1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/eventhandler.h> 36 #include <sys/jail.h> 37 #include <sys/poll.h> /* POLLIN, POLLOUT */ 38 #include <sys/kernel.h> /* types used in module initialization */ 39 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 40 #include <sys/endian.h> 41 #include <sys/syscallsubr.h> /* kern_ioctl() */ 42 43 #include <sys/rwlock.h> 44 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <vm/vm_param.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pager.h> 51 #include <vm/uma.h> 52 53 54 #include <sys/malloc.h> 55 #include <sys/socket.h> /* sockaddrs */ 56 #include <sys/selinfo.h> 57 #include <sys/kthread.h> /* kthread_add() */ 58 #include <sys/proc.h> /* PROC_LOCK() */ 59 #include <sys/unistd.h> /* RFNOWAIT */ 60 #include <sys/sched.h> /* sched_bind() */ 61 #include <sys/smp.h> /* mp_maxid */ 62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> /* IFT_ETHER */ 66 #include <net/ethernet.h> /* ether_ifdetach */ 67 #include <net/if_dl.h> /* LLADDR */ 68 #include <machine/bus.h> /* bus_dmamap_* */ 69 #include <netinet/in.h> /* in6_cksum_pseudo() */ 70 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 71 72 #include <net/netmap.h> 73 #include <dev/netmap/netmap_kern.h> 74 #include <net/netmap_virt.h> 75 #include <dev/netmap/netmap_mem2.h> 76 77 78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 79 80 static void 81 nm_kqueue_notify(void *opaque, int pending) 82 { 83 struct nm_selinfo *si = opaque; 84 85 /* We use a non-zero hint to distinguish this notification call 86 * from the call done in kqueue_scan(), which uses hint=0. 87 */ 88 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 89 } 90 91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 92 int err; 93 94 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 95 si->ntfytq = taskqueue_create(name, M_NOWAIT, 96 taskqueue_thread_enqueue, &si->ntfytq); 97 if (si->ntfytq == NULL) 98 return -ENOMEM; 99 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 100 if (err) { 101 taskqueue_free(si->ntfytq); 102 si->ntfytq = NULL; 103 return err; 104 } 105 106 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 107 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 108 knlist_init_mtx(&si->si.si_note, &si->m); 109 si->kqueue_users = 0; 110 111 return (0); 112 } 113 114 void 115 nm_os_selinfo_uninit(NM_SELINFO_T *si) 116 { 117 if (si->ntfytq == NULL) { 118 return; /* si was not initialized */ 119 } 120 taskqueue_drain(si->ntfytq, &si->ntfytask); 121 taskqueue_free(si->ntfytq); 122 si->ntfytq = NULL; 123 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 124 knlist_destroy(&si->si.si_note); 125 /* now we don't need the mutex anymore */ 126 mtx_destroy(&si->m); 127 } 128 129 void * 130 nm_os_malloc(size_t size) 131 { 132 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 133 } 134 135 void * 136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 137 { 138 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 139 } 140 141 void 142 nm_os_free(void *addr) 143 { 144 free(addr, M_DEVBUF); 145 } 146 147 void 148 nm_os_ifnet_lock(void) 149 { 150 IFNET_RLOCK(); 151 } 152 153 void 154 nm_os_ifnet_unlock(void) 155 { 156 IFNET_RUNLOCK(); 157 } 158 159 static int netmap_use_count = 0; 160 161 void 162 nm_os_get_module(void) 163 { 164 netmap_use_count++; 165 } 166 167 void 168 nm_os_put_module(void) 169 { 170 netmap_use_count--; 171 } 172 173 static void 174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 175 { 176 netmap_undo_zombie(ifp); 177 } 178 179 static void 180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 181 { 182 netmap_make_zombie(ifp); 183 } 184 185 static eventhandler_tag nm_ifnet_ah_tag; 186 static eventhandler_tag nm_ifnet_dh_tag; 187 188 int 189 nm_os_ifnet_init(void) 190 { 191 nm_ifnet_ah_tag = 192 EVENTHANDLER_REGISTER(ifnet_arrival_event, 193 netmap_ifnet_arrival_handler, 194 NULL, EVENTHANDLER_PRI_ANY); 195 nm_ifnet_dh_tag = 196 EVENTHANDLER_REGISTER(ifnet_departure_event, 197 netmap_ifnet_departure_handler, 198 NULL, EVENTHANDLER_PRI_ANY); 199 return 0; 200 } 201 202 void 203 nm_os_ifnet_fini(void) 204 { 205 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 206 nm_ifnet_ah_tag); 207 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 208 nm_ifnet_dh_tag); 209 } 210 211 unsigned 212 nm_os_ifnet_mtu(struct ifnet *ifp) 213 { 214 #if __FreeBSD_version < 1100030 215 return ifp->if_data.ifi_mtu; 216 #else /* __FreeBSD_version >= 1100030 */ 217 return ifp->if_mtu; 218 #endif 219 } 220 221 rawsum_t 222 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 223 { 224 /* TODO XXX please use the FreeBSD implementation for this. */ 225 uint16_t *words = (uint16_t *)data; 226 int nw = len / 2; 227 int i; 228 229 for (i = 0; i < nw; i++) 230 cur_sum += be16toh(words[i]); 231 232 if (len & 1) 233 cur_sum += (data[len-1] << 8); 234 235 return cur_sum; 236 } 237 238 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 239 * return value is in network byte order. 240 */ 241 uint16_t 242 nm_os_csum_fold(rawsum_t cur_sum) 243 { 244 /* TODO XXX please use the FreeBSD implementation for this. */ 245 while (cur_sum >> 16) 246 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 247 248 return htobe16((~cur_sum) & 0xFFFF); 249 } 250 251 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 252 { 253 #if 0 254 return in_cksum_hdr((void *)iph); 255 #else 256 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 257 #endif 258 } 259 260 void 261 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 262 size_t datalen, uint16_t *check) 263 { 264 #ifdef INET 265 uint16_t pseudolen = datalen + iph->protocol; 266 267 /* Compute and insert the pseudo-header checksum. */ 268 *check = in_pseudo(iph->saddr, iph->daddr, 269 htobe16(pseudolen)); 270 /* Compute the checksum on TCP/UDP header + payload 271 * (includes the pseudo-header). 272 */ 273 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 274 #else 275 static int notsupported = 0; 276 if (!notsupported) { 277 notsupported = 1; 278 nm_prerr("inet4 segmentation not supported"); 279 } 280 #endif 281 } 282 283 void 284 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 285 size_t datalen, uint16_t *check) 286 { 287 #ifdef INET6 288 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 289 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 290 #else 291 static int notsupported = 0; 292 if (!notsupported) { 293 notsupported = 1; 294 nm_prerr("inet6 segmentation not supported"); 295 } 296 #endif 297 } 298 299 /* on FreeBSD we send up one packet at a time */ 300 void * 301 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 302 { 303 NA(ifp)->if_input(ifp, m); 304 return NULL; 305 } 306 307 int 308 nm_os_mbuf_has_csum_offld(struct mbuf *m) 309 { 310 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 311 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 312 CSUM_SCTP_IPV6); 313 } 314 315 int 316 nm_os_mbuf_has_seg_offld(struct mbuf *m) 317 { 318 return m->m_pkthdr.csum_flags & CSUM_TSO; 319 } 320 321 static void 322 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 323 { 324 int stolen; 325 326 if (unlikely(!NM_NA_VALID(ifp))) { 327 nm_prlim(1, "Warning: RX packet intercepted, but no" 328 " emulated adapter"); 329 return; 330 } 331 332 stolen = generic_rx_handler(ifp, m); 333 if (!stolen) { 334 struct netmap_generic_adapter *gna = 335 (struct netmap_generic_adapter *)NA(ifp); 336 gna->save_if_input(ifp, m); 337 } 338 } 339 340 /* 341 * Intercept the rx routine in the standard device driver. 342 * Second argument is non-zero to intercept, 0 to restore 343 */ 344 int 345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 346 { 347 struct netmap_adapter *na = &gna->up.up; 348 struct ifnet *ifp = na->ifp; 349 int ret = 0; 350 351 nm_os_ifnet_lock(); 352 if (intercept) { 353 if (gna->save_if_input) { 354 nm_prerr("RX on %s already intercepted", na->name); 355 ret = EBUSY; /* already set */ 356 goto out; 357 } 358 gna->save_if_input = ifp->if_input; 359 ifp->if_input = freebsd_generic_rx_handler; 360 } else { 361 if (!gna->save_if_input) { 362 nm_prerr("Failed to undo RX intercept on %s", 363 na->name); 364 ret = EINVAL; /* not saved */ 365 goto out; 366 } 367 ifp->if_input = gna->save_if_input; 368 gna->save_if_input = NULL; 369 } 370 out: 371 nm_os_ifnet_unlock(); 372 373 return ret; 374 } 375 376 377 /* 378 * Intercept the packet steering routine in the tx path, 379 * so that we can decide which queue is used for an mbuf. 380 * Second argument is non-zero to intercept, 0 to restore. 381 * On freebsd we just intercept if_transmit. 382 */ 383 int 384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 385 { 386 struct netmap_adapter *na = &gna->up.up; 387 struct ifnet *ifp = netmap_generic_getifp(gna); 388 389 nm_os_ifnet_lock(); 390 if (intercept) { 391 na->if_transmit = ifp->if_transmit; 392 ifp->if_transmit = netmap_transmit; 393 } else { 394 ifp->if_transmit = na->if_transmit; 395 } 396 nm_os_ifnet_unlock(); 397 398 return 0; 399 } 400 401 402 /* 403 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 404 * and non-zero on error (which may be packet drops or other errors). 405 * addr and len identify the netmap buffer, m is the (preallocated) 406 * mbuf to use for transmissions. 407 * 408 * We should add a reference to the mbuf so the m_freem() at the end 409 * of the transmission does not consume resources. 410 * 411 * On FreeBSD, and on multiqueue cards, we can force the queue using 412 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 413 * i = m->m_pkthdr.flowid % adapter->num_queues; 414 * else 415 * i = curcpu % adapter->num_queues; 416 * 417 */ 418 int 419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 420 { 421 int ret; 422 u_int len = a->len; 423 struct ifnet *ifp = a->ifp; 424 struct mbuf *m = a->m; 425 426 #if __FreeBSD_version < 1100000 427 /* 428 * Old FreeBSD versions. The mbuf has a cluster attached, 429 * we need to copy from the cluster to the netmap buffer. 430 */ 431 if (MBUF_REFCNT(m) != 1) { 432 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 433 panic("in generic_xmit_frame"); 434 } 435 if (m->m_ext.ext_size < len) { 436 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 437 len = m->m_ext.ext_size; 438 } 439 bcopy(a->addr, m->m_data, len); 440 #else /* __FreeBSD_version >= 1100000 */ 441 /* New FreeBSD versions. Link the external storage to 442 * the netmap buffer, so that no copy is necessary. */ 443 m->m_ext.ext_buf = m->m_data = a->addr; 444 m->m_ext.ext_size = len; 445 #endif /* __FreeBSD_version >= 1100000 */ 446 447 m->m_flags |= M_PKTHDR; 448 m->m_len = m->m_pkthdr.len = len; 449 450 /* mbuf refcnt is not contended, no need to use atomic 451 * (a memory barrier is enough). */ 452 SET_MBUF_REFCNT(m, 2); 453 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 454 m->m_pkthdr.flowid = a->ring_nr; 455 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 456 CURVNET_SET(ifp->if_vnet); 457 ret = NA(ifp)->if_transmit(ifp, m); 458 CURVNET_RESTORE(); 459 return ret ? -1 : 0; 460 } 461 462 463 #if __FreeBSD_version >= 1100005 464 struct netmap_adapter * 465 netmap_getna(if_t ifp) 466 { 467 return (NA((struct ifnet *)ifp)); 468 } 469 #endif /* __FreeBSD_version >= 1100005 */ 470 471 /* 472 * The following two functions are empty until we have a generic 473 * way to extract the info from the ifp 474 */ 475 int 476 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 477 { 478 return 0; 479 } 480 481 482 void 483 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 484 { 485 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 486 487 *txq = num_rings; 488 *rxq = num_rings; 489 } 490 491 void 492 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 493 { 494 495 gna->rxsg = 1; /* Supported through m_copydata. */ 496 gna->txqdisc = 0; /* Not supported. */ 497 } 498 499 void 500 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 501 { 502 mit->mit_pending = 0; 503 mit->mit_ring_idx = idx; 504 mit->mit_na = na; 505 } 506 507 508 void 509 nm_os_mitigation_start(struct nm_generic_mit *mit) 510 { 511 } 512 513 514 void 515 nm_os_mitigation_restart(struct nm_generic_mit *mit) 516 { 517 } 518 519 520 int 521 nm_os_mitigation_active(struct nm_generic_mit *mit) 522 { 523 524 return 0; 525 } 526 527 528 void 529 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 530 { 531 } 532 533 static int 534 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 535 { 536 537 return EINVAL; 538 } 539 540 static void 541 nm_vi_start(struct ifnet *ifp) 542 { 543 panic("nm_vi_start() must not be called"); 544 } 545 546 /* 547 * Index manager of persistent virtual interfaces. 548 * It is used to decide the lowest byte of the MAC address. 549 * We use the same algorithm with management of bridge port index. 550 */ 551 #define NM_VI_MAX 255 552 static struct { 553 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 554 uint8_t active; 555 struct mtx lock; 556 } nm_vi_indices; 557 558 void 559 nm_os_vi_init_index(void) 560 { 561 int i; 562 for (i = 0; i < NM_VI_MAX; i++) 563 nm_vi_indices.index[i] = i; 564 nm_vi_indices.active = 0; 565 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 566 } 567 568 /* return -1 if no index available */ 569 static int 570 nm_vi_get_index(void) 571 { 572 int ret; 573 574 mtx_lock(&nm_vi_indices.lock); 575 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 576 nm_vi_indices.index[nm_vi_indices.active++]; 577 mtx_unlock(&nm_vi_indices.lock); 578 return ret; 579 } 580 581 static void 582 nm_vi_free_index(uint8_t val) 583 { 584 int i, lim; 585 586 mtx_lock(&nm_vi_indices.lock); 587 lim = nm_vi_indices.active; 588 for (i = 0; i < lim; i++) { 589 if (nm_vi_indices.index[i] == val) { 590 /* swap index[lim-1] and j */ 591 int tmp = nm_vi_indices.index[lim-1]; 592 nm_vi_indices.index[lim-1] = val; 593 nm_vi_indices.index[i] = tmp; 594 nm_vi_indices.active--; 595 break; 596 } 597 } 598 if (lim == nm_vi_indices.active) 599 nm_prerr("Index %u not found", val); 600 mtx_unlock(&nm_vi_indices.lock); 601 } 602 #undef NM_VI_MAX 603 604 /* 605 * Implementation of a netmap-capable virtual interface that 606 * registered to the system. 607 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 608 * 609 * Note: Linux sets refcount to 0 on allocation of net_device, 610 * then increments it on registration to the system. 611 * FreeBSD sets refcount to 1 on if_alloc(), and does not 612 * increment this refcount on if_attach(). 613 */ 614 int 615 nm_os_vi_persist(const char *name, struct ifnet **ret) 616 { 617 struct ifnet *ifp; 618 u_short macaddr_hi; 619 uint32_t macaddr_mid; 620 u_char eaddr[6]; 621 int unit = nm_vi_get_index(); /* just to decide MAC address */ 622 623 if (unit < 0) 624 return EBUSY; 625 /* 626 * We use the same MAC address generation method with tap 627 * except for the highest octet is 00:be instead of 00:bd 628 */ 629 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 630 macaddr_mid = (uint32_t) ticks; 631 bcopy(&macaddr_hi, eaddr, sizeof(short)); 632 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 633 eaddr[5] = (uint8_t)unit; 634 635 ifp = if_alloc(IFT_ETHER); 636 if (ifp == NULL) { 637 nm_prerr("if_alloc failed"); 638 return ENOMEM; 639 } 640 if_initname(ifp, name, IF_DUNIT_NONE); 641 ifp->if_mtu = 65536; 642 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 643 ifp->if_init = (void *)nm_vi_dummy; 644 ifp->if_ioctl = nm_vi_dummy; 645 ifp->if_start = nm_vi_start; 646 ifp->if_mtu = ETHERMTU; 647 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 648 ifp->if_capabilities |= IFCAP_LINKSTATE; 649 ifp->if_capenable |= IFCAP_LINKSTATE; 650 651 ether_ifattach(ifp, eaddr); 652 *ret = ifp; 653 return 0; 654 } 655 656 /* unregister from the system and drop the final refcount */ 657 void 658 nm_os_vi_detach(struct ifnet *ifp) 659 { 660 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 661 ether_ifdetach(ifp); 662 if_free(ifp); 663 } 664 665 #ifdef WITH_EXTMEM 666 #include <vm/vm_map.h> 667 #include <vm/vm_extern.h> 668 #include <vm/vm_kern.h> 669 struct nm_os_extmem { 670 vm_object_t obj; 671 vm_offset_t kva; 672 vm_offset_t size; 673 uintptr_t scan; 674 }; 675 676 void 677 nm_os_extmem_delete(struct nm_os_extmem *e) 678 { 679 nm_prinf("freeing %zx bytes", (size_t)e->size); 680 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 681 nm_os_free(e); 682 } 683 684 char * 685 nm_os_extmem_nextpage(struct nm_os_extmem *e) 686 { 687 char *rv = NULL; 688 if (e->scan < e->kva + e->size) { 689 rv = (char *)e->scan; 690 e->scan += PAGE_SIZE; 691 } 692 return rv; 693 } 694 695 int 696 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 697 { 698 return (e1->obj == e2->obj); 699 } 700 701 int 702 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 703 { 704 return e->size >> PAGE_SHIFT; 705 } 706 707 struct nm_os_extmem * 708 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 709 { 710 vm_map_t map; 711 vm_map_entry_t entry; 712 vm_object_t obj; 713 vm_prot_t prot; 714 vm_pindex_t index; 715 boolean_t wired; 716 struct nm_os_extmem *e = NULL; 717 int rv, error = 0; 718 719 e = nm_os_malloc(sizeof(*e)); 720 if (e == NULL) { 721 error = ENOMEM; 722 goto out; 723 } 724 725 map = &curthread->td_proc->p_vmspace->vm_map; 726 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 727 &obj, &index, &prot, &wired); 728 if (rv != KERN_SUCCESS) { 729 nm_prerr("address %lx not found", p); 730 error = vm_mmap_to_errno(rv); 731 goto out_free; 732 } 733 vm_object_reference(obj); 734 735 /* check that we are given the whole vm_object ? */ 736 vm_map_lookup_done(map, entry); 737 738 e->obj = obj; 739 /* Wire the memory and add the vm_object to the kernel map, 740 * to make sure that it is not freed even if all the processes 741 * that are mmap()ing should munmap() it. 742 */ 743 e->kva = vm_map_min(kernel_map); 744 e->size = obj->size << PAGE_SHIFT; 745 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 746 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 747 VM_PROT_READ | VM_PROT_WRITE, 0); 748 if (rv != KERN_SUCCESS) { 749 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 750 error = vm_mmap_to_errno(rv); 751 goto out_rel; 752 } 753 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 754 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 755 if (rv != KERN_SUCCESS) { 756 nm_prerr("vm_map_wire failed"); 757 error = vm_mmap_to_errno(rv); 758 goto out_rem; 759 } 760 761 e->scan = e->kva; 762 763 return e; 764 765 out_rem: 766 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 767 out_rel: 768 vm_object_deallocate(e->obj); 769 e->obj = NULL; 770 out_free: 771 nm_os_free(e); 772 out: 773 if (perror) 774 *perror = error; 775 return NULL; 776 } 777 #endif /* WITH_EXTMEM */ 778 779 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 780 781 #ifdef WITH_PTNETMAP 782 #include <sys/bus.h> 783 #include <sys/rman.h> 784 #include <machine/bus.h> /* bus_dmamap_* */ 785 #include <machine/resource.h> 786 #include <dev/pci/pcivar.h> 787 #include <dev/pci/pcireg.h> 788 /* 789 * ptnetmap memory device (memdev) for freebsd guest, 790 * ssed to expose host netmap memory to the guest through a PCI BAR. 791 */ 792 793 /* 794 * ptnetmap memdev private data structure 795 */ 796 struct ptnetmap_memdev { 797 device_t dev; 798 struct resource *pci_io; 799 struct resource *pci_mem; 800 struct netmap_mem_d *nm_mem; 801 }; 802 803 static int ptn_memdev_probe(device_t); 804 static int ptn_memdev_attach(device_t); 805 static int ptn_memdev_detach(device_t); 806 static int ptn_memdev_shutdown(device_t); 807 808 static device_method_t ptn_memdev_methods[] = { 809 DEVMETHOD(device_probe, ptn_memdev_probe), 810 DEVMETHOD(device_attach, ptn_memdev_attach), 811 DEVMETHOD(device_detach, ptn_memdev_detach), 812 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 813 DEVMETHOD_END 814 }; 815 816 static driver_t ptn_memdev_driver = { 817 PTNETMAP_MEMDEV_NAME, 818 ptn_memdev_methods, 819 sizeof(struct ptnetmap_memdev), 820 }; 821 822 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 823 * below. */ 824 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 825 SI_ORDER_MIDDLE + 1); 826 827 /* 828 * Map host netmap memory through PCI-BAR in the guest OS, 829 * returning physical (nm_paddr) and virtual (nm_addr) addresses 830 * of the netmap memory mapped in the guest. 831 */ 832 int 833 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 834 void **nm_addr, uint64_t *mem_size) 835 { 836 int rid; 837 838 nm_prinf("ptn_memdev_driver iomap"); 839 840 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 841 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 842 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 843 (*mem_size << 32); 844 845 /* map memory allocator */ 846 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 847 &rid, 0, ~0, *mem_size, RF_ACTIVE); 848 if (ptn_dev->pci_mem == NULL) { 849 *nm_paddr = 0; 850 *nm_addr = NULL; 851 return ENOMEM; 852 } 853 854 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 855 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 856 857 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 858 PTNETMAP_MEM_PCI_BAR, 859 (unsigned long)(*nm_paddr), 860 (unsigned long)rman_get_size(ptn_dev->pci_mem), 861 (unsigned long)*mem_size); 862 return (0); 863 } 864 865 uint32_t 866 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 867 { 868 return bus_read_4(ptn_dev->pci_io, reg); 869 } 870 871 /* Unmap host netmap memory. */ 872 void 873 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 874 { 875 nm_prinf("ptn_memdev_driver iounmap"); 876 877 if (ptn_dev->pci_mem) { 878 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 879 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 880 ptn_dev->pci_mem = NULL; 881 } 882 } 883 884 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 885 * positive on failure */ 886 static int 887 ptn_memdev_probe(device_t dev) 888 { 889 char desc[256]; 890 891 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 892 return (ENXIO); 893 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 894 return (ENXIO); 895 896 snprintf(desc, sizeof(desc), "%s PCI adapter", 897 PTNETMAP_MEMDEV_NAME); 898 device_set_desc_copy(dev, desc); 899 900 return (BUS_PROBE_DEFAULT); 901 } 902 903 /* Device initialization routine. */ 904 static int 905 ptn_memdev_attach(device_t dev) 906 { 907 struct ptnetmap_memdev *ptn_dev; 908 int rid; 909 uint16_t mem_id; 910 911 ptn_dev = device_get_softc(dev); 912 ptn_dev->dev = dev; 913 914 pci_enable_busmaster(dev); 915 916 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 917 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 918 RF_ACTIVE); 919 if (ptn_dev->pci_io == NULL) { 920 device_printf(dev, "cannot map I/O space\n"); 921 return (ENXIO); 922 } 923 924 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 925 926 /* create guest allocator */ 927 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 928 if (ptn_dev->nm_mem == NULL) { 929 ptn_memdev_detach(dev); 930 return (ENOMEM); 931 } 932 netmap_mem_get(ptn_dev->nm_mem); 933 934 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 935 936 return (0); 937 } 938 939 /* Device removal routine. */ 940 static int 941 ptn_memdev_detach(device_t dev) 942 { 943 struct ptnetmap_memdev *ptn_dev; 944 945 ptn_dev = device_get_softc(dev); 946 947 if (ptn_dev->nm_mem) { 948 nm_prinf("ptnetmap memdev detached, host memid %u", 949 netmap_mem_get_id(ptn_dev->nm_mem)); 950 netmap_mem_put(ptn_dev->nm_mem); 951 ptn_dev->nm_mem = NULL; 952 } 953 if (ptn_dev->pci_mem) { 954 bus_release_resource(dev, SYS_RES_MEMORY, 955 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 956 ptn_dev->pci_mem = NULL; 957 } 958 if (ptn_dev->pci_io) { 959 bus_release_resource(dev, SYS_RES_IOPORT, 960 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 961 ptn_dev->pci_io = NULL; 962 } 963 964 return (0); 965 } 966 967 static int 968 ptn_memdev_shutdown(device_t dev) 969 { 970 return bus_generic_shutdown(dev); 971 } 972 973 #endif /* WITH_PTNETMAP */ 974 975 /* 976 * In order to track whether pages are still mapped, we hook into 977 * the standard cdev_pager and intercept the constructor and 978 * destructor. 979 */ 980 981 struct netmap_vm_handle_t { 982 struct cdev *dev; 983 struct netmap_priv_d *priv; 984 }; 985 986 987 static int 988 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 989 vm_ooffset_t foff, struct ucred *cred, u_short *color) 990 { 991 struct netmap_vm_handle_t *vmh = handle; 992 993 if (netmap_verbose) 994 nm_prinf("handle %p size %jd prot %d foff %jd", 995 handle, (intmax_t)size, prot, (intmax_t)foff); 996 if (color) 997 *color = 0; 998 dev_ref(vmh->dev); 999 return 0; 1000 } 1001 1002 1003 static void 1004 netmap_dev_pager_dtor(void *handle) 1005 { 1006 struct netmap_vm_handle_t *vmh = handle; 1007 struct cdev *dev = vmh->dev; 1008 struct netmap_priv_d *priv = vmh->priv; 1009 1010 if (netmap_verbose) 1011 nm_prinf("handle %p", handle); 1012 netmap_dtor(priv); 1013 free(vmh, M_DEVBUF); 1014 dev_rel(dev); 1015 } 1016 1017 1018 static int 1019 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 1020 int prot, vm_page_t *mres) 1021 { 1022 struct netmap_vm_handle_t *vmh = object->handle; 1023 struct netmap_priv_d *priv = vmh->priv; 1024 struct netmap_adapter *na = priv->np_na; 1025 vm_paddr_t paddr; 1026 vm_page_t page; 1027 vm_memattr_t memattr; 1028 1029 nm_prdis("object %p offset %jd prot %d mres %p", 1030 object, (intmax_t)offset, prot, mres); 1031 memattr = object->memattr; 1032 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1033 if (paddr == 0) 1034 return VM_PAGER_FAIL; 1035 1036 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1037 /* 1038 * If the passed in result page is a fake page, update it with 1039 * the new physical address. 1040 */ 1041 page = *mres; 1042 vm_page_updatefake(page, paddr, memattr); 1043 } else { 1044 /* 1045 * Replace the passed in reqpage page with our own fake page and 1046 * free up the all of the original pages. 1047 */ 1048 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1049 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1050 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1051 #endif /* VM_OBJECT_WUNLOCK */ 1052 1053 VM_OBJECT_WUNLOCK(object); 1054 page = vm_page_getfake(paddr, memattr); 1055 VM_OBJECT_WLOCK(object); 1056 vm_page_replace(page, object, (*mres)->pindex, *mres); 1057 *mres = page; 1058 } 1059 page->valid = VM_PAGE_BITS_ALL; 1060 return (VM_PAGER_OK); 1061 } 1062 1063 1064 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1065 .cdev_pg_ctor = netmap_dev_pager_ctor, 1066 .cdev_pg_dtor = netmap_dev_pager_dtor, 1067 .cdev_pg_fault = netmap_dev_pager_fault, 1068 }; 1069 1070 1071 static int 1072 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1073 vm_size_t objsize, vm_object_t *objp, int prot) 1074 { 1075 int error; 1076 struct netmap_vm_handle_t *vmh; 1077 struct netmap_priv_d *priv; 1078 vm_object_t obj; 1079 1080 if (netmap_verbose) 1081 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1082 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1083 1084 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1085 M_NOWAIT | M_ZERO); 1086 if (vmh == NULL) 1087 return ENOMEM; 1088 vmh->dev = cdev; 1089 1090 NMG_LOCK(); 1091 error = devfs_get_cdevpriv((void**)&priv); 1092 if (error) 1093 goto err_unlock; 1094 if (priv->np_nifp == NULL) { 1095 error = EINVAL; 1096 goto err_unlock; 1097 } 1098 vmh->priv = priv; 1099 priv->np_refs++; 1100 NMG_UNLOCK(); 1101 1102 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1103 &netmap_cdev_pager_ops, objsize, prot, 1104 *foff, NULL); 1105 if (obj == NULL) { 1106 nm_prerr("cdev_pager_allocate failed"); 1107 error = EINVAL; 1108 goto err_deref; 1109 } 1110 1111 *objp = obj; 1112 return 0; 1113 1114 err_deref: 1115 NMG_LOCK(); 1116 priv->np_refs--; 1117 err_unlock: 1118 NMG_UNLOCK(); 1119 // err: 1120 free(vmh, M_DEVBUF); 1121 return error; 1122 } 1123 1124 /* 1125 * On FreeBSD the close routine is only called on the last close on 1126 * the device (/dev/netmap) so we cannot do anything useful. 1127 * To track close() on individual file descriptors we pass netmap_dtor() to 1128 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1129 * when the last fd pointing to the device is closed. 1130 * 1131 * Note that FreeBSD does not even munmap() on close() so we also have 1132 * to track mmap() ourselves, and postpone the call to 1133 * netmap_dtor() is called when the process has no open fds and no active 1134 * memory maps on /dev/netmap, as in linux. 1135 */ 1136 static int 1137 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1138 { 1139 if (netmap_verbose) 1140 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1141 dev, fflag, devtype, td); 1142 return 0; 1143 } 1144 1145 1146 static int 1147 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1148 { 1149 struct netmap_priv_d *priv; 1150 int error; 1151 1152 (void)dev; 1153 (void)oflags; 1154 (void)devtype; 1155 (void)td; 1156 1157 NMG_LOCK(); 1158 priv = netmap_priv_new(); 1159 if (priv == NULL) { 1160 error = ENOMEM; 1161 goto out; 1162 } 1163 error = devfs_set_cdevpriv(priv, netmap_dtor); 1164 if (error) { 1165 netmap_priv_delete(priv); 1166 } 1167 out: 1168 NMG_UNLOCK(); 1169 return error; 1170 } 1171 1172 /******************** kthread wrapper ****************/ 1173 #include <sys/sysproto.h> 1174 u_int 1175 nm_os_ncpus(void) 1176 { 1177 return mp_maxid + 1; 1178 } 1179 1180 struct nm_kctx_ctx { 1181 /* Userspace thread (kthread creator). */ 1182 struct thread *user_td; 1183 1184 /* worker function and parameter */ 1185 nm_kctx_worker_fn_t worker_fn; 1186 void *worker_private; 1187 1188 struct nm_kctx *nmk; 1189 1190 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1191 long type; 1192 }; 1193 1194 struct nm_kctx { 1195 struct thread *worker; 1196 struct mtx worker_lock; 1197 struct nm_kctx_ctx worker_ctx; 1198 int run; /* used to stop kthread */ 1199 int attach_user; /* kthread attached to user_process */ 1200 int affinity; 1201 }; 1202 1203 static void 1204 nm_kctx_worker(void *data) 1205 { 1206 struct nm_kctx *nmk = data; 1207 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1208 1209 if (nmk->affinity >= 0) { 1210 thread_lock(curthread); 1211 sched_bind(curthread, nmk->affinity); 1212 thread_unlock(curthread); 1213 } 1214 1215 while (nmk->run) { 1216 /* 1217 * check if the parent process dies 1218 * (when kthread is attached to user process) 1219 */ 1220 if (ctx->user_td) { 1221 PROC_LOCK(curproc); 1222 thread_suspend_check(0); 1223 PROC_UNLOCK(curproc); 1224 } else { 1225 kthread_suspend_check(); 1226 } 1227 1228 /* Continuously execute worker process. */ 1229 ctx->worker_fn(ctx->worker_private); /* worker body */ 1230 } 1231 1232 kthread_exit(); 1233 } 1234 1235 void 1236 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1237 { 1238 nmk->affinity = affinity; 1239 } 1240 1241 struct nm_kctx * 1242 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1243 { 1244 struct nm_kctx *nmk = NULL; 1245 1246 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1247 if (!nmk) 1248 return NULL; 1249 1250 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1251 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1252 nmk->worker_ctx.worker_private = cfg->worker_private; 1253 nmk->worker_ctx.type = cfg->type; 1254 nmk->affinity = -1; 1255 1256 /* attach kthread to user process (ptnetmap) */ 1257 nmk->attach_user = cfg->attach_user; 1258 1259 return nmk; 1260 } 1261 1262 int 1263 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1264 { 1265 struct proc *p = NULL; 1266 int error = 0; 1267 1268 /* Temporarily disable this function as it is currently broken 1269 * and causes kernel crashes. The failure can be triggered by 1270 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1271 return EOPNOTSUPP; 1272 1273 if (nmk->worker) 1274 return EBUSY; 1275 1276 /* check if we want to attach kthread to user process */ 1277 if (nmk->attach_user) { 1278 nmk->worker_ctx.user_td = curthread; 1279 p = curthread->td_proc; 1280 } 1281 1282 /* enable kthread main loop */ 1283 nmk->run = 1; 1284 /* create kthread */ 1285 if((error = kthread_add(nm_kctx_worker, nmk, p, 1286 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1287 nmk->worker_ctx.type))) { 1288 goto err; 1289 } 1290 1291 nm_prinf("nm_kthread started td %p", nmk->worker); 1292 1293 return 0; 1294 err: 1295 nm_prerr("nm_kthread start failed err %d", error); 1296 nmk->worker = NULL; 1297 return error; 1298 } 1299 1300 void 1301 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1302 { 1303 if (!nmk->worker) 1304 return; 1305 1306 /* tell to kthread to exit from main loop */ 1307 nmk->run = 0; 1308 1309 /* wake up kthread if it sleeps */ 1310 kthread_resume(nmk->worker); 1311 1312 nmk->worker = NULL; 1313 } 1314 1315 void 1316 nm_os_kctx_destroy(struct nm_kctx *nmk) 1317 { 1318 if (!nmk) 1319 return; 1320 1321 if (nmk->worker) 1322 nm_os_kctx_worker_stop(nmk); 1323 1324 free(nmk, M_DEVBUF); 1325 } 1326 1327 /******************** kqueue support ****************/ 1328 1329 /* 1330 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1331 * needs to call knote() to wake up kqueue listeners. 1332 * This operation is deferred to a taskqueue in order to avoid possible 1333 * lock order reversals; these may happen because knote() grabs a 1334 * private lock associated to the 'si' (see struct selinfo, 1335 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1336 * can be called while holding the lock associated to a different 1337 * 'si'. 1338 * When calling knote() we use a non-zero 'hint' argument to inform 1339 * the netmap_knrw() function that it is being called from 1340 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1341 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1342 * call netmap_poll(). 1343 * 1344 * The netmap_kqfilter() function registers one or another f_event 1345 * depending on read or write mode. A pointer to the struct 1346 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1347 * be passed to netmap_poll(). We pass NULL as a third argument to 1348 * netmap_poll(), so that the latter only runs the txsync/rxsync 1349 * (if necessary), and skips the nm_os_selrecord() calls. 1350 */ 1351 1352 1353 void 1354 nm_os_selwakeup(struct nm_selinfo *si) 1355 { 1356 selwakeuppri(&si->si, PI_NET); 1357 if (si->kqueue_users > 0) { 1358 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1359 } 1360 } 1361 1362 void 1363 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1364 { 1365 selrecord(td, &si->si); 1366 } 1367 1368 static void 1369 netmap_knrdetach(struct knote *kn) 1370 { 1371 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1372 struct nm_selinfo *si = priv->np_si[NR_RX]; 1373 1374 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1375 NMG_LOCK(); 1376 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1377 si->mtxname)); 1378 si->kqueue_users--; 1379 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1380 NMG_UNLOCK(); 1381 } 1382 1383 static void 1384 netmap_knwdetach(struct knote *kn) 1385 { 1386 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1387 struct nm_selinfo *si = priv->np_si[NR_TX]; 1388 1389 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1390 NMG_LOCK(); 1391 si->kqueue_users--; 1392 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1393 NMG_UNLOCK(); 1394 } 1395 1396 /* 1397 * Callback triggered by netmap notifications (see netmap_notify()), 1398 * and by the application calling kevent(). In the former case we 1399 * just return 1 (events ready), since we are not able to do better. 1400 * In the latter case we use netmap_poll() to see which events are 1401 * ready. 1402 */ 1403 static int 1404 netmap_knrw(struct knote *kn, long hint, int events) 1405 { 1406 struct netmap_priv_d *priv; 1407 int revents; 1408 1409 if (hint != 0) { 1410 /* Called from netmap_notify(), typically from a 1411 * thread different from the one issuing kevent(). 1412 * Assume we are ready. */ 1413 return 1; 1414 } 1415 1416 /* Called from kevent(). */ 1417 priv = kn->kn_hook; 1418 revents = netmap_poll(priv, events, /*thread=*/NULL); 1419 1420 return (events & revents) ? 1 : 0; 1421 } 1422 1423 static int 1424 netmap_knread(struct knote *kn, long hint) 1425 { 1426 return netmap_knrw(kn, hint, POLLIN); 1427 } 1428 1429 static int 1430 netmap_knwrite(struct knote *kn, long hint) 1431 { 1432 return netmap_knrw(kn, hint, POLLOUT); 1433 } 1434 1435 static struct filterops netmap_rfiltops = { 1436 .f_isfd = 1, 1437 .f_detach = netmap_knrdetach, 1438 .f_event = netmap_knread, 1439 }; 1440 1441 static struct filterops netmap_wfiltops = { 1442 .f_isfd = 1, 1443 .f_detach = netmap_knwdetach, 1444 .f_event = netmap_knwrite, 1445 }; 1446 1447 1448 /* 1449 * This is called when a thread invokes kevent() to record 1450 * a change in the configuration of the kqueue(). 1451 * The 'priv' is the one associated to the open netmap device. 1452 */ 1453 static int 1454 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1455 { 1456 struct netmap_priv_d *priv; 1457 int error; 1458 struct netmap_adapter *na; 1459 struct nm_selinfo *si; 1460 int ev = kn->kn_filter; 1461 1462 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1463 nm_prerr("bad filter request %d", ev); 1464 return 1; 1465 } 1466 error = devfs_get_cdevpriv((void**)&priv); 1467 if (error) { 1468 nm_prerr("device not yet setup"); 1469 return 1; 1470 } 1471 na = priv->np_na; 1472 if (na == NULL) { 1473 nm_prerr("no netmap adapter for this file descriptor"); 1474 return 1; 1475 } 1476 /* the si is indicated in the priv */ 1477 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1478 kn->kn_fop = (ev == EVFILT_WRITE) ? 1479 &netmap_wfiltops : &netmap_rfiltops; 1480 kn->kn_hook = priv; 1481 NMG_LOCK(); 1482 si->kqueue_users++; 1483 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1484 NMG_UNLOCK(); 1485 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1486 1487 return 0; 1488 } 1489 1490 static int 1491 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1492 { 1493 struct netmap_priv_d *priv; 1494 if (devfs_get_cdevpriv((void **)&priv)) { 1495 return POLLERR; 1496 } 1497 return netmap_poll(priv, events, td); 1498 } 1499 1500 static int 1501 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1502 int ffla __unused, struct thread *td) 1503 { 1504 int error; 1505 struct netmap_priv_d *priv; 1506 1507 CURVNET_SET(TD_TO_VNET(td)); 1508 error = devfs_get_cdevpriv((void **)&priv); 1509 if (error) { 1510 /* XXX ENOENT should be impossible, since the priv 1511 * is now created in the open */ 1512 if (error == ENOENT) 1513 error = ENXIO; 1514 goto out; 1515 } 1516 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1517 out: 1518 CURVNET_RESTORE(); 1519 1520 return error; 1521 } 1522 1523 void 1524 nm_os_onattach(struct ifnet *ifp) 1525 { 1526 ifp->if_capabilities |= IFCAP_NETMAP; 1527 } 1528 1529 void 1530 nm_os_onenter(struct ifnet *ifp) 1531 { 1532 struct netmap_adapter *na = NA(ifp); 1533 1534 na->if_transmit = ifp->if_transmit; 1535 ifp->if_transmit = netmap_transmit; 1536 ifp->if_capenable |= IFCAP_NETMAP; 1537 } 1538 1539 void 1540 nm_os_onexit(struct ifnet *ifp) 1541 { 1542 struct netmap_adapter *na = NA(ifp); 1543 1544 ifp->if_transmit = na->if_transmit; 1545 ifp->if_capenable &= ~IFCAP_NETMAP; 1546 } 1547 1548 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1549 struct cdevsw netmap_cdevsw = { 1550 .d_version = D_VERSION, 1551 .d_name = "netmap", 1552 .d_open = netmap_open, 1553 .d_mmap_single = netmap_mmap_single, 1554 .d_ioctl = freebsd_netmap_ioctl, 1555 .d_poll = freebsd_netmap_poll, 1556 .d_kqfilter = netmap_kqfilter, 1557 .d_close = netmap_close, 1558 }; 1559 /*--- end of kqueue support ----*/ 1560 1561 /* 1562 * Kernel entry point. 1563 * 1564 * Initialize/finalize the module and return. 1565 * 1566 * Return 0 on success, errno on failure. 1567 */ 1568 static int 1569 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1570 { 1571 int error = 0; 1572 1573 switch (event) { 1574 case MOD_LOAD: 1575 error = netmap_init(); 1576 break; 1577 1578 case MOD_UNLOAD: 1579 /* 1580 * if some one is still using netmap, 1581 * then the module can not be unloaded. 1582 */ 1583 if (netmap_use_count) { 1584 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1585 netmap_use_count); 1586 error = EBUSY; 1587 break; 1588 } 1589 netmap_fini(); 1590 break; 1591 1592 default: 1593 error = EOPNOTSUPP; 1594 break; 1595 } 1596 1597 return (error); 1598 } 1599 1600 #ifdef DEV_MODULE_ORDERED 1601 /* 1602 * The netmap module contains three drivers: (i) the netmap character device 1603 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1604 * device driver. The attach() routines of both (ii) and (iii) need the 1605 * lock of the global allocator, and such lock is initialized in netmap_init(), 1606 * which is part of (i). 1607 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1608 * the 'order' parameter of driver declaration macros. For (i), we specify 1609 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1610 * macros for (ii) and (iii). 1611 */ 1612 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1613 #else /* !DEV_MODULE_ORDERED */ 1614 DEV_MODULE(netmap, netmap_loader, NULL); 1615 #endif /* DEV_MODULE_ORDERED */ 1616 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1617 MODULE_VERSION(netmap, 1); 1618 /* reduce conditional code */ 1619 // linux API, use for the knlist in FreeBSD 1620 /* use a private mutex for the knlist */ 1621