1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include "opt_inet.h" 29 #include "opt_inet6.h" 30 31 #include <sys/param.h> 32 #include <sys/module.h> 33 #include <sys/errno.h> 34 #include <sys/eventhandler.h> 35 #include <sys/jail.h> 36 #include <sys/poll.h> /* POLLIN, POLLOUT */ 37 #include <sys/kernel.h> /* types used in module initialization */ 38 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 39 #include <sys/endian.h> 40 #include <sys/syscallsubr.h> /* kern_ioctl() */ 41 42 #include <sys/rwlock.h> 43 44 #include <vm/vm.h> /* vtophys */ 45 #include <vm/pmap.h> /* vtophys */ 46 #include <vm/vm_param.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_pager.h> 50 #include <vm/uma.h> 51 52 53 #include <sys/malloc.h> 54 #include <sys/socket.h> /* sockaddrs */ 55 #include <sys/selinfo.h> 56 #include <sys/kthread.h> /* kthread_add() */ 57 #include <sys/proc.h> /* PROC_LOCK() */ 58 #include <sys/unistd.h> /* RFNOWAIT */ 59 #include <sys/sched.h> /* sched_bind() */ 60 #include <sys/smp.h> /* mp_maxid */ 61 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_types.h> /* IFT_ETHER */ 65 #include <net/ethernet.h> /* ether_ifdetach */ 66 #include <net/if_dl.h> /* LLADDR */ 67 #include <machine/bus.h> /* bus_dmamap_* */ 68 #include <netinet/in.h> /* in6_cksum_pseudo() */ 69 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 70 71 #include <net/netmap.h> 72 #include <dev/netmap/netmap_kern.h> 73 #include <net/netmap_virt.h> 74 #include <dev/netmap/netmap_mem2.h> 75 76 77 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 78 79 static void 80 nm_kqueue_notify(void *opaque, int pending) 81 { 82 struct nm_selinfo *si = opaque; 83 84 /* We use a non-zero hint to distinguish this notification call 85 * from the call done in kqueue_scan(), which uses hint=0. 86 */ 87 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 88 } 89 90 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 91 int err; 92 93 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 94 si->ntfytq = taskqueue_create(name, M_NOWAIT, 95 taskqueue_thread_enqueue, &si->ntfytq); 96 if (si->ntfytq == NULL) 97 return -ENOMEM; 98 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 99 if (err) { 100 taskqueue_free(si->ntfytq); 101 si->ntfytq = NULL; 102 return err; 103 } 104 105 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 106 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 107 knlist_init_mtx(&si->si.si_note, &si->m); 108 si->kqueue_users = 0; 109 110 return (0); 111 } 112 113 void 114 nm_os_selinfo_uninit(NM_SELINFO_T *si) 115 { 116 if (si->ntfytq == NULL) { 117 return; /* si was not initialized */ 118 } 119 taskqueue_drain(si->ntfytq, &si->ntfytask); 120 taskqueue_free(si->ntfytq); 121 si->ntfytq = NULL; 122 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 123 knlist_destroy(&si->si.si_note); 124 /* now we don't need the mutex anymore */ 125 mtx_destroy(&si->m); 126 } 127 128 void * 129 nm_os_malloc(size_t size) 130 { 131 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 132 } 133 134 void * 135 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 136 { 137 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 138 } 139 140 void 141 nm_os_free(void *addr) 142 { 143 free(addr, M_DEVBUF); 144 } 145 146 void 147 nm_os_ifnet_lock(void) 148 { 149 IFNET_RLOCK(); 150 } 151 152 void 153 nm_os_ifnet_unlock(void) 154 { 155 IFNET_RUNLOCK(); 156 } 157 158 static int netmap_use_count = 0; 159 160 void 161 nm_os_get_module(void) 162 { 163 netmap_use_count++; 164 } 165 166 void 167 nm_os_put_module(void) 168 { 169 netmap_use_count--; 170 } 171 172 static void 173 netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp) 174 { 175 netmap_undo_zombie(ifp); 176 } 177 178 static void 179 netmap_ifnet_departure_handler(void *arg __unused, if_t ifp) 180 { 181 netmap_make_zombie(ifp); 182 } 183 184 static eventhandler_tag nm_ifnet_ah_tag; 185 static eventhandler_tag nm_ifnet_dh_tag; 186 187 int 188 nm_os_ifnet_init(void) 189 { 190 nm_ifnet_ah_tag = 191 EVENTHANDLER_REGISTER(ifnet_arrival_event, 192 netmap_ifnet_arrival_handler, 193 NULL, EVENTHANDLER_PRI_ANY); 194 nm_ifnet_dh_tag = 195 EVENTHANDLER_REGISTER(ifnet_departure_event, 196 netmap_ifnet_departure_handler, 197 NULL, EVENTHANDLER_PRI_ANY); 198 return 0; 199 } 200 201 void 202 nm_os_ifnet_fini(void) 203 { 204 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 205 nm_ifnet_ah_tag); 206 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 207 nm_ifnet_dh_tag); 208 } 209 210 unsigned 211 nm_os_ifnet_mtu(if_t ifp) 212 { 213 return if_getmtu(ifp); 214 } 215 216 rawsum_t 217 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 218 { 219 /* TODO XXX please use the FreeBSD implementation for this. */ 220 uint16_t *words = (uint16_t *)data; 221 int nw = len / 2; 222 int i; 223 224 for (i = 0; i < nw; i++) 225 cur_sum += be16toh(words[i]); 226 227 if (len & 1) 228 cur_sum += (data[len-1] << 8); 229 230 return cur_sum; 231 } 232 233 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 234 * return value is in network byte order. 235 */ 236 uint16_t 237 nm_os_csum_fold(rawsum_t cur_sum) 238 { 239 /* TODO XXX please use the FreeBSD implementation for this. */ 240 while (cur_sum >> 16) 241 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 242 243 return htobe16((~cur_sum) & 0xFFFF); 244 } 245 246 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 247 { 248 #if 0 249 return in_cksum_hdr((void *)iph); 250 #else 251 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 252 #endif 253 } 254 255 void 256 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 257 size_t datalen, uint16_t *check) 258 { 259 #ifdef INET 260 uint16_t pseudolen = datalen + iph->protocol; 261 262 /* Compute and insert the pseudo-header checksum. */ 263 *check = in_pseudo(iph->saddr, iph->daddr, 264 htobe16(pseudolen)); 265 /* Compute the checksum on TCP/UDP header + payload 266 * (includes the pseudo-header). 267 */ 268 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 269 #else 270 static int notsupported = 0; 271 if (!notsupported) { 272 notsupported = 1; 273 nm_prerr("inet4 segmentation not supported"); 274 } 275 #endif 276 } 277 278 void 279 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 280 size_t datalen, uint16_t *check) 281 { 282 #ifdef INET6 283 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 284 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 285 #else 286 static int notsupported = 0; 287 if (!notsupported) { 288 notsupported = 1; 289 nm_prerr("inet6 segmentation not supported"); 290 } 291 #endif 292 } 293 294 /* on FreeBSD we send up one packet at a time */ 295 void * 296 nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev) 297 { 298 NA(ifp)->if_input(ifp, m); 299 return NULL; 300 } 301 302 int 303 nm_os_mbuf_has_csum_offld(struct mbuf *m) 304 { 305 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 306 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 307 CSUM_SCTP_IPV6); 308 } 309 310 int 311 nm_os_mbuf_has_seg_offld(struct mbuf *m) 312 { 313 return m->m_pkthdr.csum_flags & CSUM_TSO; 314 } 315 316 static void 317 freebsd_generic_rx_handler(if_t ifp, struct mbuf *m) 318 { 319 int stolen; 320 321 if (unlikely(!NM_NA_VALID(ifp))) { 322 nm_prlim(1, "Warning: RX packet intercepted, but no" 323 " emulated adapter"); 324 return; 325 } 326 327 do { 328 struct mbuf *n; 329 330 n = m->m_nextpkt; 331 m->m_nextpkt = NULL; 332 stolen = generic_rx_handler(ifp, m); 333 if (!stolen) { 334 NA(ifp)->if_input(ifp, m); 335 } 336 m = n; 337 } while (m != NULL); 338 } 339 340 /* 341 * Intercept the rx routine in the standard device driver. 342 * Second argument is non-zero to intercept, 0 to restore 343 */ 344 int 345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 346 { 347 struct netmap_adapter *na = &gna->up.up; 348 if_t ifp = na->ifp; 349 int ret = 0; 350 351 nm_os_ifnet_lock(); 352 if (intercept) { 353 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 354 if_setinputfn(ifp, freebsd_generic_rx_handler); 355 } else { 356 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 357 if_setinputfn(ifp, na->if_input); 358 } 359 nm_os_ifnet_unlock(); 360 361 return ret; 362 } 363 364 365 /* 366 * Intercept the packet steering routine in the tx path, 367 * so that we can decide which queue is used for an mbuf. 368 * Second argument is non-zero to intercept, 0 to restore. 369 * On freebsd we just intercept if_transmit. 370 */ 371 int 372 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 373 { 374 struct netmap_adapter *na = &gna->up.up; 375 if_t ifp = netmap_generic_getifp(gna); 376 377 nm_os_ifnet_lock(); 378 if (intercept) { 379 na->if_transmit = if_gettransmitfn(ifp); 380 if_settransmitfn(ifp, netmap_transmit); 381 } else { 382 if_settransmitfn(ifp, na->if_transmit); 383 } 384 nm_os_ifnet_unlock(); 385 386 return 0; 387 } 388 389 390 /* 391 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 392 * and non-zero on error (which may be packet drops or other errors). 393 * addr and len identify the netmap buffer, m is the (preallocated) 394 * mbuf to use for transmissions. 395 * 396 * Zero-copy transmission is possible if netmap is attached directly to a 397 * hardware interface: when cleaning we simply wait for the mbuf cluster 398 * refcount to decrement to 1, indicating that the driver has completed 399 * transmission and is done with the buffer. However, this approach can 400 * lead to queue deadlocks when attaching to software interfaces (e.g., 401 * if_bridge) since we cannot rely on member ports to promptly reclaim 402 * transmitted mbufs. Since there is no easy way to distinguish these 403 * cases, we currently always copy the buffer. 404 * 405 * On multiqueue cards, we can force the queue using 406 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 407 * i = m->m_pkthdr.flowid % adapter->num_queues; 408 * else 409 * i = curcpu % adapter->num_queues; 410 */ 411 int 412 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 413 { 414 int ret; 415 u_int len = a->len; 416 if_t ifp = a->ifp; 417 struct mbuf *m = a->m; 418 419 M_ASSERTPKTHDR(m); 420 KASSERT((m->m_flags & M_EXT) != 0, 421 ("%s: mbuf %p has no cluster", __func__, m)); 422 423 if (MBUF_REFCNT(m) != 1) { 424 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 425 panic("in generic_xmit_frame"); 426 } 427 if (unlikely(m->m_ext.ext_size < len)) { 428 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 429 len = m->m_ext.ext_size; 430 } 431 432 m_copyback(m, 0, len, a->addr); 433 m->m_len = m->m_pkthdr.len = len; 434 SET_MBUF_REFCNT(m, 2); 435 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 436 m->m_pkthdr.flowid = a->ring_nr; 437 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 438 CURVNET_SET(if_getvnet(ifp)); 439 ret = NA(ifp)->if_transmit(ifp, m); 440 CURVNET_RESTORE(); 441 return ret ? -1 : 0; 442 } 443 444 struct netmap_adapter * 445 netmap_getna(if_t ifp) 446 { 447 return (NA(ifp)); 448 } 449 450 /* 451 * The following two functions are empty until we have a generic 452 * way to extract the info from the ifp 453 */ 454 int 455 nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx) 456 { 457 return 0; 458 } 459 460 461 void 462 nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq) 463 { 464 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 465 466 *txq = num_rings; 467 *rxq = num_rings; 468 } 469 470 void 471 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 472 { 473 474 gna->rxsg = 1; /* Supported through m_copydata. */ 475 gna->txqdisc = 0; /* Not supported. */ 476 } 477 478 void 479 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 480 { 481 mit->mit_pending = 0; 482 mit->mit_ring_idx = idx; 483 mit->mit_na = na; 484 } 485 486 487 void 488 nm_os_mitigation_start(struct nm_generic_mit *mit) 489 { 490 } 491 492 493 void 494 nm_os_mitigation_restart(struct nm_generic_mit *mit) 495 { 496 } 497 498 499 int 500 nm_os_mitigation_active(struct nm_generic_mit *mit) 501 { 502 503 return 0; 504 } 505 506 507 void 508 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 509 { 510 } 511 512 static int 513 nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr) 514 { 515 516 return EINVAL; 517 } 518 519 static void 520 nm_vi_start(if_t ifp) 521 { 522 panic("nm_vi_start() must not be called"); 523 } 524 525 /* 526 * Index manager of persistent virtual interfaces. 527 * It is used to decide the lowest byte of the MAC address. 528 * We use the same algorithm with management of bridge port index. 529 */ 530 #define NM_VI_MAX 255 531 static struct { 532 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 533 uint8_t active; 534 struct mtx lock; 535 } nm_vi_indices; 536 537 void 538 nm_os_vi_init_index(void) 539 { 540 int i; 541 for (i = 0; i < NM_VI_MAX; i++) 542 nm_vi_indices.index[i] = i; 543 nm_vi_indices.active = 0; 544 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 545 } 546 547 /* return -1 if no index available */ 548 static int 549 nm_vi_get_index(void) 550 { 551 int ret; 552 553 mtx_lock(&nm_vi_indices.lock); 554 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 555 nm_vi_indices.index[nm_vi_indices.active++]; 556 mtx_unlock(&nm_vi_indices.lock); 557 return ret; 558 } 559 560 static void 561 nm_vi_free_index(uint8_t val) 562 { 563 int i, lim; 564 565 mtx_lock(&nm_vi_indices.lock); 566 lim = nm_vi_indices.active; 567 for (i = 0; i < lim; i++) { 568 if (nm_vi_indices.index[i] == val) { 569 /* swap index[lim-1] and j */ 570 int tmp = nm_vi_indices.index[lim-1]; 571 nm_vi_indices.index[lim-1] = val; 572 nm_vi_indices.index[i] = tmp; 573 nm_vi_indices.active--; 574 break; 575 } 576 } 577 if (lim == nm_vi_indices.active) 578 nm_prerr("Index %u not found", val); 579 mtx_unlock(&nm_vi_indices.lock); 580 } 581 #undef NM_VI_MAX 582 583 /* 584 * Implementation of a netmap-capable virtual interface that 585 * registered to the system. 586 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 587 * 588 * Note: Linux sets refcount to 0 on allocation of net_device, 589 * then increments it on registration to the system. 590 * FreeBSD sets refcount to 1 on if_alloc(), and does not 591 * increment this refcount on if_attach(). 592 */ 593 int 594 nm_os_vi_persist(const char *name, if_t *ret) 595 { 596 if_t ifp; 597 u_short macaddr_hi; 598 uint32_t macaddr_mid; 599 u_char eaddr[6]; 600 int unit = nm_vi_get_index(); /* just to decide MAC address */ 601 602 if (unit < 0) 603 return EBUSY; 604 /* 605 * We use the same MAC address generation method with tap 606 * except for the highest octet is 00:be instead of 00:bd 607 */ 608 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 609 macaddr_mid = (uint32_t) ticks; 610 bcopy(&macaddr_hi, eaddr, sizeof(short)); 611 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 612 eaddr[5] = (uint8_t)unit; 613 614 ifp = if_alloc(IFT_ETHER); 615 if_initname(ifp, name, IF_DUNIT_NONE); 616 if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST); 617 if_setinitfn(ifp, (void *)nm_vi_dummy); 618 if_setioctlfn(ifp, nm_vi_dummy); 619 if_setstartfn(ifp, nm_vi_start); 620 if_setmtu(ifp, ETHERMTU); 621 if_setsendqlen(ifp, ifqmaxlen); 622 if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); 623 if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0); 624 625 ether_ifattach(ifp, eaddr); 626 *ret = ifp; 627 return 0; 628 } 629 630 /* unregister from the system and drop the final refcount */ 631 void 632 nm_os_vi_detach(if_t ifp) 633 { 634 nm_vi_free_index(((char *)if_getlladdr(ifp))[5]); 635 ether_ifdetach(ifp); 636 if_free(ifp); 637 } 638 639 #ifdef WITH_EXTMEM 640 #include <vm/vm_map.h> 641 #include <vm/vm_extern.h> 642 #include <vm/vm_kern.h> 643 struct nm_os_extmem { 644 vm_object_t obj; 645 vm_offset_t kva; 646 vm_offset_t size; 647 uintptr_t scan; 648 }; 649 650 void 651 nm_os_extmem_delete(struct nm_os_extmem *e) 652 { 653 nm_prinf("freeing %zx bytes", (size_t)e->size); 654 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 655 nm_os_free(e); 656 } 657 658 char * 659 nm_os_extmem_nextpage(struct nm_os_extmem *e) 660 { 661 char *rv = NULL; 662 if (e->scan < e->kva + e->size) { 663 rv = (char *)e->scan; 664 e->scan += PAGE_SIZE; 665 } 666 return rv; 667 } 668 669 int 670 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 671 { 672 return (e1->obj == e2->obj); 673 } 674 675 int 676 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 677 { 678 return e->size >> PAGE_SHIFT; 679 } 680 681 struct nm_os_extmem * 682 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 683 { 684 vm_map_t map; 685 vm_map_entry_t entry; 686 vm_object_t obj; 687 vm_prot_t prot; 688 vm_pindex_t index; 689 boolean_t wired; 690 struct nm_os_extmem *e = NULL; 691 int rv, error = 0; 692 693 e = nm_os_malloc(sizeof(*e)); 694 if (e == NULL) { 695 error = ENOMEM; 696 goto out; 697 } 698 699 map = &curthread->td_proc->p_vmspace->vm_map; 700 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 701 &obj, &index, &prot, &wired); 702 if (rv != KERN_SUCCESS) { 703 nm_prerr("address %lx not found", p); 704 error = vm_mmap_to_errno(rv); 705 goto out_free; 706 } 707 vm_object_reference(obj); 708 709 /* check that we are given the whole vm_object ? */ 710 vm_map_lookup_done(map, entry); 711 712 e->obj = obj; 713 /* Wire the memory and add the vm_object to the kernel map, 714 * to make sure that it is not freed even if all the processes 715 * that are mmap()ing should munmap() it. 716 */ 717 e->kva = vm_map_min(kernel_map); 718 e->size = obj->size << PAGE_SHIFT; 719 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 720 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 721 VM_PROT_READ | VM_PROT_WRITE, 0); 722 if (rv != KERN_SUCCESS) { 723 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 724 error = vm_mmap_to_errno(rv); 725 goto out_rel; 726 } 727 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 728 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 729 if (rv != KERN_SUCCESS) { 730 nm_prerr("vm_map_wire failed"); 731 error = vm_mmap_to_errno(rv); 732 goto out_rem; 733 } 734 735 e->scan = e->kva; 736 737 return e; 738 739 out_rem: 740 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 741 out_rel: 742 vm_object_deallocate(e->obj); 743 e->obj = NULL; 744 out_free: 745 nm_os_free(e); 746 out: 747 if (perror) 748 *perror = error; 749 return NULL; 750 } 751 #endif /* WITH_EXTMEM */ 752 753 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 754 755 #ifdef WITH_PTNETMAP 756 #include <sys/bus.h> 757 #include <sys/rman.h> 758 #include <machine/bus.h> /* bus_dmamap_* */ 759 #include <machine/resource.h> 760 #include <dev/pci/pcivar.h> 761 #include <dev/pci/pcireg.h> 762 /* 763 * ptnetmap memory device (memdev) for freebsd guest, 764 * ssed to expose host netmap memory to the guest through a PCI BAR. 765 */ 766 767 /* 768 * ptnetmap memdev private data structure 769 */ 770 struct ptnetmap_memdev { 771 device_t dev; 772 struct resource *pci_io; 773 struct resource *pci_mem; 774 struct netmap_mem_d *nm_mem; 775 }; 776 777 static int ptn_memdev_probe(device_t); 778 static int ptn_memdev_attach(device_t); 779 static int ptn_memdev_detach(device_t); 780 static int ptn_memdev_shutdown(device_t); 781 782 static device_method_t ptn_memdev_methods[] = { 783 DEVMETHOD(device_probe, ptn_memdev_probe), 784 DEVMETHOD(device_attach, ptn_memdev_attach), 785 DEVMETHOD(device_detach, ptn_memdev_detach), 786 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 787 DEVMETHOD_END 788 }; 789 790 static driver_t ptn_memdev_driver = { 791 PTNETMAP_MEMDEV_NAME, 792 ptn_memdev_methods, 793 sizeof(struct ptnetmap_memdev), 794 }; 795 796 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 797 * below. */ 798 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 799 SI_ORDER_MIDDLE + 1); 800 801 /* 802 * Map host netmap memory through PCI-BAR in the guest OS, 803 * returning physical (nm_paddr) and virtual (nm_addr) addresses 804 * of the netmap memory mapped in the guest. 805 */ 806 int 807 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 808 void **nm_addr, uint64_t *mem_size) 809 { 810 int rid; 811 812 nm_prinf("ptn_memdev_driver iomap"); 813 814 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 815 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 816 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 817 (*mem_size << 32); 818 819 /* map memory allocator */ 820 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 821 &rid, 0, ~0, *mem_size, RF_ACTIVE); 822 if (ptn_dev->pci_mem == NULL) { 823 *nm_paddr = 0; 824 *nm_addr = NULL; 825 return ENOMEM; 826 } 827 828 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 829 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 830 831 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 832 PTNETMAP_MEM_PCI_BAR, 833 (unsigned long)(*nm_paddr), 834 (unsigned long)rman_get_size(ptn_dev->pci_mem), 835 (unsigned long)*mem_size); 836 return (0); 837 } 838 839 uint32_t 840 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 841 { 842 return bus_read_4(ptn_dev->pci_io, reg); 843 } 844 845 /* Unmap host netmap memory. */ 846 void 847 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 848 { 849 nm_prinf("ptn_memdev_driver iounmap"); 850 851 if (ptn_dev->pci_mem) { 852 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 853 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 854 ptn_dev->pci_mem = NULL; 855 } 856 } 857 858 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 859 * positive on failure */ 860 static int 861 ptn_memdev_probe(device_t dev) 862 { 863 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 864 return (ENXIO); 865 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 866 return (ENXIO); 867 868 device_set_descf(dev, "%s PCI adapter", PTNETMAP_MEMDEV_NAME); 869 870 return (BUS_PROBE_DEFAULT); 871 } 872 873 /* Device initialization routine. */ 874 static int 875 ptn_memdev_attach(device_t dev) 876 { 877 struct ptnetmap_memdev *ptn_dev; 878 int rid; 879 uint16_t mem_id; 880 881 ptn_dev = device_get_softc(dev); 882 ptn_dev->dev = dev; 883 884 pci_enable_busmaster(dev); 885 886 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 887 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 888 RF_ACTIVE); 889 if (ptn_dev->pci_io == NULL) { 890 device_printf(dev, "cannot map I/O space\n"); 891 return (ENXIO); 892 } 893 894 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 895 896 /* create guest allocator */ 897 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 898 if (ptn_dev->nm_mem == NULL) { 899 ptn_memdev_detach(dev); 900 return (ENOMEM); 901 } 902 netmap_mem_get(ptn_dev->nm_mem); 903 904 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 905 906 return (0); 907 } 908 909 /* Device removal routine. */ 910 static int 911 ptn_memdev_detach(device_t dev) 912 { 913 struct ptnetmap_memdev *ptn_dev; 914 915 ptn_dev = device_get_softc(dev); 916 917 if (ptn_dev->nm_mem) { 918 nm_prinf("ptnetmap memdev detached, host memid %u", 919 netmap_mem_get_id(ptn_dev->nm_mem)); 920 netmap_mem_put(ptn_dev->nm_mem); 921 ptn_dev->nm_mem = NULL; 922 } 923 if (ptn_dev->pci_mem) { 924 bus_release_resource(dev, SYS_RES_MEMORY, 925 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 926 ptn_dev->pci_mem = NULL; 927 } 928 if (ptn_dev->pci_io) { 929 bus_release_resource(dev, SYS_RES_IOPORT, 930 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 931 ptn_dev->pci_io = NULL; 932 } 933 934 return (0); 935 } 936 937 static int 938 ptn_memdev_shutdown(device_t dev) 939 { 940 return bus_generic_shutdown(dev); 941 } 942 943 #endif /* WITH_PTNETMAP */ 944 945 /* 946 * In order to track whether pages are still mapped, we hook into 947 * the standard cdev_pager and intercept the constructor and 948 * destructor. 949 */ 950 951 struct netmap_vm_handle_t { 952 struct cdev *dev; 953 struct netmap_priv_d *priv; 954 }; 955 956 957 static int 958 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 959 vm_ooffset_t foff, struct ucred *cred, u_short *color) 960 { 961 struct netmap_vm_handle_t *vmh = handle; 962 963 if (netmap_verbose) 964 nm_prinf("handle %p size %jd prot %d foff %jd", 965 handle, (intmax_t)size, prot, (intmax_t)foff); 966 if (color) 967 *color = 0; 968 dev_ref(vmh->dev); 969 return 0; 970 } 971 972 973 static void 974 netmap_dev_pager_dtor(void *handle) 975 { 976 struct netmap_vm_handle_t *vmh = handle; 977 struct cdev *dev = vmh->dev; 978 struct netmap_priv_d *priv = vmh->priv; 979 980 if (netmap_verbose) 981 nm_prinf("handle %p", handle); 982 netmap_dtor(priv); 983 free(vmh, M_DEVBUF); 984 dev_rel(dev); 985 } 986 987 988 static int 989 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 990 int prot, vm_page_t *mres) 991 { 992 struct netmap_vm_handle_t *vmh = object->handle; 993 struct netmap_priv_d *priv = vmh->priv; 994 struct netmap_adapter *na = priv->np_na; 995 vm_paddr_t paddr; 996 vm_page_t page; 997 vm_memattr_t memattr; 998 999 nm_prdis("object %p offset %jd prot %d mres %p", 1000 object, (intmax_t)offset, prot, mres); 1001 memattr = object->memattr; 1002 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1003 if (paddr == 0) 1004 return VM_PAGER_FAIL; 1005 1006 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1007 /* 1008 * If the passed in result page is a fake page, update it with 1009 * the new physical address. 1010 */ 1011 page = *mres; 1012 vm_page_updatefake(page, paddr, memattr); 1013 } else { 1014 /* 1015 * Replace the passed in reqpage page with our own fake page and 1016 * free up the all of the original pages. 1017 */ 1018 VM_OBJECT_WUNLOCK(object); 1019 page = vm_page_getfake(paddr, memattr); 1020 VM_OBJECT_WLOCK(object); 1021 vm_page_replace(page, object, (*mres)->pindex, *mres); 1022 *mres = page; 1023 } 1024 page->valid = VM_PAGE_BITS_ALL; 1025 return (VM_PAGER_OK); 1026 } 1027 1028 1029 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1030 .cdev_pg_ctor = netmap_dev_pager_ctor, 1031 .cdev_pg_dtor = netmap_dev_pager_dtor, 1032 .cdev_pg_fault = netmap_dev_pager_fault, 1033 }; 1034 1035 1036 static int 1037 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1038 vm_size_t objsize, vm_object_t *objp, int prot) 1039 { 1040 int error; 1041 struct netmap_vm_handle_t *vmh; 1042 struct netmap_priv_d *priv; 1043 vm_object_t obj; 1044 1045 if (netmap_verbose) 1046 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1047 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1048 1049 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1050 M_NOWAIT | M_ZERO); 1051 if (vmh == NULL) 1052 return ENOMEM; 1053 vmh->dev = cdev; 1054 1055 NMG_LOCK(); 1056 error = devfs_get_cdevpriv((void**)&priv); 1057 if (error) 1058 goto err_unlock; 1059 if (priv->np_nifp == NULL) { 1060 error = EINVAL; 1061 goto err_unlock; 1062 } 1063 vmh->priv = priv; 1064 priv->np_refs++; 1065 NMG_UNLOCK(); 1066 1067 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1068 &netmap_cdev_pager_ops, objsize, prot, 1069 *foff, NULL); 1070 if (obj == NULL) { 1071 nm_prerr("cdev_pager_allocate failed"); 1072 error = EINVAL; 1073 goto err_deref; 1074 } 1075 1076 *objp = obj; 1077 return 0; 1078 1079 err_deref: 1080 NMG_LOCK(); 1081 priv->np_refs--; 1082 err_unlock: 1083 NMG_UNLOCK(); 1084 // err: 1085 free(vmh, M_DEVBUF); 1086 return error; 1087 } 1088 1089 /* 1090 * On FreeBSD the close routine is only called on the last close on 1091 * the device (/dev/netmap) so we cannot do anything useful. 1092 * To track close() on individual file descriptors we pass netmap_dtor() to 1093 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1094 * when the last fd pointing to the device is closed. 1095 * 1096 * Note that FreeBSD does not even munmap() on close() so we also have 1097 * to track mmap() ourselves, and postpone the call to 1098 * netmap_dtor() is called when the process has no open fds and no active 1099 * memory maps on /dev/netmap, as in linux. 1100 */ 1101 static int 1102 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1103 { 1104 if (netmap_verbose) 1105 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1106 dev, fflag, devtype, td); 1107 return 0; 1108 } 1109 1110 1111 static int 1112 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1113 { 1114 struct netmap_priv_d *priv; 1115 int error; 1116 1117 (void)dev; 1118 (void)oflags; 1119 (void)devtype; 1120 (void)td; 1121 1122 NMG_LOCK(); 1123 priv = netmap_priv_new(); 1124 if (priv == NULL) { 1125 error = ENOMEM; 1126 goto out; 1127 } 1128 error = devfs_set_cdevpriv(priv, netmap_dtor); 1129 if (error) { 1130 netmap_priv_delete(priv); 1131 } 1132 out: 1133 NMG_UNLOCK(); 1134 return error; 1135 } 1136 1137 /******************** kthread wrapper ****************/ 1138 #include <sys/sysproto.h> 1139 u_int 1140 nm_os_ncpus(void) 1141 { 1142 return mp_maxid + 1; 1143 } 1144 1145 struct nm_kctx_ctx { 1146 /* Userspace thread (kthread creator). */ 1147 struct thread *user_td; 1148 1149 /* worker function and parameter */ 1150 nm_kctx_worker_fn_t worker_fn; 1151 void *worker_private; 1152 1153 struct nm_kctx *nmk; 1154 1155 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1156 long type; 1157 }; 1158 1159 struct nm_kctx { 1160 struct thread *worker; 1161 struct mtx worker_lock; 1162 struct nm_kctx_ctx worker_ctx; 1163 int run; /* used to stop kthread */ 1164 int attach_user; /* kthread attached to user_process */ 1165 int affinity; 1166 }; 1167 1168 static void 1169 nm_kctx_worker(void *data) 1170 { 1171 struct nm_kctx *nmk = data; 1172 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1173 1174 if (nmk->affinity >= 0) { 1175 thread_lock(curthread); 1176 sched_bind(curthread, nmk->affinity); 1177 thread_unlock(curthread); 1178 } 1179 1180 while (nmk->run) { 1181 /* 1182 * check if the parent process dies 1183 * (when kthread is attached to user process) 1184 */ 1185 if (ctx->user_td) { 1186 PROC_LOCK(curproc); 1187 thread_suspend_check(0); 1188 PROC_UNLOCK(curproc); 1189 } else { 1190 kthread_suspend_check(); 1191 } 1192 1193 /* Continuously execute worker process. */ 1194 ctx->worker_fn(ctx->worker_private); /* worker body */ 1195 } 1196 1197 kthread_exit(); 1198 } 1199 1200 void 1201 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1202 { 1203 nmk->affinity = affinity; 1204 } 1205 1206 struct nm_kctx * 1207 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1208 { 1209 struct nm_kctx *nmk = NULL; 1210 1211 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1212 if (!nmk) 1213 return NULL; 1214 1215 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1216 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1217 nmk->worker_ctx.worker_private = cfg->worker_private; 1218 nmk->worker_ctx.type = cfg->type; 1219 nmk->affinity = -1; 1220 1221 /* attach kthread to user process (ptnetmap) */ 1222 nmk->attach_user = cfg->attach_user; 1223 1224 return nmk; 1225 } 1226 1227 int 1228 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1229 { 1230 struct proc *p = NULL; 1231 int error = 0; 1232 1233 /* Temporarily disable this function as it is currently broken 1234 * and causes kernel crashes. The failure can be triggered by 1235 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1236 return EOPNOTSUPP; 1237 1238 if (nmk->worker) 1239 return EBUSY; 1240 1241 /* check if we want to attach kthread to user process */ 1242 if (nmk->attach_user) { 1243 nmk->worker_ctx.user_td = curthread; 1244 p = curthread->td_proc; 1245 } 1246 1247 /* enable kthread main loop */ 1248 nmk->run = 1; 1249 /* create kthread */ 1250 if((error = kthread_add(nm_kctx_worker, nmk, p, 1251 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1252 nmk->worker_ctx.type))) { 1253 goto err; 1254 } 1255 1256 nm_prinf("nm_kthread started td %p", nmk->worker); 1257 1258 return 0; 1259 err: 1260 nm_prerr("nm_kthread start failed err %d", error); 1261 nmk->worker = NULL; 1262 return error; 1263 } 1264 1265 void 1266 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1267 { 1268 if (!nmk->worker) 1269 return; 1270 1271 /* tell to kthread to exit from main loop */ 1272 nmk->run = 0; 1273 1274 /* wake up kthread if it sleeps */ 1275 kthread_resume(nmk->worker); 1276 1277 nmk->worker = NULL; 1278 } 1279 1280 void 1281 nm_os_kctx_destroy(struct nm_kctx *nmk) 1282 { 1283 if (!nmk) 1284 return; 1285 1286 if (nmk->worker) 1287 nm_os_kctx_worker_stop(nmk); 1288 1289 free(nmk, M_DEVBUF); 1290 } 1291 1292 /******************** kqueue support ****************/ 1293 1294 /* 1295 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1296 * needs to call knote() to wake up kqueue listeners. 1297 * This operation is deferred to a taskqueue in order to avoid possible 1298 * lock order reversals; these may happen because knote() grabs a 1299 * private lock associated to the 'si' (see struct selinfo, 1300 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1301 * can be called while holding the lock associated to a different 1302 * 'si'. 1303 * When calling knote() we use a non-zero 'hint' argument to inform 1304 * the netmap_knrw() function that it is being called from 1305 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1306 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1307 * call netmap_poll(). 1308 * 1309 * The netmap_kqfilter() function registers one or another f_event 1310 * depending on read or write mode. A pointer to the struct 1311 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1312 * be passed to netmap_poll(). We pass NULL as a third argument to 1313 * netmap_poll(), so that the latter only runs the txsync/rxsync 1314 * (if necessary), and skips the nm_os_selrecord() calls. 1315 */ 1316 1317 1318 void 1319 nm_os_selwakeup(struct nm_selinfo *si) 1320 { 1321 selwakeuppri(&si->si, PI_NET); 1322 if (si->kqueue_users > 0) { 1323 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1324 } 1325 } 1326 1327 void 1328 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1329 { 1330 selrecord(td, &si->si); 1331 } 1332 1333 static void 1334 netmap_knrdetach(struct knote *kn) 1335 { 1336 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1337 struct nm_selinfo *si = priv->np_si[NR_RX]; 1338 1339 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1340 NMG_LOCK(); 1341 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1342 si->mtxname)); 1343 si->kqueue_users--; 1344 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1345 NMG_UNLOCK(); 1346 } 1347 1348 static void 1349 netmap_knwdetach(struct knote *kn) 1350 { 1351 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1352 struct nm_selinfo *si = priv->np_si[NR_TX]; 1353 1354 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1355 NMG_LOCK(); 1356 si->kqueue_users--; 1357 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1358 NMG_UNLOCK(); 1359 } 1360 1361 /* 1362 * Callback triggered by netmap notifications (see netmap_notify()), 1363 * and by the application calling kevent(). In the former case we 1364 * just return 1 (events ready), since we are not able to do better. 1365 * In the latter case we use netmap_poll() to see which events are 1366 * ready. 1367 */ 1368 static int 1369 netmap_knrw(struct knote *kn, long hint, int events) 1370 { 1371 struct netmap_priv_d *priv; 1372 int revents; 1373 1374 if (hint != 0) { 1375 /* Called from netmap_notify(), typically from a 1376 * thread different from the one issuing kevent(). 1377 * Assume we are ready. */ 1378 return 1; 1379 } 1380 1381 /* Called from kevent(). */ 1382 priv = kn->kn_hook; 1383 revents = netmap_poll(priv, events, /*thread=*/NULL); 1384 1385 return (events & revents) ? 1 : 0; 1386 } 1387 1388 static int 1389 netmap_knread(struct knote *kn, long hint) 1390 { 1391 return netmap_knrw(kn, hint, POLLIN); 1392 } 1393 1394 static int 1395 netmap_knwrite(struct knote *kn, long hint) 1396 { 1397 return netmap_knrw(kn, hint, POLLOUT); 1398 } 1399 1400 static struct filterops netmap_rfiltops = { 1401 .f_isfd = 1, 1402 .f_detach = netmap_knrdetach, 1403 .f_event = netmap_knread, 1404 }; 1405 1406 static struct filterops netmap_wfiltops = { 1407 .f_isfd = 1, 1408 .f_detach = netmap_knwdetach, 1409 .f_event = netmap_knwrite, 1410 }; 1411 1412 1413 /* 1414 * This is called when a thread invokes kevent() to record 1415 * a change in the configuration of the kqueue(). 1416 * The 'priv' is the one associated to the open netmap device. 1417 */ 1418 static int 1419 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1420 { 1421 struct netmap_priv_d *priv; 1422 int error; 1423 struct netmap_adapter *na; 1424 struct nm_selinfo *si; 1425 int ev = kn->kn_filter; 1426 1427 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1428 nm_prerr("bad filter request %d", ev); 1429 return 1; 1430 } 1431 error = devfs_get_cdevpriv((void**)&priv); 1432 if (error) { 1433 nm_prerr("device not yet setup"); 1434 return 1; 1435 } 1436 na = priv->np_na; 1437 if (na == NULL) { 1438 nm_prerr("no netmap adapter for this file descriptor"); 1439 return 1; 1440 } 1441 /* the si is indicated in the priv */ 1442 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1443 kn->kn_fop = (ev == EVFILT_WRITE) ? 1444 &netmap_wfiltops : &netmap_rfiltops; 1445 kn->kn_hook = priv; 1446 NMG_LOCK(); 1447 si->kqueue_users++; 1448 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1449 NMG_UNLOCK(); 1450 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1451 1452 return 0; 1453 } 1454 1455 static int 1456 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1457 { 1458 struct netmap_priv_d *priv; 1459 if (devfs_get_cdevpriv((void **)&priv)) { 1460 return POLLERR; 1461 } 1462 return netmap_poll(priv, events, td); 1463 } 1464 1465 static int 1466 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1467 int ffla __unused, struct thread *td) 1468 { 1469 int error; 1470 struct netmap_priv_d *priv; 1471 1472 CURVNET_SET(TD_TO_VNET(td)); 1473 error = devfs_get_cdevpriv((void **)&priv); 1474 if (error) { 1475 /* XXX ENOENT should be impossible, since the priv 1476 * is now created in the open */ 1477 if (error == ENOENT) 1478 error = ENXIO; 1479 goto out; 1480 } 1481 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1482 out: 1483 CURVNET_RESTORE(); 1484 1485 return error; 1486 } 1487 1488 void 1489 nm_os_onattach(if_t ifp) 1490 { 1491 if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0); 1492 } 1493 1494 void 1495 nm_os_onenter(if_t ifp) 1496 { 1497 struct netmap_adapter *na = NA(ifp); 1498 1499 na->if_transmit = if_gettransmitfn(ifp); 1500 if_settransmitfn(ifp, netmap_transmit); 1501 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 1502 } 1503 1504 void 1505 nm_os_onexit(if_t ifp) 1506 { 1507 struct netmap_adapter *na = NA(ifp); 1508 1509 if_settransmitfn(ifp, na->if_transmit); 1510 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 1511 } 1512 1513 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1514 struct cdevsw netmap_cdevsw = { 1515 .d_version = D_VERSION, 1516 .d_name = "netmap", 1517 .d_open = netmap_open, 1518 .d_mmap_single = netmap_mmap_single, 1519 .d_ioctl = freebsd_netmap_ioctl, 1520 .d_poll = freebsd_netmap_poll, 1521 .d_kqfilter = netmap_kqfilter, 1522 .d_close = netmap_close, 1523 }; 1524 /*--- end of kqueue support ----*/ 1525 1526 /* 1527 * Kernel entry point. 1528 * 1529 * Initialize/finalize the module and return. 1530 * 1531 * Return 0 on success, errno on failure. 1532 */ 1533 static int 1534 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1535 { 1536 int error = 0; 1537 1538 switch (event) { 1539 case MOD_LOAD: 1540 error = netmap_init(); 1541 break; 1542 1543 case MOD_UNLOAD: 1544 /* 1545 * if some one is still using netmap, 1546 * then the module can not be unloaded. 1547 */ 1548 if (netmap_use_count) { 1549 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1550 netmap_use_count); 1551 error = EBUSY; 1552 break; 1553 } 1554 netmap_fini(); 1555 break; 1556 1557 default: 1558 error = EOPNOTSUPP; 1559 break; 1560 } 1561 1562 return (error); 1563 } 1564 1565 #ifdef DEV_MODULE_ORDERED 1566 /* 1567 * The netmap module contains three drivers: (i) the netmap character device 1568 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1569 * device driver. The attach() routines of both (ii) and (iii) need the 1570 * lock of the global allocator, and such lock is initialized in netmap_init(), 1571 * which is part of (i). 1572 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1573 * the 'order' parameter of driver declaration macros. For (i), we specify 1574 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1575 * macros for (ii) and (iii). 1576 */ 1577 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1578 #else /* !DEV_MODULE_ORDERED */ 1579 DEV_MODULE(netmap, netmap_loader, NULL); 1580 #endif /* DEV_MODULE_ORDERED */ 1581 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1582 MODULE_VERSION(netmap, 1); 1583 /* reduce conditional code */ 1584 // linux API, use for the knlist in FreeBSD 1585 /* use a private mutex for the knlist */ 1586