1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/eventhandler.h> 36 #include <sys/jail.h> 37 #include <sys/poll.h> /* POLLIN, POLLOUT */ 38 #include <sys/kernel.h> /* types used in module initialization */ 39 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 40 #include <sys/endian.h> 41 #include <sys/syscallsubr.h> /* kern_ioctl() */ 42 43 #include <sys/rwlock.h> 44 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <vm/vm_param.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pager.h> 51 #include <vm/uma.h> 52 53 54 #include <sys/malloc.h> 55 #include <sys/socket.h> /* sockaddrs */ 56 #include <sys/selinfo.h> 57 #include <sys/kthread.h> /* kthread_add() */ 58 #include <sys/proc.h> /* PROC_LOCK() */ 59 #include <sys/unistd.h> /* RFNOWAIT */ 60 #include <sys/sched.h> /* sched_bind() */ 61 #include <sys/smp.h> /* mp_maxid */ 62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> /* IFT_ETHER */ 66 #include <net/ethernet.h> /* ether_ifdetach */ 67 #include <net/if_dl.h> /* LLADDR */ 68 #include <machine/bus.h> /* bus_dmamap_* */ 69 #include <netinet/in.h> /* in6_cksum_pseudo() */ 70 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 71 72 #include <net/netmap.h> 73 #include <dev/netmap/netmap_kern.h> 74 #include <net/netmap_virt.h> 75 #include <dev/netmap/netmap_mem2.h> 76 77 78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 79 80 static void 81 nm_kqueue_notify(void *opaque, int pending) 82 { 83 struct nm_selinfo *si = opaque; 84 85 /* We use a non-zero hint to distinguish this notification call 86 * from the call done in kqueue_scan(), which uses hint=0. 87 */ 88 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 89 } 90 91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 92 int err; 93 94 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 95 si->ntfytq = taskqueue_create(name, M_NOWAIT, 96 taskqueue_thread_enqueue, &si->ntfytq); 97 if (si->ntfytq == NULL) 98 return -ENOMEM; 99 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 100 if (err) { 101 taskqueue_free(si->ntfytq); 102 si->ntfytq = NULL; 103 return err; 104 } 105 106 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 107 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 108 knlist_init_mtx(&si->si.si_note, &si->m); 109 si->kqueue_users = 0; 110 111 return (0); 112 } 113 114 void 115 nm_os_selinfo_uninit(NM_SELINFO_T *si) 116 { 117 if (si->ntfytq == NULL) { 118 return; /* si was not initialized */ 119 } 120 taskqueue_drain(si->ntfytq, &si->ntfytask); 121 taskqueue_free(si->ntfytq); 122 si->ntfytq = NULL; 123 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 124 knlist_destroy(&si->si.si_note); 125 /* now we don't need the mutex anymore */ 126 mtx_destroy(&si->m); 127 } 128 129 void * 130 nm_os_malloc(size_t size) 131 { 132 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 133 } 134 135 void * 136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 137 { 138 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 139 } 140 141 void 142 nm_os_free(void *addr) 143 { 144 free(addr, M_DEVBUF); 145 } 146 147 void 148 nm_os_ifnet_lock(void) 149 { 150 IFNET_RLOCK(); 151 } 152 153 void 154 nm_os_ifnet_unlock(void) 155 { 156 IFNET_RUNLOCK(); 157 } 158 159 static int netmap_use_count = 0; 160 161 void 162 nm_os_get_module(void) 163 { 164 netmap_use_count++; 165 } 166 167 void 168 nm_os_put_module(void) 169 { 170 netmap_use_count--; 171 } 172 173 static void 174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 175 { 176 netmap_undo_zombie(ifp); 177 } 178 179 static void 180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 181 { 182 netmap_make_zombie(ifp); 183 } 184 185 static eventhandler_tag nm_ifnet_ah_tag; 186 static eventhandler_tag nm_ifnet_dh_tag; 187 188 int 189 nm_os_ifnet_init(void) 190 { 191 nm_ifnet_ah_tag = 192 EVENTHANDLER_REGISTER(ifnet_arrival_event, 193 netmap_ifnet_arrival_handler, 194 NULL, EVENTHANDLER_PRI_ANY); 195 nm_ifnet_dh_tag = 196 EVENTHANDLER_REGISTER(ifnet_departure_event, 197 netmap_ifnet_departure_handler, 198 NULL, EVENTHANDLER_PRI_ANY); 199 return 0; 200 } 201 202 void 203 nm_os_ifnet_fini(void) 204 { 205 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 206 nm_ifnet_ah_tag); 207 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 208 nm_ifnet_dh_tag); 209 } 210 211 unsigned 212 nm_os_ifnet_mtu(struct ifnet *ifp) 213 { 214 return ifp->if_mtu; 215 } 216 217 rawsum_t 218 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 219 { 220 /* TODO XXX please use the FreeBSD implementation for this. */ 221 uint16_t *words = (uint16_t *)data; 222 int nw = len / 2; 223 int i; 224 225 for (i = 0; i < nw; i++) 226 cur_sum += be16toh(words[i]); 227 228 if (len & 1) 229 cur_sum += (data[len-1] << 8); 230 231 return cur_sum; 232 } 233 234 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 235 * return value is in network byte order. 236 */ 237 uint16_t 238 nm_os_csum_fold(rawsum_t cur_sum) 239 { 240 /* TODO XXX please use the FreeBSD implementation for this. */ 241 while (cur_sum >> 16) 242 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 243 244 return htobe16((~cur_sum) & 0xFFFF); 245 } 246 247 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 248 { 249 #if 0 250 return in_cksum_hdr((void *)iph); 251 #else 252 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 253 #endif 254 } 255 256 void 257 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 258 size_t datalen, uint16_t *check) 259 { 260 #ifdef INET 261 uint16_t pseudolen = datalen + iph->protocol; 262 263 /* Compute and insert the pseudo-header checksum. */ 264 *check = in_pseudo(iph->saddr, iph->daddr, 265 htobe16(pseudolen)); 266 /* Compute the checksum on TCP/UDP header + payload 267 * (includes the pseudo-header). 268 */ 269 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 270 #else 271 static int notsupported = 0; 272 if (!notsupported) { 273 notsupported = 1; 274 nm_prerr("inet4 segmentation not supported"); 275 } 276 #endif 277 } 278 279 void 280 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 281 size_t datalen, uint16_t *check) 282 { 283 #ifdef INET6 284 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 285 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 286 #else 287 static int notsupported = 0; 288 if (!notsupported) { 289 notsupported = 1; 290 nm_prerr("inet6 segmentation not supported"); 291 } 292 #endif 293 } 294 295 /* on FreeBSD we send up one packet at a time */ 296 void * 297 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 298 { 299 NA(ifp)->if_input(ifp, m); 300 return NULL; 301 } 302 303 int 304 nm_os_mbuf_has_csum_offld(struct mbuf *m) 305 { 306 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 307 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 308 CSUM_SCTP_IPV6); 309 } 310 311 int 312 nm_os_mbuf_has_seg_offld(struct mbuf *m) 313 { 314 return m->m_pkthdr.csum_flags & CSUM_TSO; 315 } 316 317 static void 318 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 319 { 320 int stolen; 321 322 if (unlikely(!NM_NA_VALID(ifp))) { 323 nm_prlim(1, "Warning: RX packet intercepted, but no" 324 " emulated adapter"); 325 return; 326 } 327 328 stolen = generic_rx_handler(ifp, m); 329 if (!stolen) { 330 struct netmap_generic_adapter *gna = 331 (struct netmap_generic_adapter *)NA(ifp); 332 gna->save_if_input(ifp, m); 333 } 334 } 335 336 /* 337 * Intercept the rx routine in the standard device driver. 338 * Second argument is non-zero to intercept, 0 to restore 339 */ 340 int 341 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 342 { 343 struct netmap_adapter *na = &gna->up.up; 344 struct ifnet *ifp = na->ifp; 345 int ret = 0; 346 347 nm_os_ifnet_lock(); 348 if (intercept) { 349 if (gna->save_if_input) { 350 nm_prerr("RX on %s already intercepted", na->name); 351 ret = EBUSY; /* already set */ 352 goto out; 353 } 354 gna->save_if_input = ifp->if_input; 355 ifp->if_input = freebsd_generic_rx_handler; 356 } else { 357 if (!gna->save_if_input) { 358 nm_prerr("Failed to undo RX intercept on %s", 359 na->name); 360 ret = EINVAL; /* not saved */ 361 goto out; 362 } 363 ifp->if_input = gna->save_if_input; 364 gna->save_if_input = NULL; 365 } 366 out: 367 nm_os_ifnet_unlock(); 368 369 return ret; 370 } 371 372 373 /* 374 * Intercept the packet steering routine in the tx path, 375 * so that we can decide which queue is used for an mbuf. 376 * Second argument is non-zero to intercept, 0 to restore. 377 * On freebsd we just intercept if_transmit. 378 */ 379 int 380 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 381 { 382 struct netmap_adapter *na = &gna->up.up; 383 struct ifnet *ifp = netmap_generic_getifp(gna); 384 385 nm_os_ifnet_lock(); 386 if (intercept) { 387 na->if_transmit = ifp->if_transmit; 388 ifp->if_transmit = netmap_transmit; 389 } else { 390 ifp->if_transmit = na->if_transmit; 391 } 392 nm_os_ifnet_unlock(); 393 394 return 0; 395 } 396 397 398 /* 399 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 400 * and non-zero on error (which may be packet drops or other errors). 401 * addr and len identify the netmap buffer, m is the (preallocated) 402 * mbuf to use for transmissions. 403 * 404 * We should add a reference to the mbuf so the m_freem() at the end 405 * of the transmission does not consume resources. 406 * 407 * On FreeBSD, and on multiqueue cards, we can force the queue using 408 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 409 * i = m->m_pkthdr.flowid % adapter->num_queues; 410 * else 411 * i = curcpu % adapter->num_queues; 412 * 413 */ 414 int 415 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 416 { 417 int ret; 418 u_int len = a->len; 419 struct ifnet *ifp = a->ifp; 420 struct mbuf *m = a->m; 421 422 /* Link the external storage to 423 * the netmap buffer, so that no copy is necessary. */ 424 m->m_ext.ext_buf = m->m_data = a->addr; 425 m->m_ext.ext_size = len; 426 427 m->m_flags |= M_PKTHDR; 428 m->m_len = m->m_pkthdr.len = len; 429 430 /* mbuf refcnt is not contended, no need to use atomic 431 * (a memory barrier is enough). */ 432 SET_MBUF_REFCNT(m, 2); 433 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 434 m->m_pkthdr.flowid = a->ring_nr; 435 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 436 CURVNET_SET(ifp->if_vnet); 437 ret = NA(ifp)->if_transmit(ifp, m); 438 CURVNET_RESTORE(); 439 return ret ? -1 : 0; 440 } 441 442 443 struct netmap_adapter * 444 netmap_getna(if_t ifp) 445 { 446 return (NA((struct ifnet *)ifp)); 447 } 448 449 /* 450 * The following two functions are empty until we have a generic 451 * way to extract the info from the ifp 452 */ 453 int 454 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 455 { 456 return 0; 457 } 458 459 460 void 461 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 462 { 463 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 464 465 *txq = num_rings; 466 *rxq = num_rings; 467 } 468 469 void 470 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 471 { 472 473 gna->rxsg = 1; /* Supported through m_copydata. */ 474 gna->txqdisc = 0; /* Not supported. */ 475 } 476 477 void 478 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 479 { 480 mit->mit_pending = 0; 481 mit->mit_ring_idx = idx; 482 mit->mit_na = na; 483 } 484 485 486 void 487 nm_os_mitigation_start(struct nm_generic_mit *mit) 488 { 489 } 490 491 492 void 493 nm_os_mitigation_restart(struct nm_generic_mit *mit) 494 { 495 } 496 497 498 int 499 nm_os_mitigation_active(struct nm_generic_mit *mit) 500 { 501 502 return 0; 503 } 504 505 506 void 507 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 508 { 509 } 510 511 static int 512 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 513 { 514 515 return EINVAL; 516 } 517 518 static void 519 nm_vi_start(struct ifnet *ifp) 520 { 521 panic("nm_vi_start() must not be called"); 522 } 523 524 /* 525 * Index manager of persistent virtual interfaces. 526 * It is used to decide the lowest byte of the MAC address. 527 * We use the same algorithm with management of bridge port index. 528 */ 529 #define NM_VI_MAX 255 530 static struct { 531 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 532 uint8_t active; 533 struct mtx lock; 534 } nm_vi_indices; 535 536 void 537 nm_os_vi_init_index(void) 538 { 539 int i; 540 for (i = 0; i < NM_VI_MAX; i++) 541 nm_vi_indices.index[i] = i; 542 nm_vi_indices.active = 0; 543 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 544 } 545 546 /* return -1 if no index available */ 547 static int 548 nm_vi_get_index(void) 549 { 550 int ret; 551 552 mtx_lock(&nm_vi_indices.lock); 553 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 554 nm_vi_indices.index[nm_vi_indices.active++]; 555 mtx_unlock(&nm_vi_indices.lock); 556 return ret; 557 } 558 559 static void 560 nm_vi_free_index(uint8_t val) 561 { 562 int i, lim; 563 564 mtx_lock(&nm_vi_indices.lock); 565 lim = nm_vi_indices.active; 566 for (i = 0; i < lim; i++) { 567 if (nm_vi_indices.index[i] == val) { 568 /* swap index[lim-1] and j */ 569 int tmp = nm_vi_indices.index[lim-1]; 570 nm_vi_indices.index[lim-1] = val; 571 nm_vi_indices.index[i] = tmp; 572 nm_vi_indices.active--; 573 break; 574 } 575 } 576 if (lim == nm_vi_indices.active) 577 nm_prerr("Index %u not found", val); 578 mtx_unlock(&nm_vi_indices.lock); 579 } 580 #undef NM_VI_MAX 581 582 /* 583 * Implementation of a netmap-capable virtual interface that 584 * registered to the system. 585 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 586 * 587 * Note: Linux sets refcount to 0 on allocation of net_device, 588 * then increments it on registration to the system. 589 * FreeBSD sets refcount to 1 on if_alloc(), and does not 590 * increment this refcount on if_attach(). 591 */ 592 int 593 nm_os_vi_persist(const char *name, struct ifnet **ret) 594 { 595 struct ifnet *ifp; 596 u_short macaddr_hi; 597 uint32_t macaddr_mid; 598 u_char eaddr[6]; 599 int unit = nm_vi_get_index(); /* just to decide MAC address */ 600 601 if (unit < 0) 602 return EBUSY; 603 /* 604 * We use the same MAC address generation method with tap 605 * except for the highest octet is 00:be instead of 00:bd 606 */ 607 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 608 macaddr_mid = (uint32_t) ticks; 609 bcopy(&macaddr_hi, eaddr, sizeof(short)); 610 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 611 eaddr[5] = (uint8_t)unit; 612 613 ifp = if_alloc(IFT_ETHER); 614 if (ifp == NULL) { 615 nm_prerr("if_alloc failed"); 616 return ENOMEM; 617 } 618 if_initname(ifp, name, IF_DUNIT_NONE); 619 ifp->if_mtu = 65536; 620 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 621 ifp->if_init = (void *)nm_vi_dummy; 622 ifp->if_ioctl = nm_vi_dummy; 623 ifp->if_start = nm_vi_start; 624 ifp->if_mtu = ETHERMTU; 625 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 626 ifp->if_capabilities |= IFCAP_LINKSTATE; 627 ifp->if_capenable |= IFCAP_LINKSTATE; 628 629 ether_ifattach(ifp, eaddr); 630 *ret = ifp; 631 return 0; 632 } 633 634 /* unregister from the system and drop the final refcount */ 635 void 636 nm_os_vi_detach(struct ifnet *ifp) 637 { 638 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 639 ether_ifdetach(ifp); 640 if_free(ifp); 641 } 642 643 #ifdef WITH_EXTMEM 644 #include <vm/vm_map.h> 645 #include <vm/vm_extern.h> 646 #include <vm/vm_kern.h> 647 struct nm_os_extmem { 648 vm_object_t obj; 649 vm_offset_t kva; 650 vm_offset_t size; 651 uintptr_t scan; 652 }; 653 654 void 655 nm_os_extmem_delete(struct nm_os_extmem *e) 656 { 657 nm_prinf("freeing %zx bytes", (size_t)e->size); 658 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 659 nm_os_free(e); 660 } 661 662 char * 663 nm_os_extmem_nextpage(struct nm_os_extmem *e) 664 { 665 char *rv = NULL; 666 if (e->scan < e->kva + e->size) { 667 rv = (char *)e->scan; 668 e->scan += PAGE_SIZE; 669 } 670 return rv; 671 } 672 673 int 674 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 675 { 676 return (e1->obj == e2->obj); 677 } 678 679 int 680 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 681 { 682 return e->size >> PAGE_SHIFT; 683 } 684 685 struct nm_os_extmem * 686 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 687 { 688 vm_map_t map; 689 vm_map_entry_t entry; 690 vm_object_t obj; 691 vm_prot_t prot; 692 vm_pindex_t index; 693 boolean_t wired; 694 struct nm_os_extmem *e = NULL; 695 int rv, error = 0; 696 697 e = nm_os_malloc(sizeof(*e)); 698 if (e == NULL) { 699 error = ENOMEM; 700 goto out; 701 } 702 703 map = &curthread->td_proc->p_vmspace->vm_map; 704 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 705 &obj, &index, &prot, &wired); 706 if (rv != KERN_SUCCESS) { 707 nm_prerr("address %lx not found", p); 708 error = vm_mmap_to_errno(rv); 709 goto out_free; 710 } 711 vm_object_reference(obj); 712 713 /* check that we are given the whole vm_object ? */ 714 vm_map_lookup_done(map, entry); 715 716 e->obj = obj; 717 /* Wire the memory and add the vm_object to the kernel map, 718 * to make sure that it is not freed even if all the processes 719 * that are mmap()ing should munmap() it. 720 */ 721 e->kva = vm_map_min(kernel_map); 722 e->size = obj->size << PAGE_SHIFT; 723 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 724 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 725 VM_PROT_READ | VM_PROT_WRITE, 0); 726 if (rv != KERN_SUCCESS) { 727 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 728 error = vm_mmap_to_errno(rv); 729 goto out_rel; 730 } 731 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 732 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 733 if (rv != KERN_SUCCESS) { 734 nm_prerr("vm_map_wire failed"); 735 error = vm_mmap_to_errno(rv); 736 goto out_rem; 737 } 738 739 e->scan = e->kva; 740 741 return e; 742 743 out_rem: 744 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 745 out_rel: 746 vm_object_deallocate(e->obj); 747 e->obj = NULL; 748 out_free: 749 nm_os_free(e); 750 out: 751 if (perror) 752 *perror = error; 753 return NULL; 754 } 755 #endif /* WITH_EXTMEM */ 756 757 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 758 759 #ifdef WITH_PTNETMAP 760 #include <sys/bus.h> 761 #include <sys/rman.h> 762 #include <machine/bus.h> /* bus_dmamap_* */ 763 #include <machine/resource.h> 764 #include <dev/pci/pcivar.h> 765 #include <dev/pci/pcireg.h> 766 /* 767 * ptnetmap memory device (memdev) for freebsd guest, 768 * ssed to expose host netmap memory to the guest through a PCI BAR. 769 */ 770 771 /* 772 * ptnetmap memdev private data structure 773 */ 774 struct ptnetmap_memdev { 775 device_t dev; 776 struct resource *pci_io; 777 struct resource *pci_mem; 778 struct netmap_mem_d *nm_mem; 779 }; 780 781 static int ptn_memdev_probe(device_t); 782 static int ptn_memdev_attach(device_t); 783 static int ptn_memdev_detach(device_t); 784 static int ptn_memdev_shutdown(device_t); 785 786 static device_method_t ptn_memdev_methods[] = { 787 DEVMETHOD(device_probe, ptn_memdev_probe), 788 DEVMETHOD(device_attach, ptn_memdev_attach), 789 DEVMETHOD(device_detach, ptn_memdev_detach), 790 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 791 DEVMETHOD_END 792 }; 793 794 static driver_t ptn_memdev_driver = { 795 PTNETMAP_MEMDEV_NAME, 796 ptn_memdev_methods, 797 sizeof(struct ptnetmap_memdev), 798 }; 799 800 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 801 * below. */ 802 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 803 SI_ORDER_MIDDLE + 1); 804 805 /* 806 * Map host netmap memory through PCI-BAR in the guest OS, 807 * returning physical (nm_paddr) and virtual (nm_addr) addresses 808 * of the netmap memory mapped in the guest. 809 */ 810 int 811 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 812 void **nm_addr, uint64_t *mem_size) 813 { 814 int rid; 815 816 nm_prinf("ptn_memdev_driver iomap"); 817 818 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 819 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 820 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 821 (*mem_size << 32); 822 823 /* map memory allocator */ 824 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 825 &rid, 0, ~0, *mem_size, RF_ACTIVE); 826 if (ptn_dev->pci_mem == NULL) { 827 *nm_paddr = 0; 828 *nm_addr = NULL; 829 return ENOMEM; 830 } 831 832 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 833 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 834 835 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 836 PTNETMAP_MEM_PCI_BAR, 837 (unsigned long)(*nm_paddr), 838 (unsigned long)rman_get_size(ptn_dev->pci_mem), 839 (unsigned long)*mem_size); 840 return (0); 841 } 842 843 uint32_t 844 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 845 { 846 return bus_read_4(ptn_dev->pci_io, reg); 847 } 848 849 /* Unmap host netmap memory. */ 850 void 851 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 852 { 853 nm_prinf("ptn_memdev_driver iounmap"); 854 855 if (ptn_dev->pci_mem) { 856 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 857 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 858 ptn_dev->pci_mem = NULL; 859 } 860 } 861 862 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 863 * positive on failure */ 864 static int 865 ptn_memdev_probe(device_t dev) 866 { 867 char desc[256]; 868 869 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 870 return (ENXIO); 871 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 872 return (ENXIO); 873 874 snprintf(desc, sizeof(desc), "%s PCI adapter", 875 PTNETMAP_MEMDEV_NAME); 876 device_set_desc_copy(dev, desc); 877 878 return (BUS_PROBE_DEFAULT); 879 } 880 881 /* Device initialization routine. */ 882 static int 883 ptn_memdev_attach(device_t dev) 884 { 885 struct ptnetmap_memdev *ptn_dev; 886 int rid; 887 uint16_t mem_id; 888 889 ptn_dev = device_get_softc(dev); 890 ptn_dev->dev = dev; 891 892 pci_enable_busmaster(dev); 893 894 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 895 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 896 RF_ACTIVE); 897 if (ptn_dev->pci_io == NULL) { 898 device_printf(dev, "cannot map I/O space\n"); 899 return (ENXIO); 900 } 901 902 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 903 904 /* create guest allocator */ 905 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 906 if (ptn_dev->nm_mem == NULL) { 907 ptn_memdev_detach(dev); 908 return (ENOMEM); 909 } 910 netmap_mem_get(ptn_dev->nm_mem); 911 912 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 913 914 return (0); 915 } 916 917 /* Device removal routine. */ 918 static int 919 ptn_memdev_detach(device_t dev) 920 { 921 struct ptnetmap_memdev *ptn_dev; 922 923 ptn_dev = device_get_softc(dev); 924 925 if (ptn_dev->nm_mem) { 926 nm_prinf("ptnetmap memdev detached, host memid %u", 927 netmap_mem_get_id(ptn_dev->nm_mem)); 928 netmap_mem_put(ptn_dev->nm_mem); 929 ptn_dev->nm_mem = NULL; 930 } 931 if (ptn_dev->pci_mem) { 932 bus_release_resource(dev, SYS_RES_MEMORY, 933 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 934 ptn_dev->pci_mem = NULL; 935 } 936 if (ptn_dev->pci_io) { 937 bus_release_resource(dev, SYS_RES_IOPORT, 938 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 939 ptn_dev->pci_io = NULL; 940 } 941 942 return (0); 943 } 944 945 static int 946 ptn_memdev_shutdown(device_t dev) 947 { 948 return bus_generic_shutdown(dev); 949 } 950 951 #endif /* WITH_PTNETMAP */ 952 953 /* 954 * In order to track whether pages are still mapped, we hook into 955 * the standard cdev_pager and intercept the constructor and 956 * destructor. 957 */ 958 959 struct netmap_vm_handle_t { 960 struct cdev *dev; 961 struct netmap_priv_d *priv; 962 }; 963 964 965 static int 966 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 967 vm_ooffset_t foff, struct ucred *cred, u_short *color) 968 { 969 struct netmap_vm_handle_t *vmh = handle; 970 971 if (netmap_verbose) 972 nm_prinf("handle %p size %jd prot %d foff %jd", 973 handle, (intmax_t)size, prot, (intmax_t)foff); 974 if (color) 975 *color = 0; 976 dev_ref(vmh->dev); 977 return 0; 978 } 979 980 981 static void 982 netmap_dev_pager_dtor(void *handle) 983 { 984 struct netmap_vm_handle_t *vmh = handle; 985 struct cdev *dev = vmh->dev; 986 struct netmap_priv_d *priv = vmh->priv; 987 988 if (netmap_verbose) 989 nm_prinf("handle %p", handle); 990 netmap_dtor(priv); 991 free(vmh, M_DEVBUF); 992 dev_rel(dev); 993 } 994 995 996 static int 997 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 998 int prot, vm_page_t *mres) 999 { 1000 struct netmap_vm_handle_t *vmh = object->handle; 1001 struct netmap_priv_d *priv = vmh->priv; 1002 struct netmap_adapter *na = priv->np_na; 1003 vm_paddr_t paddr; 1004 vm_page_t page; 1005 vm_memattr_t memattr; 1006 1007 nm_prdis("object %p offset %jd prot %d mres %p", 1008 object, (intmax_t)offset, prot, mres); 1009 memattr = object->memattr; 1010 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1011 if (paddr == 0) 1012 return VM_PAGER_FAIL; 1013 1014 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1015 /* 1016 * If the passed in result page is a fake page, update it with 1017 * the new physical address. 1018 */ 1019 page = *mres; 1020 vm_page_updatefake(page, paddr, memattr); 1021 } else { 1022 /* 1023 * Replace the passed in reqpage page with our own fake page and 1024 * free up the all of the original pages. 1025 */ 1026 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1027 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1028 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1029 #endif /* VM_OBJECT_WUNLOCK */ 1030 1031 VM_OBJECT_WUNLOCK(object); 1032 page = vm_page_getfake(paddr, memattr); 1033 VM_OBJECT_WLOCK(object); 1034 vm_page_replace(page, object, (*mres)->pindex, *mres); 1035 *mres = page; 1036 } 1037 page->valid = VM_PAGE_BITS_ALL; 1038 return (VM_PAGER_OK); 1039 } 1040 1041 1042 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1043 .cdev_pg_ctor = netmap_dev_pager_ctor, 1044 .cdev_pg_dtor = netmap_dev_pager_dtor, 1045 .cdev_pg_fault = netmap_dev_pager_fault, 1046 }; 1047 1048 1049 static int 1050 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1051 vm_size_t objsize, vm_object_t *objp, int prot) 1052 { 1053 int error; 1054 struct netmap_vm_handle_t *vmh; 1055 struct netmap_priv_d *priv; 1056 vm_object_t obj; 1057 1058 if (netmap_verbose) 1059 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1060 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1061 1062 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1063 M_NOWAIT | M_ZERO); 1064 if (vmh == NULL) 1065 return ENOMEM; 1066 vmh->dev = cdev; 1067 1068 NMG_LOCK(); 1069 error = devfs_get_cdevpriv((void**)&priv); 1070 if (error) 1071 goto err_unlock; 1072 if (priv->np_nifp == NULL) { 1073 error = EINVAL; 1074 goto err_unlock; 1075 } 1076 vmh->priv = priv; 1077 priv->np_refs++; 1078 NMG_UNLOCK(); 1079 1080 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1081 &netmap_cdev_pager_ops, objsize, prot, 1082 *foff, NULL); 1083 if (obj == NULL) { 1084 nm_prerr("cdev_pager_allocate failed"); 1085 error = EINVAL; 1086 goto err_deref; 1087 } 1088 1089 *objp = obj; 1090 return 0; 1091 1092 err_deref: 1093 NMG_LOCK(); 1094 priv->np_refs--; 1095 err_unlock: 1096 NMG_UNLOCK(); 1097 // err: 1098 free(vmh, M_DEVBUF); 1099 return error; 1100 } 1101 1102 /* 1103 * On FreeBSD the close routine is only called on the last close on 1104 * the device (/dev/netmap) so we cannot do anything useful. 1105 * To track close() on individual file descriptors we pass netmap_dtor() to 1106 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1107 * when the last fd pointing to the device is closed. 1108 * 1109 * Note that FreeBSD does not even munmap() on close() so we also have 1110 * to track mmap() ourselves, and postpone the call to 1111 * netmap_dtor() is called when the process has no open fds and no active 1112 * memory maps on /dev/netmap, as in linux. 1113 */ 1114 static int 1115 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1116 { 1117 if (netmap_verbose) 1118 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1119 dev, fflag, devtype, td); 1120 return 0; 1121 } 1122 1123 1124 static int 1125 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1126 { 1127 struct netmap_priv_d *priv; 1128 int error; 1129 1130 (void)dev; 1131 (void)oflags; 1132 (void)devtype; 1133 (void)td; 1134 1135 NMG_LOCK(); 1136 priv = netmap_priv_new(); 1137 if (priv == NULL) { 1138 error = ENOMEM; 1139 goto out; 1140 } 1141 error = devfs_set_cdevpriv(priv, netmap_dtor); 1142 if (error) { 1143 netmap_priv_delete(priv); 1144 } 1145 out: 1146 NMG_UNLOCK(); 1147 return error; 1148 } 1149 1150 /******************** kthread wrapper ****************/ 1151 #include <sys/sysproto.h> 1152 u_int 1153 nm_os_ncpus(void) 1154 { 1155 return mp_maxid + 1; 1156 } 1157 1158 struct nm_kctx_ctx { 1159 /* Userspace thread (kthread creator). */ 1160 struct thread *user_td; 1161 1162 /* worker function and parameter */ 1163 nm_kctx_worker_fn_t worker_fn; 1164 void *worker_private; 1165 1166 struct nm_kctx *nmk; 1167 1168 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1169 long type; 1170 }; 1171 1172 struct nm_kctx { 1173 struct thread *worker; 1174 struct mtx worker_lock; 1175 struct nm_kctx_ctx worker_ctx; 1176 int run; /* used to stop kthread */ 1177 int attach_user; /* kthread attached to user_process */ 1178 int affinity; 1179 }; 1180 1181 static void 1182 nm_kctx_worker(void *data) 1183 { 1184 struct nm_kctx *nmk = data; 1185 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1186 1187 if (nmk->affinity >= 0) { 1188 thread_lock(curthread); 1189 sched_bind(curthread, nmk->affinity); 1190 thread_unlock(curthread); 1191 } 1192 1193 while (nmk->run) { 1194 /* 1195 * check if the parent process dies 1196 * (when kthread is attached to user process) 1197 */ 1198 if (ctx->user_td) { 1199 PROC_LOCK(curproc); 1200 thread_suspend_check(0); 1201 PROC_UNLOCK(curproc); 1202 } else { 1203 kthread_suspend_check(); 1204 } 1205 1206 /* Continuously execute worker process. */ 1207 ctx->worker_fn(ctx->worker_private); /* worker body */ 1208 } 1209 1210 kthread_exit(); 1211 } 1212 1213 void 1214 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1215 { 1216 nmk->affinity = affinity; 1217 } 1218 1219 struct nm_kctx * 1220 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1221 { 1222 struct nm_kctx *nmk = NULL; 1223 1224 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1225 if (!nmk) 1226 return NULL; 1227 1228 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1229 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1230 nmk->worker_ctx.worker_private = cfg->worker_private; 1231 nmk->worker_ctx.type = cfg->type; 1232 nmk->affinity = -1; 1233 1234 /* attach kthread to user process (ptnetmap) */ 1235 nmk->attach_user = cfg->attach_user; 1236 1237 return nmk; 1238 } 1239 1240 int 1241 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1242 { 1243 struct proc *p = NULL; 1244 int error = 0; 1245 1246 /* Temporarily disable this function as it is currently broken 1247 * and causes kernel crashes. The failure can be triggered by 1248 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1249 return EOPNOTSUPP; 1250 1251 if (nmk->worker) 1252 return EBUSY; 1253 1254 /* check if we want to attach kthread to user process */ 1255 if (nmk->attach_user) { 1256 nmk->worker_ctx.user_td = curthread; 1257 p = curthread->td_proc; 1258 } 1259 1260 /* enable kthread main loop */ 1261 nmk->run = 1; 1262 /* create kthread */ 1263 if((error = kthread_add(nm_kctx_worker, nmk, p, 1264 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1265 nmk->worker_ctx.type))) { 1266 goto err; 1267 } 1268 1269 nm_prinf("nm_kthread started td %p", nmk->worker); 1270 1271 return 0; 1272 err: 1273 nm_prerr("nm_kthread start failed err %d", error); 1274 nmk->worker = NULL; 1275 return error; 1276 } 1277 1278 void 1279 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1280 { 1281 if (!nmk->worker) 1282 return; 1283 1284 /* tell to kthread to exit from main loop */ 1285 nmk->run = 0; 1286 1287 /* wake up kthread if it sleeps */ 1288 kthread_resume(nmk->worker); 1289 1290 nmk->worker = NULL; 1291 } 1292 1293 void 1294 nm_os_kctx_destroy(struct nm_kctx *nmk) 1295 { 1296 if (!nmk) 1297 return; 1298 1299 if (nmk->worker) 1300 nm_os_kctx_worker_stop(nmk); 1301 1302 free(nmk, M_DEVBUF); 1303 } 1304 1305 /******************** kqueue support ****************/ 1306 1307 /* 1308 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1309 * needs to call knote() to wake up kqueue listeners. 1310 * This operation is deferred to a taskqueue in order to avoid possible 1311 * lock order reversals; these may happen because knote() grabs a 1312 * private lock associated to the 'si' (see struct selinfo, 1313 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1314 * can be called while holding the lock associated to a different 1315 * 'si'. 1316 * When calling knote() we use a non-zero 'hint' argument to inform 1317 * the netmap_knrw() function that it is being called from 1318 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1319 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1320 * call netmap_poll(). 1321 * 1322 * The netmap_kqfilter() function registers one or another f_event 1323 * depending on read or write mode. A pointer to the struct 1324 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1325 * be passed to netmap_poll(). We pass NULL as a third argument to 1326 * netmap_poll(), so that the latter only runs the txsync/rxsync 1327 * (if necessary), and skips the nm_os_selrecord() calls. 1328 */ 1329 1330 1331 void 1332 nm_os_selwakeup(struct nm_selinfo *si) 1333 { 1334 selwakeuppri(&si->si, PI_NET); 1335 if (si->kqueue_users > 0) { 1336 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1337 } 1338 } 1339 1340 void 1341 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1342 { 1343 selrecord(td, &si->si); 1344 } 1345 1346 static void 1347 netmap_knrdetach(struct knote *kn) 1348 { 1349 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1350 struct nm_selinfo *si = priv->np_si[NR_RX]; 1351 1352 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1353 NMG_LOCK(); 1354 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1355 si->mtxname)); 1356 si->kqueue_users--; 1357 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1358 NMG_UNLOCK(); 1359 } 1360 1361 static void 1362 netmap_knwdetach(struct knote *kn) 1363 { 1364 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1365 struct nm_selinfo *si = priv->np_si[NR_TX]; 1366 1367 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1368 NMG_LOCK(); 1369 si->kqueue_users--; 1370 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1371 NMG_UNLOCK(); 1372 } 1373 1374 /* 1375 * Callback triggered by netmap notifications (see netmap_notify()), 1376 * and by the application calling kevent(). In the former case we 1377 * just return 1 (events ready), since we are not able to do better. 1378 * In the latter case we use netmap_poll() to see which events are 1379 * ready. 1380 */ 1381 static int 1382 netmap_knrw(struct knote *kn, long hint, int events) 1383 { 1384 struct netmap_priv_d *priv; 1385 int revents; 1386 1387 if (hint != 0) { 1388 /* Called from netmap_notify(), typically from a 1389 * thread different from the one issuing kevent(). 1390 * Assume we are ready. */ 1391 return 1; 1392 } 1393 1394 /* Called from kevent(). */ 1395 priv = kn->kn_hook; 1396 revents = netmap_poll(priv, events, /*thread=*/NULL); 1397 1398 return (events & revents) ? 1 : 0; 1399 } 1400 1401 static int 1402 netmap_knread(struct knote *kn, long hint) 1403 { 1404 return netmap_knrw(kn, hint, POLLIN); 1405 } 1406 1407 static int 1408 netmap_knwrite(struct knote *kn, long hint) 1409 { 1410 return netmap_knrw(kn, hint, POLLOUT); 1411 } 1412 1413 static struct filterops netmap_rfiltops = { 1414 .f_isfd = 1, 1415 .f_detach = netmap_knrdetach, 1416 .f_event = netmap_knread, 1417 }; 1418 1419 static struct filterops netmap_wfiltops = { 1420 .f_isfd = 1, 1421 .f_detach = netmap_knwdetach, 1422 .f_event = netmap_knwrite, 1423 }; 1424 1425 1426 /* 1427 * This is called when a thread invokes kevent() to record 1428 * a change in the configuration of the kqueue(). 1429 * The 'priv' is the one associated to the open netmap device. 1430 */ 1431 static int 1432 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1433 { 1434 struct netmap_priv_d *priv; 1435 int error; 1436 struct netmap_adapter *na; 1437 struct nm_selinfo *si; 1438 int ev = kn->kn_filter; 1439 1440 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1441 nm_prerr("bad filter request %d", ev); 1442 return 1; 1443 } 1444 error = devfs_get_cdevpriv((void**)&priv); 1445 if (error) { 1446 nm_prerr("device not yet setup"); 1447 return 1; 1448 } 1449 na = priv->np_na; 1450 if (na == NULL) { 1451 nm_prerr("no netmap adapter for this file descriptor"); 1452 return 1; 1453 } 1454 /* the si is indicated in the priv */ 1455 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1456 kn->kn_fop = (ev == EVFILT_WRITE) ? 1457 &netmap_wfiltops : &netmap_rfiltops; 1458 kn->kn_hook = priv; 1459 NMG_LOCK(); 1460 si->kqueue_users++; 1461 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1462 NMG_UNLOCK(); 1463 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1464 1465 return 0; 1466 } 1467 1468 static int 1469 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1470 { 1471 struct netmap_priv_d *priv; 1472 if (devfs_get_cdevpriv((void **)&priv)) { 1473 return POLLERR; 1474 } 1475 return netmap_poll(priv, events, td); 1476 } 1477 1478 static int 1479 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1480 int ffla __unused, struct thread *td) 1481 { 1482 int error; 1483 struct netmap_priv_d *priv; 1484 1485 CURVNET_SET(TD_TO_VNET(td)); 1486 error = devfs_get_cdevpriv((void **)&priv); 1487 if (error) { 1488 /* XXX ENOENT should be impossible, since the priv 1489 * is now created in the open */ 1490 if (error == ENOENT) 1491 error = ENXIO; 1492 goto out; 1493 } 1494 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1495 out: 1496 CURVNET_RESTORE(); 1497 1498 return error; 1499 } 1500 1501 void 1502 nm_os_onattach(struct ifnet *ifp) 1503 { 1504 ifp->if_capabilities |= IFCAP_NETMAP; 1505 } 1506 1507 void 1508 nm_os_onenter(struct ifnet *ifp) 1509 { 1510 struct netmap_adapter *na = NA(ifp); 1511 1512 na->if_transmit = ifp->if_transmit; 1513 ifp->if_transmit = netmap_transmit; 1514 ifp->if_capenable |= IFCAP_NETMAP; 1515 } 1516 1517 void 1518 nm_os_onexit(struct ifnet *ifp) 1519 { 1520 struct netmap_adapter *na = NA(ifp); 1521 1522 ifp->if_transmit = na->if_transmit; 1523 ifp->if_capenable &= ~IFCAP_NETMAP; 1524 } 1525 1526 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1527 struct cdevsw netmap_cdevsw = { 1528 .d_version = D_VERSION, 1529 .d_name = "netmap", 1530 .d_open = netmap_open, 1531 .d_mmap_single = netmap_mmap_single, 1532 .d_ioctl = freebsd_netmap_ioctl, 1533 .d_poll = freebsd_netmap_poll, 1534 .d_kqfilter = netmap_kqfilter, 1535 .d_close = netmap_close, 1536 }; 1537 /*--- end of kqueue support ----*/ 1538 1539 /* 1540 * Kernel entry point. 1541 * 1542 * Initialize/finalize the module and return. 1543 * 1544 * Return 0 on success, errno on failure. 1545 */ 1546 static int 1547 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1548 { 1549 int error = 0; 1550 1551 switch (event) { 1552 case MOD_LOAD: 1553 error = netmap_init(); 1554 break; 1555 1556 case MOD_UNLOAD: 1557 /* 1558 * if some one is still using netmap, 1559 * then the module can not be unloaded. 1560 */ 1561 if (netmap_use_count) { 1562 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1563 netmap_use_count); 1564 error = EBUSY; 1565 break; 1566 } 1567 netmap_fini(); 1568 break; 1569 1570 default: 1571 error = EOPNOTSUPP; 1572 break; 1573 } 1574 1575 return (error); 1576 } 1577 1578 #ifdef DEV_MODULE_ORDERED 1579 /* 1580 * The netmap module contains three drivers: (i) the netmap character device 1581 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1582 * device driver. The attach() routines of both (ii) and (iii) need the 1583 * lock of the global allocator, and such lock is initialized in netmap_init(), 1584 * which is part of (i). 1585 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1586 * the 'order' parameter of driver declaration macros. For (i), we specify 1587 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1588 * macros for (ii) and (iii). 1589 */ 1590 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1591 #else /* !DEV_MODULE_ORDERED */ 1592 DEV_MODULE(netmap, netmap_loader, NULL); 1593 #endif /* DEV_MODULE_ORDERED */ 1594 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1595 MODULE_VERSION(netmap, 1); 1596 /* reduce conditional code */ 1597 // linux API, use for the knlist in FreeBSD 1598 /* use a private mutex for the knlist */ 1599