1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * Copyright (C) 2018 Alexander Motin <mav@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bio.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/queue.h> 39 #include <sys/sysctl.h> 40 #include <sys/systm.h> 41 #include <sys/taskqueue.h> 42 #include <machine/atomic.h> 43 44 #include <geom/geom.h> 45 #include <geom/geom_disk.h> 46 47 #include <dev/nvme/nvme.h> 48 49 #define NVD_STR "nvd" 50 51 struct nvd_disk; 52 struct nvd_controller; 53 54 static disk_ioctl_t nvd_ioctl; 55 static disk_strategy_t nvd_strategy; 56 static dumper_t nvd_dump; 57 58 static void nvd_done(void *arg, const struct nvme_completion *cpl); 59 static void nvd_gone(struct nvd_disk *ndisk); 60 61 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr); 62 63 static void *nvd_new_controller(struct nvme_controller *ctrlr); 64 static void nvd_controller_fail(void *ctrlr); 65 66 static int nvd_load(void); 67 static void nvd_unload(void); 68 69 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations"); 70 71 struct nvme_consumer *consumer_handle; 72 73 struct nvd_disk { 74 struct nvd_controller *ctrlr; 75 76 struct bio_queue_head bioq; 77 struct task bioqtask; 78 struct mtx bioqlock; 79 80 struct disk *disk; 81 struct taskqueue *tq; 82 struct nvme_namespace *ns; 83 84 uint32_t cur_depth; 85 #define NVD_ODEPTH (1 << 30) 86 uint32_t ordered_in_flight; 87 u_int unit; 88 89 TAILQ_ENTRY(nvd_disk) global_tailq; 90 TAILQ_ENTRY(nvd_disk) ctrlr_tailq; 91 }; 92 93 struct nvd_controller { 94 95 TAILQ_ENTRY(nvd_controller) tailq; 96 TAILQ_HEAD(, nvd_disk) disk_head; 97 }; 98 99 static struct mtx nvd_lock; 100 static TAILQ_HEAD(, nvd_controller) ctrlr_head; 101 static TAILQ_HEAD(disk_list, nvd_disk) disk_head; 102 103 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD, 0, "nvd driver parameters"); 104 /* 105 * The NVMe specification does not define a maximum or optimal delete size, so 106 * technically max delete size is min(full size of the namespace, 2^32 - 1 107 * LBAs). A single delete for a multi-TB NVMe namespace though may take much 108 * longer to complete than the nvme(4) I/O timeout period. So choose a sensible 109 * default here that is still suitably large to minimize the number of overall 110 * delete operations. 111 */ 112 static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */ 113 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0, 114 "nvd maximum BIO_DELETE size in bytes"); 115 116 static int nvd_modevent(module_t mod, int type, void *arg) 117 { 118 int error = 0; 119 120 switch (type) { 121 case MOD_LOAD: 122 error = nvd_load(); 123 break; 124 case MOD_UNLOAD: 125 nvd_unload(); 126 break; 127 default: 128 break; 129 } 130 131 return (error); 132 } 133 134 moduledata_t nvd_mod = { 135 NVD_STR, 136 (modeventhand_t)nvd_modevent, 137 0 138 }; 139 140 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY); 141 MODULE_VERSION(nvd, 1); 142 MODULE_DEPEND(nvd, nvme, 1, 1, 1); 143 144 static int 145 nvd_load() 146 { 147 if (!nvme_use_nvd) 148 return 0; 149 150 mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF); 151 TAILQ_INIT(&ctrlr_head); 152 TAILQ_INIT(&disk_head); 153 154 consumer_handle = nvme_register_consumer(nvd_new_disk, 155 nvd_new_controller, NULL, nvd_controller_fail); 156 157 return (consumer_handle != NULL ? 0 : -1); 158 } 159 160 static void 161 nvd_unload() 162 { 163 struct nvd_controller *ctrlr; 164 struct nvd_disk *ndisk; 165 166 if (!nvme_use_nvd) 167 return; 168 169 mtx_lock(&nvd_lock); 170 while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) { 171 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 172 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 173 nvd_gone(ndisk); 174 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 175 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0); 176 free(ctrlr, M_NVD); 177 } 178 mtx_unlock(&nvd_lock); 179 180 nvme_unregister_consumer(consumer_handle); 181 182 mtx_destroy(&nvd_lock); 183 } 184 185 static void 186 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp) 187 { 188 int err; 189 190 bp->bio_driver1 = NULL; 191 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 192 atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH); 193 else 194 atomic_add_int(&ndisk->cur_depth, 1); 195 err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done); 196 if (err) { 197 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 198 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 199 atomic_add_int(&ndisk->ordered_in_flight, -1); 200 wakeup(&ndisk->cur_depth); 201 } else { 202 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 203 __predict_false(ndisk->ordered_in_flight != 0)) 204 wakeup(&ndisk->cur_depth); 205 } 206 bp->bio_error = err; 207 bp->bio_flags |= BIO_ERROR; 208 bp->bio_resid = bp->bio_bcount; 209 biodone(bp); 210 } 211 } 212 213 static void 214 nvd_strategy(struct bio *bp) 215 { 216 struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 217 218 /* 219 * bio with BIO_ORDERED flag must be executed after all previous 220 * bios in the queue, and before any successive bios. 221 */ 222 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 223 if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 && 224 ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) { 225 nvd_bio_submit(ndisk, bp); 226 return; 227 } 228 } else if (__predict_true(ndisk->ordered_in_flight == 0)) { 229 nvd_bio_submit(ndisk, bp); 230 return; 231 } 232 233 /* 234 * There are ordered bios in flight, so we need to submit 235 * bios through the task queue to enforce ordering. 236 */ 237 mtx_lock(&ndisk->bioqlock); 238 bioq_insert_tail(&ndisk->bioq, bp); 239 mtx_unlock(&ndisk->bioqlock); 240 taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask); 241 } 242 243 static void 244 nvd_gone(struct nvd_disk *ndisk) 245 { 246 struct bio *bp; 247 248 printf(NVD_STR"%u: detached\n", ndisk->unit); 249 mtx_lock(&ndisk->bioqlock); 250 disk_gone(ndisk->disk); 251 while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) { 252 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 253 atomic_add_int(&ndisk->ordered_in_flight, -1); 254 bp->bio_error = ENXIO; 255 bp->bio_flags |= BIO_ERROR; 256 bp->bio_resid = bp->bio_bcount; 257 biodone(bp); 258 } 259 mtx_unlock(&ndisk->bioqlock); 260 } 261 262 static void 263 nvd_gonecb(struct disk *dp) 264 { 265 struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1; 266 267 disk_destroy(ndisk->disk); 268 mtx_lock(&nvd_lock); 269 TAILQ_REMOVE(&disk_head, ndisk, global_tailq); 270 TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq); 271 if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head)) 272 wakeup(&ndisk->ctrlr->disk_head); 273 mtx_unlock(&nvd_lock); 274 taskqueue_free(ndisk->tq); 275 mtx_destroy(&ndisk->bioqlock); 276 free(ndisk, M_NVD); 277 } 278 279 static int 280 nvd_ioctl(struct disk *ndisk, u_long cmd, void *data, int fflag, 281 struct thread *td) 282 { 283 int ret = 0; 284 285 switch (cmd) { 286 default: 287 ret = EIO; 288 } 289 290 return (ret); 291 } 292 293 static int 294 nvd_dump(void *arg, void *virt, vm_offset_t phys, off_t offset, size_t len) 295 { 296 struct disk *dp = arg; 297 struct nvd_disk *ndisk = dp->d_drv1; 298 299 return (nvme_ns_dump(ndisk->ns, virt, offset, len)); 300 } 301 302 static void 303 nvd_done(void *arg, const struct nvme_completion *cpl) 304 { 305 struct bio *bp = (struct bio *)arg; 306 struct nvd_disk *ndisk = bp->bio_disk->d_drv1; 307 308 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 309 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 310 atomic_add_int(&ndisk->ordered_in_flight, -1); 311 wakeup(&ndisk->cur_depth); 312 } else { 313 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 314 __predict_false(ndisk->ordered_in_flight != 0)) 315 wakeup(&ndisk->cur_depth); 316 } 317 318 biodone(bp); 319 } 320 321 static void 322 nvd_bioq_process(void *arg, int pending) 323 { 324 struct nvd_disk *ndisk = arg; 325 struct bio *bp; 326 327 for (;;) { 328 mtx_lock(&ndisk->bioqlock); 329 bp = bioq_takefirst(&ndisk->bioq); 330 mtx_unlock(&ndisk->bioqlock); 331 if (bp == NULL) 332 break; 333 334 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 335 /* 336 * bio with BIO_ORDERED flag set must be executed 337 * after all previous bios. 338 */ 339 while (ndisk->cur_depth > 0) 340 tsleep(&ndisk->cur_depth, 0, "nvdorb", 1); 341 } else { 342 /* 343 * bio with BIO_ORDERED flag set must be completed 344 * before proceeding with additional bios. 345 */ 346 while (ndisk->cur_depth >= NVD_ODEPTH) 347 tsleep(&ndisk->cur_depth, 0, "nvdora", 1); 348 } 349 350 nvd_bio_submit(ndisk, bp); 351 } 352 } 353 354 static void * 355 nvd_new_controller(struct nvme_controller *ctrlr) 356 { 357 struct nvd_controller *nvd_ctrlr; 358 359 nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD, 360 M_ZERO | M_WAITOK); 361 362 TAILQ_INIT(&nvd_ctrlr->disk_head); 363 mtx_lock(&nvd_lock); 364 TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq); 365 mtx_unlock(&nvd_lock); 366 367 return (nvd_ctrlr); 368 } 369 370 static void * 371 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg) 372 { 373 uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1]; 374 struct nvd_disk *ndisk, *tnd; 375 struct disk *disk; 376 struct nvd_controller *ctrlr = ctrlr_arg; 377 int unit; 378 379 ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK); 380 ndisk->ctrlr = ctrlr; 381 ndisk->ns = ns; 382 ndisk->cur_depth = 0; 383 ndisk->ordered_in_flight = 0; 384 mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF); 385 bioq_init(&ndisk->bioq); 386 TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk); 387 388 mtx_lock(&nvd_lock); 389 unit = 0; 390 TAILQ_FOREACH(tnd, &disk_head, global_tailq) { 391 if (tnd->unit > unit) 392 break; 393 unit = tnd->unit + 1; 394 } 395 ndisk->unit = unit; 396 if (tnd != NULL) 397 TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq); 398 else 399 TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq); 400 TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq); 401 mtx_unlock(&nvd_lock); 402 403 ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK, 404 taskqueue_thread_enqueue, &ndisk->tq); 405 taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq"); 406 407 disk = ndisk->disk = disk_alloc(); 408 disk->d_strategy = nvd_strategy; 409 disk->d_ioctl = nvd_ioctl; 410 disk->d_dump = nvd_dump; 411 disk->d_gone = nvd_gonecb; 412 disk->d_name = NVD_STR; 413 disk->d_unit = ndisk->unit; 414 disk->d_drv1 = ndisk; 415 416 disk->d_sectorsize = nvme_ns_get_sector_size(ns); 417 disk->d_mediasize = (off_t)nvme_ns_get_size(ns); 418 disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns); 419 disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns); 420 if (disk->d_delmaxsize > nvd_delete_max) 421 disk->d_delmaxsize = nvd_delete_max; 422 disk->d_stripesize = nvme_ns_get_stripesize(ns); 423 disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION; 424 if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED) 425 disk->d_flags |= DISKFLAG_CANDELETE; 426 if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED) 427 disk->d_flags |= DISKFLAG_CANFLUSHCACHE; 428 429 /* 430 * d_ident and d_descr are both far bigger than the length of either 431 * the serial or model number strings. 432 */ 433 nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns), 434 sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH); 435 nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr), 436 NVME_MODEL_NUMBER_LENGTH); 437 strlcpy(disk->d_descr, descr, sizeof(descr)); 438 439 disk->d_rotation_rate = DISK_RR_NON_ROTATING; 440 441 disk_create(disk, DISK_VERSION); 442 443 printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr); 444 printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit, 445 (uintmax_t)disk->d_mediasize / (1024*1024), 446 (uintmax_t)disk->d_mediasize / disk->d_sectorsize, 447 disk->d_sectorsize); 448 449 return (ndisk); 450 } 451 452 static void 453 nvd_controller_fail(void *ctrlr_arg) 454 { 455 struct nvd_controller *ctrlr = ctrlr_arg; 456 struct nvd_disk *ndisk; 457 458 mtx_lock(&nvd_lock); 459 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 460 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 461 nvd_gone(ndisk); 462 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 463 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0); 464 mtx_unlock(&nvd_lock); 465 free(ctrlr, M_NVD); 466 } 467 468