1 /*- 2 * Generic routines for LSI Fusion adapters. 3 * FreeBSD Version. 4 * 5 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-3-Clause 6 * 7 * Copyright (c) 2000, 2001 by Greg Ansley 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice immediately at the beginning of the file, without modification, 14 * this list of conditions, and the following disclaimer. 15 * 2. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 /*- 31 * Copyright (c) 2002, 2006 by Matthew Jacob 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions are 36 * met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 40 * substantially similar to the "NO WARRANTY" disclaimer below 41 * ("Disclaimer") and any redistribution must be conditioned upon including 42 * a substantially similar Disclaimer requirement for further binary 43 * redistribution. 44 * 3. Neither the names of the above listed copyright holders nor the names 45 * of any contributors may be used to endorse or promote products derived 46 * from this software without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 49 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 52 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 58 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 * 60 * Support from Chris Ellsworth in order to make SAS adapters work 61 * is gratefully acknowledged. 62 * 63 * 64 * Support from LSI-Logic has also gone a great deal toward making this a 65 * workable subsystem and is gratefully acknowledged. 66 */ 67 /*- 68 * Copyright (c) 2004, Avid Technology, Inc. and its contributors. 69 * Copyright (c) 2005, WHEEL Sp. z o.o. 70 * Copyright (c) 2004, 2005 Justin T. Gibbs 71 * All rights reserved. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions are 75 * met: 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 79 * substantially similar to the "NO WARRANTY" disclaimer below 80 * ("Disclaimer") and any redistribution must be conditioned upon including 81 * a substantially similar Disclaimer requirement for further binary 82 * redistribution. 83 * 3. Neither the names of the above listed copyright holders nor the names 84 * of any contributors may be used to endorse or promote products derived 85 * from this software without specific prior written permission. 86 * 87 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 88 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 90 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 91 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 92 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 93 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 94 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 95 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 96 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT 97 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 98 */ 99 100 #include <sys/cdefs.h> 101 __FBSDID("$FreeBSD$"); 102 103 #include <dev/mpt/mpt.h> 104 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ 105 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ 106 107 #include <dev/mpt/mpilib/mpi.h> 108 #include <dev/mpt/mpilib/mpi_ioc.h> 109 #include <dev/mpt/mpilib/mpi_fc.h> 110 #include <dev/mpt/mpilib/mpi_targ.h> 111 112 #include <sys/sysctl.h> 113 114 #define MPT_MAX_TRYS 3 115 #define MPT_MAX_WAIT 300000 116 117 static int maxwait_ack = 0; 118 static int maxwait_int = 0; 119 static int maxwait_state = 0; 120 121 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); 122 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; 123 124 static mpt_reply_handler_t mpt_default_reply_handler; 125 static mpt_reply_handler_t mpt_config_reply_handler; 126 static mpt_reply_handler_t mpt_handshake_reply_handler; 127 static mpt_reply_handler_t mpt_event_reply_handler; 128 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 129 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); 130 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); 131 static int mpt_soft_reset(struct mpt_softc *mpt); 132 static void mpt_hard_reset(struct mpt_softc *mpt); 133 static int mpt_dma_buf_alloc(struct mpt_softc *mpt); 134 static void mpt_dma_buf_free(struct mpt_softc *mpt); 135 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); 136 static int mpt_enable_ioc(struct mpt_softc *mpt, int); 137 138 /************************* Personality Module Support *************************/ 139 /* 140 * We include one extra entry that is guaranteed to be NULL 141 * to simplify our itterator. 142 */ 143 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; 144 static __inline struct mpt_personality* 145 mpt_pers_find(struct mpt_softc *, u_int); 146 static __inline struct mpt_personality* 147 mpt_pers_find_reverse(struct mpt_softc *, u_int); 148 149 static __inline struct mpt_personality * 150 mpt_pers_find(struct mpt_softc *mpt, u_int start_at) 151 { 152 KASSERT(start_at <= MPT_MAX_PERSONALITIES, 153 ("mpt_pers_find: starting position out of range")); 154 155 while (start_at < MPT_MAX_PERSONALITIES 156 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 157 start_at++; 158 } 159 return (mpt_personalities[start_at]); 160 } 161 162 /* 163 * Used infrequently, so no need to optimize like a forward 164 * traversal where we use the MAX+1 is guaranteed to be NULL 165 * trick. 166 */ 167 static __inline struct mpt_personality * 168 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) 169 { 170 while (start_at < MPT_MAX_PERSONALITIES 171 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { 172 start_at--; 173 } 174 if (start_at < MPT_MAX_PERSONALITIES) 175 return (mpt_personalities[start_at]); 176 return (NULL); 177 } 178 179 #define MPT_PERS_FOREACH(mpt, pers) \ 180 for (pers = mpt_pers_find(mpt, /*start_at*/0); \ 181 pers != NULL; \ 182 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) 183 184 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ 185 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ 186 pers != NULL; \ 187 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) 188 189 static mpt_load_handler_t mpt_stdload; 190 static mpt_probe_handler_t mpt_stdprobe; 191 static mpt_attach_handler_t mpt_stdattach; 192 static mpt_enable_handler_t mpt_stdenable; 193 static mpt_ready_handler_t mpt_stdready; 194 static mpt_event_handler_t mpt_stdevent; 195 static mpt_reset_handler_t mpt_stdreset; 196 static mpt_shutdown_handler_t mpt_stdshutdown; 197 static mpt_detach_handler_t mpt_stddetach; 198 static mpt_unload_handler_t mpt_stdunload; 199 static struct mpt_personality mpt_default_personality = 200 { 201 .load = mpt_stdload, 202 .probe = mpt_stdprobe, 203 .attach = mpt_stdattach, 204 .enable = mpt_stdenable, 205 .ready = mpt_stdready, 206 .event = mpt_stdevent, 207 .reset = mpt_stdreset, 208 .shutdown = mpt_stdshutdown, 209 .detach = mpt_stddetach, 210 .unload = mpt_stdunload 211 }; 212 213 static mpt_load_handler_t mpt_core_load; 214 static mpt_attach_handler_t mpt_core_attach; 215 static mpt_enable_handler_t mpt_core_enable; 216 static mpt_reset_handler_t mpt_core_ioc_reset; 217 static mpt_event_handler_t mpt_core_event; 218 static mpt_shutdown_handler_t mpt_core_shutdown; 219 static mpt_shutdown_handler_t mpt_core_detach; 220 static mpt_unload_handler_t mpt_core_unload; 221 static struct mpt_personality mpt_core_personality = 222 { 223 .name = "mpt_core", 224 .load = mpt_core_load, 225 // .attach = mpt_core_attach, 226 // .enable = mpt_core_enable, 227 .event = mpt_core_event, 228 .reset = mpt_core_ioc_reset, 229 .shutdown = mpt_core_shutdown, 230 .detach = mpt_core_detach, 231 .unload = mpt_core_unload, 232 }; 233 234 /* 235 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need 236 * ordering information. We want the core to always register FIRST. 237 * other modules are set to SI_ORDER_SECOND. 238 */ 239 static moduledata_t mpt_core_mod = { 240 "mpt_core", mpt_modevent, &mpt_core_personality 241 }; 242 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 243 MODULE_VERSION(mpt_core, 1); 244 245 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) 246 247 int 248 mpt_modevent(module_t mod, int type, void *data) 249 { 250 struct mpt_personality *pers; 251 int error; 252 253 pers = (struct mpt_personality *)data; 254 255 error = 0; 256 switch (type) { 257 case MOD_LOAD: 258 { 259 mpt_load_handler_t **def_handler; 260 mpt_load_handler_t **pers_handler; 261 int i; 262 263 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 264 if (mpt_personalities[i] == NULL) 265 break; 266 } 267 if (i >= MPT_MAX_PERSONALITIES) { 268 error = ENOMEM; 269 break; 270 } 271 pers->id = i; 272 mpt_personalities[i] = pers; 273 274 /* Install standard/noop handlers for any NULL entries. */ 275 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); 276 pers_handler = MPT_PERS_FIRST_HANDLER(pers); 277 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { 278 if (*pers_handler == NULL) 279 *pers_handler = *def_handler; 280 pers_handler++; 281 def_handler++; 282 } 283 284 error = (pers->load(pers)); 285 if (error != 0) 286 mpt_personalities[i] = NULL; 287 break; 288 } 289 case MOD_SHUTDOWN: 290 break; 291 case MOD_QUIESCE: 292 break; 293 case MOD_UNLOAD: 294 error = pers->unload(pers); 295 mpt_personalities[pers->id] = NULL; 296 break; 297 default: 298 error = EINVAL; 299 break; 300 } 301 return (error); 302 } 303 304 static int 305 mpt_stdload(struct mpt_personality *pers) 306 { 307 308 /* Load is always successful. */ 309 return (0); 310 } 311 312 static int 313 mpt_stdprobe(struct mpt_softc *mpt) 314 { 315 316 /* Probe is always successful. */ 317 return (0); 318 } 319 320 static int 321 mpt_stdattach(struct mpt_softc *mpt) 322 { 323 324 /* Attach is always successful. */ 325 return (0); 326 } 327 328 static int 329 mpt_stdenable(struct mpt_softc *mpt) 330 { 331 332 /* Enable is always successful. */ 333 return (0); 334 } 335 336 static void 337 mpt_stdready(struct mpt_softc *mpt) 338 { 339 340 } 341 342 static int 343 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) 344 { 345 346 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); 347 /* Event was not for us. */ 348 return (0); 349 } 350 351 static void 352 mpt_stdreset(struct mpt_softc *mpt, int type) 353 { 354 355 } 356 357 static void 358 mpt_stdshutdown(struct mpt_softc *mpt) 359 { 360 361 } 362 363 static void 364 mpt_stddetach(struct mpt_softc *mpt) 365 { 366 367 } 368 369 static int 370 mpt_stdunload(struct mpt_personality *pers) 371 { 372 373 /* Unload is always successful. */ 374 return (0); 375 } 376 377 /* 378 * Post driver attachment, we may want to perform some global actions. 379 * Here is the hook to do so. 380 */ 381 382 static void 383 mpt_postattach(void *unused) 384 { 385 struct mpt_softc *mpt; 386 struct mpt_personality *pers; 387 388 TAILQ_FOREACH(mpt, &mpt_tailq, links) { 389 MPT_PERS_FOREACH(mpt, pers) 390 pers->ready(mpt); 391 } 392 } 393 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); 394 395 /******************************* Bus DMA Support ******************************/ 396 void 397 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) 398 { 399 struct mpt_map_info *map_info; 400 401 map_info = (struct mpt_map_info *)arg; 402 map_info->error = error; 403 map_info->phys = segs->ds_addr; 404 } 405 406 /**************************** Reply/Event Handling ****************************/ 407 int 408 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, 409 mpt_handler_t handler, uint32_t *phandler_id) 410 { 411 412 switch (type) { 413 case MPT_HANDLER_REPLY: 414 { 415 u_int cbi; 416 u_int free_cbi; 417 418 if (phandler_id == NULL) 419 return (EINVAL); 420 421 free_cbi = MPT_HANDLER_ID_NONE; 422 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { 423 /* 424 * If the same handler is registered multiple 425 * times, don't error out. Just return the 426 * index of the original registration. 427 */ 428 if (mpt_reply_handlers[cbi] == handler.reply_handler) { 429 *phandler_id = MPT_CBI_TO_HID(cbi); 430 return (0); 431 } 432 433 /* 434 * Fill from the front in the hope that 435 * all registered handlers consume only a 436 * single cache line. 437 * 438 * We don't break on the first empty slot so 439 * that the full table is checked to see if 440 * this handler was previously registered. 441 */ 442 if (free_cbi == MPT_HANDLER_ID_NONE && 443 (mpt_reply_handlers[cbi] 444 == mpt_default_reply_handler)) 445 free_cbi = cbi; 446 } 447 if (free_cbi == MPT_HANDLER_ID_NONE) { 448 return (ENOMEM); 449 } 450 mpt_reply_handlers[free_cbi] = handler.reply_handler; 451 *phandler_id = MPT_CBI_TO_HID(free_cbi); 452 break; 453 } 454 default: 455 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); 456 return (EINVAL); 457 } 458 return (0); 459 } 460 461 int 462 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, 463 mpt_handler_t handler, uint32_t handler_id) 464 { 465 466 switch (type) { 467 case MPT_HANDLER_REPLY: 468 { 469 u_int cbi; 470 471 cbi = MPT_CBI(handler_id); 472 if (cbi >= MPT_NUM_REPLY_HANDLERS 473 || mpt_reply_handlers[cbi] != handler.reply_handler) 474 return (ENOENT); 475 mpt_reply_handlers[cbi] = mpt_default_reply_handler; 476 break; 477 } 478 default: 479 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); 480 return (EINVAL); 481 } 482 return (0); 483 } 484 485 static int 486 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, 487 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 488 { 489 490 mpt_prt(mpt, 491 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", 492 req, req->serno, reply_desc, reply_frame); 493 494 if (reply_frame != NULL) 495 mpt_dump_reply_frame(mpt, reply_frame); 496 497 mpt_prt(mpt, "Reply Frame Ignored\n"); 498 499 return (/*free_reply*/TRUE); 500 } 501 502 static int 503 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, 504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 505 { 506 507 if (req != NULL) { 508 if (reply_frame != NULL) { 509 MSG_CONFIG *cfgp; 510 MSG_CONFIG_REPLY *reply; 511 512 cfgp = (MSG_CONFIG *)req->req_vbuf; 513 reply = (MSG_CONFIG_REPLY *)reply_frame; 514 req->IOCStatus = le16toh(reply_frame->IOCStatus); 515 bcopy(&reply->Header, &cfgp->Header, 516 sizeof(cfgp->Header)); 517 cfgp->ExtPageLength = reply->ExtPageLength; 518 cfgp->ExtPageType = reply->ExtPageType; 519 } 520 req->state &= ~REQ_STATE_QUEUED; 521 req->state |= REQ_STATE_DONE; 522 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 523 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { 524 wakeup(req); 525 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { 526 /* 527 * Whew- we can free this request (late completion) 528 */ 529 mpt_free_request(mpt, req); 530 } 531 } 532 533 return (TRUE); 534 } 535 536 static int 537 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, 538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 539 { 540 541 /* Nothing to be done. */ 542 return (TRUE); 543 } 544 545 static int 546 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, 547 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) 548 { 549 int free_reply; 550 551 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); 552 KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); 553 554 free_reply = TRUE; 555 switch (reply_frame->Function) { 556 case MPI_FUNCTION_EVENT_NOTIFICATION: 557 { 558 MSG_EVENT_NOTIFY_REPLY *msg; 559 struct mpt_personality *pers; 560 u_int handled; 561 562 handled = 0; 563 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 564 msg->EventDataLength = le16toh(msg->EventDataLength); 565 msg->IOCStatus = le16toh(msg->IOCStatus); 566 msg->IOCLogInfo = le32toh(msg->IOCLogInfo); 567 msg->Event = le32toh(msg->Event); 568 MPT_PERS_FOREACH(mpt, pers) 569 handled += pers->event(mpt, req, msg); 570 571 if (handled == 0 && mpt->mpt_pers_mask == 0) { 572 mpt_lprt(mpt, MPT_PRT_INFO, 573 "No Handlers For Any Event Notify Frames. " 574 "Event %#x (ACK %sequired).\n", 575 msg->Event, msg->AckRequired? "r" : "not r"); 576 } else if (handled == 0) { 577 mpt_lprt(mpt, 578 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO, 579 "Unhandled Event Notify Frame. Event %#x " 580 "(ACK %sequired).\n", 581 msg->Event, msg->AckRequired? "r" : "not r"); 582 } 583 584 if (msg->AckRequired) { 585 request_t *ack_req; 586 uint32_t context; 587 588 context = req->index | MPT_REPLY_HANDLER_EVENTS; 589 ack_req = mpt_get_request(mpt, FALSE); 590 if (ack_req == NULL) { 591 struct mpt_evtf_record *evtf; 592 593 evtf = (struct mpt_evtf_record *)reply_frame; 594 evtf->context = context; 595 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); 596 free_reply = FALSE; 597 break; 598 } 599 mpt_send_event_ack(mpt, ack_req, msg, context); 600 /* 601 * Don't check for CONTINUATION_REPLY here 602 */ 603 return (free_reply); 604 } 605 break; 606 } 607 case MPI_FUNCTION_PORT_ENABLE: 608 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); 609 break; 610 case MPI_FUNCTION_EVENT_ACK: 611 break; 612 default: 613 mpt_prt(mpt, "unknown event function: %x\n", 614 reply_frame->Function); 615 break; 616 } 617 618 /* 619 * I'm not sure that this continuation stuff works as it should. 620 * 621 * I've had FC async events occur that free the frame up because 622 * the continuation bit isn't set, and then additional async events 623 * then occur using the same context. As you might imagine, this 624 * leads to Very Bad Thing. 625 * 626 * Let's just be safe for now and not free them up until we figure 627 * out what's actually happening here. 628 */ 629 #if 0 630 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { 631 TAILQ_REMOVE(&mpt->request_pending_list, req, links); 632 mpt_free_request(mpt, req); 633 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", 634 reply_frame->Function, req, req->serno); 635 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 636 MSG_EVENT_NOTIFY_REPLY *msg = 637 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 638 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 639 msg->Event, msg->AckRequired); 640 } 641 } else { 642 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", 643 reply_frame->Function, req, req->serno); 644 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { 645 MSG_EVENT_NOTIFY_REPLY *msg = 646 (MSG_EVENT_NOTIFY_REPLY *)reply_frame; 647 mpt_prtc(mpt, " Event=0x%x AckReq=%d", 648 msg->Event, msg->AckRequired); 649 } 650 mpt_prtc(mpt, "\n"); 651 } 652 #endif 653 return (free_reply); 654 } 655 656 /* 657 * Process an asynchronous event from the IOC. 658 */ 659 static int 660 mpt_core_event(struct mpt_softc *mpt, request_t *req, 661 MSG_EVENT_NOTIFY_REPLY *msg) 662 { 663 664 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", 665 msg->Event & 0xFF); 666 switch(msg->Event & 0xFF) { 667 case MPI_EVENT_NONE: 668 break; 669 case MPI_EVENT_LOG_DATA: 670 { 671 int i; 672 673 /* Some error occurred that LSI wants logged */ 674 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", 675 msg->IOCLogInfo); 676 mpt_prt(mpt, "\tEvtLogData: Event Data:"); 677 for (i = 0; i < msg->EventDataLength; i++) 678 mpt_prtc(mpt, " %08x", msg->Data[i]); 679 mpt_prtc(mpt, "\n"); 680 break; 681 } 682 case MPI_EVENT_EVENT_CHANGE: 683 /* 684 * This is just an acknowledgement 685 * of our mpt_send_event_request. 686 */ 687 break; 688 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: 689 break; 690 default: 691 return (0); 692 break; 693 } 694 return (1); 695 } 696 697 static void 698 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, 699 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) 700 { 701 MSG_EVENT_ACK *ackp; 702 703 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; 704 memset(ackp, 0, sizeof (*ackp)); 705 ackp->Function = MPI_FUNCTION_EVENT_ACK; 706 ackp->Event = htole32(msg->Event); 707 ackp->EventContext = htole32(msg->EventContext); 708 ackp->MsgContext = htole32(context); 709 mpt_check_doorbell(mpt); 710 mpt_send_cmd(mpt, ack_req); 711 } 712 713 /***************************** Interrupt Handling *****************************/ 714 void 715 mpt_intr(void *arg) 716 { 717 struct mpt_softc *mpt; 718 uint32_t reply_desc; 719 int ntrips = 0; 720 721 mpt = (struct mpt_softc *)arg; 722 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); 723 MPT_LOCK_ASSERT(mpt); 724 725 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { 726 request_t *req; 727 MSG_DEFAULT_REPLY *reply_frame; 728 uint32_t reply_baddr; 729 uint32_t ctxt_idx; 730 u_int cb_index; 731 u_int req_index; 732 u_int offset; 733 int free_rf; 734 735 req = NULL; 736 reply_frame = NULL; 737 reply_baddr = 0; 738 offset = 0; 739 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { 740 /* 741 * Ensure that the reply frame is coherent. 742 */ 743 reply_baddr = MPT_REPLY_BADDR(reply_desc); 744 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); 745 bus_dmamap_sync_range(mpt->reply_dmat, 746 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 747 BUS_DMASYNC_POSTREAD); 748 reply_frame = MPT_REPLY_OTOV(mpt, offset); 749 ctxt_idx = le32toh(reply_frame->MsgContext); 750 } else { 751 uint32_t type; 752 753 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); 754 ctxt_idx = reply_desc; 755 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", 756 reply_desc); 757 758 switch (type) { 759 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: 760 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; 761 break; 762 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: 763 ctxt_idx = GET_IO_INDEX(reply_desc); 764 if (mpt->tgt_cmd_ptrs == NULL) { 765 mpt_prt(mpt, 766 "mpt_intr: no target cmd ptrs\n"); 767 reply_desc = MPT_REPLY_EMPTY; 768 break; 769 } 770 if (ctxt_idx >= mpt->tgt_cmds_allocated) { 771 mpt_prt(mpt, 772 "mpt_intr: bad tgt cmd ctxt %u\n", 773 ctxt_idx); 774 reply_desc = MPT_REPLY_EMPTY; 775 ntrips = 1000; 776 break; 777 } 778 req = mpt->tgt_cmd_ptrs[ctxt_idx]; 779 if (req == NULL) { 780 mpt_prt(mpt, "no request backpointer " 781 "at index %u", ctxt_idx); 782 reply_desc = MPT_REPLY_EMPTY; 783 ntrips = 1000; 784 break; 785 } 786 /* 787 * Reformulate ctxt_idx to be just as if 788 * it were another type of context reply 789 * so the code below will find the request 790 * via indexing into the pool. 791 */ 792 ctxt_idx = 793 req->index | mpt->scsi_tgt_handler_id; 794 req = NULL; 795 break; 796 case MPI_CONTEXT_REPLY_TYPE_LAN: 797 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", 798 reply_desc); 799 reply_desc = MPT_REPLY_EMPTY; 800 break; 801 default: 802 mpt_prt(mpt, "Context Reply 0x%08x?\n", type); 803 reply_desc = MPT_REPLY_EMPTY; 804 break; 805 } 806 if (reply_desc == MPT_REPLY_EMPTY) { 807 if (ntrips++ > 1000) { 808 break; 809 } 810 continue; 811 } 812 } 813 814 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); 815 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); 816 if (req_index < MPT_MAX_REQUESTS(mpt)) { 817 req = &mpt->request_pool[req_index]; 818 } else { 819 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" 820 " 0x%x)\n", req_index, reply_desc); 821 } 822 823 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 824 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 825 free_rf = mpt_reply_handlers[cb_index](mpt, req, 826 reply_desc, reply_frame); 827 828 if (reply_frame != NULL && free_rf) { 829 bus_dmamap_sync_range(mpt->reply_dmat, 830 mpt->reply_dmap, offset, MPT_REPLY_SIZE, 831 BUS_DMASYNC_PREREAD); 832 mpt_free_reply(mpt, reply_baddr); 833 } 834 835 /* 836 * If we got ourselves disabled, don't get stuck in a loop 837 */ 838 if (mpt->disabled) { 839 mpt_disable_ints(mpt); 840 break; 841 } 842 if (ntrips++ > 1000) { 843 break; 844 } 845 } 846 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); 847 } 848 849 /******************************* Error Recovery *******************************/ 850 void 851 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, 852 u_int iocstatus) 853 { 854 MSG_DEFAULT_REPLY ioc_status_frame; 855 request_t *req; 856 857 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); 858 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); 859 ioc_status_frame.IOCStatus = iocstatus; 860 while((req = TAILQ_FIRST(chain)) != NULL) { 861 MSG_REQUEST_HEADER *msg_hdr; 862 u_int cb_index; 863 864 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 865 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 866 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; 867 ioc_status_frame.Function = msg_hdr->Function; 868 ioc_status_frame.MsgContext = msg_hdr->MsgContext; 869 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); 870 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, 871 &ioc_status_frame); 872 if (mpt_req_on_pending_list(mpt, req) != 0) 873 TAILQ_REMOVE(chain, req, links); 874 } 875 } 876 877 /********************************* Diagnostics ********************************/ 878 /* 879 * Perform a diagnostic dump of a reply frame. 880 */ 881 void 882 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) 883 { 884 885 mpt_prt(mpt, "Address Reply:\n"); 886 mpt_print_reply(reply_frame); 887 } 888 889 /******************************* Doorbell Access ******************************/ 890 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); 891 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); 892 893 static __inline uint32_t 894 mpt_rd_db(struct mpt_softc *mpt) 895 { 896 897 return mpt_read(mpt, MPT_OFFSET_DOORBELL); 898 } 899 900 static __inline uint32_t 901 mpt_rd_intr(struct mpt_softc *mpt) 902 { 903 904 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); 905 } 906 907 /* Busy wait for a door bell to be read by IOC */ 908 static int 909 mpt_wait_db_ack(struct mpt_softc *mpt) 910 { 911 int i; 912 913 for (i=0; i < MPT_MAX_WAIT; i++) { 914 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { 915 maxwait_ack = i > maxwait_ack ? i : maxwait_ack; 916 return (MPT_OK); 917 } 918 DELAY(200); 919 } 920 return (MPT_FAIL); 921 } 922 923 /* Busy wait for a door bell interrupt */ 924 static int 925 mpt_wait_db_int(struct mpt_softc *mpt) 926 { 927 int i; 928 929 for (i = 0; i < MPT_MAX_WAIT; i++) { 930 if (MPT_DB_INTR(mpt_rd_intr(mpt))) { 931 maxwait_int = i > maxwait_int ? i : maxwait_int; 932 return MPT_OK; 933 } 934 DELAY(100); 935 } 936 return (MPT_FAIL); 937 } 938 939 /* Wait for IOC to transition to a give state */ 940 void 941 mpt_check_doorbell(struct mpt_softc *mpt) 942 { 943 uint32_t db = mpt_rd_db(mpt); 944 945 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { 946 mpt_prt(mpt, "Device not running\n"); 947 mpt_print_db(db); 948 } 949 } 950 951 /* Wait for IOC to transition to a give state */ 952 static int 953 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) 954 { 955 int i; 956 957 for (i = 0; i < MPT_MAX_WAIT; i++) { 958 uint32_t db = mpt_rd_db(mpt); 959 if (MPT_STATE(db) == state) { 960 maxwait_state = i > maxwait_state ? i : maxwait_state; 961 return (MPT_OK); 962 } 963 DELAY(100); 964 } 965 return (MPT_FAIL); 966 } 967 968 969 /************************* Initialization/Configuration ************************/ 970 static int mpt_download_fw(struct mpt_softc *mpt); 971 972 /* Issue the reset COMMAND to the IOC */ 973 static int 974 mpt_soft_reset(struct mpt_softc *mpt) 975 { 976 977 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); 978 979 /* Have to use hard reset if we are not in Running state */ 980 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { 981 mpt_prt(mpt, "soft reset failed: device not running\n"); 982 return (MPT_FAIL); 983 } 984 985 /* If door bell is in use we don't have a chance of getting 986 * a word in since the IOC probably crashed in message 987 * processing. So don't waste our time. 988 */ 989 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { 990 mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); 991 return (MPT_FAIL); 992 } 993 994 /* Send the reset request to the IOC */ 995 mpt_write(mpt, MPT_OFFSET_DOORBELL, 996 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); 997 if (mpt_wait_db_ack(mpt) != MPT_OK) { 998 mpt_prt(mpt, "soft reset failed: ack timeout\n"); 999 return (MPT_FAIL); 1000 } 1001 1002 /* Wait for the IOC to reload and come out of reset state */ 1003 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { 1004 mpt_prt(mpt, "soft reset failed: device did not restart\n"); 1005 return (MPT_FAIL); 1006 } 1007 1008 return MPT_OK; 1009 } 1010 1011 static int 1012 mpt_enable_diag_mode(struct mpt_softc *mpt) 1013 { 1014 int try; 1015 1016 try = 20; 1017 while (--try) { 1018 1019 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) 1020 break; 1021 1022 /* Enable diagnostic registers */ 1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); 1024 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); 1025 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); 1026 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); 1027 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); 1028 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); 1029 1030 DELAY(100000); 1031 } 1032 if (try == 0) 1033 return (EIO); 1034 return (0); 1035 } 1036 1037 static void 1038 mpt_disable_diag_mode(struct mpt_softc *mpt) 1039 { 1040 1041 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); 1042 } 1043 1044 /* This is a magic diagnostic reset that resets all the ARM 1045 * processors in the chip. 1046 */ 1047 static void 1048 mpt_hard_reset(struct mpt_softc *mpt) 1049 { 1050 int error; 1051 int wait; 1052 uint32_t diagreg; 1053 1054 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); 1055 1056 if (mpt->is_1078) { 1057 mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07); 1058 DELAY(1000); 1059 return; 1060 } 1061 1062 error = mpt_enable_diag_mode(mpt); 1063 if (error) { 1064 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); 1065 mpt_prt(mpt, "Trying to reset anyway.\n"); 1066 } 1067 1068 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1069 1070 /* 1071 * This appears to be a workaround required for some 1072 * firmware or hardware revs. 1073 */ 1074 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); 1075 DELAY(1000); 1076 1077 /* Diag. port is now active so we can now hit the reset bit */ 1078 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); 1079 1080 /* 1081 * Ensure that the reset has finished. We delay 1ms 1082 * prior to reading the register to make sure the chip 1083 * has sufficiently completed its reset to handle register 1084 * accesses. 1085 */ 1086 wait = 5000; 1087 do { 1088 DELAY(1000); 1089 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 1090 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); 1091 1092 if (wait == 0) { 1093 mpt_prt(mpt, "WARNING - Failed hard reset! " 1094 "Trying to initialize anyway.\n"); 1095 } 1096 1097 /* 1098 * If we have firmware to download, it must be loaded before 1099 * the controller will become operational. Do so now. 1100 */ 1101 if (mpt->fw_image != NULL) { 1102 1103 error = mpt_download_fw(mpt); 1104 1105 if (error) { 1106 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); 1107 mpt_prt(mpt, "Trying to initialize anyway.\n"); 1108 } 1109 } 1110 1111 /* 1112 * Reseting the controller should have disabled write 1113 * access to the diagnostic registers, but disable 1114 * manually to be sure. 1115 */ 1116 mpt_disable_diag_mode(mpt); 1117 } 1118 1119 static void 1120 mpt_core_ioc_reset(struct mpt_softc *mpt, int type) 1121 { 1122 1123 /* 1124 * Complete all pending requests with a status 1125 * appropriate for an IOC reset. 1126 */ 1127 mpt_complete_request_chain(mpt, &mpt->request_pending_list, 1128 MPI_IOCSTATUS_INVALID_STATE); 1129 } 1130 1131 /* 1132 * Reset the IOC when needed. Try software command first then if needed 1133 * poke at the magic diagnostic reset. Note that a hard reset resets 1134 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as 1135 * fouls up the PCI configuration registers. 1136 */ 1137 int 1138 mpt_reset(struct mpt_softc *mpt, int reinit) 1139 { 1140 struct mpt_personality *pers; 1141 int ret; 1142 int retry_cnt = 0; 1143 1144 /* 1145 * Try a soft reset. If that fails, get out the big hammer. 1146 */ 1147 again: 1148 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { 1149 int cnt; 1150 for (cnt = 0; cnt < 5; cnt++) { 1151 /* Failed; do a hard reset */ 1152 mpt_hard_reset(mpt); 1153 1154 /* 1155 * Wait for the IOC to reload 1156 * and come out of reset state 1157 */ 1158 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1159 if (ret == MPT_OK) { 1160 break; 1161 } 1162 /* 1163 * Okay- try to check again... 1164 */ 1165 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); 1166 if (ret == MPT_OK) { 1167 break; 1168 } 1169 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", 1170 retry_cnt, cnt); 1171 } 1172 } 1173 1174 if (retry_cnt == 0) { 1175 /* 1176 * Invoke reset handlers. We bump the reset count so 1177 * that mpt_wait_req() understands that regardless of 1178 * the specified wait condition, it should stop its wait. 1179 */ 1180 mpt->reset_cnt++; 1181 MPT_PERS_FOREACH(mpt, pers) 1182 pers->reset(mpt, ret); 1183 } 1184 1185 if (reinit) { 1186 ret = mpt_enable_ioc(mpt, 1); 1187 if (ret == MPT_OK) { 1188 mpt_enable_ints(mpt); 1189 } 1190 } 1191 if (ret != MPT_OK && retry_cnt++ < 2) { 1192 goto again; 1193 } 1194 return ret; 1195 } 1196 1197 /* Return a command buffer to the free queue */ 1198 void 1199 mpt_free_request(struct mpt_softc *mpt, request_t *req) 1200 { 1201 request_t *nxt; 1202 struct mpt_evtf_record *record; 1203 uint32_t offset, reply_baddr; 1204 1205 if (req == NULL || req != &mpt->request_pool[req->index]) { 1206 panic("mpt_free_request: bad req ptr"); 1207 } 1208 if ((nxt = req->chain) != NULL) { 1209 req->chain = NULL; 1210 mpt_free_request(mpt, nxt); /* NB: recursion */ 1211 } 1212 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); 1213 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); 1214 MPT_LOCK_ASSERT(mpt); 1215 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1216 ("mpt_free_request: req %p:%u func %x already on freelist", 1217 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1218 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1219 ("mpt_free_request: req %p:%u func %x on pending list", 1220 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1221 #ifdef INVARIANTS 1222 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); 1223 #endif 1224 1225 req->ccb = NULL; 1226 if (LIST_EMPTY(&mpt->ack_frames)) { 1227 /* 1228 * Insert free ones at the tail 1229 */ 1230 req->serno = 0; 1231 req->state = REQ_STATE_FREE; 1232 #ifdef INVARIANTS 1233 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); 1234 #endif 1235 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); 1236 if (mpt->getreqwaiter != 0) { 1237 mpt->getreqwaiter = 0; 1238 wakeup(&mpt->request_free_list); 1239 } 1240 return; 1241 } 1242 1243 /* 1244 * Process an ack frame deferred due to resource shortage. 1245 */ 1246 record = LIST_FIRST(&mpt->ack_frames); 1247 LIST_REMOVE(record, links); 1248 req->state = REQ_STATE_ALLOCATED; 1249 mpt_assign_serno(mpt, req); 1250 mpt_send_event_ack(mpt, req, &record->reply, record->context); 1251 offset = (uint32_t)((uint8_t *)record - mpt->reply); 1252 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF); 1253 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, 1254 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD); 1255 mpt_free_reply(mpt, reply_baddr); 1256 } 1257 1258 /* Get a command buffer from the free queue */ 1259 request_t * 1260 mpt_get_request(struct mpt_softc *mpt, int sleep_ok) 1261 { 1262 request_t *req; 1263 1264 retry: 1265 MPT_LOCK_ASSERT(mpt); 1266 req = TAILQ_FIRST(&mpt->request_free_list); 1267 if (req != NULL) { 1268 KASSERT(req == &mpt->request_pool[req->index], 1269 ("mpt_get_request: corrupted request free list")); 1270 KASSERT(req->state == REQ_STATE_FREE, 1271 ("req %p:%u not free on free list %x index %d function %x", 1272 req, req->serno, req->state, req->index, 1273 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1274 TAILQ_REMOVE(&mpt->request_free_list, req, links); 1275 req->state = REQ_STATE_ALLOCATED; 1276 req->chain = NULL; 1277 mpt_assign_serno(mpt, req); 1278 } else if (sleep_ok != 0) { 1279 mpt->getreqwaiter = 1; 1280 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); 1281 goto retry; 1282 } 1283 return (req); 1284 } 1285 1286 /* Pass the command to the IOC */ 1287 void 1288 mpt_send_cmd(struct mpt_softc *mpt, request_t *req) 1289 { 1290 1291 if (mpt->verbose > MPT_PRT_DEBUG2) { 1292 mpt_dump_request(mpt, req); 1293 } 1294 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, 1295 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1296 req->state |= REQ_STATE_QUEUED; 1297 KASSERT(mpt_req_on_free_list(mpt, req) == 0, 1298 ("req %p:%u func %x on freelist list in mpt_send_cmd", 1299 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1300 KASSERT(mpt_req_on_pending_list(mpt, req) == 0, 1301 ("req %p:%u func %x already on pending list in mpt_send_cmd", 1302 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); 1303 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); 1304 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); 1305 } 1306 1307 /* 1308 * Wait for a request to complete. 1309 * 1310 * Inputs: 1311 * mpt softc of controller executing request 1312 * req request to wait for 1313 * sleep_ok nonzero implies may sleep in this context 1314 * time_ms timeout in ms. 0 implies no timeout. 1315 * 1316 * Return Values: 1317 * 0 Request completed 1318 * non-0 Timeout fired before request completion. 1319 */ 1320 int 1321 mpt_wait_req(struct mpt_softc *mpt, request_t *req, 1322 mpt_req_state_t state, mpt_req_state_t mask, 1323 int sleep_ok, int time_ms) 1324 { 1325 int timeout; 1326 u_int saved_cnt; 1327 sbintime_t sbt; 1328 1329 /* 1330 * time_ms is in ms, 0 indicates infinite wait. 1331 * Convert to sbintime_t or 500us units depending on 1332 * our sleep mode. 1333 */ 1334 if (sleep_ok != 0) { 1335 sbt = SBT_1MS * time_ms; 1336 /* Set timeout as well so final timeout check works. */ 1337 timeout = time_ms; 1338 } else { 1339 sbt = 0; /* Squelch bogus gcc warning. */ 1340 timeout = time_ms * 2; 1341 } 1342 req->state |= REQ_STATE_NEED_WAKEUP; 1343 mask &= ~REQ_STATE_NEED_WAKEUP; 1344 saved_cnt = mpt->reset_cnt; 1345 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { 1346 if (sleep_ok != 0) { 1347 if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) == 1348 EWOULDBLOCK) { 1349 timeout = 0; 1350 break; 1351 } 1352 } else { 1353 if (time_ms != 0 && --timeout == 0) { 1354 break; 1355 } 1356 DELAY(500); 1357 mpt_intr(mpt); 1358 } 1359 } 1360 req->state &= ~REQ_STATE_NEED_WAKEUP; 1361 if (mpt->reset_cnt != saved_cnt) { 1362 return (EIO); 1363 } 1364 if (time_ms && timeout <= 0) { 1365 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; 1366 req->state |= REQ_STATE_TIMEDOUT; 1367 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); 1368 return (ETIMEDOUT); 1369 } 1370 return (0); 1371 } 1372 1373 /* 1374 * Send a command to the IOC via the handshake register. 1375 * 1376 * Only done at initialization time and for certain unusual 1377 * commands such as device/bus reset as specified by LSI. 1378 */ 1379 int 1380 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) 1381 { 1382 int i; 1383 uint32_t data, *data32; 1384 1385 /* Check condition of the IOC */ 1386 data = mpt_rd_db(mpt); 1387 if ((MPT_STATE(data) != MPT_DB_STATE_READY 1388 && MPT_STATE(data) != MPT_DB_STATE_RUNNING 1389 && MPT_STATE(data) != MPT_DB_STATE_FAULT) 1390 || MPT_DB_IS_IN_USE(data)) { 1391 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); 1392 mpt_print_db(data); 1393 return (EBUSY); 1394 } 1395 1396 /* We move things in 32 bit chunks */ 1397 len = (len + 3) >> 2; 1398 data32 = cmd; 1399 1400 /* Clear any left over pending doorbell interrupts */ 1401 if (MPT_DB_INTR(mpt_rd_intr(mpt))) 1402 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1403 1404 /* 1405 * Tell the handshake reg. we are going to send a command 1406 * and how long it is going to be. 1407 */ 1408 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | 1409 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); 1410 mpt_write(mpt, MPT_OFFSET_DOORBELL, data); 1411 1412 /* Wait for the chip to notice */ 1413 if (mpt_wait_db_int(mpt) != MPT_OK) { 1414 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); 1415 return (ETIMEDOUT); 1416 } 1417 1418 /* Clear the interrupt */ 1419 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1420 1421 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1422 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); 1423 return (ETIMEDOUT); 1424 } 1425 1426 /* Send the command */ 1427 for (i = 0; i < len; i++) { 1428 mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++); 1429 if (mpt_wait_db_ack(mpt) != MPT_OK) { 1430 mpt_prt(mpt, 1431 "mpt_send_handshake_cmd: timeout @ index %d\n", i); 1432 return (ETIMEDOUT); 1433 } 1434 } 1435 return MPT_OK; 1436 } 1437 1438 /* Get the response from the handshake register */ 1439 int 1440 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) 1441 { 1442 int left, reply_left; 1443 u_int16_t *data16; 1444 uint32_t data; 1445 MSG_DEFAULT_REPLY *hdr; 1446 1447 /* We move things out in 16 bit chunks */ 1448 reply_len >>= 1; 1449 data16 = (u_int16_t *)reply; 1450 1451 hdr = (MSG_DEFAULT_REPLY *)reply; 1452 1453 /* Get first word */ 1454 if (mpt_wait_db_int(mpt) != MPT_OK) { 1455 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); 1456 return ETIMEDOUT; 1457 } 1458 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1459 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1460 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1461 1462 /* Get second word */ 1463 if (mpt_wait_db_int(mpt) != MPT_OK) { 1464 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); 1465 return ETIMEDOUT; 1466 } 1467 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1468 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1469 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1470 1471 /* 1472 * With the second word, we can now look at the length. 1473 * Warn about a reply that's too short (except for IOC FACTS REPLY) 1474 */ 1475 if ((reply_len >> 1) != hdr->MsgLength && 1476 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ 1477 mpt_prt(mpt, "reply length does not match message length: " 1478 "got %x; expected %zx for function %x\n", 1479 hdr->MsgLength << 2, reply_len << 1, hdr->Function); 1480 } 1481 1482 /* Get rest of the reply; but don't overflow the provided buffer */ 1483 left = (hdr->MsgLength << 1) - 2; 1484 reply_left = reply_len - 2; 1485 while (left--) { 1486 if (mpt_wait_db_int(mpt) != MPT_OK) { 1487 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); 1488 return ETIMEDOUT; 1489 } 1490 data = mpt_read(mpt, MPT_OFFSET_DOORBELL); 1491 if (reply_left-- > 0) 1492 *data16++ = le16toh(data & MPT_DB_DATA_MASK); 1493 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1494 } 1495 1496 /* One more wait & clear at the end */ 1497 if (mpt_wait_db_int(mpt) != MPT_OK) { 1498 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); 1499 return ETIMEDOUT; 1500 } 1501 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); 1502 1503 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1504 if (mpt->verbose >= MPT_PRT_TRACE) 1505 mpt_print_reply(hdr); 1506 return (MPT_FAIL | hdr->IOCStatus); 1507 } 1508 1509 return (0); 1510 } 1511 1512 static int 1513 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) 1514 { 1515 MSG_IOC_FACTS f_req; 1516 int error; 1517 1518 memset(&f_req, 0, sizeof f_req); 1519 f_req.Function = MPI_FUNCTION_IOC_FACTS; 1520 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1521 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1522 if (error) { 1523 return(error); 1524 } 1525 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1526 return (error); 1527 } 1528 1529 static int 1530 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) 1531 { 1532 MSG_PORT_FACTS f_req; 1533 int error; 1534 1535 memset(&f_req, 0, sizeof f_req); 1536 f_req.Function = MPI_FUNCTION_PORT_FACTS; 1537 f_req.PortNumber = port; 1538 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1539 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); 1540 if (error) { 1541 return(error); 1542 } 1543 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); 1544 return (error); 1545 } 1546 1547 /* 1548 * Send the initialization request. This is where we specify how many 1549 * SCSI buses and how many devices per bus we wish to emulate. 1550 * This is also the command that specifies the max size of the reply 1551 * frames from the IOC that we will be allocating. 1552 */ 1553 static int 1554 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) 1555 { 1556 int error = 0; 1557 MSG_IOC_INIT init; 1558 MSG_IOC_INIT_REPLY reply; 1559 1560 memset(&init, 0, sizeof init); 1561 init.WhoInit = who; 1562 init.Function = MPI_FUNCTION_IOC_INIT; 1563 init.MaxDevices = 0; /* at least 256 devices per bus */ 1564 init.MaxBuses = 16; /* at least 16 buses */ 1565 1566 init.MsgVersion = htole16(MPI_VERSION); 1567 init.HeaderVersion = htole16(MPI_HEADER_VERSION); 1568 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); 1569 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 1570 1571 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { 1572 return(error); 1573 } 1574 1575 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); 1576 return (error); 1577 } 1578 1579 1580 /* 1581 * Utiltity routine to read configuration headers and pages 1582 */ 1583 int 1584 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params, 1585 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms) 1586 { 1587 MSG_CONFIG *cfgp; 1588 SGE_SIMPLE32 *se; 1589 1590 cfgp = req->req_vbuf; 1591 memset(cfgp, 0, sizeof *cfgp); 1592 cfgp->Action = params->Action; 1593 cfgp->Function = MPI_FUNCTION_CONFIG; 1594 cfgp->Header.PageVersion = params->PageVersion; 1595 cfgp->Header.PageNumber = params->PageNumber; 1596 cfgp->PageAddress = htole32(params->PageAddress); 1597 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) == 1598 MPI_CONFIG_PAGETYPE_EXTENDED) { 1599 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1600 cfgp->Header.PageLength = 0; 1601 cfgp->ExtPageLength = htole16(params->ExtPageLength); 1602 cfgp->ExtPageType = params->ExtPageType; 1603 } else { 1604 cfgp->Header.PageType = params->PageType; 1605 cfgp->Header.PageLength = params->PageLength; 1606 } 1607 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; 1608 se->Address = htole32(addr); 1609 MPI_pSGE_SET_LENGTH(se, len); 1610 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | 1611 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | 1612 MPI_SGE_FLAGS_END_OF_LIST | 1613 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT 1614 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) 1615 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); 1616 se->FlagsLength = htole32(se->FlagsLength); 1617 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 1618 1619 mpt_check_doorbell(mpt); 1620 mpt_send_cmd(mpt, req); 1621 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 1622 sleep_ok, timeout_ms)); 1623 } 1624 1625 int 1626 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber, 1627 uint32_t PageAddress, int ExtPageType, 1628 CONFIG_EXTENDED_PAGE_HEADER *rslt, 1629 int sleep_ok, int timeout_ms) 1630 { 1631 request_t *req; 1632 cfgparms_t params; 1633 MSG_CONFIG_REPLY *cfgp; 1634 int error; 1635 1636 req = mpt_get_request(mpt, sleep_ok); 1637 if (req == NULL) { 1638 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n"); 1639 return (ENOMEM); 1640 } 1641 1642 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1643 params.PageVersion = PageVersion; 1644 params.PageLength = 0; 1645 params.PageNumber = PageNumber; 1646 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1647 params.PageAddress = PageAddress; 1648 params.ExtPageType = ExtPageType; 1649 params.ExtPageLength = 0; 1650 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1651 sleep_ok, timeout_ms); 1652 if (error != 0) { 1653 /* 1654 * Leave the request. Without resetting the chip, it's 1655 * still owned by it and we'll just get into trouble 1656 * freeing it now. Mark it as abandoned so that if it 1657 * shows up later it can be freed. 1658 */ 1659 mpt_prt(mpt, "read_extcfg_header timed out\n"); 1660 return (ETIMEDOUT); 1661 } 1662 1663 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1664 case MPI_IOCSTATUS_SUCCESS: 1665 cfgp = req->req_vbuf; 1666 rslt->PageVersion = cfgp->Header.PageVersion; 1667 rslt->PageNumber = cfgp->Header.PageNumber; 1668 rslt->PageType = cfgp->Header.PageType; 1669 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength); 1670 rslt->ExtPageType = cfgp->ExtPageType; 1671 error = 0; 1672 break; 1673 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1674 mpt_lprt(mpt, MPT_PRT_DEBUG, 1675 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1676 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress); 1677 error = EINVAL; 1678 break; 1679 default: 1680 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n", 1681 req->IOCStatus); 1682 error = EIO; 1683 break; 1684 } 1685 mpt_free_request(mpt, req); 1686 return (error); 1687 } 1688 1689 int 1690 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1691 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len, 1692 int sleep_ok, int timeout_ms) 1693 { 1694 request_t *req; 1695 cfgparms_t params; 1696 int error; 1697 1698 req = mpt_get_request(mpt, sleep_ok); 1699 if (req == NULL) { 1700 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n"); 1701 return (-1); 1702 } 1703 1704 params.Action = Action; 1705 params.PageVersion = hdr->PageVersion; 1706 params.PageLength = 0; 1707 params.PageNumber = hdr->PageNumber; 1708 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; 1709 params.PageAddress = PageAddress; 1710 params.ExtPageType = hdr->ExtPageType; 1711 params.ExtPageLength = hdr->ExtPageLength; 1712 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1713 req->req_pbuf + MPT_RQSL(mpt), 1714 len, sleep_ok, timeout_ms); 1715 if (error != 0) { 1716 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action); 1717 return (-1); 1718 } 1719 1720 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1721 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n", 1722 req->IOCStatus); 1723 mpt_free_request(mpt, req); 1724 return (-1); 1725 } 1726 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1727 mpt_free_request(mpt, req); 1728 return (0); 1729 } 1730 1731 int 1732 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, 1733 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, 1734 int sleep_ok, int timeout_ms) 1735 { 1736 request_t *req; 1737 cfgparms_t params; 1738 MSG_CONFIG *cfgp; 1739 int error; 1740 1741 req = mpt_get_request(mpt, sleep_ok); 1742 if (req == NULL) { 1743 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); 1744 return (ENOMEM); 1745 } 1746 1747 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; 1748 params.PageVersion = 0; 1749 params.PageLength = 0; 1750 params.PageNumber = PageNumber; 1751 params.PageType = PageType; 1752 params.PageAddress = PageAddress; 1753 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, 1754 sleep_ok, timeout_ms); 1755 if (error != 0) { 1756 /* 1757 * Leave the request. Without resetting the chip, it's 1758 * still owned by it and we'll just get into trouble 1759 * freeing it now. Mark it as abandoned so that if it 1760 * shows up later it can be freed. 1761 */ 1762 mpt_prt(mpt, "read_cfg_header timed out\n"); 1763 return (ETIMEDOUT); 1764 } 1765 1766 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { 1767 case MPI_IOCSTATUS_SUCCESS: 1768 cfgp = req->req_vbuf; 1769 bcopy(&cfgp->Header, rslt, sizeof(*rslt)); 1770 error = 0; 1771 break; 1772 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: 1773 mpt_lprt(mpt, MPT_PRT_DEBUG, 1774 "Invalid Page Type %d Number %d Addr 0x%0x\n", 1775 PageType, PageNumber, PageAddress); 1776 error = EINVAL; 1777 break; 1778 default: 1779 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", 1780 req->IOCStatus); 1781 error = EIO; 1782 break; 1783 } 1784 mpt_free_request(mpt, req); 1785 return (error); 1786 } 1787 1788 int 1789 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1790 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1791 int timeout_ms) 1792 { 1793 request_t *req; 1794 cfgparms_t params; 1795 int error; 1796 1797 req = mpt_get_request(mpt, sleep_ok); 1798 if (req == NULL) { 1799 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); 1800 return (-1); 1801 } 1802 1803 params.Action = Action; 1804 params.PageVersion = hdr->PageVersion; 1805 params.PageLength = hdr->PageLength; 1806 params.PageNumber = hdr->PageNumber; 1807 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1808 params.PageAddress = PageAddress; 1809 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1810 req->req_pbuf + MPT_RQSL(mpt), 1811 len, sleep_ok, timeout_ms); 1812 if (error != 0) { 1813 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); 1814 return (-1); 1815 } 1816 1817 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1818 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", 1819 req->IOCStatus); 1820 mpt_free_request(mpt, req); 1821 return (-1); 1822 } 1823 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); 1824 mpt_free_request(mpt, req); 1825 return (0); 1826 } 1827 1828 int 1829 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, 1830 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, 1831 int timeout_ms) 1832 { 1833 request_t *req; 1834 cfgparms_t params; 1835 u_int hdr_attr; 1836 int error; 1837 1838 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; 1839 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && 1840 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { 1841 mpt_prt(mpt, "page type 0x%x not changeable\n", 1842 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); 1843 return (-1); 1844 } 1845 1846 #if 0 1847 /* 1848 * We shouldn't mask off other bits here. 1849 */ 1850 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; 1851 #endif 1852 1853 req = mpt_get_request(mpt, sleep_ok); 1854 if (req == NULL) 1855 return (-1); 1856 1857 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); 1858 1859 /* 1860 * There isn't any point in restoring stripped out attributes 1861 * if you then mask them going down to issue the request. 1862 */ 1863 1864 params.Action = Action; 1865 params.PageVersion = hdr->PageVersion; 1866 params.PageLength = hdr->PageLength; 1867 params.PageNumber = hdr->PageNumber; 1868 params.PageAddress = PageAddress; 1869 #if 0 1870 /* Restore stripped out attributes */ 1871 hdr->PageType |= hdr_attr; 1872 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; 1873 #else 1874 params.PageType = hdr->PageType; 1875 #endif 1876 error = mpt_issue_cfg_req(mpt, req, ¶ms, 1877 req->req_pbuf + MPT_RQSL(mpt), 1878 len, sleep_ok, timeout_ms); 1879 if (error != 0) { 1880 mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); 1881 return (-1); 1882 } 1883 1884 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { 1885 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", 1886 req->IOCStatus); 1887 mpt_free_request(mpt, req); 1888 return (-1); 1889 } 1890 mpt_free_request(mpt, req); 1891 return (0); 1892 } 1893 1894 /* 1895 * Read IOC configuration information 1896 */ 1897 static int 1898 mpt_read_config_info_ioc(struct mpt_softc *mpt) 1899 { 1900 CONFIG_PAGE_HEADER hdr; 1901 struct mpt_raid_volume *mpt_raid; 1902 int rv; 1903 int i; 1904 size_t len; 1905 1906 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 1907 2, 0, &hdr, FALSE, 5000); 1908 /* 1909 * If it's an invalid page, so what? Not a supported function.... 1910 */ 1911 if (rv == EINVAL) { 1912 return (0); 1913 } 1914 if (rv) { 1915 return (rv); 1916 } 1917 1918 mpt_lprt(mpt, MPT_PRT_DEBUG, 1919 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", 1920 hdr.PageVersion, hdr.PageLength << 2, 1921 hdr.PageNumber, hdr.PageType); 1922 1923 len = hdr.PageLength * sizeof(uint32_t); 1924 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1925 if (mpt->ioc_page2 == NULL) { 1926 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); 1927 mpt_raid_free_mem(mpt); 1928 return (ENOMEM); 1929 } 1930 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); 1931 rv = mpt_read_cur_cfg_page(mpt, 0, 1932 &mpt->ioc_page2->Header, len, FALSE, 5000); 1933 if (rv) { 1934 mpt_prt(mpt, "failed to read IOC Page 2\n"); 1935 mpt_raid_free_mem(mpt); 1936 return (EIO); 1937 } 1938 mpt2host_config_page_ioc2(mpt->ioc_page2); 1939 1940 if (mpt->ioc_page2->CapabilitiesFlags != 0) { 1941 uint32_t mask; 1942 1943 mpt_prt(mpt, "Capabilities: ("); 1944 for (mask = 1; mask != 0; mask <<= 1) { 1945 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { 1946 continue; 1947 } 1948 switch (mask) { 1949 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: 1950 mpt_prtc(mpt, " RAID-0"); 1951 break; 1952 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: 1953 mpt_prtc(mpt, " RAID-1E"); 1954 break; 1955 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: 1956 mpt_prtc(mpt, " RAID-1"); 1957 break; 1958 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: 1959 mpt_prtc(mpt, " SES"); 1960 break; 1961 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: 1962 mpt_prtc(mpt, " SAFTE"); 1963 break; 1964 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: 1965 mpt_prtc(mpt, " Multi-Channel-Arrays"); 1966 default: 1967 break; 1968 } 1969 } 1970 mpt_prtc(mpt, " )\n"); 1971 if ((mpt->ioc_page2->CapabilitiesFlags 1972 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT 1973 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT 1974 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { 1975 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", 1976 mpt->ioc_page2->NumActiveVolumes, 1977 mpt->ioc_page2->NumActiveVolumes != 1 1978 ? "s " : " ", 1979 mpt->ioc_page2->MaxVolumes); 1980 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", 1981 mpt->ioc_page2->NumActivePhysDisks, 1982 mpt->ioc_page2->NumActivePhysDisks != 1 1983 ? "s " : " ", 1984 mpt->ioc_page2->MaxPhysDisks); 1985 } 1986 } 1987 1988 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); 1989 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 1990 if (mpt->raid_volumes == NULL) { 1991 mpt_prt(mpt, "Could not allocate RAID volume data\n"); 1992 mpt_raid_free_mem(mpt); 1993 return (ENOMEM); 1994 } 1995 1996 /* 1997 * Copy critical data out of ioc_page2 so that we can 1998 * safely refresh the page without windows of unreliable 1999 * data. 2000 */ 2001 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; 2002 2003 len = sizeof(*mpt->raid_volumes->config_page) + 2004 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); 2005 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { 2006 mpt_raid = &mpt->raid_volumes[i]; 2007 mpt_raid->config_page = 2008 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2009 if (mpt_raid->config_page == NULL) { 2010 mpt_prt(mpt, "Could not allocate RAID page data\n"); 2011 mpt_raid_free_mem(mpt); 2012 return (ENOMEM); 2013 } 2014 } 2015 mpt->raid_page0_len = len; 2016 2017 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); 2018 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2019 if (mpt->raid_disks == NULL) { 2020 mpt_prt(mpt, "Could not allocate RAID disk data\n"); 2021 mpt_raid_free_mem(mpt); 2022 return (ENOMEM); 2023 } 2024 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; 2025 2026 /* 2027 * Load page 3. 2028 */ 2029 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2030 3, 0, &hdr, FALSE, 5000); 2031 if (rv) { 2032 mpt_raid_free_mem(mpt); 2033 return (EIO); 2034 } 2035 2036 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", 2037 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); 2038 2039 len = hdr.PageLength * sizeof(uint32_t); 2040 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2041 if (mpt->ioc_page3 == NULL) { 2042 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); 2043 mpt_raid_free_mem(mpt); 2044 return (ENOMEM); 2045 } 2046 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); 2047 rv = mpt_read_cur_cfg_page(mpt, 0, 2048 &mpt->ioc_page3->Header, len, FALSE, 5000); 2049 if (rv) { 2050 mpt_raid_free_mem(mpt); 2051 return (EIO); 2052 } 2053 mpt2host_config_page_ioc3(mpt->ioc_page3); 2054 mpt_raid_wakeup(mpt); 2055 return (0); 2056 } 2057 2058 /* 2059 * Enable IOC port 2060 */ 2061 static int 2062 mpt_send_port_enable(struct mpt_softc *mpt, int port) 2063 { 2064 request_t *req; 2065 MSG_PORT_ENABLE *enable_req; 2066 int error; 2067 2068 req = mpt_get_request(mpt, /*sleep_ok*/FALSE); 2069 if (req == NULL) 2070 return (-1); 2071 2072 enable_req = req->req_vbuf; 2073 memset(enable_req, 0, MPT_RQSL(mpt)); 2074 2075 enable_req->Function = MPI_FUNCTION_PORT_ENABLE; 2076 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); 2077 enable_req->PortNumber = port; 2078 2079 mpt_check_doorbell(mpt); 2080 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); 2081 2082 mpt_send_cmd(mpt, req); 2083 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 2084 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000); 2085 if (error != 0) { 2086 mpt_prt(mpt, "port %d enable timed out\n", port); 2087 return (-1); 2088 } 2089 mpt_free_request(mpt, req); 2090 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); 2091 return (0); 2092 } 2093 2094 /* 2095 * Enable/Disable asynchronous event reporting. 2096 */ 2097 static int 2098 mpt_send_event_request(struct mpt_softc *mpt, int onoff) 2099 { 2100 request_t *req; 2101 MSG_EVENT_NOTIFY *enable_req; 2102 2103 req = mpt_get_request(mpt, FALSE); 2104 if (req == NULL) { 2105 return (ENOMEM); 2106 } 2107 enable_req = req->req_vbuf; 2108 memset(enable_req, 0, sizeof *enable_req); 2109 2110 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; 2111 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); 2112 enable_req->Switch = onoff; 2113 2114 mpt_check_doorbell(mpt); 2115 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", 2116 onoff ? "en" : "dis"); 2117 /* 2118 * Send the command off, but don't wait for it. 2119 */ 2120 mpt_send_cmd(mpt, req); 2121 return (0); 2122 } 2123 2124 /* 2125 * Un-mask the interrupts on the chip. 2126 */ 2127 void 2128 mpt_enable_ints(struct mpt_softc *mpt) 2129 { 2130 2131 /* Unmask every thing except door bell int */ 2132 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); 2133 } 2134 2135 /* 2136 * Mask the interrupts on the chip. 2137 */ 2138 void 2139 mpt_disable_ints(struct mpt_softc *mpt) 2140 { 2141 2142 /* Mask all interrupts */ 2143 mpt_write(mpt, MPT_OFFSET_INTR_MASK, 2144 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); 2145 } 2146 2147 static void 2148 mpt_sysctl_attach(struct mpt_softc *mpt) 2149 { 2150 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); 2151 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); 2152 2153 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2154 "debug", CTLFLAG_RW, &mpt->verbose, 0, 2155 "Debugging/Verbose level"); 2156 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2157 "role", CTLFLAG_RD, &mpt->role, 0, 2158 "HBA role"); 2159 #ifdef MPT_TEST_MULTIPATH 2160 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 2161 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, 2162 "Next Target to Fail"); 2163 #endif 2164 } 2165 2166 int 2167 mpt_attach(struct mpt_softc *mpt) 2168 { 2169 struct mpt_personality *pers; 2170 int i; 2171 int error; 2172 2173 mpt_core_attach(mpt); 2174 mpt_core_enable(mpt); 2175 2176 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); 2177 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2178 pers = mpt_personalities[i]; 2179 if (pers == NULL) { 2180 continue; 2181 } 2182 if (pers->probe(mpt) == 0) { 2183 error = pers->attach(mpt); 2184 if (error != 0) { 2185 mpt_detach(mpt); 2186 return (error); 2187 } 2188 mpt->mpt_pers_mask |= (0x1 << pers->id); 2189 pers->use_count++; 2190 } 2191 } 2192 2193 /* 2194 * Now that we've attached everything, do the enable function 2195 * for all of the personalities. This allows the personalities 2196 * to do setups that are appropriate for them prior to enabling 2197 * any ports. 2198 */ 2199 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { 2200 pers = mpt_personalities[i]; 2201 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { 2202 error = pers->enable(mpt); 2203 if (error != 0) { 2204 mpt_prt(mpt, "personality %s attached but would" 2205 " not enable (%d)\n", pers->name, error); 2206 mpt_detach(mpt); 2207 return (error); 2208 } 2209 } 2210 } 2211 return (0); 2212 } 2213 2214 int 2215 mpt_shutdown(struct mpt_softc *mpt) 2216 { 2217 struct mpt_personality *pers; 2218 2219 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2220 pers->shutdown(mpt); 2221 } 2222 return (0); 2223 } 2224 2225 int 2226 mpt_detach(struct mpt_softc *mpt) 2227 { 2228 struct mpt_personality *pers; 2229 2230 MPT_PERS_FOREACH_REVERSE(mpt, pers) { 2231 pers->detach(mpt); 2232 mpt->mpt_pers_mask &= ~(0x1 << pers->id); 2233 pers->use_count--; 2234 } 2235 TAILQ_REMOVE(&mpt_tailq, mpt, links); 2236 return (0); 2237 } 2238 2239 static int 2240 mpt_core_load(struct mpt_personality *pers) 2241 { 2242 int i; 2243 2244 /* 2245 * Setup core handlers and insert the default handler 2246 * into all "empty slots". 2247 */ 2248 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { 2249 mpt_reply_handlers[i] = mpt_default_reply_handler; 2250 } 2251 2252 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = 2253 mpt_event_reply_handler; 2254 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = 2255 mpt_config_reply_handler; 2256 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = 2257 mpt_handshake_reply_handler; 2258 return (0); 2259 } 2260 2261 /* 2262 * Initialize per-instance driver data and perform 2263 * initial controller configuration. 2264 */ 2265 static int 2266 mpt_core_attach(struct mpt_softc *mpt) 2267 { 2268 int val, error; 2269 2270 LIST_INIT(&mpt->ack_frames); 2271 /* Put all request buffers on the free list */ 2272 TAILQ_INIT(&mpt->request_pending_list); 2273 TAILQ_INIT(&mpt->request_free_list); 2274 TAILQ_INIT(&mpt->request_timeout_list); 2275 for (val = 0; val < MPT_MAX_LUNS; val++) { 2276 STAILQ_INIT(&mpt->trt[val].atios); 2277 STAILQ_INIT(&mpt->trt[val].inots); 2278 } 2279 STAILQ_INIT(&mpt->trt_wildcard.atios); 2280 STAILQ_INIT(&mpt->trt_wildcard.inots); 2281 #ifdef MPT_TEST_MULTIPATH 2282 mpt->failure_id = -1; 2283 #endif 2284 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; 2285 mpt_sysctl_attach(mpt); 2286 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", 2287 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); 2288 2289 MPT_LOCK(mpt); 2290 error = mpt_configure_ioc(mpt, 0, 0); 2291 MPT_UNLOCK(mpt); 2292 2293 return (error); 2294 } 2295 2296 static int 2297 mpt_core_enable(struct mpt_softc *mpt) 2298 { 2299 2300 /* 2301 * We enter with the IOC enabled, but async events 2302 * not enabled, ports not enabled and interrupts 2303 * not enabled. 2304 */ 2305 MPT_LOCK(mpt); 2306 2307 /* 2308 * Enable asynchronous event reporting- all personalities 2309 * have attached so that they should be able to now field 2310 * async events. 2311 */ 2312 mpt_send_event_request(mpt, 1); 2313 2314 /* 2315 * Catch any pending interrupts 2316 * 2317 * This seems to be crucial- otherwise 2318 * the portenable below times out. 2319 */ 2320 mpt_intr(mpt); 2321 2322 /* 2323 * Enable Interrupts 2324 */ 2325 mpt_enable_ints(mpt); 2326 2327 /* 2328 * Catch any pending interrupts 2329 * 2330 * This seems to be crucial- otherwise 2331 * the portenable below times out. 2332 */ 2333 mpt_intr(mpt); 2334 2335 /* 2336 * Enable the port. 2337 */ 2338 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2339 mpt_prt(mpt, "failed to enable port 0\n"); 2340 MPT_UNLOCK(mpt); 2341 return (ENXIO); 2342 } 2343 MPT_UNLOCK(mpt); 2344 return (0); 2345 } 2346 2347 static void 2348 mpt_core_shutdown(struct mpt_softc *mpt) 2349 { 2350 2351 mpt_disable_ints(mpt); 2352 } 2353 2354 static void 2355 mpt_core_detach(struct mpt_softc *mpt) 2356 { 2357 int val; 2358 2359 /* 2360 * XXX: FREE MEMORY 2361 */ 2362 mpt_disable_ints(mpt); 2363 2364 /* Make sure no request has pending timeouts. */ 2365 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2366 request_t *req = &mpt->request_pool[val]; 2367 mpt_callout_drain(mpt, &req->callout); 2368 } 2369 2370 mpt_dma_buf_free(mpt); 2371 } 2372 2373 static int 2374 mpt_core_unload(struct mpt_personality *pers) 2375 { 2376 2377 /* Unload is always successful. */ 2378 return (0); 2379 } 2380 2381 #define FW_UPLOAD_REQ_SIZE \ 2382 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ 2383 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) 2384 2385 static int 2386 mpt_upload_fw(struct mpt_softc *mpt) 2387 { 2388 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; 2389 MSG_FW_UPLOAD_REPLY fw_reply; 2390 MSG_FW_UPLOAD *fw_req; 2391 FW_UPLOAD_TCSGE *tsge; 2392 SGE_SIMPLE32 *sge; 2393 uint32_t flags; 2394 int error; 2395 2396 memset(&fw_req_buf, 0, sizeof(fw_req_buf)); 2397 fw_req = (MSG_FW_UPLOAD *)fw_req_buf; 2398 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; 2399 fw_req->Function = MPI_FUNCTION_FW_UPLOAD; 2400 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); 2401 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; 2402 tsge->DetailsLength = 12; 2403 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; 2404 tsge->ImageSize = htole32(mpt->fw_image_size); 2405 sge = (SGE_SIMPLE32 *)(tsge + 1); 2406 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER 2407 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT 2408 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); 2409 flags <<= MPI_SGE_FLAGS_SHIFT; 2410 sge->FlagsLength = htole32(flags | mpt->fw_image_size); 2411 sge->Address = htole32(mpt->fw_phys); 2412 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD); 2413 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); 2414 if (error) 2415 return(error); 2416 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); 2417 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD); 2418 return (error); 2419 } 2420 2421 static void 2422 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, 2423 uint32_t *data, bus_size_t len) 2424 { 2425 uint32_t *data_end; 2426 2427 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); 2428 if (mpt->is_sas) { 2429 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2430 } 2431 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); 2432 while (data != data_end) { 2433 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); 2434 data++; 2435 } 2436 if (mpt->is_sas) { 2437 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2438 } 2439 } 2440 2441 static int 2442 mpt_download_fw(struct mpt_softc *mpt) 2443 { 2444 MpiFwHeader_t *fw_hdr; 2445 int error; 2446 uint32_t ext_offset; 2447 uint32_t data; 2448 2449 if (mpt->pci_pio_reg == NULL) { 2450 mpt_prt(mpt, "No PIO resource!\n"); 2451 return (ENXIO); 2452 } 2453 2454 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", 2455 mpt->fw_image_size); 2456 2457 error = mpt_enable_diag_mode(mpt); 2458 if (error != 0) { 2459 mpt_prt(mpt, "Could not enter diagnostic mode!\n"); 2460 return (EIO); 2461 } 2462 2463 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, 2464 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); 2465 2466 fw_hdr = (MpiFwHeader_t *)mpt->fw_image; 2467 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE); 2468 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, 2469 fw_hdr->ImageSize); 2470 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE); 2471 2472 ext_offset = fw_hdr->NextImageHeaderOffset; 2473 while (ext_offset != 0) { 2474 MpiExtImageHeader_t *ext; 2475 2476 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); 2477 ext_offset = ext->NextImageHeaderOffset; 2478 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2479 BUS_DMASYNC_PREWRITE); 2480 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, 2481 ext->ImageSize); 2482 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, 2483 BUS_DMASYNC_POSTWRITE); 2484 } 2485 2486 if (mpt->is_sas) { 2487 pci_enable_io(mpt->dev, SYS_RES_IOPORT); 2488 } 2489 /* Setup the address to jump to on reset. */ 2490 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); 2491 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); 2492 2493 /* 2494 * The controller sets the "flash bad" status after attempting 2495 * to auto-boot from flash. Clear the status so that the controller 2496 * will continue the boot process with our newly installed firmware. 2497 */ 2498 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2499 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; 2500 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); 2501 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); 2502 2503 if (mpt->is_sas) { 2504 pci_disable_io(mpt->dev, SYS_RES_IOPORT); 2505 } 2506 2507 /* 2508 * Re-enable the processor and clear the boot halt flag. 2509 */ 2510 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); 2511 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); 2512 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); 2513 2514 mpt_disable_diag_mode(mpt); 2515 return (0); 2516 } 2517 2518 static int 2519 mpt_dma_buf_alloc(struct mpt_softc *mpt) 2520 { 2521 struct mpt_map_info mi; 2522 uint8_t *vptr; 2523 uint32_t pptr, end; 2524 int i, error; 2525 2526 /* Create a child tag for data buffers */ 2527 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 2528 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 2529 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE, 2530 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0, 2531 &mpt->buffer_dmat) != 0) { 2532 mpt_prt(mpt, "cannot create a dma tag for data buffers\n"); 2533 return (1); 2534 } 2535 2536 /* Create a child tag for request buffers */ 2537 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0, 2538 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 2539 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0, 2540 &mpt->request_dmat) != 0) { 2541 mpt_prt(mpt, "cannot create a dma tag for requests\n"); 2542 return (1); 2543 } 2544 2545 /* Allocate some DMA accessible memory for requests */ 2546 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request, 2547 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) { 2548 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n", 2549 MPT_REQ_MEM_SIZE(mpt)); 2550 return (1); 2551 } 2552 2553 mi.mpt = mpt; 2554 mi.error = 0; 2555 2556 /* Load and lock it into "bus space" */ 2557 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request, 2558 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0); 2559 2560 if (mi.error) { 2561 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n", 2562 mi.error); 2563 return (1); 2564 } 2565 mpt->request_phys = mi.phys; 2566 2567 /* 2568 * Now create per-request dma maps 2569 */ 2570 i = 0; 2571 pptr = mpt->request_phys; 2572 vptr = mpt->request; 2573 end = pptr + MPT_REQ_MEM_SIZE(mpt); 2574 while(pptr < end) { 2575 request_t *req = &mpt->request_pool[i]; 2576 req->index = i++; 2577 2578 /* Store location of Request Data */ 2579 req->req_pbuf = pptr; 2580 req->req_vbuf = vptr; 2581 2582 pptr += MPT_REQUEST_AREA; 2583 vptr += MPT_REQUEST_AREA; 2584 2585 req->sense_pbuf = (pptr - MPT_SENSE_SIZE); 2586 req->sense_vbuf = (vptr - MPT_SENSE_SIZE); 2587 2588 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap); 2589 if (error) { 2590 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n", 2591 error); 2592 return (1); 2593 } 2594 } 2595 2596 return (0); 2597 } 2598 2599 static void 2600 mpt_dma_buf_free(struct mpt_softc *mpt) 2601 { 2602 int i; 2603 2604 if (mpt->request_dmat == 0) { 2605 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n"); 2606 return; 2607 } 2608 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) { 2609 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap); 2610 } 2611 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap); 2612 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap); 2613 bus_dma_tag_destroy(mpt->request_dmat); 2614 mpt->request_dmat = 0; 2615 bus_dma_tag_destroy(mpt->buffer_dmat); 2616 } 2617 2618 /* 2619 * Allocate/Initialize data structures for the controller. Called 2620 * once at instance startup. 2621 */ 2622 static int 2623 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) 2624 { 2625 PTR_MSG_PORT_FACTS_REPLY pfp; 2626 int error, port, val; 2627 size_t len; 2628 2629 if (tn == MPT_MAX_TRYS) { 2630 return (-1); 2631 } 2632 2633 /* 2634 * No need to reset if the IOC is already in the READY state. 2635 * 2636 * Force reset if initialization failed previously. 2637 * Note that a hard_reset of the second channel of a '929 2638 * will stop operation of the first channel. Hopefully, if the 2639 * first channel is ok, the second will not require a hard 2640 * reset. 2641 */ 2642 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { 2643 if (mpt_reset(mpt, FALSE) != MPT_OK) { 2644 return (mpt_configure_ioc(mpt, tn++, 1)); 2645 } 2646 needreset = 0; 2647 } 2648 2649 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { 2650 mpt_prt(mpt, "mpt_get_iocfacts failed\n"); 2651 return (mpt_configure_ioc(mpt, tn++, 1)); 2652 } 2653 mpt2host_iocfacts_reply(&mpt->ioc_facts); 2654 2655 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", 2656 mpt->ioc_facts.MsgVersion >> 8, 2657 mpt->ioc_facts.MsgVersion & 0xFF, 2658 mpt->ioc_facts.HeaderVersion >> 8, 2659 mpt->ioc_facts.HeaderVersion & 0xFF); 2660 2661 /* 2662 * Now that we know request frame size, we can calculate 2663 * the actual (reasonable) segment limit for read/write I/O. 2664 * 2665 * This limit is constrained by: 2666 * 2667 * + The size of each area we allocate per command (and how 2668 * many chain segments we can fit into it). 2669 * + The total number of areas we've set up. 2670 * + The actual chain depth the card will allow. 2671 * 2672 * The first area's segment count is limited by the I/O request 2673 * at the head of it. We cannot allocate realistically more 2674 * than MPT_MAX_REQUESTS areas. Therefore, to account for both 2675 * conditions, we'll just start out with MPT_MAX_REQUESTS-2. 2676 * 2677 */ 2678 /* total number of request areas we (can) allocate */ 2679 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; 2680 2681 /* converted to the number of chain areas possible */ 2682 mpt->max_seg_cnt *= MPT_NRFM(mpt); 2683 2684 /* limited by the number of chain areas the card will support */ 2685 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { 2686 mpt_lprt(mpt, MPT_PRT_INFO, 2687 "chain depth limited to %u (from %u)\n", 2688 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); 2689 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; 2690 } 2691 2692 /* converted to the number of simple sges in chain segments. */ 2693 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); 2694 2695 /* 2696 * Use this as the basis for reporting the maximum I/O size to CAM. 2697 */ 2698 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1); 2699 2700 /* XXX Lame Locking! */ 2701 MPT_UNLOCK(mpt); 2702 error = mpt_dma_buf_alloc(mpt); 2703 MPT_LOCK(mpt); 2704 2705 if (error != 0) { 2706 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n"); 2707 return (EIO); 2708 } 2709 2710 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { 2711 request_t *req = &mpt->request_pool[val]; 2712 req->state = REQ_STATE_ALLOCATED; 2713 mpt_callout_init(mpt, &req->callout); 2714 mpt_free_request(mpt, req); 2715 } 2716 2717 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum " 2718 "CAM Segment Count: %u\n", mpt->max_seg_cnt, 2719 mpt->max_cam_seg_cnt); 2720 2721 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n", 2722 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); 2723 mpt_lprt(mpt, MPT_PRT_INFO, 2724 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " 2725 "Request Frame Size %u bytes Max Chain Depth %u\n", 2726 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, 2727 mpt->ioc_facts.RequestFrameSize << 2, 2728 mpt->ioc_facts.MaxChainDepth); 2729 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, " 2730 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, 2731 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); 2732 2733 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); 2734 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); 2735 if (mpt->port_facts == NULL) { 2736 mpt_prt(mpt, "unable to allocate memory for port facts\n"); 2737 return (ENOMEM); 2738 } 2739 2740 2741 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && 2742 (mpt->fw_uploaded == 0)) { 2743 struct mpt_map_info mi; 2744 2745 /* 2746 * In some configurations, the IOC's firmware is 2747 * stored in a shared piece of system NVRAM that 2748 * is only accessible via the BIOS. In this 2749 * case, the firmware keeps a copy of firmware in 2750 * RAM until the OS driver retrieves it. Once 2751 * retrieved, we are responsible for re-downloading 2752 * the firmware after any hard-reset. 2753 */ 2754 MPT_UNLOCK(mpt); 2755 mpt->fw_image_size = mpt->ioc_facts.FWImageSize; 2756 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, 2757 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 2758 mpt->fw_image_size, 1, mpt->fw_image_size, 0, 2759 &mpt->fw_dmat); 2760 if (error != 0) { 2761 mpt_prt(mpt, "cannot create firmware dma tag\n"); 2762 MPT_LOCK(mpt); 2763 return (ENOMEM); 2764 } 2765 error = bus_dmamem_alloc(mpt->fw_dmat, 2766 (void **)&mpt->fw_image, BUS_DMA_NOWAIT | 2767 BUS_DMA_COHERENT, &mpt->fw_dmap); 2768 if (error != 0) { 2769 mpt_prt(mpt, "cannot allocate firmware memory\n"); 2770 bus_dma_tag_destroy(mpt->fw_dmat); 2771 MPT_LOCK(mpt); 2772 return (ENOMEM); 2773 } 2774 mi.mpt = mpt; 2775 mi.error = 0; 2776 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, 2777 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); 2778 mpt->fw_phys = mi.phys; 2779 2780 MPT_LOCK(mpt); 2781 error = mpt_upload_fw(mpt); 2782 if (error != 0) { 2783 mpt_prt(mpt, "firmware upload failed.\n"); 2784 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); 2785 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, 2786 mpt->fw_dmap); 2787 bus_dma_tag_destroy(mpt->fw_dmat); 2788 mpt->fw_image = NULL; 2789 return (EIO); 2790 } 2791 mpt->fw_uploaded = 1; 2792 } 2793 2794 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { 2795 pfp = &mpt->port_facts[port]; 2796 error = mpt_get_portfacts(mpt, 0, pfp); 2797 if (error != MPT_OK) { 2798 mpt_prt(mpt, 2799 "mpt_get_portfacts on port %d failed\n", port); 2800 free(mpt->port_facts, M_DEVBUF); 2801 mpt->port_facts = NULL; 2802 return (mpt_configure_ioc(mpt, tn++, 1)); 2803 } 2804 mpt2host_portfacts_reply(pfp); 2805 2806 if (port > 0) { 2807 error = MPT_PRT_INFO; 2808 } else { 2809 error = MPT_PRT_DEBUG; 2810 } 2811 mpt_lprt(mpt, error, 2812 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", 2813 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, 2814 pfp->MaxDevices); 2815 2816 } 2817 2818 /* 2819 * XXX: Not yet supporting more than port 0 2820 */ 2821 pfp = &mpt->port_facts[0]; 2822 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { 2823 mpt->is_fc = 1; 2824 mpt->is_sas = 0; 2825 mpt->is_spi = 0; 2826 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { 2827 mpt->is_fc = 0; 2828 mpt->is_sas = 1; 2829 mpt->is_spi = 0; 2830 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { 2831 mpt->is_fc = 0; 2832 mpt->is_sas = 0; 2833 mpt->is_spi = 1; 2834 if (mpt->mpt_ini_id == MPT_INI_ID_NONE) 2835 mpt->mpt_ini_id = pfp->PortSCSIID; 2836 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { 2837 mpt_prt(mpt, "iSCSI not supported yet\n"); 2838 return (ENXIO); 2839 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { 2840 mpt_prt(mpt, "Inactive Port\n"); 2841 return (ENXIO); 2842 } else { 2843 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); 2844 return (ENXIO); 2845 } 2846 2847 /* 2848 * Set our role with what this port supports. 2849 * 2850 * Note this might be changed later in different modules 2851 * if this is different from what is wanted. 2852 */ 2853 mpt->role = MPT_ROLE_NONE; 2854 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { 2855 mpt->role |= MPT_ROLE_INITIATOR; 2856 } 2857 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { 2858 mpt->role |= MPT_ROLE_TARGET; 2859 } 2860 2861 /* 2862 * Enable the IOC 2863 */ 2864 if (mpt_enable_ioc(mpt, 1) != MPT_OK) { 2865 mpt_prt(mpt, "unable to initialize IOC\n"); 2866 return (ENXIO); 2867 } 2868 2869 /* 2870 * Read IOC configuration information. 2871 * 2872 * We need this to determine whether or not we have certain 2873 * settings for Integrated Mirroring (e.g.). 2874 */ 2875 mpt_read_config_info_ioc(mpt); 2876 2877 return (0); 2878 } 2879 2880 static int 2881 mpt_enable_ioc(struct mpt_softc *mpt, int portenable) 2882 { 2883 uint32_t pptr; 2884 int val; 2885 2886 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { 2887 mpt_prt(mpt, "mpt_send_ioc_init failed\n"); 2888 return (EIO); 2889 } 2890 2891 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); 2892 2893 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { 2894 mpt_prt(mpt, "IOC failed to go to run state\n"); 2895 return (ENXIO); 2896 } 2897 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); 2898 2899 /* 2900 * Give it reply buffers 2901 * 2902 * Do *not* exceed global credits. 2903 */ 2904 for (val = 0, pptr = mpt->reply_phys; 2905 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); 2906 pptr += MPT_REPLY_SIZE) { 2907 mpt_free_reply(mpt, pptr); 2908 if (++val == mpt->ioc_facts.GlobalCredits - 1) 2909 break; 2910 } 2911 2912 2913 /* 2914 * Enable the port if asked. This is only done if we're resetting 2915 * the IOC after initial startup. 2916 */ 2917 if (portenable) { 2918 /* 2919 * Enable asynchronous event reporting 2920 */ 2921 mpt_send_event_request(mpt, 1); 2922 2923 if (mpt_send_port_enable(mpt, 0) != MPT_OK) { 2924 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__); 2925 return (ENXIO); 2926 } 2927 } 2928 return (MPT_OK); 2929 } 2930 2931 /* 2932 * Endian Conversion Functions- only used on Big Endian machines 2933 */ 2934 #if _BYTE_ORDER == _BIG_ENDIAN 2935 void 2936 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) 2937 { 2938 2939 MPT_2_HOST32(sge, FlagsLength); 2940 MPT_2_HOST32(sge, u.Address64.Low); 2941 MPT_2_HOST32(sge, u.Address64.High); 2942 } 2943 2944 void 2945 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) 2946 { 2947 2948 MPT_2_HOST16(rp, MsgVersion); 2949 MPT_2_HOST16(rp, HeaderVersion); 2950 MPT_2_HOST32(rp, MsgContext); 2951 MPT_2_HOST16(rp, IOCExceptions); 2952 MPT_2_HOST16(rp, IOCStatus); 2953 MPT_2_HOST32(rp, IOCLogInfo); 2954 MPT_2_HOST16(rp, ReplyQueueDepth); 2955 MPT_2_HOST16(rp, RequestFrameSize); 2956 MPT_2_HOST16(rp, Reserved_0101_FWVersion); 2957 MPT_2_HOST16(rp, ProductID); 2958 MPT_2_HOST32(rp, CurrentHostMfaHighAddr); 2959 MPT_2_HOST16(rp, GlobalCredits); 2960 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); 2961 MPT_2_HOST16(rp, CurReplyFrameSize); 2962 MPT_2_HOST32(rp, FWImageSize); 2963 MPT_2_HOST32(rp, IOCCapabilities); 2964 MPT_2_HOST32(rp, FWVersion.Word); 2965 MPT_2_HOST16(rp, HighPriorityQueueDepth); 2966 MPT_2_HOST16(rp, Reserved2); 2967 mpt2host_sge_simple_union(&rp->HostPageBufferSGE); 2968 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); 2969 } 2970 2971 void 2972 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) 2973 { 2974 2975 MPT_2_HOST16(pfp, Reserved); 2976 MPT_2_HOST16(pfp, Reserved1); 2977 MPT_2_HOST32(pfp, MsgContext); 2978 MPT_2_HOST16(pfp, Reserved2); 2979 MPT_2_HOST16(pfp, IOCStatus); 2980 MPT_2_HOST32(pfp, IOCLogInfo); 2981 MPT_2_HOST16(pfp, MaxDevices); 2982 MPT_2_HOST16(pfp, PortSCSIID); 2983 MPT_2_HOST16(pfp, ProtocolFlags); 2984 MPT_2_HOST16(pfp, MaxPostedCmdBuffers); 2985 MPT_2_HOST16(pfp, MaxPersistentIDs); 2986 MPT_2_HOST16(pfp, MaxLanBuckets); 2987 MPT_2_HOST16(pfp, Reserved4); 2988 MPT_2_HOST32(pfp, Reserved5); 2989 } 2990 2991 void 2992 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) 2993 { 2994 int i; 2995 2996 MPT_2_HOST32(ioc2, CapabilitiesFlags); 2997 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { 2998 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); 2999 } 3000 } 3001 3002 void 3003 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3) 3004 { 3005 3006 MPT_2_HOST16(ioc3, Reserved2); 3007 } 3008 3009 void 3010 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0) 3011 { 3012 3013 MPT_2_HOST32(sp0, Capabilities); 3014 MPT_2_HOST32(sp0, PhysicalInterface); 3015 } 3016 3017 void 3018 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3019 { 3020 3021 MPT_2_HOST32(sp1, Configuration); 3022 MPT_2_HOST32(sp1, OnBusTimerValue); 3023 MPT_2_HOST16(sp1, IDConfig); 3024 } 3025 3026 void 3027 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) 3028 { 3029 3030 HOST_2_MPT32(sp1, Configuration); 3031 HOST_2_MPT32(sp1, OnBusTimerValue); 3032 HOST_2_MPT16(sp1, IDConfig); 3033 } 3034 3035 void 3036 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2) 3037 { 3038 int i; 3039 3040 MPT_2_HOST32(sp2, PortFlags); 3041 MPT_2_HOST32(sp2, PortSettings); 3042 for (i = 0; i < sizeof(sp2->DeviceSettings) / 3043 sizeof(*sp2->DeviceSettings); i++) { 3044 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags); 3045 } 3046 } 3047 3048 void 3049 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0) 3050 { 3051 3052 MPT_2_HOST32(sd0, NegotiatedParameters); 3053 MPT_2_HOST32(sd0, Information); 3054 } 3055 3056 void 3057 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3058 { 3059 3060 MPT_2_HOST32(sd1, RequestedParameters); 3061 MPT_2_HOST32(sd1, Reserved); 3062 MPT_2_HOST32(sd1, Configuration); 3063 } 3064 3065 void 3066 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) 3067 { 3068 3069 HOST_2_MPT32(sd1, RequestedParameters); 3070 HOST_2_MPT32(sd1, Reserved); 3071 HOST_2_MPT32(sd1, Configuration); 3072 } 3073 3074 void 3075 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0) 3076 { 3077 3078 MPT_2_HOST32(fp0, Flags); 3079 MPT_2_HOST32(fp0, PortIdentifier); 3080 MPT_2_HOST32(fp0, WWNN.Low); 3081 MPT_2_HOST32(fp0, WWNN.High); 3082 MPT_2_HOST32(fp0, WWPN.Low); 3083 MPT_2_HOST32(fp0, WWPN.High); 3084 MPT_2_HOST32(fp0, SupportedServiceClass); 3085 MPT_2_HOST32(fp0, SupportedSpeeds); 3086 MPT_2_HOST32(fp0, CurrentSpeed); 3087 MPT_2_HOST32(fp0, MaxFrameSize); 3088 MPT_2_HOST32(fp0, FabricWWNN.Low); 3089 MPT_2_HOST32(fp0, FabricWWNN.High); 3090 MPT_2_HOST32(fp0, FabricWWPN.Low); 3091 MPT_2_HOST32(fp0, FabricWWPN.High); 3092 MPT_2_HOST32(fp0, DiscoveredPortsCount); 3093 MPT_2_HOST32(fp0, MaxInitiators); 3094 } 3095 3096 void 3097 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3098 { 3099 3100 MPT_2_HOST32(fp1, Flags); 3101 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low); 3102 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High); 3103 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low); 3104 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High); 3105 } 3106 3107 void 3108 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) 3109 { 3110 3111 HOST_2_MPT32(fp1, Flags); 3112 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low); 3113 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High); 3114 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low); 3115 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High); 3116 } 3117 3118 void 3119 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) 3120 { 3121 int i; 3122 3123 MPT_2_HOST16(volp, VolumeStatus.Reserved); 3124 MPT_2_HOST16(volp, VolumeSettings.Settings); 3125 MPT_2_HOST32(volp, MaxLBA); 3126 MPT_2_HOST32(volp, MaxLBAHigh); 3127 MPT_2_HOST32(volp, StripeSize); 3128 MPT_2_HOST32(volp, Reserved2); 3129 MPT_2_HOST32(volp, Reserved3); 3130 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { 3131 MPT_2_HOST16(volp, PhysDisk[i].Reserved); 3132 } 3133 } 3134 3135 void 3136 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0) 3137 { 3138 3139 MPT_2_HOST32(rpd0, Reserved1); 3140 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved); 3141 MPT_2_HOST32(rpd0, MaxLBA); 3142 MPT_2_HOST16(rpd0, ErrorData.Reserved); 3143 MPT_2_HOST16(rpd0, ErrorData.ErrorCount); 3144 MPT_2_HOST16(rpd0, ErrorData.SmartCount); 3145 } 3146 3147 void 3148 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) 3149 { 3150 3151 MPT_2_HOST16(vi, TotalBlocks.High); 3152 MPT_2_HOST16(vi, TotalBlocks.Low); 3153 MPT_2_HOST16(vi, BlocksRemaining.High); 3154 MPT_2_HOST16(vi, BlocksRemaining.Low); 3155 } 3156 #endif 3157