1 /* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp> 5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #ifdef HAVE_KERNEL_OPTION_HEADERS 27 #include "opt_device_polling.h" 28 #endif 29 30 #include <sys/param.h> 31 #include <sys/endian.h> 32 #include <sys/systm.h> 33 #include <sys/sockio.h> 34 #include <sys/mbuf.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <sys/kernel.h> 38 #include <sys/queue.h> 39 #include <sys/socket.h> 40 #include <sys/sysctl.h> 41 #include <sys/taskqueue.h> 42 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/ethernet.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net/bpf.h> 52 53 #include <machine/bus.h> 54 #include <machine/resource.h> 55 #include <sys/bus.h> 56 #include <sys/rman.h> 57 58 #include <dev/mii/mii.h> 59 #include <dev/mii/miivar.h> 60 61 #include <dev/pci/pcireg.h> 62 #include <dev/pci/pcivar.h> 63 64 #include <dev/nfe/if_nfereg.h> 65 #include <dev/nfe/if_nfevar.h> 66 67 MODULE_DEPEND(nfe, pci, 1, 1, 1); 68 MODULE_DEPEND(nfe, ether, 1, 1, 1); 69 MODULE_DEPEND(nfe, miibus, 1, 1, 1); 70 71 /* "device miibus" required. See GENERIC if you get errors here. */ 72 #include "miibus_if.h" 73 74 static int nfe_probe(device_t); 75 static int nfe_attach(device_t); 76 static int nfe_detach(device_t); 77 static int nfe_suspend(device_t); 78 static int nfe_resume(device_t); 79 static int nfe_shutdown(device_t); 80 static void nfe_power(struct nfe_softc *); 81 static int nfe_miibus_readreg(device_t, int, int); 82 static int nfe_miibus_writereg(device_t, int, int, int); 83 static void nfe_miibus_statchg(device_t); 84 static void nfe_link_task(void *, int); 85 static void nfe_set_intr(struct nfe_softc *); 86 static __inline void nfe_enable_intr(struct nfe_softc *); 87 static __inline void nfe_disable_intr(struct nfe_softc *); 88 static int nfe_ioctl(struct ifnet *, u_long, caddr_t); 89 static void nfe_alloc_msix(struct nfe_softc *, int); 90 static int nfe_intr(void *); 91 static void nfe_int_task(void *, int); 92 static __inline void nfe_discard_rxbuf(struct nfe_softc *, int); 93 static __inline void nfe_discard_jrxbuf(struct nfe_softc *, int); 94 static int nfe_newbuf(struct nfe_softc *, int); 95 static int nfe_jnewbuf(struct nfe_softc *, int); 96 static int nfe_rxeof(struct nfe_softc *, int, int *); 97 static int nfe_jrxeof(struct nfe_softc *, int, int *); 98 static void nfe_txeof(struct nfe_softc *); 99 static int nfe_encap(struct nfe_softc *, struct mbuf **); 100 static void nfe_setmulti(struct nfe_softc *); 101 static void nfe_tx_task(void *, int); 102 static void nfe_start(struct ifnet *); 103 static void nfe_watchdog(struct ifnet *); 104 static void nfe_init(void *); 105 static void nfe_init_locked(void *); 106 static void nfe_stop(struct ifnet *); 107 static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 108 static void nfe_alloc_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 109 static int nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 110 static int nfe_init_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 111 static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 112 static void nfe_free_jrx_ring(struct nfe_softc *, struct nfe_jrx_ring *); 113 static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 114 static void nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 115 static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 116 static int nfe_ifmedia_upd(struct ifnet *); 117 static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *); 118 static void nfe_tick(void *); 119 static void nfe_get_macaddr(struct nfe_softc *, uint8_t *); 120 static void nfe_set_macaddr(struct nfe_softc *, uint8_t *); 121 static void nfe_dma_map_segs(void *, bus_dma_segment_t *, int, int); 122 123 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 124 static int sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS); 125 static void nfe_sysctl_node(struct nfe_softc *); 126 static void nfe_stats_clear(struct nfe_softc *); 127 static void nfe_stats_update(struct nfe_softc *); 128 129 #ifdef NFE_DEBUG 130 static int nfedebug = 0; 131 #define DPRINTF(sc, ...) do { \ 132 if (nfedebug) \ 133 device_printf((sc)->nfe_dev, __VA_ARGS__); \ 134 } while (0) 135 #define DPRINTFN(sc, n, ...) do { \ 136 if (nfedebug >= (n)) \ 137 device_printf((sc)->nfe_dev, __VA_ARGS__); \ 138 } while (0) 139 #else 140 #define DPRINTF(sc, ...) 141 #define DPRINTFN(sc, n, ...) 142 #endif 143 144 #define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx) 145 #define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx) 146 #define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED) 147 148 /* Tunables. */ 149 static int msi_disable = 0; 150 static int msix_disable = 0; 151 static int jumbo_disable = 0; 152 TUNABLE_INT("hw.nfe.msi_disable", &msi_disable); 153 TUNABLE_INT("hw.nfe.msix_disable", &msix_disable); 154 TUNABLE_INT("hw.nfe.jumbo_disable", &jumbo_disable); 155 156 static device_method_t nfe_methods[] = { 157 /* Device interface */ 158 DEVMETHOD(device_probe, nfe_probe), 159 DEVMETHOD(device_attach, nfe_attach), 160 DEVMETHOD(device_detach, nfe_detach), 161 DEVMETHOD(device_suspend, nfe_suspend), 162 DEVMETHOD(device_resume, nfe_resume), 163 DEVMETHOD(device_shutdown, nfe_shutdown), 164 165 /* bus interface */ 166 DEVMETHOD(bus_print_child, bus_generic_print_child), 167 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 168 169 /* MII interface */ 170 DEVMETHOD(miibus_readreg, nfe_miibus_readreg), 171 DEVMETHOD(miibus_writereg, nfe_miibus_writereg), 172 DEVMETHOD(miibus_statchg, nfe_miibus_statchg), 173 174 { NULL, NULL } 175 }; 176 177 static driver_t nfe_driver = { 178 "nfe", 179 nfe_methods, 180 sizeof(struct nfe_softc) 181 }; 182 183 static devclass_t nfe_devclass; 184 185 DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0); 186 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0); 187 188 static struct nfe_type nfe_devs[] = { 189 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN, 190 "NVIDIA nForce MCP Networking Adapter"}, 191 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN, 192 "NVIDIA nForce2 MCP2 Networking Adapter"}, 193 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1, 194 "NVIDIA nForce2 400 MCP4 Networking Adapter"}, 195 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2, 196 "NVIDIA nForce2 400 MCP5 Networking Adapter"}, 197 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1, 198 "NVIDIA nForce3 MCP3 Networking Adapter"}, 199 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN, 200 "NVIDIA nForce3 250 MCP6 Networking Adapter"}, 201 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4, 202 "NVIDIA nForce3 MCP7 Networking Adapter"}, 203 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1, 204 "NVIDIA nForce4 CK804 MCP8 Networking Adapter"}, 205 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2, 206 "NVIDIA nForce4 CK804 MCP9 Networking Adapter"}, 207 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1, 208 "NVIDIA nForce MCP04 Networking Adapter"}, /* MCP10 */ 209 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2, 210 "NVIDIA nForce MCP04 Networking Adapter"}, /* MCP11 */ 211 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1, 212 "NVIDIA nForce 430 MCP12 Networking Adapter"}, 213 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2, 214 "NVIDIA nForce 430 MCP13 Networking Adapter"}, 215 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1, 216 "NVIDIA nForce MCP55 Networking Adapter"}, 217 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2, 218 "NVIDIA nForce MCP55 Networking Adapter"}, 219 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1, 220 "NVIDIA nForce MCP61 Networking Adapter"}, 221 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2, 222 "NVIDIA nForce MCP61 Networking Adapter"}, 223 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3, 224 "NVIDIA nForce MCP61 Networking Adapter"}, 225 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4, 226 "NVIDIA nForce MCP61 Networking Adapter"}, 227 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1, 228 "NVIDIA nForce MCP65 Networking Adapter"}, 229 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2, 230 "NVIDIA nForce MCP65 Networking Adapter"}, 231 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3, 232 "NVIDIA nForce MCP65 Networking Adapter"}, 233 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4, 234 "NVIDIA nForce MCP65 Networking Adapter"}, 235 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1, 236 "NVIDIA nForce MCP67 Networking Adapter"}, 237 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2, 238 "NVIDIA nForce MCP67 Networking Adapter"}, 239 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3, 240 "NVIDIA nForce MCP67 Networking Adapter"}, 241 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4, 242 "NVIDIA nForce MCP67 Networking Adapter"}, 243 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1, 244 "NVIDIA nForce MCP73 Networking Adapter"}, 245 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2, 246 "NVIDIA nForce MCP73 Networking Adapter"}, 247 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3, 248 "NVIDIA nForce MCP73 Networking Adapter"}, 249 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4, 250 "NVIDIA nForce MCP73 Networking Adapter"}, 251 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1, 252 "NVIDIA nForce MCP77 Networking Adapter"}, 253 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2, 254 "NVIDIA nForce MCP77 Networking Adapter"}, 255 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3, 256 "NVIDIA nForce MCP77 Networking Adapter"}, 257 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4, 258 "NVIDIA nForce MCP77 Networking Adapter"}, 259 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1, 260 "NVIDIA nForce MCP79 Networking Adapter"}, 261 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2, 262 "NVIDIA nForce MCP79 Networking Adapter"}, 263 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3, 264 "NVIDIA nForce MCP79 Networking Adapter"}, 265 {PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4, 266 "NVIDIA nForce MCP79 Networking Adapter"}, 267 {0, 0, NULL} 268 }; 269 270 271 /* Probe for supported hardware ID's */ 272 static int 273 nfe_probe(device_t dev) 274 { 275 struct nfe_type *t; 276 277 t = nfe_devs; 278 /* Check for matching PCI DEVICE ID's */ 279 while (t->name != NULL) { 280 if ((pci_get_vendor(dev) == t->vid_id) && 281 (pci_get_device(dev) == t->dev_id)) { 282 device_set_desc(dev, t->name); 283 return (BUS_PROBE_DEFAULT); 284 } 285 t++; 286 } 287 288 return (ENXIO); 289 } 290 291 static void 292 nfe_alloc_msix(struct nfe_softc *sc, int count) 293 { 294 int rid; 295 296 rid = PCIR_BAR(2); 297 sc->nfe_msix_res = bus_alloc_resource_any(sc->nfe_dev, SYS_RES_MEMORY, 298 &rid, RF_ACTIVE); 299 if (sc->nfe_msix_res == NULL) { 300 device_printf(sc->nfe_dev, 301 "couldn't allocate MSIX table resource\n"); 302 return; 303 } 304 rid = PCIR_BAR(3); 305 sc->nfe_msix_pba_res = bus_alloc_resource_any(sc->nfe_dev, 306 SYS_RES_MEMORY, &rid, RF_ACTIVE); 307 if (sc->nfe_msix_pba_res == NULL) { 308 device_printf(sc->nfe_dev, 309 "couldn't allocate MSIX PBA resource\n"); 310 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, PCIR_BAR(2), 311 sc->nfe_msix_res); 312 sc->nfe_msix_res = NULL; 313 return; 314 } 315 316 if (pci_alloc_msix(sc->nfe_dev, &count) == 0) { 317 if (count == NFE_MSI_MESSAGES) { 318 if (bootverbose) 319 device_printf(sc->nfe_dev, 320 "Using %d MSIX messages\n", count); 321 sc->nfe_msix = 1; 322 } else { 323 if (bootverbose) 324 device_printf(sc->nfe_dev, 325 "couldn't allocate MSIX\n"); 326 pci_release_msi(sc->nfe_dev); 327 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, 328 PCIR_BAR(3), sc->nfe_msix_pba_res); 329 bus_release_resource(sc->nfe_dev, SYS_RES_MEMORY, 330 PCIR_BAR(2), sc->nfe_msix_res); 331 sc->nfe_msix_pba_res = NULL; 332 sc->nfe_msix_res = NULL; 333 } 334 } 335 } 336 337 static int 338 nfe_attach(device_t dev) 339 { 340 struct nfe_softc *sc; 341 struct ifnet *ifp; 342 bus_addr_t dma_addr_max; 343 int error = 0, i, msic, reg, rid; 344 345 sc = device_get_softc(dev); 346 sc->nfe_dev = dev; 347 348 mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 349 MTX_DEF); 350 callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0); 351 TASK_INIT(&sc->nfe_link_task, 0, nfe_link_task, sc); 352 353 pci_enable_busmaster(dev); 354 355 rid = PCIR_BAR(0); 356 sc->nfe_res[0] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 357 RF_ACTIVE); 358 if (sc->nfe_res[0] == NULL) { 359 device_printf(dev, "couldn't map memory resources\n"); 360 mtx_destroy(&sc->nfe_mtx); 361 return (ENXIO); 362 } 363 364 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 365 uint16_t v, width; 366 367 v = pci_read_config(dev, reg + 0x08, 2); 368 /* Change max. read request size to 4096. */ 369 v &= ~(7 << 12); 370 v |= (5 << 12); 371 pci_write_config(dev, reg + 0x08, v, 2); 372 373 v = pci_read_config(dev, reg + 0x0c, 2); 374 /* link capability */ 375 v = (v >> 4) & 0x0f; 376 width = pci_read_config(dev, reg + 0x12, 2); 377 /* negotiated link width */ 378 width = (width >> 4) & 0x3f; 379 if (v != width) 380 device_printf(sc->nfe_dev, 381 "warning, negotiated width of link(x%d) != " 382 "max. width of link(x%d)\n", width, v); 383 } 384 385 /* Allocate interrupt */ 386 if (msix_disable == 0 || msi_disable == 0) { 387 if (msix_disable == 0 && 388 (msic = pci_msix_count(dev)) == NFE_MSI_MESSAGES) 389 nfe_alloc_msix(sc, msic); 390 if (msi_disable == 0 && sc->nfe_msix == 0 && 391 (msic = pci_msi_count(dev)) == NFE_MSI_MESSAGES && 392 pci_alloc_msi(dev, &msic) == 0) { 393 if (msic == NFE_MSI_MESSAGES) { 394 if (bootverbose) 395 device_printf(dev, 396 "Using %d MSI messages\n", msic); 397 sc->nfe_msi = 1; 398 } else 399 pci_release_msi(dev); 400 } 401 } 402 403 if (sc->nfe_msix == 0 && sc->nfe_msi == 0) { 404 rid = 0; 405 sc->nfe_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 406 RF_SHAREABLE | RF_ACTIVE); 407 if (sc->nfe_irq[0] == NULL) { 408 device_printf(dev, "couldn't allocate IRQ resources\n"); 409 error = ENXIO; 410 goto fail; 411 } 412 } else { 413 for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) { 414 sc->nfe_irq[i] = bus_alloc_resource_any(dev, 415 SYS_RES_IRQ, &rid, RF_ACTIVE); 416 if (sc->nfe_irq[i] == NULL) { 417 device_printf(dev, 418 "couldn't allocate IRQ resources for " 419 "message %d\n", rid); 420 error = ENXIO; 421 goto fail; 422 } 423 } 424 /* Map interrupts to vector 0. */ 425 if (sc->nfe_msix != 0) { 426 NFE_WRITE(sc, NFE_MSIX_MAP0, 0); 427 NFE_WRITE(sc, NFE_MSIX_MAP1, 0); 428 } else if (sc->nfe_msi != 0) { 429 NFE_WRITE(sc, NFE_MSI_MAP0, 0); 430 NFE_WRITE(sc, NFE_MSI_MAP1, 0); 431 } 432 } 433 434 /* Set IRQ status/mask register. */ 435 sc->nfe_irq_status = NFE_IRQ_STATUS; 436 sc->nfe_irq_mask = NFE_IRQ_MASK; 437 sc->nfe_intrs = NFE_IRQ_WANTED; 438 sc->nfe_nointrs = 0; 439 if (sc->nfe_msix != 0) { 440 sc->nfe_irq_status = NFE_MSIX_IRQ_STATUS; 441 sc->nfe_nointrs = NFE_IRQ_WANTED; 442 } else if (sc->nfe_msi != 0) { 443 sc->nfe_irq_mask = NFE_MSI_IRQ_MASK; 444 sc->nfe_intrs = NFE_MSI_VECTOR_0_ENABLED; 445 } 446 447 sc->nfe_devid = pci_get_device(dev); 448 sc->nfe_revid = pci_get_revid(dev); 449 sc->nfe_flags = 0; 450 451 switch (sc->nfe_devid) { 452 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: 453 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: 454 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: 455 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: 456 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; 457 break; 458 case PCI_PRODUCT_NVIDIA_MCP51_LAN1: 459 case PCI_PRODUCT_NVIDIA_MCP51_LAN2: 460 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | NFE_MIB_V1; 461 break; 462 case PCI_PRODUCT_NVIDIA_CK804_LAN1: 463 case PCI_PRODUCT_NVIDIA_CK804_LAN2: 464 case PCI_PRODUCT_NVIDIA_MCP04_LAN1: 465 case PCI_PRODUCT_NVIDIA_MCP04_LAN2: 466 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 467 NFE_MIB_V1; 468 break; 469 case PCI_PRODUCT_NVIDIA_MCP55_LAN1: 470 case PCI_PRODUCT_NVIDIA_MCP55_LAN2: 471 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 472 NFE_HW_VLAN | NFE_PWR_MGMT | NFE_TX_FLOW_CTRL | NFE_MIB_V2; 473 break; 474 475 case PCI_PRODUCT_NVIDIA_MCP61_LAN1: 476 case PCI_PRODUCT_NVIDIA_MCP61_LAN2: 477 case PCI_PRODUCT_NVIDIA_MCP61_LAN3: 478 case PCI_PRODUCT_NVIDIA_MCP61_LAN4: 479 case PCI_PRODUCT_NVIDIA_MCP67_LAN1: 480 case PCI_PRODUCT_NVIDIA_MCP67_LAN2: 481 case PCI_PRODUCT_NVIDIA_MCP67_LAN3: 482 case PCI_PRODUCT_NVIDIA_MCP67_LAN4: 483 case PCI_PRODUCT_NVIDIA_MCP73_LAN1: 484 case PCI_PRODUCT_NVIDIA_MCP73_LAN2: 485 case PCI_PRODUCT_NVIDIA_MCP73_LAN3: 486 case PCI_PRODUCT_NVIDIA_MCP73_LAN4: 487 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT | 488 NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | NFE_MIB_V2; 489 break; 490 case PCI_PRODUCT_NVIDIA_MCP77_LAN1: 491 case PCI_PRODUCT_NVIDIA_MCP77_LAN2: 492 case PCI_PRODUCT_NVIDIA_MCP77_LAN3: 493 case PCI_PRODUCT_NVIDIA_MCP77_LAN4: 494 /* XXX flow control */ 495 sc->nfe_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_PWR_MGMT | 496 NFE_CORRECT_MACADDR | NFE_MIB_V3; 497 break; 498 case PCI_PRODUCT_NVIDIA_MCP79_LAN1: 499 case PCI_PRODUCT_NVIDIA_MCP79_LAN2: 500 case PCI_PRODUCT_NVIDIA_MCP79_LAN3: 501 case PCI_PRODUCT_NVIDIA_MCP79_LAN4: 502 /* XXX flow control */ 503 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 504 NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_MIB_V3; 505 break; 506 case PCI_PRODUCT_NVIDIA_MCP65_LAN1: 507 case PCI_PRODUCT_NVIDIA_MCP65_LAN2: 508 case PCI_PRODUCT_NVIDIA_MCP65_LAN3: 509 case PCI_PRODUCT_NVIDIA_MCP65_LAN4: 510 sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | 511 NFE_PWR_MGMT | NFE_CORRECT_MACADDR | NFE_TX_FLOW_CTRL | 512 NFE_MIB_V2; 513 break; 514 } 515 516 nfe_power(sc); 517 /* Check for reversed ethernet address */ 518 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0) 519 sc->nfe_flags |= NFE_CORRECT_MACADDR; 520 nfe_get_macaddr(sc, sc->eaddr); 521 /* 522 * Allocate the parent bus DMA tag appropriate for PCI. 523 */ 524 dma_addr_max = BUS_SPACE_MAXADDR_32BIT; 525 if ((sc->nfe_flags & NFE_40BIT_ADDR) != 0) 526 dma_addr_max = NFE_DMA_MAXADDR; 527 error = bus_dma_tag_create( 528 bus_get_dma_tag(sc->nfe_dev), /* parent */ 529 1, 0, /* alignment, boundary */ 530 dma_addr_max, /* lowaddr */ 531 BUS_SPACE_MAXADDR, /* highaddr */ 532 NULL, NULL, /* filter, filterarg */ 533 BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */ 534 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 535 0, /* flags */ 536 NULL, NULL, /* lockfunc, lockarg */ 537 &sc->nfe_parent_tag); 538 if (error) 539 goto fail; 540 541 ifp = sc->nfe_ifp = if_alloc(IFT_ETHER); 542 if (ifp == NULL) { 543 device_printf(dev, "can not if_alloc()\n"); 544 error = ENOSPC; 545 goto fail; 546 } 547 TASK_INIT(&sc->nfe_tx_task, 1, nfe_tx_task, ifp); 548 549 /* 550 * Allocate Tx and Rx rings. 551 */ 552 if ((error = nfe_alloc_tx_ring(sc, &sc->txq)) != 0) 553 goto fail; 554 555 if ((error = nfe_alloc_rx_ring(sc, &sc->rxq)) != 0) 556 goto fail; 557 558 nfe_alloc_jrx_ring(sc, &sc->jrxq); 559 /* Create sysctl node. */ 560 nfe_sysctl_node(sc); 561 562 ifp->if_softc = sc; 563 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 564 ifp->if_mtu = ETHERMTU; 565 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 566 ifp->if_ioctl = nfe_ioctl; 567 ifp->if_start = nfe_start; 568 ifp->if_hwassist = 0; 569 ifp->if_capabilities = 0; 570 ifp->if_init = nfe_init; 571 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_TX_RING_COUNT - 1); 572 ifp->if_snd.ifq_drv_maxlen = NFE_TX_RING_COUNT - 1; 573 IFQ_SET_READY(&ifp->if_snd); 574 575 if (sc->nfe_flags & NFE_HW_CSUM) { 576 ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4; 577 ifp->if_hwassist |= NFE_CSUM_FEATURES | CSUM_TSO; 578 } 579 ifp->if_capenable = ifp->if_capabilities; 580 581 sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS; 582 /* VLAN capability setup. */ 583 ifp->if_capabilities |= IFCAP_VLAN_MTU; 584 if ((sc->nfe_flags & NFE_HW_VLAN) != 0) { 585 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; 586 if ((ifp->if_capabilities & IFCAP_HWCSUM) != 0) 587 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 588 } 589 ifp->if_capenable = ifp->if_capabilities; 590 591 /* 592 * Tell the upper layer(s) we support long frames. 593 * Must appear after the call to ether_ifattach() because 594 * ether_ifattach() sets ifi_hdrlen to the default value. 595 */ 596 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 597 598 #ifdef DEVICE_POLLING 599 ifp->if_capabilities |= IFCAP_POLLING; 600 #endif 601 602 /* Do MII setup */ 603 error = mii_attach(dev, &sc->nfe_miibus, ifp, nfe_ifmedia_upd, 604 nfe_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); 605 if (error != 0) { 606 device_printf(dev, "attaching PHYs failed\n"); 607 goto fail; 608 } 609 ether_ifattach(ifp, sc->eaddr); 610 611 TASK_INIT(&sc->nfe_int_task, 0, nfe_int_task, sc); 612 sc->nfe_tq = taskqueue_create_fast("nfe_taskq", M_WAITOK, 613 taskqueue_thread_enqueue, &sc->nfe_tq); 614 taskqueue_start_threads(&sc->nfe_tq, 1, PI_NET, "%s taskq", 615 device_get_nameunit(sc->nfe_dev)); 616 error = 0; 617 if (sc->nfe_msi == 0 && sc->nfe_msix == 0) { 618 error = bus_setup_intr(dev, sc->nfe_irq[0], 619 INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc, 620 &sc->nfe_intrhand[0]); 621 } else { 622 for (i = 0; i < NFE_MSI_MESSAGES; i++) { 623 error = bus_setup_intr(dev, sc->nfe_irq[i], 624 INTR_TYPE_NET | INTR_MPSAFE, nfe_intr, NULL, sc, 625 &sc->nfe_intrhand[i]); 626 if (error != 0) 627 break; 628 } 629 } 630 if (error) { 631 device_printf(dev, "couldn't set up irq\n"); 632 taskqueue_free(sc->nfe_tq); 633 sc->nfe_tq = NULL; 634 ether_ifdetach(ifp); 635 goto fail; 636 } 637 638 fail: 639 if (error) 640 nfe_detach(dev); 641 642 return (error); 643 } 644 645 646 static int 647 nfe_detach(device_t dev) 648 { 649 struct nfe_softc *sc; 650 struct ifnet *ifp; 651 uint8_t eaddr[ETHER_ADDR_LEN]; 652 int i, rid; 653 654 sc = device_get_softc(dev); 655 KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized")); 656 ifp = sc->nfe_ifp; 657 658 #ifdef DEVICE_POLLING 659 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) 660 ether_poll_deregister(ifp); 661 #endif 662 if (device_is_attached(dev)) { 663 NFE_LOCK(sc); 664 nfe_stop(ifp); 665 ifp->if_flags &= ~IFF_UP; 666 NFE_UNLOCK(sc); 667 callout_drain(&sc->nfe_stat_ch); 668 taskqueue_drain(taskqueue_fast, &sc->nfe_tx_task); 669 taskqueue_drain(taskqueue_swi, &sc->nfe_link_task); 670 ether_ifdetach(ifp); 671 } 672 673 if (ifp) { 674 /* restore ethernet address */ 675 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) { 676 for (i = 0; i < ETHER_ADDR_LEN; i++) { 677 eaddr[i] = sc->eaddr[5 - i]; 678 } 679 } else 680 bcopy(sc->eaddr, eaddr, ETHER_ADDR_LEN); 681 nfe_set_macaddr(sc, eaddr); 682 if_free(ifp); 683 } 684 if (sc->nfe_miibus) 685 device_delete_child(dev, sc->nfe_miibus); 686 bus_generic_detach(dev); 687 if (sc->nfe_tq != NULL) { 688 taskqueue_drain(sc->nfe_tq, &sc->nfe_int_task); 689 taskqueue_free(sc->nfe_tq); 690 sc->nfe_tq = NULL; 691 } 692 693 for (i = 0; i < NFE_MSI_MESSAGES; i++) { 694 if (sc->nfe_intrhand[i] != NULL) { 695 bus_teardown_intr(dev, sc->nfe_irq[i], 696 sc->nfe_intrhand[i]); 697 sc->nfe_intrhand[i] = NULL; 698 } 699 } 700 701 if (sc->nfe_msi == 0 && sc->nfe_msix == 0) { 702 if (sc->nfe_irq[0] != NULL) 703 bus_release_resource(dev, SYS_RES_IRQ, 0, 704 sc->nfe_irq[0]); 705 } else { 706 for (i = 0, rid = 1; i < NFE_MSI_MESSAGES; i++, rid++) { 707 if (sc->nfe_irq[i] != NULL) { 708 bus_release_resource(dev, SYS_RES_IRQ, rid, 709 sc->nfe_irq[i]); 710 sc->nfe_irq[i] = NULL; 711 } 712 } 713 pci_release_msi(dev); 714 } 715 if (sc->nfe_msix_pba_res != NULL) { 716 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(3), 717 sc->nfe_msix_pba_res); 718 sc->nfe_msix_pba_res = NULL; 719 } 720 if (sc->nfe_msix_res != NULL) { 721 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(2), 722 sc->nfe_msix_res); 723 sc->nfe_msix_res = NULL; 724 } 725 if (sc->nfe_res[0] != NULL) { 726 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 727 sc->nfe_res[0]); 728 sc->nfe_res[0] = NULL; 729 } 730 731 nfe_free_tx_ring(sc, &sc->txq); 732 nfe_free_rx_ring(sc, &sc->rxq); 733 nfe_free_jrx_ring(sc, &sc->jrxq); 734 735 if (sc->nfe_parent_tag) { 736 bus_dma_tag_destroy(sc->nfe_parent_tag); 737 sc->nfe_parent_tag = NULL; 738 } 739 740 mtx_destroy(&sc->nfe_mtx); 741 742 return (0); 743 } 744 745 746 static int 747 nfe_suspend(device_t dev) 748 { 749 struct nfe_softc *sc; 750 751 sc = device_get_softc(dev); 752 753 NFE_LOCK(sc); 754 nfe_stop(sc->nfe_ifp); 755 sc->nfe_suspended = 1; 756 NFE_UNLOCK(sc); 757 758 return (0); 759 } 760 761 762 static int 763 nfe_resume(device_t dev) 764 { 765 struct nfe_softc *sc; 766 struct ifnet *ifp; 767 768 sc = device_get_softc(dev); 769 770 NFE_LOCK(sc); 771 ifp = sc->nfe_ifp; 772 if (ifp->if_flags & IFF_UP) 773 nfe_init_locked(sc); 774 sc->nfe_suspended = 0; 775 NFE_UNLOCK(sc); 776 777 return (0); 778 } 779 780 781 /* Take PHY/NIC out of powerdown, from Linux */ 782 static void 783 nfe_power(struct nfe_softc *sc) 784 { 785 uint32_t pwr; 786 787 if ((sc->nfe_flags & NFE_PWR_MGMT) == 0) 788 return; 789 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); 790 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC); 791 DELAY(100); 792 NFE_WRITE(sc, NFE_MAC_RESET, 0); 793 DELAY(100); 794 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2); 795 pwr = NFE_READ(sc, NFE_PWR2_CTL); 796 pwr &= ~NFE_PWR2_WAKEUP_MASK; 797 if (sc->nfe_revid >= 0xa3 && 798 (sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 || 799 sc->nfe_devid == PCI_PRODUCT_NVIDIA_NFORCE430_LAN2)) 800 pwr |= NFE_PWR2_REVA3; 801 NFE_WRITE(sc, NFE_PWR2_CTL, pwr); 802 } 803 804 805 static void 806 nfe_miibus_statchg(device_t dev) 807 { 808 struct nfe_softc *sc; 809 810 sc = device_get_softc(dev); 811 taskqueue_enqueue(taskqueue_swi, &sc->nfe_link_task); 812 } 813 814 815 static void 816 nfe_link_task(void *arg, int pending) 817 { 818 struct nfe_softc *sc; 819 struct mii_data *mii; 820 struct ifnet *ifp; 821 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; 822 uint32_t gmask, rxctl, txctl, val; 823 824 sc = (struct nfe_softc *)arg; 825 826 NFE_LOCK(sc); 827 828 mii = device_get_softc(sc->nfe_miibus); 829 ifp = sc->nfe_ifp; 830 if (mii == NULL || ifp == NULL) { 831 NFE_UNLOCK(sc); 832 return; 833 } 834 835 if (mii->mii_media_status & IFM_ACTIVE) { 836 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 837 sc->nfe_link = 1; 838 } else 839 sc->nfe_link = 0; 840 841 phy = NFE_READ(sc, NFE_PHY_IFACE); 842 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); 843 844 seed = NFE_READ(sc, NFE_RNDSEED); 845 seed &= ~NFE_SEED_MASK; 846 847 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) { 848 phy |= NFE_PHY_HDX; /* half-duplex */ 849 misc |= NFE_MISC1_HDX; 850 } 851 852 switch (IFM_SUBTYPE(mii->mii_media_active)) { 853 case IFM_1000_T: /* full-duplex only */ 854 link |= NFE_MEDIA_1000T; 855 seed |= NFE_SEED_1000T; 856 phy |= NFE_PHY_1000T; 857 break; 858 case IFM_100_TX: 859 link |= NFE_MEDIA_100TX; 860 seed |= NFE_SEED_100TX; 861 phy |= NFE_PHY_100TX; 862 break; 863 case IFM_10_T: 864 link |= NFE_MEDIA_10T; 865 seed |= NFE_SEED_10T; 866 break; 867 } 868 869 if ((phy & 0x10000000) != 0) { 870 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) 871 val = NFE_R1_MAGIC_1000; 872 else 873 val = NFE_R1_MAGIC_10_100; 874 } else 875 val = NFE_R1_MAGIC_DEFAULT; 876 NFE_WRITE(sc, NFE_SETUP_R1, val); 877 878 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ 879 880 NFE_WRITE(sc, NFE_PHY_IFACE, phy); 881 NFE_WRITE(sc, NFE_MISC1, misc); 882 NFE_WRITE(sc, NFE_LINKSPEED, link); 883 884 gmask = mii->mii_media_active & IFM_GMASK; 885 if ((gmask & IFM_FDX) != 0) { 886 /* It seems all hardwares supports Rx pause frames. */ 887 val = NFE_READ(sc, NFE_RXFILTER); 888 if ((gmask & IFM_FLAG0) != 0) 889 val |= NFE_PFF_RX_PAUSE; 890 else 891 val &= ~NFE_PFF_RX_PAUSE; 892 NFE_WRITE(sc, NFE_RXFILTER, val); 893 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) { 894 val = NFE_READ(sc, NFE_MISC1); 895 if ((gmask & IFM_FLAG1) != 0) { 896 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 897 NFE_TX_PAUSE_FRAME_ENABLE); 898 val |= NFE_MISC1_TX_PAUSE; 899 } else { 900 val &= ~NFE_MISC1_TX_PAUSE; 901 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 902 NFE_TX_PAUSE_FRAME_DISABLE); 903 } 904 NFE_WRITE(sc, NFE_MISC1, val); 905 } 906 } else { 907 /* disable rx/tx pause frames */ 908 val = NFE_READ(sc, NFE_RXFILTER); 909 val &= ~NFE_PFF_RX_PAUSE; 910 NFE_WRITE(sc, NFE_RXFILTER, val); 911 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) { 912 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, 913 NFE_TX_PAUSE_FRAME_DISABLE); 914 val = NFE_READ(sc, NFE_MISC1); 915 val &= ~NFE_MISC1_TX_PAUSE; 916 NFE_WRITE(sc, NFE_MISC1, val); 917 } 918 } 919 920 txctl = NFE_READ(sc, NFE_TX_CTL); 921 rxctl = NFE_READ(sc, NFE_RX_CTL); 922 if (sc->nfe_link != 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 923 txctl |= NFE_TX_START; 924 rxctl |= NFE_RX_START; 925 } else { 926 txctl &= ~NFE_TX_START; 927 rxctl &= ~NFE_RX_START; 928 } 929 NFE_WRITE(sc, NFE_TX_CTL, txctl); 930 NFE_WRITE(sc, NFE_RX_CTL, rxctl); 931 932 NFE_UNLOCK(sc); 933 } 934 935 936 static int 937 nfe_miibus_readreg(device_t dev, int phy, int reg) 938 { 939 struct nfe_softc *sc = device_get_softc(dev); 940 uint32_t val; 941 int ntries; 942 943 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 944 945 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 946 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 947 DELAY(100); 948 } 949 950 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); 951 952 for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) { 953 DELAY(100); 954 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 955 break; 956 } 957 if (ntries == NFE_TIMEOUT) { 958 DPRINTFN(sc, 2, "timeout waiting for PHY\n"); 959 return 0; 960 } 961 962 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { 963 DPRINTFN(sc, 2, "could not read PHY\n"); 964 return 0; 965 } 966 967 val = NFE_READ(sc, NFE_PHY_DATA); 968 if (val != 0xffffffff && val != 0) 969 sc->mii_phyaddr = phy; 970 971 DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val); 972 973 return (val); 974 } 975 976 977 static int 978 nfe_miibus_writereg(device_t dev, int phy, int reg, int val) 979 { 980 struct nfe_softc *sc = device_get_softc(dev); 981 uint32_t ctl; 982 int ntries; 983 984 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 985 986 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 987 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 988 DELAY(100); 989 } 990 991 NFE_WRITE(sc, NFE_PHY_DATA, val); 992 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; 993 NFE_WRITE(sc, NFE_PHY_CTL, ctl); 994 995 for (ntries = 0; ntries < NFE_TIMEOUT; ntries++) { 996 DELAY(100); 997 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 998 break; 999 } 1000 #ifdef NFE_DEBUG 1001 if (nfedebug >= 2 && ntries == NFE_TIMEOUT) 1002 device_printf(sc->nfe_dev, "could not write to PHY\n"); 1003 #endif 1004 return (0); 1005 } 1006 1007 struct nfe_dmamap_arg { 1008 bus_addr_t nfe_busaddr; 1009 }; 1010 1011 static int 1012 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1013 { 1014 struct nfe_dmamap_arg ctx; 1015 struct nfe_rx_data *data; 1016 void *desc; 1017 int i, error, descsize; 1018 1019 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1020 desc = ring->desc64; 1021 descsize = sizeof (struct nfe_desc64); 1022 } else { 1023 desc = ring->desc32; 1024 descsize = sizeof (struct nfe_desc32); 1025 } 1026 1027 ring->cur = ring->next = 0; 1028 1029 error = bus_dma_tag_create(sc->nfe_parent_tag, 1030 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1031 BUS_SPACE_MAXADDR, /* lowaddr */ 1032 BUS_SPACE_MAXADDR, /* highaddr */ 1033 NULL, NULL, /* filter, filterarg */ 1034 NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ 1035 NFE_RX_RING_COUNT * descsize, /* maxsegsize */ 1036 0, /* flags */ 1037 NULL, NULL, /* lockfunc, lockarg */ 1038 &ring->rx_desc_tag); 1039 if (error != 0) { 1040 device_printf(sc->nfe_dev, "could not create desc DMA tag\n"); 1041 goto fail; 1042 } 1043 1044 /* allocate memory to desc */ 1045 error = bus_dmamem_alloc(ring->rx_desc_tag, &desc, BUS_DMA_WAITOK | 1046 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->rx_desc_map); 1047 if (error != 0) { 1048 device_printf(sc->nfe_dev, "could not create desc DMA map\n"); 1049 goto fail; 1050 } 1051 if (sc->nfe_flags & NFE_40BIT_ADDR) 1052 ring->desc64 = desc; 1053 else 1054 ring->desc32 = desc; 1055 1056 /* map desc to device visible address space */ 1057 ctx.nfe_busaddr = 0; 1058 error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, desc, 1059 NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1060 if (error != 0) { 1061 device_printf(sc->nfe_dev, "could not load desc DMA map\n"); 1062 goto fail; 1063 } 1064 ring->physaddr = ctx.nfe_busaddr; 1065 1066 error = bus_dma_tag_create(sc->nfe_parent_tag, 1067 1, 0, /* alignment, boundary */ 1068 BUS_SPACE_MAXADDR, /* lowaddr */ 1069 BUS_SPACE_MAXADDR, /* highaddr */ 1070 NULL, NULL, /* filter, filterarg */ 1071 MCLBYTES, 1, /* maxsize, nsegments */ 1072 MCLBYTES, /* maxsegsize */ 1073 0, /* flags */ 1074 NULL, NULL, /* lockfunc, lockarg */ 1075 &ring->rx_data_tag); 1076 if (error != 0) { 1077 device_printf(sc->nfe_dev, "could not create Rx DMA tag\n"); 1078 goto fail; 1079 } 1080 1081 error = bus_dmamap_create(ring->rx_data_tag, 0, &ring->rx_spare_map); 1082 if (error != 0) { 1083 device_printf(sc->nfe_dev, 1084 "could not create Rx DMA spare map\n"); 1085 goto fail; 1086 } 1087 1088 /* 1089 * Pre-allocate Rx buffers and populate Rx ring. 1090 */ 1091 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1092 data = &sc->rxq.data[i]; 1093 data->rx_data_map = NULL; 1094 data->m = NULL; 1095 error = bus_dmamap_create(ring->rx_data_tag, 0, 1096 &data->rx_data_map); 1097 if (error != 0) { 1098 device_printf(sc->nfe_dev, 1099 "could not create Rx DMA map\n"); 1100 goto fail; 1101 } 1102 } 1103 1104 fail: 1105 return (error); 1106 } 1107 1108 1109 static void 1110 nfe_alloc_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1111 { 1112 struct nfe_dmamap_arg ctx; 1113 struct nfe_rx_data *data; 1114 void *desc; 1115 int i, error, descsize; 1116 1117 if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0) 1118 return; 1119 if (jumbo_disable != 0) { 1120 device_printf(sc->nfe_dev, "disabling jumbo frame support\n"); 1121 sc->nfe_jumbo_disable = 1; 1122 return; 1123 } 1124 1125 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1126 desc = ring->jdesc64; 1127 descsize = sizeof (struct nfe_desc64); 1128 } else { 1129 desc = ring->jdesc32; 1130 descsize = sizeof (struct nfe_desc32); 1131 } 1132 1133 ring->jcur = ring->jnext = 0; 1134 1135 /* Create DMA tag for jumbo Rx ring. */ 1136 error = bus_dma_tag_create(sc->nfe_parent_tag, 1137 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1138 BUS_SPACE_MAXADDR, /* lowaddr */ 1139 BUS_SPACE_MAXADDR, /* highaddr */ 1140 NULL, NULL, /* filter, filterarg */ 1141 NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsize */ 1142 1, /* nsegments */ 1143 NFE_JUMBO_RX_RING_COUNT * descsize, /* maxsegsize */ 1144 0, /* flags */ 1145 NULL, NULL, /* lockfunc, lockarg */ 1146 &ring->jrx_desc_tag); 1147 if (error != 0) { 1148 device_printf(sc->nfe_dev, 1149 "could not create jumbo ring DMA tag\n"); 1150 goto fail; 1151 } 1152 1153 /* Create DMA tag for jumbo Rx buffers. */ 1154 error = bus_dma_tag_create(sc->nfe_parent_tag, 1155 1, 0, /* alignment, boundary */ 1156 BUS_SPACE_MAXADDR, /* lowaddr */ 1157 BUS_SPACE_MAXADDR, /* highaddr */ 1158 NULL, NULL, /* filter, filterarg */ 1159 MJUM9BYTES, /* maxsize */ 1160 1, /* nsegments */ 1161 MJUM9BYTES, /* maxsegsize */ 1162 0, /* flags */ 1163 NULL, NULL, /* lockfunc, lockarg */ 1164 &ring->jrx_data_tag); 1165 if (error != 0) { 1166 device_printf(sc->nfe_dev, 1167 "could not create jumbo Rx buffer DMA tag\n"); 1168 goto fail; 1169 } 1170 1171 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ 1172 error = bus_dmamem_alloc(ring->jrx_desc_tag, &desc, BUS_DMA_WAITOK | 1173 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->jrx_desc_map); 1174 if (error != 0) { 1175 device_printf(sc->nfe_dev, 1176 "could not allocate DMA'able memory for jumbo Rx ring\n"); 1177 goto fail; 1178 } 1179 if (sc->nfe_flags & NFE_40BIT_ADDR) 1180 ring->jdesc64 = desc; 1181 else 1182 ring->jdesc32 = desc; 1183 1184 ctx.nfe_busaddr = 0; 1185 error = bus_dmamap_load(ring->jrx_desc_tag, ring->jrx_desc_map, desc, 1186 NFE_JUMBO_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1187 if (error != 0) { 1188 device_printf(sc->nfe_dev, 1189 "could not load DMA'able memory for jumbo Rx ring\n"); 1190 goto fail; 1191 } 1192 ring->jphysaddr = ctx.nfe_busaddr; 1193 1194 /* Create DMA maps for jumbo Rx buffers. */ 1195 error = bus_dmamap_create(ring->jrx_data_tag, 0, &ring->jrx_spare_map); 1196 if (error != 0) { 1197 device_printf(sc->nfe_dev, 1198 "could not create jumbo Rx DMA spare map\n"); 1199 goto fail; 1200 } 1201 1202 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1203 data = &sc->jrxq.jdata[i]; 1204 data->rx_data_map = NULL; 1205 data->m = NULL; 1206 error = bus_dmamap_create(ring->jrx_data_tag, 0, 1207 &data->rx_data_map); 1208 if (error != 0) { 1209 device_printf(sc->nfe_dev, 1210 "could not create jumbo Rx DMA map\n"); 1211 goto fail; 1212 } 1213 } 1214 1215 return; 1216 1217 fail: 1218 /* 1219 * Running without jumbo frame support is ok for most cases 1220 * so don't fail on creating dma tag/map for jumbo frame. 1221 */ 1222 nfe_free_jrx_ring(sc, ring); 1223 device_printf(sc->nfe_dev, "disabling jumbo frame support due to " 1224 "resource shortage\n"); 1225 sc->nfe_jumbo_disable = 1; 1226 } 1227 1228 1229 static int 1230 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1231 { 1232 void *desc; 1233 size_t descsize; 1234 int i; 1235 1236 ring->cur = ring->next = 0; 1237 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1238 desc = ring->desc64; 1239 descsize = sizeof (struct nfe_desc64); 1240 } else { 1241 desc = ring->desc32; 1242 descsize = sizeof (struct nfe_desc32); 1243 } 1244 bzero(desc, descsize * NFE_RX_RING_COUNT); 1245 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1246 if (nfe_newbuf(sc, i) != 0) 1247 return (ENOBUFS); 1248 } 1249 1250 bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, 1251 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1252 1253 return (0); 1254 } 1255 1256 1257 static int 1258 nfe_init_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1259 { 1260 void *desc; 1261 size_t descsize; 1262 int i; 1263 1264 ring->jcur = ring->jnext = 0; 1265 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1266 desc = ring->jdesc64; 1267 descsize = sizeof (struct nfe_desc64); 1268 } else { 1269 desc = ring->jdesc32; 1270 descsize = sizeof (struct nfe_desc32); 1271 } 1272 bzero(desc, descsize * NFE_JUMBO_RX_RING_COUNT); 1273 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1274 if (nfe_jnewbuf(sc, i) != 0) 1275 return (ENOBUFS); 1276 } 1277 1278 bus_dmamap_sync(ring->jrx_desc_tag, ring->jrx_desc_map, 1279 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1280 1281 return (0); 1282 } 1283 1284 1285 static void 1286 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) 1287 { 1288 struct nfe_rx_data *data; 1289 void *desc; 1290 int i, descsize; 1291 1292 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1293 desc = ring->desc64; 1294 descsize = sizeof (struct nfe_desc64); 1295 } else { 1296 desc = ring->desc32; 1297 descsize = sizeof (struct nfe_desc32); 1298 } 1299 1300 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 1301 data = &ring->data[i]; 1302 if (data->rx_data_map != NULL) { 1303 bus_dmamap_destroy(ring->rx_data_tag, 1304 data->rx_data_map); 1305 data->rx_data_map = NULL; 1306 } 1307 if (data->m != NULL) { 1308 m_freem(data->m); 1309 data->m = NULL; 1310 } 1311 } 1312 if (ring->rx_data_tag != NULL) { 1313 if (ring->rx_spare_map != NULL) { 1314 bus_dmamap_destroy(ring->rx_data_tag, 1315 ring->rx_spare_map); 1316 ring->rx_spare_map = NULL; 1317 } 1318 bus_dma_tag_destroy(ring->rx_data_tag); 1319 ring->rx_data_tag = NULL; 1320 } 1321 1322 if (desc != NULL) { 1323 bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map); 1324 bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map); 1325 ring->desc64 = NULL; 1326 ring->desc32 = NULL; 1327 ring->rx_desc_map = NULL; 1328 } 1329 if (ring->rx_desc_tag != NULL) { 1330 bus_dma_tag_destroy(ring->rx_desc_tag); 1331 ring->rx_desc_tag = NULL; 1332 } 1333 } 1334 1335 1336 static void 1337 nfe_free_jrx_ring(struct nfe_softc *sc, struct nfe_jrx_ring *ring) 1338 { 1339 struct nfe_rx_data *data; 1340 void *desc; 1341 int i, descsize; 1342 1343 if ((sc->nfe_flags & NFE_JUMBO_SUP) == 0) 1344 return; 1345 1346 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1347 desc = ring->jdesc64; 1348 descsize = sizeof (struct nfe_desc64); 1349 } else { 1350 desc = ring->jdesc32; 1351 descsize = sizeof (struct nfe_desc32); 1352 } 1353 1354 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 1355 data = &ring->jdata[i]; 1356 if (data->rx_data_map != NULL) { 1357 bus_dmamap_destroy(ring->jrx_data_tag, 1358 data->rx_data_map); 1359 data->rx_data_map = NULL; 1360 } 1361 if (data->m != NULL) { 1362 m_freem(data->m); 1363 data->m = NULL; 1364 } 1365 } 1366 if (ring->jrx_data_tag != NULL) { 1367 if (ring->jrx_spare_map != NULL) { 1368 bus_dmamap_destroy(ring->jrx_data_tag, 1369 ring->jrx_spare_map); 1370 ring->jrx_spare_map = NULL; 1371 } 1372 bus_dma_tag_destroy(ring->jrx_data_tag); 1373 ring->jrx_data_tag = NULL; 1374 } 1375 1376 if (desc != NULL) { 1377 bus_dmamap_unload(ring->jrx_desc_tag, ring->jrx_desc_map); 1378 bus_dmamem_free(ring->jrx_desc_tag, desc, ring->jrx_desc_map); 1379 ring->jdesc64 = NULL; 1380 ring->jdesc32 = NULL; 1381 ring->jrx_desc_map = NULL; 1382 } 1383 1384 if (ring->jrx_desc_tag != NULL) { 1385 bus_dma_tag_destroy(ring->jrx_desc_tag); 1386 ring->jrx_desc_tag = NULL; 1387 } 1388 } 1389 1390 1391 static int 1392 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1393 { 1394 struct nfe_dmamap_arg ctx; 1395 int i, error; 1396 void *desc; 1397 int descsize; 1398 1399 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1400 desc = ring->desc64; 1401 descsize = sizeof (struct nfe_desc64); 1402 } else { 1403 desc = ring->desc32; 1404 descsize = sizeof (struct nfe_desc32); 1405 } 1406 1407 ring->queued = 0; 1408 ring->cur = ring->next = 0; 1409 1410 error = bus_dma_tag_create(sc->nfe_parent_tag, 1411 NFE_RING_ALIGN, 0, /* alignment, boundary */ 1412 BUS_SPACE_MAXADDR, /* lowaddr */ 1413 BUS_SPACE_MAXADDR, /* highaddr */ 1414 NULL, NULL, /* filter, filterarg */ 1415 NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */ 1416 NFE_TX_RING_COUNT * descsize, /* maxsegsize */ 1417 0, /* flags */ 1418 NULL, NULL, /* lockfunc, lockarg */ 1419 &ring->tx_desc_tag); 1420 if (error != 0) { 1421 device_printf(sc->nfe_dev, "could not create desc DMA tag\n"); 1422 goto fail; 1423 } 1424 1425 error = bus_dmamem_alloc(ring->tx_desc_tag, &desc, BUS_DMA_WAITOK | 1426 BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->tx_desc_map); 1427 if (error != 0) { 1428 device_printf(sc->nfe_dev, "could not create desc DMA map\n"); 1429 goto fail; 1430 } 1431 if (sc->nfe_flags & NFE_40BIT_ADDR) 1432 ring->desc64 = desc; 1433 else 1434 ring->desc32 = desc; 1435 1436 ctx.nfe_busaddr = 0; 1437 error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, desc, 1438 NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ctx, 0); 1439 if (error != 0) { 1440 device_printf(sc->nfe_dev, "could not load desc DMA map\n"); 1441 goto fail; 1442 } 1443 ring->physaddr = ctx.nfe_busaddr; 1444 1445 error = bus_dma_tag_create(sc->nfe_parent_tag, 1446 1, 0, 1447 BUS_SPACE_MAXADDR, 1448 BUS_SPACE_MAXADDR, 1449 NULL, NULL, 1450 NFE_TSO_MAXSIZE, 1451 NFE_MAX_SCATTER, 1452 NFE_TSO_MAXSGSIZE, 1453 0, 1454 NULL, NULL, 1455 &ring->tx_data_tag); 1456 if (error != 0) { 1457 device_printf(sc->nfe_dev, "could not create Tx DMA tag\n"); 1458 goto fail; 1459 } 1460 1461 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1462 error = bus_dmamap_create(ring->tx_data_tag, 0, 1463 &ring->data[i].tx_data_map); 1464 if (error != 0) { 1465 device_printf(sc->nfe_dev, 1466 "could not create Tx DMA map\n"); 1467 goto fail; 1468 } 1469 } 1470 1471 fail: 1472 return (error); 1473 } 1474 1475 1476 static void 1477 nfe_init_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1478 { 1479 void *desc; 1480 size_t descsize; 1481 1482 sc->nfe_force_tx = 0; 1483 ring->queued = 0; 1484 ring->cur = ring->next = 0; 1485 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1486 desc = ring->desc64; 1487 descsize = sizeof (struct nfe_desc64); 1488 } else { 1489 desc = ring->desc32; 1490 descsize = sizeof (struct nfe_desc32); 1491 } 1492 bzero(desc, descsize * NFE_TX_RING_COUNT); 1493 1494 bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, 1495 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1496 } 1497 1498 1499 static void 1500 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) 1501 { 1502 struct nfe_tx_data *data; 1503 void *desc; 1504 int i, descsize; 1505 1506 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1507 desc = ring->desc64; 1508 descsize = sizeof (struct nfe_desc64); 1509 } else { 1510 desc = ring->desc32; 1511 descsize = sizeof (struct nfe_desc32); 1512 } 1513 1514 for (i = 0; i < NFE_TX_RING_COUNT; i++) { 1515 data = &ring->data[i]; 1516 1517 if (data->m != NULL) { 1518 bus_dmamap_sync(ring->tx_data_tag, data->tx_data_map, 1519 BUS_DMASYNC_POSTWRITE); 1520 bus_dmamap_unload(ring->tx_data_tag, data->tx_data_map); 1521 m_freem(data->m); 1522 data->m = NULL; 1523 } 1524 if (data->tx_data_map != NULL) { 1525 bus_dmamap_destroy(ring->tx_data_tag, 1526 data->tx_data_map); 1527 data->tx_data_map = NULL; 1528 } 1529 } 1530 1531 if (ring->tx_data_tag != NULL) { 1532 bus_dma_tag_destroy(ring->tx_data_tag); 1533 ring->tx_data_tag = NULL; 1534 } 1535 1536 if (desc != NULL) { 1537 bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, 1538 BUS_DMASYNC_POSTWRITE); 1539 bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map); 1540 bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map); 1541 ring->desc64 = NULL; 1542 ring->desc32 = NULL; 1543 ring->tx_desc_map = NULL; 1544 bus_dma_tag_destroy(ring->tx_desc_tag); 1545 ring->tx_desc_tag = NULL; 1546 } 1547 } 1548 1549 #ifdef DEVICE_POLLING 1550 static poll_handler_t nfe_poll; 1551 1552 1553 static int 1554 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1555 { 1556 struct nfe_softc *sc = ifp->if_softc; 1557 uint32_t r; 1558 int rx_npkts = 0; 1559 1560 NFE_LOCK(sc); 1561 1562 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1563 NFE_UNLOCK(sc); 1564 return (rx_npkts); 1565 } 1566 1567 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) 1568 rx_npkts = nfe_jrxeof(sc, count, &rx_npkts); 1569 else 1570 rx_npkts = nfe_rxeof(sc, count, &rx_npkts); 1571 nfe_txeof(sc); 1572 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1573 taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task); 1574 1575 if (cmd == POLL_AND_CHECK_STATUS) { 1576 if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) { 1577 NFE_UNLOCK(sc); 1578 return (rx_npkts); 1579 } 1580 NFE_WRITE(sc, sc->nfe_irq_status, r); 1581 1582 if (r & NFE_IRQ_LINK) { 1583 NFE_READ(sc, NFE_PHY_STATUS); 1584 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1585 DPRINTF(sc, "link state changed\n"); 1586 } 1587 } 1588 NFE_UNLOCK(sc); 1589 return (rx_npkts); 1590 } 1591 #endif /* DEVICE_POLLING */ 1592 1593 static void 1594 nfe_set_intr(struct nfe_softc *sc) 1595 { 1596 1597 if (sc->nfe_msi != 0) 1598 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1599 } 1600 1601 1602 /* In MSIX, a write to mask reegisters behaves as XOR. */ 1603 static __inline void 1604 nfe_enable_intr(struct nfe_softc *sc) 1605 { 1606 1607 if (sc->nfe_msix != 0) { 1608 /* XXX Should have a better way to enable interrupts! */ 1609 if (NFE_READ(sc, sc->nfe_irq_mask) == 0) 1610 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs); 1611 } else 1612 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_intrs); 1613 } 1614 1615 1616 static __inline void 1617 nfe_disable_intr(struct nfe_softc *sc) 1618 { 1619 1620 if (sc->nfe_msix != 0) { 1621 /* XXX Should have a better way to disable interrupts! */ 1622 if (NFE_READ(sc, sc->nfe_irq_mask) != 0) 1623 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs); 1624 } else 1625 NFE_WRITE(sc, sc->nfe_irq_mask, sc->nfe_nointrs); 1626 } 1627 1628 1629 static int 1630 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1631 { 1632 struct nfe_softc *sc; 1633 struct ifreq *ifr; 1634 struct mii_data *mii; 1635 int error, init, mask; 1636 1637 sc = ifp->if_softc; 1638 ifr = (struct ifreq *) data; 1639 error = 0; 1640 init = 0; 1641 switch (cmd) { 1642 case SIOCSIFMTU: 1643 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NFE_JUMBO_MTU) 1644 error = EINVAL; 1645 else if (ifp->if_mtu != ifr->ifr_mtu) { 1646 if ((((sc->nfe_flags & NFE_JUMBO_SUP) == 0) || 1647 (sc->nfe_jumbo_disable != 0)) && 1648 ifr->ifr_mtu > ETHERMTU) 1649 error = EINVAL; 1650 else { 1651 NFE_LOCK(sc); 1652 ifp->if_mtu = ifr->ifr_mtu; 1653 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1654 nfe_init_locked(sc); 1655 NFE_UNLOCK(sc); 1656 } 1657 } 1658 break; 1659 case SIOCSIFFLAGS: 1660 NFE_LOCK(sc); 1661 if (ifp->if_flags & IFF_UP) { 1662 /* 1663 * If only the PROMISC or ALLMULTI flag changes, then 1664 * don't do a full re-init of the chip, just update 1665 * the Rx filter. 1666 */ 1667 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && 1668 ((ifp->if_flags ^ sc->nfe_if_flags) & 1669 (IFF_ALLMULTI | IFF_PROMISC)) != 0) 1670 nfe_setmulti(sc); 1671 else 1672 nfe_init_locked(sc); 1673 } else { 1674 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1675 nfe_stop(ifp); 1676 } 1677 sc->nfe_if_flags = ifp->if_flags; 1678 NFE_UNLOCK(sc); 1679 error = 0; 1680 break; 1681 case SIOCADDMULTI: 1682 case SIOCDELMULTI: 1683 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1684 NFE_LOCK(sc); 1685 nfe_setmulti(sc); 1686 NFE_UNLOCK(sc); 1687 error = 0; 1688 } 1689 break; 1690 case SIOCSIFMEDIA: 1691 case SIOCGIFMEDIA: 1692 mii = device_get_softc(sc->nfe_miibus); 1693 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1694 break; 1695 case SIOCSIFCAP: 1696 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1697 #ifdef DEVICE_POLLING 1698 if ((mask & IFCAP_POLLING) != 0) { 1699 if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) { 1700 error = ether_poll_register(nfe_poll, ifp); 1701 if (error) 1702 break; 1703 NFE_LOCK(sc); 1704 nfe_disable_intr(sc); 1705 ifp->if_capenable |= IFCAP_POLLING; 1706 NFE_UNLOCK(sc); 1707 } else { 1708 error = ether_poll_deregister(ifp); 1709 /* Enable interrupt even in error case */ 1710 NFE_LOCK(sc); 1711 nfe_enable_intr(sc); 1712 ifp->if_capenable &= ~IFCAP_POLLING; 1713 NFE_UNLOCK(sc); 1714 } 1715 } 1716 #endif /* DEVICE_POLLING */ 1717 if ((sc->nfe_flags & NFE_HW_CSUM) != 0 && 1718 (mask & IFCAP_HWCSUM) != 0) { 1719 ifp->if_capenable ^= IFCAP_HWCSUM; 1720 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 && 1721 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) 1722 ifp->if_hwassist |= NFE_CSUM_FEATURES; 1723 else 1724 ifp->if_hwassist &= ~NFE_CSUM_FEATURES; 1725 init++; 1726 } 1727 if ((sc->nfe_flags & NFE_HW_VLAN) != 0 && 1728 (mask & IFCAP_VLAN_HWTAGGING) != 0) { 1729 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1730 init++; 1731 } 1732 /* 1733 * XXX 1734 * It seems that VLAN stripping requires Rx checksum offload. 1735 * Unfortunately FreeBSD has no way to disable only Rx side 1736 * VLAN stripping. So when we know Rx checksum offload is 1737 * disabled turn entire hardware VLAN assist off. 1738 */ 1739 if ((sc->nfe_flags & (NFE_HW_CSUM | NFE_HW_VLAN)) == 1740 (NFE_HW_CSUM | NFE_HW_VLAN)) { 1741 if ((ifp->if_capenable & IFCAP_RXCSUM) == 0) 1742 ifp->if_capenable &= ~IFCAP_VLAN_HWTAGGING; 1743 } 1744 1745 if ((sc->nfe_flags & NFE_HW_CSUM) != 0 && 1746 (mask & IFCAP_TSO4) != 0) { 1747 ifp->if_capenable ^= IFCAP_TSO4; 1748 if ((IFCAP_TSO4 & ifp->if_capenable) != 0 && 1749 (IFCAP_TSO4 & ifp->if_capabilities) != 0) 1750 ifp->if_hwassist |= CSUM_TSO; 1751 else 1752 ifp->if_hwassist &= ~CSUM_TSO; 1753 } 1754 1755 if (init > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1756 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1757 nfe_init(sc); 1758 } 1759 if ((sc->nfe_flags & NFE_HW_VLAN) != 0) 1760 VLAN_CAPABILITIES(ifp); 1761 break; 1762 default: 1763 error = ether_ioctl(ifp, cmd, data); 1764 break; 1765 } 1766 1767 return (error); 1768 } 1769 1770 1771 static int 1772 nfe_intr(void *arg) 1773 { 1774 struct nfe_softc *sc; 1775 uint32_t status; 1776 1777 sc = (struct nfe_softc *)arg; 1778 1779 status = NFE_READ(sc, sc->nfe_irq_status); 1780 if (status == 0 || status == 0xffffffff) 1781 return (FILTER_STRAY); 1782 nfe_disable_intr(sc); 1783 taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task); 1784 1785 return (FILTER_HANDLED); 1786 } 1787 1788 1789 static void 1790 nfe_int_task(void *arg, int pending) 1791 { 1792 struct nfe_softc *sc = arg; 1793 struct ifnet *ifp = sc->nfe_ifp; 1794 uint32_t r; 1795 int domore; 1796 1797 NFE_LOCK(sc); 1798 1799 if ((r = NFE_READ(sc, sc->nfe_irq_status)) == 0) { 1800 nfe_enable_intr(sc); 1801 NFE_UNLOCK(sc); 1802 return; /* not for us */ 1803 } 1804 NFE_WRITE(sc, sc->nfe_irq_status, r); 1805 1806 DPRINTFN(sc, 5, "nfe_intr: interrupt register %x\n", r); 1807 1808 #ifdef DEVICE_POLLING 1809 if (ifp->if_capenable & IFCAP_POLLING) { 1810 NFE_UNLOCK(sc); 1811 return; 1812 } 1813 #endif 1814 1815 if (r & NFE_IRQ_LINK) { 1816 NFE_READ(sc, NFE_PHY_STATUS); 1817 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 1818 DPRINTF(sc, "link state changed\n"); 1819 } 1820 1821 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1822 NFE_UNLOCK(sc); 1823 nfe_enable_intr(sc); 1824 return; 1825 } 1826 1827 domore = 0; 1828 /* check Rx ring */ 1829 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) 1830 domore = nfe_jrxeof(sc, sc->nfe_process_limit, NULL); 1831 else 1832 domore = nfe_rxeof(sc, sc->nfe_process_limit, NULL); 1833 /* check Tx ring */ 1834 nfe_txeof(sc); 1835 1836 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1837 taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task); 1838 1839 NFE_UNLOCK(sc); 1840 1841 if (domore || (NFE_READ(sc, sc->nfe_irq_status) != 0)) { 1842 taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_int_task); 1843 return; 1844 } 1845 1846 /* Reenable interrupts. */ 1847 nfe_enable_intr(sc); 1848 } 1849 1850 1851 static __inline void 1852 nfe_discard_rxbuf(struct nfe_softc *sc, int idx) 1853 { 1854 struct nfe_desc32 *desc32; 1855 struct nfe_desc64 *desc64; 1856 struct nfe_rx_data *data; 1857 struct mbuf *m; 1858 1859 data = &sc->rxq.data[idx]; 1860 m = data->m; 1861 1862 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1863 desc64 = &sc->rxq.desc64[idx]; 1864 /* VLAN packet may have overwritten it. */ 1865 desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr)); 1866 desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr)); 1867 desc64->length = htole16(m->m_len); 1868 desc64->flags = htole16(NFE_RX_READY); 1869 } else { 1870 desc32 = &sc->rxq.desc32[idx]; 1871 desc32->length = htole16(m->m_len); 1872 desc32->flags = htole16(NFE_RX_READY); 1873 } 1874 } 1875 1876 1877 static __inline void 1878 nfe_discard_jrxbuf(struct nfe_softc *sc, int idx) 1879 { 1880 struct nfe_desc32 *desc32; 1881 struct nfe_desc64 *desc64; 1882 struct nfe_rx_data *data; 1883 struct mbuf *m; 1884 1885 data = &sc->jrxq.jdata[idx]; 1886 m = data->m; 1887 1888 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1889 desc64 = &sc->jrxq.jdesc64[idx]; 1890 /* VLAN packet may have overwritten it. */ 1891 desc64->physaddr[0] = htole32(NFE_ADDR_HI(data->paddr)); 1892 desc64->physaddr[1] = htole32(NFE_ADDR_LO(data->paddr)); 1893 desc64->length = htole16(m->m_len); 1894 desc64->flags = htole16(NFE_RX_READY); 1895 } else { 1896 desc32 = &sc->jrxq.jdesc32[idx]; 1897 desc32->length = htole16(m->m_len); 1898 desc32->flags = htole16(NFE_RX_READY); 1899 } 1900 } 1901 1902 1903 static int 1904 nfe_newbuf(struct nfe_softc *sc, int idx) 1905 { 1906 struct nfe_rx_data *data; 1907 struct nfe_desc32 *desc32; 1908 struct nfe_desc64 *desc64; 1909 struct mbuf *m; 1910 bus_dma_segment_t segs[1]; 1911 bus_dmamap_t map; 1912 int nsegs; 1913 1914 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1915 if (m == NULL) 1916 return (ENOBUFS); 1917 1918 m->m_len = m->m_pkthdr.len = MCLBYTES; 1919 m_adj(m, ETHER_ALIGN); 1920 1921 if (bus_dmamap_load_mbuf_sg(sc->rxq.rx_data_tag, sc->rxq.rx_spare_map, 1922 m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { 1923 m_freem(m); 1924 return (ENOBUFS); 1925 } 1926 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1927 1928 data = &sc->rxq.data[idx]; 1929 if (data->m != NULL) { 1930 bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map, 1931 BUS_DMASYNC_POSTREAD); 1932 bus_dmamap_unload(sc->rxq.rx_data_tag, data->rx_data_map); 1933 } 1934 map = data->rx_data_map; 1935 data->rx_data_map = sc->rxq.rx_spare_map; 1936 sc->rxq.rx_spare_map = map; 1937 bus_dmamap_sync(sc->rxq.rx_data_tag, data->rx_data_map, 1938 BUS_DMASYNC_PREREAD); 1939 data->paddr = segs[0].ds_addr; 1940 data->m = m; 1941 /* update mapping address in h/w descriptor */ 1942 if (sc->nfe_flags & NFE_40BIT_ADDR) { 1943 desc64 = &sc->rxq.desc64[idx]; 1944 desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr)); 1945 desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 1946 desc64->length = htole16(segs[0].ds_len); 1947 desc64->flags = htole16(NFE_RX_READY); 1948 } else { 1949 desc32 = &sc->rxq.desc32[idx]; 1950 desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 1951 desc32->length = htole16(segs[0].ds_len); 1952 desc32->flags = htole16(NFE_RX_READY); 1953 } 1954 1955 return (0); 1956 } 1957 1958 1959 static int 1960 nfe_jnewbuf(struct nfe_softc *sc, int idx) 1961 { 1962 struct nfe_rx_data *data; 1963 struct nfe_desc32 *desc32; 1964 struct nfe_desc64 *desc64; 1965 struct mbuf *m; 1966 bus_dma_segment_t segs[1]; 1967 bus_dmamap_t map; 1968 int nsegs; 1969 1970 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1971 if (m == NULL) 1972 return (ENOBUFS); 1973 if ((m->m_flags & M_EXT) == 0) { 1974 m_freem(m); 1975 return (ENOBUFS); 1976 } 1977 m->m_pkthdr.len = m->m_len = MJUM9BYTES; 1978 m_adj(m, ETHER_ALIGN); 1979 1980 if (bus_dmamap_load_mbuf_sg(sc->jrxq.jrx_data_tag, 1981 sc->jrxq.jrx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { 1982 m_freem(m); 1983 return (ENOBUFS); 1984 } 1985 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1986 1987 data = &sc->jrxq.jdata[idx]; 1988 if (data->m != NULL) { 1989 bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map, 1990 BUS_DMASYNC_POSTREAD); 1991 bus_dmamap_unload(sc->jrxq.jrx_data_tag, data->rx_data_map); 1992 } 1993 map = data->rx_data_map; 1994 data->rx_data_map = sc->jrxq.jrx_spare_map; 1995 sc->jrxq.jrx_spare_map = map; 1996 bus_dmamap_sync(sc->jrxq.jrx_data_tag, data->rx_data_map, 1997 BUS_DMASYNC_PREREAD); 1998 data->paddr = segs[0].ds_addr; 1999 data->m = m; 2000 /* update mapping address in h/w descriptor */ 2001 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2002 desc64 = &sc->jrxq.jdesc64[idx]; 2003 desc64->physaddr[0] = htole32(NFE_ADDR_HI(segs[0].ds_addr)); 2004 desc64->physaddr[1] = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2005 desc64->length = htole16(segs[0].ds_len); 2006 desc64->flags = htole16(NFE_RX_READY); 2007 } else { 2008 desc32 = &sc->jrxq.jdesc32[idx]; 2009 desc32->physaddr = htole32(NFE_ADDR_LO(segs[0].ds_addr)); 2010 desc32->length = htole16(segs[0].ds_len); 2011 desc32->flags = htole16(NFE_RX_READY); 2012 } 2013 2014 return (0); 2015 } 2016 2017 2018 static int 2019 nfe_rxeof(struct nfe_softc *sc, int count, int *rx_npktsp) 2020 { 2021 struct ifnet *ifp = sc->nfe_ifp; 2022 struct nfe_desc32 *desc32; 2023 struct nfe_desc64 *desc64; 2024 struct nfe_rx_data *data; 2025 struct mbuf *m; 2026 uint16_t flags; 2027 int len, prog, rx_npkts; 2028 uint32_t vtag = 0; 2029 2030 rx_npkts = 0; 2031 NFE_LOCK_ASSERT(sc); 2032 2033 bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, 2034 BUS_DMASYNC_POSTREAD); 2035 2036 for (prog = 0;;NFE_INC(sc->rxq.cur, NFE_RX_RING_COUNT), vtag = 0) { 2037 if (count <= 0) 2038 break; 2039 count--; 2040 2041 data = &sc->rxq.data[sc->rxq.cur]; 2042 2043 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2044 desc64 = &sc->rxq.desc64[sc->rxq.cur]; 2045 vtag = le32toh(desc64->physaddr[1]); 2046 flags = le16toh(desc64->flags); 2047 len = le16toh(desc64->length) & NFE_RX_LEN_MASK; 2048 } else { 2049 desc32 = &sc->rxq.desc32[sc->rxq.cur]; 2050 flags = le16toh(desc32->flags); 2051 len = le16toh(desc32->length) & NFE_RX_LEN_MASK; 2052 } 2053 2054 if (flags & NFE_RX_READY) 2055 break; 2056 prog++; 2057 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2058 if (!(flags & NFE_RX_VALID_V1)) { 2059 ifp->if_ierrors++; 2060 nfe_discard_rxbuf(sc, sc->rxq.cur); 2061 continue; 2062 } 2063 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 2064 flags &= ~NFE_RX_ERROR; 2065 len--; /* fix buffer length */ 2066 } 2067 } else { 2068 if (!(flags & NFE_RX_VALID_V2)) { 2069 ifp->if_ierrors++; 2070 nfe_discard_rxbuf(sc, sc->rxq.cur); 2071 continue; 2072 } 2073 2074 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 2075 flags &= ~NFE_RX_ERROR; 2076 len--; /* fix buffer length */ 2077 } 2078 } 2079 2080 if (flags & NFE_RX_ERROR) { 2081 ifp->if_ierrors++; 2082 nfe_discard_rxbuf(sc, sc->rxq.cur); 2083 continue; 2084 } 2085 2086 m = data->m; 2087 if (nfe_newbuf(sc, sc->rxq.cur) != 0) { 2088 ifp->if_iqdrops++; 2089 nfe_discard_rxbuf(sc, sc->rxq.cur); 2090 continue; 2091 } 2092 2093 if ((vtag & NFE_RX_VTAG) != 0 && 2094 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 2095 m->m_pkthdr.ether_vtag = vtag & 0xffff; 2096 m->m_flags |= M_VLANTAG; 2097 } 2098 2099 m->m_pkthdr.len = m->m_len = len; 2100 m->m_pkthdr.rcvif = ifp; 2101 2102 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { 2103 if ((flags & NFE_RX_IP_CSUMOK) != 0) { 2104 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2105 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2106 if ((flags & NFE_RX_TCP_CSUMOK) != 0 || 2107 (flags & NFE_RX_UDP_CSUMOK) != 0) { 2108 m->m_pkthdr.csum_flags |= 2109 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2110 m->m_pkthdr.csum_data = 0xffff; 2111 } 2112 } 2113 } 2114 2115 ifp->if_ipackets++; 2116 2117 NFE_UNLOCK(sc); 2118 (*ifp->if_input)(ifp, m); 2119 NFE_LOCK(sc); 2120 rx_npkts++; 2121 } 2122 2123 if (prog > 0) 2124 bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, 2125 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2126 2127 if (rx_npktsp != NULL) 2128 *rx_npktsp = rx_npkts; 2129 return (count > 0 ? 0 : EAGAIN); 2130 } 2131 2132 2133 static int 2134 nfe_jrxeof(struct nfe_softc *sc, int count, int *rx_npktsp) 2135 { 2136 struct ifnet *ifp = sc->nfe_ifp; 2137 struct nfe_desc32 *desc32; 2138 struct nfe_desc64 *desc64; 2139 struct nfe_rx_data *data; 2140 struct mbuf *m; 2141 uint16_t flags; 2142 int len, prog, rx_npkts; 2143 uint32_t vtag = 0; 2144 2145 rx_npkts = 0; 2146 NFE_LOCK_ASSERT(sc); 2147 2148 bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map, 2149 BUS_DMASYNC_POSTREAD); 2150 2151 for (prog = 0;;NFE_INC(sc->jrxq.jcur, NFE_JUMBO_RX_RING_COUNT), 2152 vtag = 0) { 2153 if (count <= 0) 2154 break; 2155 count--; 2156 2157 data = &sc->jrxq.jdata[sc->jrxq.jcur]; 2158 2159 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2160 desc64 = &sc->jrxq.jdesc64[sc->jrxq.jcur]; 2161 vtag = le32toh(desc64->physaddr[1]); 2162 flags = le16toh(desc64->flags); 2163 len = le16toh(desc64->length) & NFE_RX_LEN_MASK; 2164 } else { 2165 desc32 = &sc->jrxq.jdesc32[sc->jrxq.jcur]; 2166 flags = le16toh(desc32->flags); 2167 len = le16toh(desc32->length) & NFE_RX_LEN_MASK; 2168 } 2169 2170 if (flags & NFE_RX_READY) 2171 break; 2172 prog++; 2173 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2174 if (!(flags & NFE_RX_VALID_V1)) { 2175 ifp->if_ierrors++; 2176 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2177 continue; 2178 } 2179 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 2180 flags &= ~NFE_RX_ERROR; 2181 len--; /* fix buffer length */ 2182 } 2183 } else { 2184 if (!(flags & NFE_RX_VALID_V2)) { 2185 ifp->if_ierrors++; 2186 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2187 continue; 2188 } 2189 2190 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 2191 flags &= ~NFE_RX_ERROR; 2192 len--; /* fix buffer length */ 2193 } 2194 } 2195 2196 if (flags & NFE_RX_ERROR) { 2197 ifp->if_ierrors++; 2198 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2199 continue; 2200 } 2201 2202 m = data->m; 2203 if (nfe_jnewbuf(sc, sc->jrxq.jcur) != 0) { 2204 ifp->if_iqdrops++; 2205 nfe_discard_jrxbuf(sc, sc->jrxq.jcur); 2206 continue; 2207 } 2208 2209 if ((vtag & NFE_RX_VTAG) != 0 && 2210 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 2211 m->m_pkthdr.ether_vtag = vtag & 0xffff; 2212 m->m_flags |= M_VLANTAG; 2213 } 2214 2215 m->m_pkthdr.len = m->m_len = len; 2216 m->m_pkthdr.rcvif = ifp; 2217 2218 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { 2219 if ((flags & NFE_RX_IP_CSUMOK) != 0) { 2220 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2221 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2222 if ((flags & NFE_RX_TCP_CSUMOK) != 0 || 2223 (flags & NFE_RX_UDP_CSUMOK) != 0) { 2224 m->m_pkthdr.csum_flags |= 2225 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2226 m->m_pkthdr.csum_data = 0xffff; 2227 } 2228 } 2229 } 2230 2231 ifp->if_ipackets++; 2232 2233 NFE_UNLOCK(sc); 2234 (*ifp->if_input)(ifp, m); 2235 NFE_LOCK(sc); 2236 rx_npkts++; 2237 } 2238 2239 if (prog > 0) 2240 bus_dmamap_sync(sc->jrxq.jrx_desc_tag, sc->jrxq.jrx_desc_map, 2241 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2242 2243 if (rx_npktsp != NULL) 2244 *rx_npktsp = rx_npkts; 2245 return (count > 0 ? 0 : EAGAIN); 2246 } 2247 2248 2249 static void 2250 nfe_txeof(struct nfe_softc *sc) 2251 { 2252 struct ifnet *ifp = sc->nfe_ifp; 2253 struct nfe_desc32 *desc32; 2254 struct nfe_desc64 *desc64; 2255 struct nfe_tx_data *data = NULL; 2256 uint16_t flags; 2257 int cons, prog; 2258 2259 NFE_LOCK_ASSERT(sc); 2260 2261 bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, 2262 BUS_DMASYNC_POSTREAD); 2263 2264 prog = 0; 2265 for (cons = sc->txq.next; cons != sc->txq.cur; 2266 NFE_INC(cons, NFE_TX_RING_COUNT)) { 2267 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2268 desc64 = &sc->txq.desc64[cons]; 2269 flags = le16toh(desc64->flags); 2270 } else { 2271 desc32 = &sc->txq.desc32[cons]; 2272 flags = le16toh(desc32->flags); 2273 } 2274 2275 if (flags & NFE_TX_VALID) 2276 break; 2277 2278 prog++; 2279 sc->txq.queued--; 2280 data = &sc->txq.data[cons]; 2281 2282 if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 2283 if ((flags & NFE_TX_LASTFRAG_V1) == 0) 2284 continue; 2285 if ((flags & NFE_TX_ERROR_V1) != 0) { 2286 device_printf(sc->nfe_dev, 2287 "tx v1 error 0x%4b\n", flags, NFE_V1_TXERR); 2288 2289 ifp->if_oerrors++; 2290 } else 2291 ifp->if_opackets++; 2292 } else { 2293 if ((flags & NFE_TX_LASTFRAG_V2) == 0) 2294 continue; 2295 if ((flags & NFE_TX_ERROR_V2) != 0) { 2296 device_printf(sc->nfe_dev, 2297 "tx v2 error 0x%4b\n", flags, NFE_V2_TXERR); 2298 ifp->if_oerrors++; 2299 } else 2300 ifp->if_opackets++; 2301 } 2302 2303 /* last fragment of the mbuf chain transmitted */ 2304 KASSERT(data->m != NULL, ("%s: freeing NULL mbuf!", __func__)); 2305 bus_dmamap_sync(sc->txq.tx_data_tag, data->tx_data_map, 2306 BUS_DMASYNC_POSTWRITE); 2307 bus_dmamap_unload(sc->txq.tx_data_tag, data->tx_data_map); 2308 m_freem(data->m); 2309 data->m = NULL; 2310 } 2311 2312 if (prog > 0) { 2313 sc->nfe_force_tx = 0; 2314 sc->txq.next = cons; 2315 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2316 if (sc->txq.queued == 0) 2317 sc->nfe_watchdog_timer = 0; 2318 } 2319 } 2320 2321 static int 2322 nfe_encap(struct nfe_softc *sc, struct mbuf **m_head) 2323 { 2324 struct nfe_desc32 *desc32 = NULL; 2325 struct nfe_desc64 *desc64 = NULL; 2326 bus_dmamap_t map; 2327 bus_dma_segment_t segs[NFE_MAX_SCATTER]; 2328 int error, i, nsegs, prod, si; 2329 uint32_t tso_segsz; 2330 uint16_t cflags, flags; 2331 struct mbuf *m; 2332 2333 prod = si = sc->txq.cur; 2334 map = sc->txq.data[prod].tx_data_map; 2335 2336 error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, *m_head, segs, 2337 &nsegs, BUS_DMA_NOWAIT); 2338 if (error == EFBIG) { 2339 m = m_collapse(*m_head, M_DONTWAIT, NFE_MAX_SCATTER); 2340 if (m == NULL) { 2341 m_freem(*m_head); 2342 *m_head = NULL; 2343 return (ENOBUFS); 2344 } 2345 *m_head = m; 2346 error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, 2347 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2348 if (error != 0) { 2349 m_freem(*m_head); 2350 *m_head = NULL; 2351 return (ENOBUFS); 2352 } 2353 } else if (error != 0) 2354 return (error); 2355 if (nsegs == 0) { 2356 m_freem(*m_head); 2357 *m_head = NULL; 2358 return (EIO); 2359 } 2360 2361 if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 2) { 2362 bus_dmamap_unload(sc->txq.tx_data_tag, map); 2363 return (ENOBUFS); 2364 } 2365 2366 m = *m_head; 2367 cflags = flags = 0; 2368 tso_segsz = 0; 2369 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2370 tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz << 2371 NFE_TX_TSO_SHIFT; 2372 cflags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM); 2373 cflags |= NFE_TX_TSO; 2374 } else if ((m->m_pkthdr.csum_flags & NFE_CSUM_FEATURES) != 0) { 2375 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 2376 cflags |= NFE_TX_IP_CSUM; 2377 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 2378 cflags |= NFE_TX_TCP_UDP_CSUM; 2379 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2380 cflags |= NFE_TX_TCP_UDP_CSUM; 2381 } 2382 2383 for (i = 0; i < nsegs; i++) { 2384 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2385 desc64 = &sc->txq.desc64[prod]; 2386 desc64->physaddr[0] = 2387 htole32(NFE_ADDR_HI(segs[i].ds_addr)); 2388 desc64->physaddr[1] = 2389 htole32(NFE_ADDR_LO(segs[i].ds_addr)); 2390 desc64->vtag = 0; 2391 desc64->length = htole16(segs[i].ds_len - 1); 2392 desc64->flags = htole16(flags); 2393 } else { 2394 desc32 = &sc->txq.desc32[prod]; 2395 desc32->physaddr = 2396 htole32(NFE_ADDR_LO(segs[i].ds_addr)); 2397 desc32->length = htole16(segs[i].ds_len - 1); 2398 desc32->flags = htole16(flags); 2399 } 2400 2401 /* 2402 * Setting of the valid bit in the first descriptor is 2403 * deferred until the whole chain is fully setup. 2404 */ 2405 flags |= NFE_TX_VALID; 2406 2407 sc->txq.queued++; 2408 NFE_INC(prod, NFE_TX_RING_COUNT); 2409 } 2410 2411 /* 2412 * the whole mbuf chain has been DMA mapped, fix last/first descriptor. 2413 * csum flags, vtag and TSO belong to the first fragment only. 2414 */ 2415 if (sc->nfe_flags & NFE_40BIT_ADDR) { 2416 desc64->flags |= htole16(NFE_TX_LASTFRAG_V2); 2417 desc64 = &sc->txq.desc64[si]; 2418 if ((m->m_flags & M_VLANTAG) != 0) 2419 desc64->vtag = htole32(NFE_TX_VTAG | 2420 m->m_pkthdr.ether_vtag); 2421 if (tso_segsz != 0) { 2422 /* 2423 * XXX 2424 * The following indicates the descriptor element 2425 * is a 32bit quantity. 2426 */ 2427 desc64->length |= htole16((uint16_t)tso_segsz); 2428 desc64->flags |= htole16(tso_segsz >> 16); 2429 } 2430 /* 2431 * finally, set the valid/checksum/TSO bit in the first 2432 * descriptor. 2433 */ 2434 desc64->flags |= htole16(NFE_TX_VALID | cflags); 2435 } else { 2436 if (sc->nfe_flags & NFE_JUMBO_SUP) 2437 desc32->flags |= htole16(NFE_TX_LASTFRAG_V2); 2438 else 2439 desc32->flags |= htole16(NFE_TX_LASTFRAG_V1); 2440 desc32 = &sc->txq.desc32[si]; 2441 if (tso_segsz != 0) { 2442 /* 2443 * XXX 2444 * The following indicates the descriptor element 2445 * is a 32bit quantity. 2446 */ 2447 desc32->length |= htole16((uint16_t)tso_segsz); 2448 desc32->flags |= htole16(tso_segsz >> 16); 2449 } 2450 /* 2451 * finally, set the valid/checksum/TSO bit in the first 2452 * descriptor. 2453 */ 2454 desc32->flags |= htole16(NFE_TX_VALID | cflags); 2455 } 2456 2457 sc->txq.cur = prod; 2458 prod = (prod + NFE_TX_RING_COUNT - 1) % NFE_TX_RING_COUNT; 2459 sc->txq.data[si].tx_data_map = sc->txq.data[prod].tx_data_map; 2460 sc->txq.data[prod].tx_data_map = map; 2461 sc->txq.data[prod].m = m; 2462 2463 bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE); 2464 2465 return (0); 2466 } 2467 2468 2469 static void 2470 nfe_setmulti(struct nfe_softc *sc) 2471 { 2472 struct ifnet *ifp = sc->nfe_ifp; 2473 struct ifmultiaddr *ifma; 2474 int i; 2475 uint32_t filter; 2476 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; 2477 uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 2478 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2479 }; 2480 2481 NFE_LOCK_ASSERT(sc); 2482 2483 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 2484 bzero(addr, ETHER_ADDR_LEN); 2485 bzero(mask, ETHER_ADDR_LEN); 2486 goto done; 2487 } 2488 2489 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN); 2490 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN); 2491 2492 if_maddr_rlock(ifp); 2493 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2494 u_char *addrp; 2495 2496 if (ifma->ifma_addr->sa_family != AF_LINK) 2497 continue; 2498 2499 addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2500 for (i = 0; i < ETHER_ADDR_LEN; i++) { 2501 u_int8_t mcaddr = addrp[i]; 2502 addr[i] &= mcaddr; 2503 mask[i] &= ~mcaddr; 2504 } 2505 } 2506 if_maddr_runlock(ifp); 2507 2508 for (i = 0; i < ETHER_ADDR_LEN; i++) { 2509 mask[i] |= addr[i]; 2510 } 2511 2512 done: 2513 addr[0] |= 0x01; /* make sure multicast bit is set */ 2514 2515 NFE_WRITE(sc, NFE_MULTIADDR_HI, 2516 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); 2517 NFE_WRITE(sc, NFE_MULTIADDR_LO, 2518 addr[5] << 8 | addr[4]); 2519 NFE_WRITE(sc, NFE_MULTIMASK_HI, 2520 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); 2521 NFE_WRITE(sc, NFE_MULTIMASK_LO, 2522 mask[5] << 8 | mask[4]); 2523 2524 filter = NFE_READ(sc, NFE_RXFILTER); 2525 filter &= NFE_PFF_RX_PAUSE; 2526 filter |= NFE_RXFILTER_MAGIC; 2527 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PFF_PROMISC : NFE_PFF_U2M; 2528 NFE_WRITE(sc, NFE_RXFILTER, filter); 2529 } 2530 2531 2532 static void 2533 nfe_tx_task(void *arg, int pending) 2534 { 2535 struct ifnet *ifp; 2536 2537 ifp = (struct ifnet *)arg; 2538 nfe_start(ifp); 2539 } 2540 2541 2542 static void 2543 nfe_start(struct ifnet *ifp) 2544 { 2545 struct nfe_softc *sc = ifp->if_softc; 2546 struct mbuf *m0; 2547 int enq; 2548 2549 NFE_LOCK(sc); 2550 2551 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2552 IFF_DRV_RUNNING || sc->nfe_link == 0) { 2553 NFE_UNLOCK(sc); 2554 return; 2555 } 2556 2557 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { 2558 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2559 if (m0 == NULL) 2560 break; 2561 2562 if (nfe_encap(sc, &m0) != 0) { 2563 if (m0 == NULL) 2564 break; 2565 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2566 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2567 break; 2568 } 2569 enq++; 2570 ETHER_BPF_MTAP(ifp, m0); 2571 } 2572 2573 if (enq > 0) { 2574 bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, 2575 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2576 2577 /* kick Tx */ 2578 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 2579 2580 /* 2581 * Set a timeout in case the chip goes out to lunch. 2582 */ 2583 sc->nfe_watchdog_timer = 5; 2584 } 2585 2586 NFE_UNLOCK(sc); 2587 } 2588 2589 2590 static void 2591 nfe_watchdog(struct ifnet *ifp) 2592 { 2593 struct nfe_softc *sc = ifp->if_softc; 2594 2595 if (sc->nfe_watchdog_timer == 0 || --sc->nfe_watchdog_timer) 2596 return; 2597 2598 /* Check if we've lost Tx completion interrupt. */ 2599 nfe_txeof(sc); 2600 if (sc->txq.queued == 0) { 2601 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2602 "-- recovering\n"); 2603 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2604 taskqueue_enqueue_fast(sc->nfe_tq, &sc->nfe_tx_task); 2605 return; 2606 } 2607 /* Check if we've lost start Tx command. */ 2608 sc->nfe_force_tx++; 2609 if (sc->nfe_force_tx <= 3) { 2610 /* 2611 * If this is the case for watchdog timeout, the following 2612 * code should go to nfe_txeof(). 2613 */ 2614 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 2615 return; 2616 } 2617 sc->nfe_force_tx = 0; 2618 2619 if_printf(ifp, "watchdog timeout\n"); 2620 2621 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2622 ifp->if_oerrors++; 2623 nfe_init_locked(sc); 2624 } 2625 2626 2627 static void 2628 nfe_init(void *xsc) 2629 { 2630 struct nfe_softc *sc = xsc; 2631 2632 NFE_LOCK(sc); 2633 nfe_init_locked(sc); 2634 NFE_UNLOCK(sc); 2635 } 2636 2637 2638 static void 2639 nfe_init_locked(void *xsc) 2640 { 2641 struct nfe_softc *sc = xsc; 2642 struct ifnet *ifp = sc->nfe_ifp; 2643 struct mii_data *mii; 2644 uint32_t val; 2645 int error; 2646 2647 NFE_LOCK_ASSERT(sc); 2648 2649 mii = device_get_softc(sc->nfe_miibus); 2650 2651 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2652 return; 2653 2654 nfe_stop(ifp); 2655 2656 sc->nfe_framesize = ifp->if_mtu + NFE_RX_HEADERS; 2657 2658 nfe_init_tx_ring(sc, &sc->txq); 2659 if (sc->nfe_framesize > (MCLBYTES - ETHER_HDR_LEN)) 2660 error = nfe_init_jrx_ring(sc, &sc->jrxq); 2661 else 2662 error = nfe_init_rx_ring(sc, &sc->rxq); 2663 if (error != 0) { 2664 device_printf(sc->nfe_dev, 2665 "initialization failed: no memory for rx buffers\n"); 2666 nfe_stop(ifp); 2667 return; 2668 } 2669 2670 val = 0; 2671 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) != 0) 2672 val |= NFE_MAC_ADDR_INORDER; 2673 NFE_WRITE(sc, NFE_TX_UNK, val); 2674 NFE_WRITE(sc, NFE_STATUS, 0); 2675 2676 if ((sc->nfe_flags & NFE_TX_FLOW_CTRL) != 0) 2677 NFE_WRITE(sc, NFE_TX_PAUSE_FRAME, NFE_TX_PAUSE_FRAME_DISABLE); 2678 2679 sc->rxtxctl = NFE_RXTX_BIT2; 2680 if (sc->nfe_flags & NFE_40BIT_ADDR) 2681 sc->rxtxctl |= NFE_RXTX_V3MAGIC; 2682 else if (sc->nfe_flags & NFE_JUMBO_SUP) 2683 sc->rxtxctl |= NFE_RXTX_V2MAGIC; 2684 2685 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2686 sc->rxtxctl |= NFE_RXTX_RXCSUM; 2687 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2688 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT | NFE_RXTX_VTAG_STRIP; 2689 2690 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); 2691 DELAY(10); 2692 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 2693 2694 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2695 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); 2696 else 2697 NFE_WRITE(sc, NFE_VTAG_CTL, 0); 2698 2699 NFE_WRITE(sc, NFE_SETUP_R6, 0); 2700 2701 /* set MAC address */ 2702 nfe_set_macaddr(sc, IF_LLADDR(ifp)); 2703 2704 /* tell MAC where rings are in memory */ 2705 if (sc->nfe_framesize > MCLBYTES - ETHER_HDR_LEN) { 2706 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 2707 NFE_ADDR_HI(sc->jrxq.jphysaddr)); 2708 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 2709 NFE_ADDR_LO(sc->jrxq.jphysaddr)); 2710 } else { 2711 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, 2712 NFE_ADDR_HI(sc->rxq.physaddr)); 2713 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, 2714 NFE_ADDR_LO(sc->rxq.physaddr)); 2715 } 2716 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, NFE_ADDR_HI(sc->txq.physaddr)); 2717 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr)); 2718 2719 NFE_WRITE(sc, NFE_RING_SIZE, 2720 (NFE_RX_RING_COUNT - 1) << 16 | 2721 (NFE_TX_RING_COUNT - 1)); 2722 2723 NFE_WRITE(sc, NFE_RXBUFSZ, sc->nfe_framesize); 2724 2725 /* force MAC to wakeup */ 2726 val = NFE_READ(sc, NFE_PWR_STATE); 2727 if ((val & NFE_PWR_WAKEUP) == 0) 2728 NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_WAKEUP); 2729 DELAY(10); 2730 val = NFE_READ(sc, NFE_PWR_STATE); 2731 NFE_WRITE(sc, NFE_PWR_STATE, val | NFE_PWR_VALID); 2732 2733 #if 1 2734 /* configure interrupts coalescing/mitigation */ 2735 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); 2736 #else 2737 /* no interrupt mitigation: one interrupt per packet */ 2738 NFE_WRITE(sc, NFE_IMTIMER, 970); 2739 #endif 2740 2741 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC_10_100); 2742 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); 2743 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); 2744 2745 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ 2746 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); 2747 2748 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); 2749 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC); 2750 2751 sc->rxtxctl &= ~NFE_RXTX_BIT2; 2752 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 2753 DELAY(10); 2754 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); 2755 2756 /* set Rx filter */ 2757 nfe_setmulti(sc); 2758 2759 /* enable Rx */ 2760 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); 2761 2762 /* enable Tx */ 2763 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); 2764 2765 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 2766 2767 /* Clear hardware stats. */ 2768 nfe_stats_clear(sc); 2769 2770 #ifdef DEVICE_POLLING 2771 if (ifp->if_capenable & IFCAP_POLLING) 2772 nfe_disable_intr(sc); 2773 else 2774 #endif 2775 nfe_set_intr(sc); 2776 nfe_enable_intr(sc); /* enable interrupts */ 2777 2778 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2779 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2780 2781 sc->nfe_link = 0; 2782 mii_mediachg(mii); 2783 2784 callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc); 2785 } 2786 2787 2788 static void 2789 nfe_stop(struct ifnet *ifp) 2790 { 2791 struct nfe_softc *sc = ifp->if_softc; 2792 struct nfe_rx_ring *rx_ring; 2793 struct nfe_jrx_ring *jrx_ring; 2794 struct nfe_tx_ring *tx_ring; 2795 struct nfe_rx_data *rdata; 2796 struct nfe_tx_data *tdata; 2797 int i; 2798 2799 NFE_LOCK_ASSERT(sc); 2800 2801 sc->nfe_watchdog_timer = 0; 2802 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2803 2804 callout_stop(&sc->nfe_stat_ch); 2805 2806 /* abort Tx */ 2807 NFE_WRITE(sc, NFE_TX_CTL, 0); 2808 2809 /* disable Rx */ 2810 NFE_WRITE(sc, NFE_RX_CTL, 0); 2811 2812 /* disable interrupts */ 2813 nfe_disable_intr(sc); 2814 2815 sc->nfe_link = 0; 2816 2817 /* free Rx and Tx mbufs still in the queues. */ 2818 rx_ring = &sc->rxq; 2819 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 2820 rdata = &rx_ring->data[i]; 2821 if (rdata->m != NULL) { 2822 bus_dmamap_sync(rx_ring->rx_data_tag, 2823 rdata->rx_data_map, BUS_DMASYNC_POSTREAD); 2824 bus_dmamap_unload(rx_ring->rx_data_tag, 2825 rdata->rx_data_map); 2826 m_freem(rdata->m); 2827 rdata->m = NULL; 2828 } 2829 } 2830 2831 if ((sc->nfe_flags & NFE_JUMBO_SUP) != 0) { 2832 jrx_ring = &sc->jrxq; 2833 for (i = 0; i < NFE_JUMBO_RX_RING_COUNT; i++) { 2834 rdata = &jrx_ring->jdata[i]; 2835 if (rdata->m != NULL) { 2836 bus_dmamap_sync(jrx_ring->jrx_data_tag, 2837 rdata->rx_data_map, BUS_DMASYNC_POSTREAD); 2838 bus_dmamap_unload(jrx_ring->jrx_data_tag, 2839 rdata->rx_data_map); 2840 m_freem(rdata->m); 2841 rdata->m = NULL; 2842 } 2843 } 2844 } 2845 2846 tx_ring = &sc->txq; 2847 for (i = 0; i < NFE_RX_RING_COUNT; i++) { 2848 tdata = &tx_ring->data[i]; 2849 if (tdata->m != NULL) { 2850 bus_dmamap_sync(tx_ring->tx_data_tag, 2851 tdata->tx_data_map, BUS_DMASYNC_POSTWRITE); 2852 bus_dmamap_unload(tx_ring->tx_data_tag, 2853 tdata->tx_data_map); 2854 m_freem(tdata->m); 2855 tdata->m = NULL; 2856 } 2857 } 2858 /* Update hardware stats. */ 2859 nfe_stats_update(sc); 2860 } 2861 2862 2863 static int 2864 nfe_ifmedia_upd(struct ifnet *ifp) 2865 { 2866 struct nfe_softc *sc = ifp->if_softc; 2867 struct mii_data *mii; 2868 2869 NFE_LOCK(sc); 2870 mii = device_get_softc(sc->nfe_miibus); 2871 mii_mediachg(mii); 2872 NFE_UNLOCK(sc); 2873 2874 return (0); 2875 } 2876 2877 2878 static void 2879 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2880 { 2881 struct nfe_softc *sc; 2882 struct mii_data *mii; 2883 2884 sc = ifp->if_softc; 2885 2886 NFE_LOCK(sc); 2887 mii = device_get_softc(sc->nfe_miibus); 2888 mii_pollstat(mii); 2889 NFE_UNLOCK(sc); 2890 2891 ifmr->ifm_active = mii->mii_media_active; 2892 ifmr->ifm_status = mii->mii_media_status; 2893 } 2894 2895 2896 void 2897 nfe_tick(void *xsc) 2898 { 2899 struct nfe_softc *sc; 2900 struct mii_data *mii; 2901 struct ifnet *ifp; 2902 2903 sc = (struct nfe_softc *)xsc; 2904 2905 NFE_LOCK_ASSERT(sc); 2906 2907 ifp = sc->nfe_ifp; 2908 2909 mii = device_get_softc(sc->nfe_miibus); 2910 mii_tick(mii); 2911 nfe_stats_update(sc); 2912 nfe_watchdog(ifp); 2913 callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc); 2914 } 2915 2916 2917 static int 2918 nfe_shutdown(device_t dev) 2919 { 2920 struct nfe_softc *sc; 2921 struct ifnet *ifp; 2922 2923 sc = device_get_softc(dev); 2924 2925 NFE_LOCK(sc); 2926 ifp = sc->nfe_ifp; 2927 nfe_stop(ifp); 2928 /* nfe_reset(sc); */ 2929 NFE_UNLOCK(sc); 2930 2931 return (0); 2932 } 2933 2934 2935 static void 2936 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) 2937 { 2938 uint32_t val; 2939 2940 if ((sc->nfe_flags & NFE_CORRECT_MACADDR) == 0) { 2941 val = NFE_READ(sc, NFE_MACADDR_LO); 2942 addr[0] = (val >> 8) & 0xff; 2943 addr[1] = (val & 0xff); 2944 2945 val = NFE_READ(sc, NFE_MACADDR_HI); 2946 addr[2] = (val >> 24) & 0xff; 2947 addr[3] = (val >> 16) & 0xff; 2948 addr[4] = (val >> 8) & 0xff; 2949 addr[5] = (val & 0xff); 2950 } else { 2951 val = NFE_READ(sc, NFE_MACADDR_LO); 2952 addr[5] = (val >> 8) & 0xff; 2953 addr[4] = (val & 0xff); 2954 2955 val = NFE_READ(sc, NFE_MACADDR_HI); 2956 addr[3] = (val >> 24) & 0xff; 2957 addr[2] = (val >> 16) & 0xff; 2958 addr[1] = (val >> 8) & 0xff; 2959 addr[0] = (val & 0xff); 2960 } 2961 } 2962 2963 2964 static void 2965 nfe_set_macaddr(struct nfe_softc *sc, uint8_t *addr) 2966 { 2967 2968 NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]); 2969 NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 | 2970 addr[1] << 8 | addr[0]); 2971 } 2972 2973 2974 /* 2975 * Map a single buffer address. 2976 */ 2977 2978 static void 2979 nfe_dma_map_segs(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2980 { 2981 struct nfe_dmamap_arg *ctx; 2982 2983 if (error != 0) 2984 return; 2985 2986 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 2987 2988 ctx = (struct nfe_dmamap_arg *)arg; 2989 ctx->nfe_busaddr = segs[0].ds_addr; 2990 } 2991 2992 2993 static int 2994 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2995 { 2996 int error, value; 2997 2998 if (!arg1) 2999 return (EINVAL); 3000 value = *(int *)arg1; 3001 error = sysctl_handle_int(oidp, &value, 0, req); 3002 if (error || !req->newptr) 3003 return (error); 3004 if (value < low || value > high) 3005 return (EINVAL); 3006 *(int *)arg1 = value; 3007 3008 return (0); 3009 } 3010 3011 3012 static int 3013 sysctl_hw_nfe_proc_limit(SYSCTL_HANDLER_ARGS) 3014 { 3015 3016 return (sysctl_int_range(oidp, arg1, arg2, req, NFE_PROC_MIN, 3017 NFE_PROC_MAX)); 3018 } 3019 3020 3021 #define NFE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 3022 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3023 #define NFE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 3024 SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 3025 3026 static void 3027 nfe_sysctl_node(struct nfe_softc *sc) 3028 { 3029 struct sysctl_ctx_list *ctx; 3030 struct sysctl_oid_list *child, *parent; 3031 struct sysctl_oid *tree; 3032 struct nfe_hw_stats *stats; 3033 int error; 3034 3035 stats = &sc->nfe_stats; 3036 ctx = device_get_sysctl_ctx(sc->nfe_dev); 3037 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nfe_dev)); 3038 SYSCTL_ADD_PROC(ctx, child, 3039 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, 3040 &sc->nfe_process_limit, 0, sysctl_hw_nfe_proc_limit, "I", 3041 "max number of Rx events to process"); 3042 3043 sc->nfe_process_limit = NFE_PROC_DEFAULT; 3044 error = resource_int_value(device_get_name(sc->nfe_dev), 3045 device_get_unit(sc->nfe_dev), "process_limit", 3046 &sc->nfe_process_limit); 3047 if (error == 0) { 3048 if (sc->nfe_process_limit < NFE_PROC_MIN || 3049 sc->nfe_process_limit > NFE_PROC_MAX) { 3050 device_printf(sc->nfe_dev, 3051 "process_limit value out of range; " 3052 "using default: %d\n", NFE_PROC_DEFAULT); 3053 sc->nfe_process_limit = NFE_PROC_DEFAULT; 3054 } 3055 } 3056 3057 if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0) 3058 return; 3059 3060 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 3061 NULL, "NFE statistics"); 3062 parent = SYSCTL_CHILDREN(tree); 3063 3064 /* Rx statistics. */ 3065 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 3066 NULL, "Rx MAC statistics"); 3067 child = SYSCTL_CHILDREN(tree); 3068 3069 NFE_SYSCTL_STAT_ADD32(ctx, child, "frame_errors", 3070 &stats->rx_frame_errors, "Framing Errors"); 3071 NFE_SYSCTL_STAT_ADD32(ctx, child, "extra_bytes", 3072 &stats->rx_extra_bytes, "Extra Bytes"); 3073 NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols", 3074 &stats->rx_late_cols, "Late Collisions"); 3075 NFE_SYSCTL_STAT_ADD32(ctx, child, "runts", 3076 &stats->rx_runts, "Runts"); 3077 NFE_SYSCTL_STAT_ADD32(ctx, child, "jumbos", 3078 &stats->rx_jumbos, "Jumbos"); 3079 NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_overuns", 3080 &stats->rx_fifo_overuns, "FIFO Overruns"); 3081 NFE_SYSCTL_STAT_ADD32(ctx, child, "crc_errors", 3082 &stats->rx_crc_errors, "CRC Errors"); 3083 NFE_SYSCTL_STAT_ADD32(ctx, child, "fae", 3084 &stats->rx_fae, "Frame Alignment Errors"); 3085 NFE_SYSCTL_STAT_ADD32(ctx, child, "len_errors", 3086 &stats->rx_len_errors, "Length Errors"); 3087 NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast", 3088 &stats->rx_unicast, "Unicast Frames"); 3089 NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast", 3090 &stats->rx_multicast, "Multicast Frames"); 3091 NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast", 3092 &stats->rx_broadcast, "Broadcast Frames"); 3093 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3094 NFE_SYSCTL_STAT_ADD64(ctx, child, "octets", 3095 &stats->rx_octets, "Octets"); 3096 NFE_SYSCTL_STAT_ADD32(ctx, child, "pause", 3097 &stats->rx_pause, "Pause frames"); 3098 NFE_SYSCTL_STAT_ADD32(ctx, child, "drops", 3099 &stats->rx_drops, "Drop frames"); 3100 } 3101 3102 /* Tx statistics. */ 3103 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 3104 NULL, "Tx MAC statistics"); 3105 child = SYSCTL_CHILDREN(tree); 3106 NFE_SYSCTL_STAT_ADD64(ctx, child, "octets", 3107 &stats->tx_octets, "Octets"); 3108 NFE_SYSCTL_STAT_ADD32(ctx, child, "zero_rexmits", 3109 &stats->tx_zero_rexmits, "Zero Retransmits"); 3110 NFE_SYSCTL_STAT_ADD32(ctx, child, "one_rexmits", 3111 &stats->tx_one_rexmits, "One Retransmits"); 3112 NFE_SYSCTL_STAT_ADD32(ctx, child, "multi_rexmits", 3113 &stats->tx_multi_rexmits, "Multiple Retransmits"); 3114 NFE_SYSCTL_STAT_ADD32(ctx, child, "late_cols", 3115 &stats->tx_late_cols, "Late Collisions"); 3116 NFE_SYSCTL_STAT_ADD32(ctx, child, "fifo_underuns", 3117 &stats->tx_fifo_underuns, "FIFO Underruns"); 3118 NFE_SYSCTL_STAT_ADD32(ctx, child, "carrier_losts", 3119 &stats->tx_carrier_losts, "Carrier Losts"); 3120 NFE_SYSCTL_STAT_ADD32(ctx, child, "excess_deferrals", 3121 &stats->tx_excess_deferals, "Excess Deferrals"); 3122 NFE_SYSCTL_STAT_ADD32(ctx, child, "retry_errors", 3123 &stats->tx_retry_errors, "Retry Errors"); 3124 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3125 NFE_SYSCTL_STAT_ADD32(ctx, child, "deferrals", 3126 &stats->tx_deferals, "Deferrals"); 3127 NFE_SYSCTL_STAT_ADD32(ctx, child, "frames", 3128 &stats->tx_frames, "Frames"); 3129 NFE_SYSCTL_STAT_ADD32(ctx, child, "pause", 3130 &stats->tx_pause, "Pause Frames"); 3131 } 3132 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3133 NFE_SYSCTL_STAT_ADD32(ctx, child, "unicast", 3134 &stats->tx_deferals, "Unicast Frames"); 3135 NFE_SYSCTL_STAT_ADD32(ctx, child, "multicast", 3136 &stats->tx_frames, "Multicast Frames"); 3137 NFE_SYSCTL_STAT_ADD32(ctx, child, "broadcast", 3138 &stats->tx_pause, "Broadcast Frames"); 3139 } 3140 } 3141 3142 #undef NFE_SYSCTL_STAT_ADD32 3143 #undef NFE_SYSCTL_STAT_ADD64 3144 3145 static void 3146 nfe_stats_clear(struct nfe_softc *sc) 3147 { 3148 int i, mib_cnt; 3149 3150 if ((sc->nfe_flags & NFE_MIB_V1) != 0) 3151 mib_cnt = NFE_NUM_MIB_STATV1; 3152 else if ((sc->nfe_flags & (NFE_MIB_V2 | NFE_MIB_V3)) != 0) 3153 mib_cnt = NFE_NUM_MIB_STATV2; 3154 else 3155 return; 3156 3157 for (i = 0; i < mib_cnt; i += sizeof(uint32_t)) 3158 NFE_READ(sc, NFE_TX_OCTET + i); 3159 3160 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3161 NFE_READ(sc, NFE_TX_UNICAST); 3162 NFE_READ(sc, NFE_TX_MULTICAST); 3163 NFE_READ(sc, NFE_TX_BROADCAST); 3164 } 3165 } 3166 3167 static void 3168 nfe_stats_update(struct nfe_softc *sc) 3169 { 3170 struct nfe_hw_stats *stats; 3171 3172 NFE_LOCK_ASSERT(sc); 3173 3174 if ((sc->nfe_flags & (NFE_MIB_V1 | NFE_MIB_V2 | NFE_MIB_V3)) == 0) 3175 return; 3176 3177 stats = &sc->nfe_stats; 3178 stats->tx_octets += NFE_READ(sc, NFE_TX_OCTET); 3179 stats->tx_zero_rexmits += NFE_READ(sc, NFE_TX_ZERO_REXMIT); 3180 stats->tx_one_rexmits += NFE_READ(sc, NFE_TX_ONE_REXMIT); 3181 stats->tx_multi_rexmits += NFE_READ(sc, NFE_TX_MULTI_REXMIT); 3182 stats->tx_late_cols += NFE_READ(sc, NFE_TX_LATE_COL); 3183 stats->tx_fifo_underuns += NFE_READ(sc, NFE_TX_FIFO_UNDERUN); 3184 stats->tx_carrier_losts += NFE_READ(sc, NFE_TX_CARRIER_LOST); 3185 stats->tx_excess_deferals += NFE_READ(sc, NFE_TX_EXCESS_DEFERRAL); 3186 stats->tx_retry_errors += NFE_READ(sc, NFE_TX_RETRY_ERROR); 3187 stats->rx_frame_errors += NFE_READ(sc, NFE_RX_FRAME_ERROR); 3188 stats->rx_extra_bytes += NFE_READ(sc, NFE_RX_EXTRA_BYTES); 3189 stats->rx_late_cols += NFE_READ(sc, NFE_RX_LATE_COL); 3190 stats->rx_runts += NFE_READ(sc, NFE_RX_RUNT); 3191 stats->rx_jumbos += NFE_READ(sc, NFE_RX_JUMBO); 3192 stats->rx_fifo_overuns += NFE_READ(sc, NFE_RX_FIFO_OVERUN); 3193 stats->rx_crc_errors += NFE_READ(sc, NFE_RX_CRC_ERROR); 3194 stats->rx_fae += NFE_READ(sc, NFE_RX_FAE); 3195 stats->rx_len_errors += NFE_READ(sc, NFE_RX_LEN_ERROR); 3196 stats->rx_unicast += NFE_READ(sc, NFE_RX_UNICAST); 3197 stats->rx_multicast += NFE_READ(sc, NFE_RX_MULTICAST); 3198 stats->rx_broadcast += NFE_READ(sc, NFE_RX_BROADCAST); 3199 3200 if ((sc->nfe_flags & NFE_MIB_V2) != 0) { 3201 stats->tx_deferals += NFE_READ(sc, NFE_TX_DEFERAL); 3202 stats->tx_frames += NFE_READ(sc, NFE_TX_FRAME); 3203 stats->rx_octets += NFE_READ(sc, NFE_RX_OCTET); 3204 stats->tx_pause += NFE_READ(sc, NFE_TX_PAUSE); 3205 stats->rx_pause += NFE_READ(sc, NFE_RX_PAUSE); 3206 stats->rx_drops += NFE_READ(sc, NFE_RX_DROP); 3207 } 3208 3209 if ((sc->nfe_flags & NFE_MIB_V3) != 0) { 3210 stats->tx_unicast += NFE_READ(sc, NFE_TX_UNICAST); 3211 stats->tx_multicast += NFE_READ(sc, NFE_TX_MULTICAST); 3212 stats->rx_broadcast += NFE_READ(sc, NFE_TX_BROADCAST); 3213 } 3214 } 3215