp->d_drv1;
297 
298 	return (nvme_ns_dump(ndisk->ns, virt, offset, len));
299 }
300 
301 static int
302 nvd_getattr(struct bio *bp)
303 {
304 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
305 	const struct nvme_namespace_data *nsdata;
306 	u_int i;
307 
308 	if (!strcmp("GEOM::lunid", bp->bio_attribute)) {
309 		nsdata = nvme_ns_get_data(ndisk->ns);
310 
311 		/* Try to return NGUID as lunid. */
312 		for (i = 0; i < sizeof(nsdata->nguid); i++) {
313 			if (nsdata->nguid[i] != 0)
314 				break;
315 		}
316 		if (i < sizeof(nsdata->nguid)) {
317 			if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1)
318 				return (EFAULT);
319 			for (i = 0; i < sizeof(nsdata->nguid); i++) {
320 				sprintf(&bp->bio_data[i * 2], "%02x",
321 				    nsdata->nguid[i]);
322 			}
323 			bp->bio_completed = bp->bio_length;
324 			return (0);
325 		}
326 
327 		/* Try to return EUI64 as lunid. */
328 		for (i = 0; i < sizeof(nsdata->eui64); i++) {
329 			if (nsdata->eui64[i] != 0)
330 				break;
331 		}
332 		if (i < sizeof(nsdata->eui64)) {
333 			if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1)
334 				return (EFAULT);
335 			for (i = 0; i < sizeof(nsdata->eui64); i++) {
336 				sprintf(&bp->bio_data[i * 2], "%02x",
337 				    nsdata->eui64[i]);
338 			}
339 			bp->bio_completed = bp->bio_length;
340 			return (0);
341 		}
342 	}
343 	return (-1);
344 }
345 
346 static void
347 nvd_done(void *arg, const struct nvme_completion *cpl)
348 {
349 	struct bio *bp = (struct bio *)arg;
350 	struct nvd_disk *ndisk = bp->bio_disk->d_drv1;
351 
352 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
353 		atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
354 		atomic_add_int(&ndisk->ordered_in_flight, -1);
355 		wakeup(&ndisk->cur_depth);
356 	} else {
357 		if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
358 		    __predict_false(ndisk->ordered_in_flight != 0))
359 			wakeup(&ndisk->cur_depth);
360 	}
361 
362 	biodone(bp);
363 }
364 
365 static void
366 nvd_bioq_process(void *arg, int pending)
367 {
368 	struct nvd_disk *ndisk = arg;
369 	struct bio *bp;
370 
371 	for (;;) {
372 		mtx_lock(&ndisk->bioqlock);
373 		bp = bioq_takefirst(&ndisk->bioq);
374 		mtx_unlock(&ndisk->bioqlock);
375 		if (bp == NULL)
376 			break;
377 
378 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
379 			/*
380 			 * bio with BIO_ORDERED flag set must be executed
381 			 * after all previous bios.
382 			 */
383 			while (ndisk->cur_depth > 0)
384 				tsleep(&ndisk->cur_depth, 0, "nvdorb", 1);
385 		} else {
386 			/*
387 			 * bio with BIO_ORDERED flag set must be completed
388 			 * before proceeding with additional bios.
389 			 */
390 			while (ndisk->cur_depth >= NVD_ODEPTH)
391 				tsleep(&ndisk->cur_depth, 0, "nvdora", 1);
392 		}
393 
394 		nvd_bio_submit(ndisk, bp);
395 	}
396 }
397 
398 static void *
399 nvd_new_controller(struct nvme_controller *ctrlr)
400 {
401 	struct nvd_controller	*nvd_ctrlr;
402 
403 	nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD,
404 	    M_ZERO | M_WAITOK);
405 
406 	nvd_ctrlr->ctrlr = ctrlr;
407 	TAILQ_INIT(&nvd_ctrlr->disk_head);
408 	mtx_lock(&nvd_lock);
409 	TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq);
410 	mtx_unlock(&nvd_lock);
411 
412 	return (nvd_ctrlr);
413 }
414 
415 static void *
416 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg)
417 {
418 	uint8_t			descr[NVME_MODEL_NUMBER_LENGTH+1];
419 	struct nvd_disk		*ndisk, *tnd;
420 	struct disk		*disk;
421 	struct nvd_controller	*ctrlr = ctrlr_arg;
422 	device_t		 dev = ctrlr->ctrlr->dev;
423 	int unit;
424 
425 	ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK);
426 	ndisk->ctrlr = ctrlr;
427 	ndisk->ns = ns;
428 	ndisk->cur_depth = 0;
429 	ndisk->ordered_in_flight = 0;
430 	mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF);
431 	bioq_init(&ndisk->bioq);
432 	TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk);
433 
434 	mtx_lock(&nvd_lock);
435 	unit = 0;
436 	TAILQ_FOREACH(tnd, &disk_head, global_tailq) {
437 		if (tnd->unit > unit)
438 			break;
439 		unit = tnd->unit + 1;
440 	}
441 	ndisk->unit = unit;
442 	if (tnd != NULL)
443 		TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq);
444 	else
445 		TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq);
446 	TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq);
447 	mtx_unlock(&nvd_lock);
448 
449 	ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK,
450 	    taskqueue_thread_enqueue, &ndisk->tq);
451 	taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq");
452 
453 	disk = ndisk->disk = disk_alloc();
454 	disk->d_strategy = nvd_strategy;
455 	disk->d_ioctl = nvd_ioctl;
456 	disk->d_dump = nvd_dump;
457 	disk->d_getattr = nvd_getattr;
458 	disk->d_gone = nvd_gonecb;
459 	disk->d_name = NVD_STR;
460 	disk->d_unit = ndisk->unit;
461 	disk->d_drv1 = ndisk;
462 
463 	disk->d_sectorsize = nvme_ns_get_sector_size(ns);
464 	disk->d_mediasize = (off_t)nvme_ns_get_size(ns);
465 	disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns);
466 	disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns);
467 	if (disk->d_delmaxsize > nvd_delete_max)
468 		disk->d_delmaxsize = nvd_delete_max;
469 	disk->d_stripesize = nvme_ns_get_stripesize(ns);
470 	disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION;
471 	if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED)
472 		disk->d_flags |= DISKFLAG_CANDELETE;
473 	if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED)
474 		disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
475 	disk->d_devstat = devstat_new_entry(disk->d_name, disk->d_unit,
476 	    disk->d_sectorsize, DEVSTAT_ALL_SUPPORTED,
477 	    DEVSTAT_TYPE_DIRECT | DEVSTAT_TYPE_IF_NVME,
478 	    DEVSTAT_PRIORITY_DISK);
479 
480 	/*
481 	 * d_ident and d_descr are both far bigger than the length of either
482 	 *  the serial or model number strings.
483 	 */
484 	nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns),
485 	    sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH);
486 	nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr),
487 	    NVME_MODEL_NUMBER_LENGTH);
488 	strlcpy(disk->d_descr, descr, sizeof(descr));
489 
490 	/*
491 	 * For devices that are reported as children of the AHCI controller,
492 	 * which has no access to the config space for this controller, report
493 	 * the AHCI controller's data.
494 	 */
495 	if (ctrlr->ctrlr->quirks & QUIRK_AHCI)
496 		dev = device_get_parent(dev);
497 	disk->d_hba_vendor = pci_get_vendor(dev);
498 	disk->d_hba_device = pci_get_device(dev);
499 	disk->d_hba_subvendor = pci_get_subvendor(dev);
500 	disk->d_hba_subdevice = pci_get_subdevice(dev);
501 	disk->d_rotation_rate = DISK_RR_NON_ROTATING;
502 	strlcpy(disk->d_attachment, device_get_nameunit(dev),
503 	    sizeof(disk->d_attachment));
504 
505 	disk_create(disk, DISK_VERSION);
506 
507 	printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr);
508 	printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit,
509 		(uintmax_t)disk->d_mediasize / (1024*1024),
510 		(uintmax_t)disk->d_mediasize / disk->d_sectorsize,
511 		disk->d_sectorsize);
512 
513 	return (ndisk);
514 }
515 
516 static void
517 nvd_controller_fail(void *ctrlr_arg)
518 {
519 	struct nvd_controller	*ctrlr = ctrlr_arg;
520 	struct nvd_disk		*ndisk;
521 
522 	mtx_lock(&nvd_lock);
523 	TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
524 	TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
525 		nvd_gone(ndisk);
526 	while (!TAILQ_EMPTY(&ctrlr->disk_head))
527 		msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0);
528 	mtx_unlock(&nvd_lock);
529 	free(ctrlr, M_NVD);
530 }
531