1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Yahoo!, Inc. 5 * All rights reserved. 6 * Written by: John Baldwin <jhb@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 33 */ 34 /*- 35 * Copyright (c) 2011-2015 LSI Corp. 36 * Copyright (c) 2013-2015 Avago Technologies 37 * All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 61 * 62 * $FreeBSD$ 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 /* TODO Move headers to mpsvar */ 69 #include <sys/types.h> 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/selinfo.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/conf.h> 77 #include <sys/bio.h> 78 #include <sys/abi_compat.h> 79 #include <sys/malloc.h> 80 #include <sys/uio.h> 81 #include <sys/sysctl.h> 82 #include <sys/ioccom.h> 83 #include <sys/endian.h> 84 #include <sys/queue.h> 85 #include <sys/kthread.h> 86 #include <sys/taskqueue.h> 87 #include <sys/proc.h> 88 #include <sys/sysent.h> 89 90 #include <machine/bus.h> 91 #include <machine/resource.h> 92 #include <sys/rman.h> 93 94 #include <cam/cam.h> 95 #include <cam/cam_ccb.h> 96 #include <cam/scsi/scsi_all.h> 97 98 #include <dev/mps/mpi/mpi2_type.h> 99 #include <dev/mps/mpi/mpi2.h> 100 #include <dev/mps/mpi/mpi2_ioc.h> 101 #include <dev/mps/mpi/mpi2_cnfg.h> 102 #include <dev/mps/mpi/mpi2_init.h> 103 #include <dev/mps/mpi/mpi2_tool.h> 104 #include <dev/mps/mps_ioctl.h> 105 #include <dev/mps/mpsvar.h> 106 #include <dev/mps/mps_table.h> 107 #include <dev/mps/mps_sas.h> 108 #include <dev/pci/pcivar.h> 109 #include <dev/pci/pcireg.h> 110 111 static d_open_t mps_open; 112 static d_close_t mps_close; 113 static d_ioctl_t mps_ioctl_devsw; 114 115 static struct cdevsw mps_cdevsw = { 116 .d_version = D_VERSION, 117 .d_flags = 0, 118 .d_open = mps_open, 119 .d_close = mps_close, 120 .d_ioctl = mps_ioctl_devsw, 121 .d_name = "mps", 122 }; 123 124 typedef int (mps_user_f)(struct mps_command *, struct mps_usr_command *); 125 static mps_user_f mpi_pre_ioc_facts; 126 static mps_user_f mpi_pre_port_facts; 127 static mps_user_f mpi_pre_fw_download; 128 static mps_user_f mpi_pre_fw_upload; 129 static mps_user_f mpi_pre_sata_passthrough; 130 static mps_user_f mpi_pre_smp_passthrough; 131 static mps_user_f mpi_pre_config; 132 static mps_user_f mpi_pre_sas_io_unit_control; 133 134 static int mps_user_read_cfg_header(struct mps_softc *, 135 struct mps_cfg_page_req *); 136 static int mps_user_read_cfg_page(struct mps_softc *, 137 struct mps_cfg_page_req *, void *); 138 static int mps_user_read_extcfg_header(struct mps_softc *, 139 struct mps_ext_cfg_page_req *); 140 static int mps_user_read_extcfg_page(struct mps_softc *, 141 struct mps_ext_cfg_page_req *, void *); 142 static int mps_user_write_cfg_page(struct mps_softc *, 143 struct mps_cfg_page_req *, void *); 144 static int mps_user_setup_request(struct mps_command *, 145 struct mps_usr_command *); 146 static int mps_user_command(struct mps_softc *, struct mps_usr_command *); 147 148 static int mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data); 149 static void mps_user_get_adapter_data(struct mps_softc *sc, 150 mps_adapter_data_t *data); 151 static void mps_user_read_pci_info(struct mps_softc *sc, 152 mps_pci_info_t *data); 153 static uint8_t mps_get_fw_diag_buffer_number(struct mps_softc *sc, 154 uint32_t unique_id); 155 static int mps_post_fw_diag_buffer(struct mps_softc *sc, 156 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 157 static int mps_release_fw_diag_buffer(struct mps_softc *sc, 158 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 159 uint32_t diag_type); 160 static int mps_diag_register(struct mps_softc *sc, 161 mps_fw_diag_register_t *diag_register, uint32_t *return_code); 162 static int mps_diag_unregister(struct mps_softc *sc, 163 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 164 static int mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 165 uint32_t *return_code); 166 static int mps_diag_read_buffer(struct mps_softc *sc, 167 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 168 uint32_t *return_code); 169 static int mps_diag_release(struct mps_softc *sc, 170 mps_fw_diag_release_t *diag_release, uint32_t *return_code); 171 static int mps_do_diag_action(struct mps_softc *sc, uint32_t action, 172 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 173 static int mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data); 174 static void mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data); 175 static void mps_user_event_enable(struct mps_softc *sc, 176 mps_event_enable_t *data); 177 static int mps_user_event_report(struct mps_softc *sc, 178 mps_event_report_t *data); 179 static int mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data); 180 static int mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data); 181 182 MALLOC_DEFINE(M_MPSUSER, "mps_user", "Buffers for mps(4) ioctls"); 183 184 int 185 mps_attach_user(struct mps_softc *sc) 186 { 187 int unit; 188 189 unit = device_get_unit(sc->mps_dev); 190 sc->mps_cdev = make_dev(&mps_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 191 "mps%d", unit); 192 if (sc->mps_cdev == NULL) { 193 return (ENOMEM); 194 } 195 sc->mps_cdev->si_drv1 = sc; 196 return (0); 197 } 198 199 void 200 mps_detach_user(struct mps_softc *sc) 201 { 202 203 /* XXX: do a purge of pending requests? */ 204 if (sc->mps_cdev != NULL) 205 destroy_dev(sc->mps_cdev); 206 } 207 208 static int 209 mps_open(struct cdev *dev, int flags, int fmt, struct thread *td) 210 { 211 212 return (0); 213 } 214 215 static int 216 mps_close(struct cdev *dev, int flags, int fmt, struct thread *td) 217 { 218 219 return (0); 220 } 221 222 static int 223 mps_user_read_cfg_header(struct mps_softc *sc, 224 struct mps_cfg_page_req *page_req) 225 { 226 MPI2_CONFIG_PAGE_HEADER *hdr; 227 struct mps_config_params params; 228 int error; 229 230 hdr = ¶ms.hdr.Struct; 231 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 232 params.page_address = le32toh(page_req->page_address); 233 hdr->PageVersion = 0; 234 hdr->PageLength = 0; 235 hdr->PageNumber = page_req->header.PageNumber; 236 hdr->PageType = page_req->header.PageType; 237 params.buffer = NULL; 238 params.length = 0; 239 params.callback = NULL; 240 241 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 242 /* 243 * Leave the request. Without resetting the chip, it's 244 * still owned by it and we'll just get into trouble 245 * freeing it now. Mark it as abandoned so that if it 246 * shows up later it can be freed. 247 */ 248 mps_printf(sc, "read_cfg_header timed out\n"); 249 return (ETIMEDOUT); 250 } 251 252 page_req->ioc_status = htole16(params.status); 253 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 254 MPI2_IOCSTATUS_SUCCESS) { 255 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 256 } 257 258 return (0); 259 } 260 261 static int 262 mps_user_read_cfg_page(struct mps_softc *sc, struct mps_cfg_page_req *page_req, 263 void *buf) 264 { 265 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 266 struct mps_config_params params; 267 int error; 268 269 reqhdr = buf; 270 hdr = ¶ms.hdr.Struct; 271 hdr->PageVersion = reqhdr->PageVersion; 272 hdr->PageLength = reqhdr->PageLength; 273 hdr->PageNumber = reqhdr->PageNumber; 274 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 275 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 276 params.page_address = le32toh(page_req->page_address); 277 params.buffer = buf; 278 params.length = le32toh(page_req->len); 279 params.callback = NULL; 280 281 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 282 mps_printf(sc, "mps_user_read_cfg_page timed out\n"); 283 return (ETIMEDOUT); 284 } 285 286 page_req->ioc_status = htole16(params.status); 287 return (0); 288 } 289 290 static int 291 mps_user_read_extcfg_header(struct mps_softc *sc, 292 struct mps_ext_cfg_page_req *ext_page_req) 293 { 294 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 295 struct mps_config_params params; 296 int error; 297 298 hdr = ¶ms.hdr.Ext; 299 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 300 hdr->PageVersion = ext_page_req->header.PageVersion; 301 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 302 hdr->ExtPageLength = 0; 303 hdr->PageNumber = ext_page_req->header.PageNumber; 304 hdr->ExtPageType = ext_page_req->header.ExtPageType; 305 params.page_address = le32toh(ext_page_req->page_address); 306 params.buffer = NULL; 307 params.length = 0; 308 params.callback = NULL; 309 310 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 311 /* 312 * Leave the request. Without resetting the chip, it's 313 * still owned by it and we'll just get into trouble 314 * freeing it now. Mark it as abandoned so that if it 315 * shows up later it can be freed. 316 */ 317 mps_printf(sc, "mps_user_read_extcfg_header timed out\n"); 318 return (ETIMEDOUT); 319 } 320 321 ext_page_req->ioc_status = htole16(params.status); 322 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 323 MPI2_IOCSTATUS_SUCCESS) { 324 ext_page_req->header.PageVersion = hdr->PageVersion; 325 ext_page_req->header.PageNumber = hdr->PageNumber; 326 ext_page_req->header.PageType = hdr->PageType; 327 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 328 ext_page_req->header.ExtPageType = hdr->ExtPageType; 329 } 330 331 return (0); 332 } 333 334 static int 335 mps_user_read_extcfg_page(struct mps_softc *sc, 336 struct mps_ext_cfg_page_req *ext_page_req, void *buf) 337 { 338 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 339 struct mps_config_params params; 340 int error; 341 342 reqhdr = buf; 343 hdr = ¶ms.hdr.Ext; 344 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 345 params.page_address = le32toh(ext_page_req->page_address); 346 hdr->PageVersion = reqhdr->PageVersion; 347 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 348 hdr->PageNumber = reqhdr->PageNumber; 349 hdr->ExtPageType = reqhdr->ExtPageType; 350 hdr->ExtPageLength = reqhdr->ExtPageLength; 351 params.buffer = buf; 352 params.length = le32toh(ext_page_req->len); 353 params.callback = NULL; 354 355 if ((error = mps_read_config_page(sc, ¶ms)) != 0) { 356 mps_printf(sc, "mps_user_read_extcfg_page timed out\n"); 357 return (ETIMEDOUT); 358 } 359 360 ext_page_req->ioc_status = htole16(params.status); 361 return (0); 362 } 363 364 static int 365 mps_user_write_cfg_page(struct mps_softc *sc, 366 struct mps_cfg_page_req *page_req, void *buf) 367 { 368 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 369 struct mps_config_params params; 370 u_int hdr_attr; 371 int error; 372 373 reqhdr = buf; 374 hdr = ¶ms.hdr.Struct; 375 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 376 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 377 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 378 mps_printf(sc, "page type 0x%x not changeable\n", 379 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 380 return (EINVAL); 381 } 382 383 /* 384 * There isn't any point in restoring stripped out attributes 385 * if you then mask them going down to issue the request. 386 */ 387 388 hdr->PageVersion = reqhdr->PageVersion; 389 hdr->PageLength = reqhdr->PageLength; 390 hdr->PageNumber = reqhdr->PageNumber; 391 hdr->PageType = reqhdr->PageType; 392 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 393 params.page_address = le32toh(page_req->page_address); 394 params.buffer = buf; 395 params.length = le32toh(page_req->len); 396 params.callback = NULL; 397 398 if ((error = mps_write_config_page(sc, ¶ms)) != 0) { 399 mps_printf(sc, "mps_write_cfg_page timed out\n"); 400 return (ETIMEDOUT); 401 } 402 403 page_req->ioc_status = htole16(params.status); 404 return (0); 405 } 406 407 void 408 mpi_init_sge(struct mps_command *cm, void *req, void *sge) 409 { 410 int off, space; 411 412 space = (int)cm->cm_sc->reqframesz; 413 off = (uintptr_t)sge - (uintptr_t)req; 414 415 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 416 req, sge, off, space)); 417 418 cm->cm_sge = sge; 419 cm->cm_sglsize = space - off; 420 } 421 422 /* 423 * Prepare the mps_command for an IOC_FACTS request. 424 */ 425 static int 426 mpi_pre_ioc_facts(struct mps_command *cm, struct mps_usr_command *cmd) 427 { 428 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 429 MPI2_IOC_FACTS_REPLY *rpl; 430 431 if (cmd->req_len != sizeof *req) 432 return (EINVAL); 433 if (cmd->rpl_len != sizeof *rpl) 434 return (EINVAL); 435 436 cm->cm_sge = NULL; 437 cm->cm_sglsize = 0; 438 return (0); 439 } 440 441 /* 442 * Prepare the mps_command for a PORT_FACTS request. 443 */ 444 static int 445 mpi_pre_port_facts(struct mps_command *cm, struct mps_usr_command *cmd) 446 { 447 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 448 MPI2_PORT_FACTS_REPLY *rpl; 449 450 if (cmd->req_len != sizeof *req) 451 return (EINVAL); 452 if (cmd->rpl_len != sizeof *rpl) 453 return (EINVAL); 454 455 cm->cm_sge = NULL; 456 cm->cm_sglsize = 0; 457 return (0); 458 } 459 460 /* 461 * Prepare the mps_command for a FW_DOWNLOAD request. 462 */ 463 static int 464 mpi_pre_fw_download(struct mps_command *cm, struct mps_usr_command *cmd) 465 { 466 MPI2_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 467 MPI2_FW_DOWNLOAD_REPLY *rpl; 468 MPI2_FW_DOWNLOAD_TCSGE tc; 469 int error; 470 471 if (cmd->req_len != sizeof *req) 472 return (EINVAL); 473 if (cmd->rpl_len != sizeof *rpl) 474 return (EINVAL); 475 476 if (cmd->len == 0) 477 return (EINVAL); 478 479 error = copyin(cmd->buf, cm->cm_data, cmd->len); 480 if (error != 0) 481 return (error); 482 483 mpi_init_sge(cm, req, &req->SGL); 484 bzero(&tc, sizeof tc); 485 486 /* 487 * For now, the F/W image must be provided in a single request. 488 */ 489 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 490 return (EINVAL); 491 if (req->TotalImageSize != cmd->len) 492 return (EINVAL); 493 494 /* 495 * The value of the first two elements is specified in the 496 * Fusion-MPT Message Passing Interface document. 497 */ 498 tc.ContextSize = 0; 499 tc.DetailsLength = 12; 500 tc.ImageOffset = 0; 501 tc.ImageSize = cmd->len; 502 503 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 504 505 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 506 } 507 508 /* 509 * Prepare the mps_command for a FW_UPLOAD request. 510 */ 511 static int 512 mpi_pre_fw_upload(struct mps_command *cm, struct mps_usr_command *cmd) 513 { 514 MPI2_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 515 MPI2_FW_UPLOAD_REPLY *rpl; 516 MPI2_FW_UPLOAD_TCSGE tc; 517 518 if (cmd->req_len != sizeof *req) 519 return (EINVAL); 520 if (cmd->rpl_len != sizeof *rpl) 521 return (EINVAL); 522 523 mpi_init_sge(cm, req, &req->SGL); 524 bzero(&tc, sizeof tc); 525 526 /* 527 * The value of the first two elements is specified in the 528 * Fusion-MPT Message Passing Interface document. 529 */ 530 tc.ContextSize = 0; 531 tc.DetailsLength = 12; 532 /* 533 * XXX Is there any reason to fetch a partial image? I.e. to 534 * set ImageOffset to something other than 0? 535 */ 536 tc.ImageOffset = 0; 537 tc.ImageSize = cmd->len; 538 539 cm->cm_flags |= MPS_CM_FLAGS_DATAIN; 540 541 return (mps_push_sge(cm, &tc, sizeof tc, 0)); 542 } 543 544 /* 545 * Prepare the mps_command for a SATA_PASSTHROUGH request. 546 */ 547 static int 548 mpi_pre_sata_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 549 { 550 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 551 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 552 553 if (cmd->req_len != sizeof *req) 554 return (EINVAL); 555 if (cmd->rpl_len != sizeof *rpl) 556 return (EINVAL); 557 558 mpi_init_sge(cm, req, &req->SGL); 559 return (0); 560 } 561 562 /* 563 * Prepare the mps_command for a SMP_PASSTHROUGH request. 564 */ 565 static int 566 mpi_pre_smp_passthrough(struct mps_command *cm, struct mps_usr_command *cmd) 567 { 568 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 569 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 570 571 if (cmd->req_len != sizeof *req) 572 return (EINVAL); 573 if (cmd->rpl_len != sizeof *rpl) 574 return (EINVAL); 575 576 mpi_init_sge(cm, req, &req->SGL); 577 return (0); 578 } 579 580 /* 581 * Prepare the mps_command for a CONFIG request. 582 */ 583 static int 584 mpi_pre_config(struct mps_command *cm, struct mps_usr_command *cmd) 585 { 586 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 587 MPI2_CONFIG_REPLY *rpl; 588 589 if (cmd->req_len != sizeof *req) 590 return (EINVAL); 591 if (cmd->rpl_len != sizeof *rpl) 592 return (EINVAL); 593 594 mpi_init_sge(cm, req, &req->PageBufferSGE); 595 return (0); 596 } 597 598 /* 599 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 600 */ 601 static int 602 mpi_pre_sas_io_unit_control(struct mps_command *cm, 603 struct mps_usr_command *cmd) 604 { 605 606 cm->cm_sge = NULL; 607 cm->cm_sglsize = 0; 608 return (0); 609 } 610 611 /* 612 * A set of functions to prepare an mps_command for the various 613 * supported requests. 614 */ 615 struct mps_user_func { 616 U8 Function; 617 mps_user_f *f_pre; 618 } mps_user_func_list[] = { 619 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 620 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 621 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 622 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 623 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 624 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 625 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 626 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 627 { 0xFF, NULL } /* list end */ 628 }; 629 630 static int 631 mps_user_setup_request(struct mps_command *cm, struct mps_usr_command *cmd) 632 { 633 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 634 struct mps_user_func *f; 635 636 for (f = mps_user_func_list; f->f_pre != NULL; f++) { 637 if (hdr->Function == f->Function) 638 return (f->f_pre(cm, cmd)); 639 } 640 return (EINVAL); 641 } 642 643 static int 644 mps_user_command(struct mps_softc *sc, struct mps_usr_command *cmd) 645 { 646 MPI2_REQUEST_HEADER *hdr; 647 MPI2_DEFAULT_REPLY *rpl; 648 void *buf = NULL; 649 struct mps_command *cm = NULL; 650 int err = 0; 651 int sz; 652 653 mps_lock(sc); 654 cm = mps_alloc_command(sc); 655 656 if (cm == NULL) { 657 mps_printf(sc, "%s: no mps requests\n", __func__); 658 err = ENOMEM; 659 goto RetFree; 660 } 661 mps_unlock(sc); 662 663 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 664 665 mps_dprint(sc, MPS_USER, "%s: req %p %d rpl %p %d\n", __func__, 666 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 667 668 if (cmd->req_len > sc->reqframesz) { 669 err = EINVAL; 670 goto RetFreeUnlocked; 671 } 672 err = copyin(cmd->req, hdr, cmd->req_len); 673 if (err != 0) 674 goto RetFreeUnlocked; 675 676 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 677 hdr->Function, hdr->MsgFlags); 678 679 if (cmd->len > 0) { 680 buf = malloc(cmd->len, M_MPSUSER, M_WAITOK|M_ZERO); 681 cm->cm_data = buf; 682 cm->cm_length = cmd->len; 683 } else { 684 cm->cm_data = NULL; 685 cm->cm_length = 0; 686 } 687 688 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE; 689 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 690 691 err = mps_user_setup_request(cm, cmd); 692 if (err == EINVAL) { 693 mps_printf(sc, "%s: unsupported parameter or unsupported " 694 "function in request (function = 0x%X)\n", __func__, 695 hdr->Function); 696 } 697 if (err != 0) 698 goto RetFreeUnlocked; 699 700 mps_lock(sc); 701 err = mps_wait_command(sc, &cm, 60, CAN_SLEEP); 702 703 if (err || (cm == NULL)) { 704 mps_printf(sc, "%s: invalid request: error %d\n", 705 __func__, err); 706 goto RetFree; 707 } 708 709 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 710 if (rpl != NULL) 711 sz = rpl->MsgLength * 4; 712 else 713 sz = 0; 714 715 if (sz > cmd->rpl_len) { 716 mps_printf(sc, "%s: user reply buffer (%d) smaller than " 717 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 718 sz = cmd->rpl_len; 719 } 720 721 mps_unlock(sc); 722 copyout(rpl, cmd->rpl, sz); 723 if (buf != NULL) 724 copyout(buf, cmd->buf, cmd->len); 725 mps_dprint(sc, MPS_USER, "%s: reply size %d\n", __func__, sz); 726 727 RetFreeUnlocked: 728 mps_lock(sc); 729 RetFree: 730 if (cm != NULL) 731 mps_free_command(sc, cm); 732 mps_unlock(sc); 733 if (buf != NULL) 734 free(buf, M_MPSUSER); 735 return (err); 736 } 737 738 static int 739 mps_user_pass_thru(struct mps_softc *sc, mps_pass_thru_t *data) 740 { 741 MPI2_REQUEST_HEADER *hdr, *tmphdr; 742 MPI2_DEFAULT_REPLY *rpl = NULL; 743 struct mps_command *cm = NULL; 744 void *req = NULL; 745 int err = 0, dir = 0, sz; 746 uint8_t function = 0; 747 u_int sense_len; 748 struct mpssas_target *targ = NULL; 749 750 /* 751 * Only allow one passthru command at a time. Use the MPS_FLAGS_BUSY 752 * bit to denote that a passthru is being processed. 753 */ 754 mps_lock(sc); 755 if (sc->mps_flags & MPS_FLAGS_BUSY) { 756 mps_dprint(sc, MPS_USER, "%s: Only one passthru command " 757 "allowed at a single time.", __func__); 758 mps_unlock(sc); 759 return (EBUSY); 760 } 761 sc->mps_flags |= MPS_FLAGS_BUSY; 762 mps_unlock(sc); 763 764 /* 765 * Do some validation on data direction. Valid cases are: 766 * 1) DataSize is 0 and direction is NONE 767 * 2) DataSize is non-zero and one of: 768 * a) direction is READ or 769 * b) direction is WRITE or 770 * c) direction is BOTH and DataOutSize is non-zero 771 * If valid and the direction is BOTH, change the direction to READ. 772 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 773 */ 774 if (((data->DataSize == 0) && 775 (data->DataDirection == MPS_PASS_THRU_DIRECTION_NONE)) || 776 ((data->DataSize != 0) && 777 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_READ) || 778 (data->DataDirection == MPS_PASS_THRU_DIRECTION_WRITE) || 779 ((data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) && 780 (data->DataOutSize != 0))))) { 781 if (data->DataDirection == MPS_PASS_THRU_DIRECTION_BOTH) 782 data->DataDirection = MPS_PASS_THRU_DIRECTION_READ; 783 else 784 data->DataOutSize = 0; 785 } else { 786 err = EINVAL; 787 goto RetFreeUnlocked; 788 } 789 790 mps_dprint(sc, MPS_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 791 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 792 data->PtrRequest, data->RequestSize, data->PtrReply, 793 data->ReplySize, data->PtrData, data->DataSize, 794 data->PtrDataOut, data->DataOutSize, data->DataDirection); 795 796 if (data->RequestSize > sc->reqframesz) { 797 err = EINVAL; 798 goto RetFreeUnlocked; 799 } 800 801 req = malloc(data->RequestSize, M_MPSUSER, M_WAITOK | M_ZERO); 802 tmphdr = (MPI2_REQUEST_HEADER *)req; 803 804 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 805 if (err != 0) 806 goto RetFreeUnlocked; 807 808 function = tmphdr->Function; 809 mps_dprint(sc, MPS_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 810 function, tmphdr->MsgFlags); 811 812 /* 813 * Handle a passthru TM request. 814 */ 815 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 816 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 817 818 mps_lock(sc); 819 cm = mpssas_alloc_tm(sc); 820 if (cm == NULL) { 821 err = EINVAL; 822 goto Ret; 823 } 824 825 /* Copy the header in. Only a small fixup is needed. */ 826 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 827 memcpy(task, req, data->RequestSize); 828 task->TaskMID = cm->cm_desc.Default.SMID; 829 830 cm->cm_data = NULL; 831 cm->cm_complete = NULL; 832 cm->cm_complete_data = NULL; 833 834 targ = mpssas_find_target_by_handle(sc->sassc, 0, 835 task->DevHandle); 836 if (targ == NULL) { 837 mps_dprint(sc, MPS_INFO, 838 "%s %d : invalid handle for requested TM 0x%x \n", 839 __func__, __LINE__, task->DevHandle); 840 err = 1; 841 } else { 842 mpssas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 843 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 844 } 845 846 if (err != 0) { 847 err = EIO; 848 mps_dprint(sc, MPS_FAULT, "%s: task management failed", 849 __func__); 850 } 851 /* 852 * Copy the reply data and sense data to user space. 853 */ 854 if ((cm != NULL) && (cm->cm_reply != NULL)) { 855 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 856 sz = rpl->MsgLength * 4; 857 858 if (sz > data->ReplySize) { 859 mps_printf(sc, "%s: user reply buffer (%d) " 860 "smaller than returned buffer (%d)\n", 861 __func__, data->ReplySize, sz); 862 } 863 mps_unlock(sc); 864 copyout(cm->cm_reply, PTRIN(data->PtrReply), 865 MIN(sz, data->ReplySize)); 866 mps_lock(sc); 867 } 868 mpssas_free_tm(sc, cm); 869 goto Ret; 870 } 871 872 mps_lock(sc); 873 cm = mps_alloc_command(sc); 874 if (cm == NULL) { 875 mps_printf(sc, "%s: no mps requests\n", __func__); 876 err = ENOMEM; 877 goto Ret; 878 } 879 mps_unlock(sc); 880 881 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 882 memcpy(hdr, req, data->RequestSize); 883 884 /* 885 * Do some checking to make sure the IOCTL request contains a valid 886 * request. Then set the SGL info. 887 */ 888 mpi_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 889 890 /* 891 * Set up for read, write or both. From check above, DataOutSize will 892 * be 0 if direction is READ or WRITE, but it will have some non-zero 893 * value if the direction is BOTH. So, just use the biggest size to get 894 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 895 * up; the first is for the request and the second will contain the 896 * response data. cm_out_len needs to be set here and this will be used 897 * when the SGLs are set up. 898 */ 899 cm->cm_data = NULL; 900 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 901 cm->cm_out_len = data->DataOutSize; 902 cm->cm_flags = 0; 903 if (cm->cm_length != 0) { 904 cm->cm_data = malloc(cm->cm_length, M_MPSUSER, M_WAITOK | 905 M_ZERO); 906 cm->cm_flags = MPS_CM_FLAGS_DATAIN; 907 if (data->DataOutSize) { 908 cm->cm_flags |= MPS_CM_FLAGS_DATAOUT; 909 err = copyin(PTRIN(data->PtrDataOut), 910 cm->cm_data, data->DataOutSize); 911 } else if (data->DataDirection == 912 MPS_PASS_THRU_DIRECTION_WRITE) { 913 cm->cm_flags = MPS_CM_FLAGS_DATAOUT; 914 err = copyin(PTRIN(data->PtrData), 915 cm->cm_data, data->DataSize); 916 } 917 if (err != 0) 918 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 919 "IOCTL data from user space\n", __func__); 920 } 921 cm->cm_flags |= MPS_CM_FLAGS_SGE_SIMPLE; 922 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 923 924 /* 925 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 926 * uses SCSI IO descriptor. 927 */ 928 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 929 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 930 MPI2_SCSI_IO_REQUEST *scsi_io_req; 931 932 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 933 /* 934 * Put SGE for data and data_out buffer at the end of 935 * scsi_io_request message header (64 bytes in total). 936 * Following above SGEs, the residual space will be used by 937 * sense data. 938 */ 939 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 940 64); 941 scsi_io_req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr); 942 943 /* 944 * Set SGLOffset0 value. This is the number of dwords that SGL 945 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 946 */ 947 scsi_io_req->SGLOffset0 = 24; 948 949 /* 950 * Setup descriptor info. RAID passthrough must use the 951 * default request descriptor which is already set, so if this 952 * is a SCSI IO request, change the descriptor to SCSI IO. 953 * Also, if this is a SCSI IO request, handle the reply in the 954 * mpssas_scsio_complete function. 955 */ 956 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 957 cm->cm_desc.SCSIIO.RequestFlags = 958 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 959 cm->cm_desc.SCSIIO.DevHandle = scsi_io_req->DevHandle; 960 961 /* 962 * Make sure the DevHandle is not 0 because this is a 963 * likely error. 964 */ 965 if (scsi_io_req->DevHandle == 0) { 966 err = EINVAL; 967 goto RetFreeUnlocked; 968 } 969 } 970 } 971 972 mps_lock(sc); 973 974 err = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 975 976 if (err || (cm == NULL)) { 977 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 978 err); 979 mps_unlock(sc); 980 goto RetFreeUnlocked; 981 } 982 983 /* 984 * Sync the DMA data, if any. Then copy the data to user space. 985 */ 986 if (cm->cm_data != NULL) { 987 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) 988 dir = BUS_DMASYNC_POSTREAD; 989 else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) 990 dir = BUS_DMASYNC_POSTWRITE; 991 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 992 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 993 994 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { 995 mps_unlock(sc); 996 err = copyout(cm->cm_data, 997 PTRIN(data->PtrData), data->DataSize); 998 mps_lock(sc); 999 if (err != 0) 1000 mps_dprint(sc, MPS_FAULT, "%s: failed to copy " 1001 "IOCTL data to user space\n", __func__); 1002 } 1003 } 1004 1005 /* 1006 * Copy the reply data and sense data to user space. 1007 */ 1008 if (cm->cm_reply != NULL) { 1009 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1010 sz = rpl->MsgLength * 4; 1011 1012 if (sz > data->ReplySize) { 1013 mps_printf(sc, "%s: user reply buffer (%d) smaller " 1014 "than returned buffer (%d)\n", __func__, 1015 data->ReplySize, sz); 1016 } 1017 mps_unlock(sc); 1018 copyout(cm->cm_reply, PTRIN(data->PtrReply), 1019 MIN(sz, data->ReplySize)); 1020 mps_lock(sc); 1021 1022 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1023 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1024 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1025 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1026 sense_len = 1027 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1028 SenseCount)), sizeof(struct 1029 scsi_sense_data)); 1030 mps_unlock(sc); 1031 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1032 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1033 mps_lock(sc); 1034 } 1035 } 1036 } 1037 mps_unlock(sc); 1038 1039 RetFreeUnlocked: 1040 mps_lock(sc); 1041 1042 if (cm != NULL) { 1043 if (cm->cm_data) 1044 free(cm->cm_data, M_MPSUSER); 1045 mps_free_command(sc, cm); 1046 } 1047 Ret: 1048 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1049 mps_unlock(sc); 1050 free(req, M_MPSUSER); 1051 1052 return (err); 1053 } 1054 1055 static void 1056 mps_user_get_adapter_data(struct mps_softc *sc, mps_adapter_data_t *data) 1057 { 1058 Mpi2ConfigReply_t mpi_reply; 1059 Mpi2BiosPage3_t config_page; 1060 1061 /* 1062 * Use the PCI interface functions to get the Bus, Device, and Function 1063 * information. 1064 */ 1065 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mps_dev); 1066 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mps_dev); 1067 data->PciInformation.u.bits.FunctionNumber = 1068 pci_get_function(sc->mps_dev); 1069 1070 /* 1071 * Get the FW version that should already be saved in IOC Facts. 1072 */ 1073 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1074 1075 /* 1076 * General device info. 1077 */ 1078 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2; 1079 if (sc->mps_flags & MPS_FLAGS_WD_AVAILABLE) 1080 data->AdapterType = MPSIOCTL_ADAPTER_TYPE_SAS2_SSS6200; 1081 data->PCIDeviceHwId = pci_get_device(sc->mps_dev); 1082 data->PCIDeviceHwRev = pci_read_config(sc->mps_dev, PCIR_REVID, 1); 1083 data->SubSystemId = pci_get_subdevice(sc->mps_dev); 1084 data->SubsystemVendorId = pci_get_subvendor(sc->mps_dev); 1085 1086 /* 1087 * Get the driver version. 1088 */ 1089 strcpy((char *)&data->DriverVersion[0], MPS_DRIVER_VERSION); 1090 1091 /* 1092 * Need to get BIOS Config Page 3 for the BIOS Version. 1093 */ 1094 data->BiosVersion = 0; 1095 mps_lock(sc); 1096 if (mps_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1097 printf("%s: Error while retrieving BIOS Version\n", __func__); 1098 else 1099 data->BiosVersion = config_page.BiosVersion; 1100 mps_unlock(sc); 1101 } 1102 1103 static void 1104 mps_user_read_pci_info(struct mps_softc *sc, mps_pci_info_t *data) 1105 { 1106 int i; 1107 1108 /* 1109 * Use the PCI interface functions to get the Bus, Device, and Function 1110 * information. 1111 */ 1112 data->BusNumber = pci_get_bus(sc->mps_dev); 1113 data->DeviceNumber = pci_get_slot(sc->mps_dev); 1114 data->FunctionNumber = pci_get_function(sc->mps_dev); 1115 1116 /* 1117 * Now get the interrupt vector and the pci header. The vector can 1118 * only be 0 right now. The header is the first 256 bytes of config 1119 * space. 1120 */ 1121 data->InterruptVector = 0; 1122 for (i = 0; i < sizeof (data->PciHeader); i++) { 1123 data->PciHeader[i] = pci_read_config(sc->mps_dev, i, 1); 1124 } 1125 } 1126 1127 static uint8_t 1128 mps_get_fw_diag_buffer_number(struct mps_softc *sc, uint32_t unique_id) 1129 { 1130 uint8_t index; 1131 1132 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1133 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1134 return (index); 1135 } 1136 } 1137 1138 return (MPS_FW_DIAGNOSTIC_UID_NOT_FOUND); 1139 } 1140 1141 static int 1142 mps_post_fw_diag_buffer(struct mps_softc *sc, 1143 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1144 { 1145 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1146 MPI2_DIAG_BUFFER_POST_REPLY *reply = NULL; 1147 struct mps_command *cm = NULL; 1148 int i, status; 1149 1150 /* 1151 * If buffer is not enabled, just leave. 1152 */ 1153 *return_code = MPS_FW_DIAG_ERROR_POST_FAILED; 1154 if (!pBuffer->enabled) { 1155 return (MPS_DIAG_FAILURE); 1156 } 1157 1158 /* 1159 * Clear some flags initially. 1160 */ 1161 pBuffer->force_release = FALSE; 1162 pBuffer->valid_data = FALSE; 1163 pBuffer->owned_by_firmware = FALSE; 1164 1165 /* 1166 * Get a command. 1167 */ 1168 cm = mps_alloc_command(sc); 1169 if (cm == NULL) { 1170 mps_printf(sc, "%s: no mps requests\n", __func__); 1171 return (MPS_DIAG_FAILURE); 1172 } 1173 1174 /* 1175 * Build the request for releasing the FW Diag Buffer and send it. 1176 */ 1177 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1178 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1179 req->BufferType = pBuffer->buffer_type; 1180 req->ExtendedType = pBuffer->extended_type; 1181 req->BufferLength = pBuffer->size; 1182 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1183 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1184 mps_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1185 cm->cm_data = NULL; 1186 cm->cm_length = 0; 1187 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1188 cm->cm_complete_data = NULL; 1189 1190 /* 1191 * Send command synchronously. 1192 */ 1193 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1194 if (status || (cm == NULL)) { 1195 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1196 status); 1197 status = MPS_DIAG_FAILURE; 1198 goto done; 1199 } 1200 1201 /* 1202 * Process POST reply. 1203 */ 1204 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1205 if (reply == NULL) { 1206 mps_printf(sc, "%s: reply is NULL, probably due to " 1207 "reinitialization\n", __func__); 1208 status = MPS_DIAG_FAILURE; 1209 goto done; 1210 } 1211 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1212 MPI2_IOCSTATUS_SUCCESS) { 1213 status = MPS_DIAG_FAILURE; 1214 mps_dprint(sc, MPS_FAULT, "%s: post of FW Diag Buffer failed " 1215 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1216 "TransferLength = 0x%x\n", __func__, 1217 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1218 le32toh(reply->TransferLength)); 1219 goto done; 1220 } 1221 1222 /* 1223 * Post was successful. 1224 */ 1225 pBuffer->valid_data = TRUE; 1226 pBuffer->owned_by_firmware = TRUE; 1227 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1228 status = MPS_DIAG_SUCCESS; 1229 1230 done: 1231 if (cm != NULL) 1232 mps_free_command(sc, cm); 1233 return (status); 1234 } 1235 1236 static int 1237 mps_release_fw_diag_buffer(struct mps_softc *sc, 1238 mps_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1239 uint32_t diag_type) 1240 { 1241 MPI2_DIAG_RELEASE_REQUEST *req; 1242 MPI2_DIAG_RELEASE_REPLY *reply = NULL; 1243 struct mps_command *cm = NULL; 1244 int status; 1245 1246 /* 1247 * If buffer is not enabled, just leave. 1248 */ 1249 *return_code = MPS_FW_DIAG_ERROR_RELEASE_FAILED; 1250 if (!pBuffer->enabled) { 1251 mps_dprint(sc, MPS_USER, "%s: This buffer type is not " 1252 "supported by the IOC", __func__); 1253 return (MPS_DIAG_FAILURE); 1254 } 1255 1256 /* 1257 * Clear some flags initially. 1258 */ 1259 pBuffer->force_release = FALSE; 1260 pBuffer->valid_data = FALSE; 1261 pBuffer->owned_by_firmware = FALSE; 1262 1263 /* 1264 * Get a command. 1265 */ 1266 cm = mps_alloc_command(sc); 1267 if (cm == NULL) { 1268 mps_printf(sc, "%s: no mps requests\n", __func__); 1269 return (MPS_DIAG_FAILURE); 1270 } 1271 1272 /* 1273 * Build the request for releasing the FW Diag Buffer and send it. 1274 */ 1275 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1276 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1277 req->BufferType = pBuffer->buffer_type; 1278 cm->cm_data = NULL; 1279 cm->cm_length = 0; 1280 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1281 cm->cm_complete_data = NULL; 1282 1283 /* 1284 * Send command synchronously. 1285 */ 1286 status = mps_wait_command(sc, &cm, 30, CAN_SLEEP); 1287 if (status || (cm == NULL)) { 1288 mps_printf(sc, "%s: invalid request: error %d\n", __func__, 1289 status); 1290 status = MPS_DIAG_FAILURE; 1291 goto done; 1292 } 1293 1294 /* 1295 * Process RELEASE reply. 1296 */ 1297 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1298 if (reply == NULL) { 1299 mps_printf(sc, "%s: reply is NULL, probably due to " 1300 "reinitialization\n", __func__); 1301 status = MPS_DIAG_FAILURE; 1302 goto done; 1303 } 1304 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1305 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1306 status = MPS_DIAG_FAILURE; 1307 mps_dprint(sc, MPS_FAULT, "%s: release of FW Diag Buffer " 1308 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1309 __func__, le16toh(reply->IOCStatus), 1310 le32toh(reply->IOCLogInfo)); 1311 goto done; 1312 } 1313 1314 /* 1315 * Release was successful. 1316 */ 1317 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1318 status = MPS_DIAG_SUCCESS; 1319 1320 /* 1321 * If this was for an UNREGISTER diag type command, clear the unique ID. 1322 */ 1323 if (diag_type == MPS_FW_DIAG_TYPE_UNREGISTER) { 1324 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1325 } 1326 1327 done: 1328 if (cm != NULL) 1329 mps_free_command(sc, cm); 1330 1331 return (status); 1332 } 1333 1334 static int 1335 mps_diag_register(struct mps_softc *sc, mps_fw_diag_register_t *diag_register, 1336 uint32_t *return_code) 1337 { 1338 bus_dma_template_t t; 1339 mps_fw_diagnostic_buffer_t *pBuffer; 1340 struct mps_busdma_context *ctx; 1341 uint8_t extended_type, buffer_type, i; 1342 uint32_t buffer_size; 1343 uint32_t unique_id; 1344 int status; 1345 int error; 1346 1347 extended_type = diag_register->ExtendedType; 1348 buffer_type = diag_register->BufferType; 1349 buffer_size = diag_register->RequestedBufferSize; 1350 unique_id = diag_register->UniqueId; 1351 ctx = NULL; 1352 error = 0; 1353 1354 /* 1355 * Check for valid buffer type 1356 */ 1357 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1358 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1359 return (MPS_DIAG_FAILURE); 1360 } 1361 1362 /* 1363 * Get the current buffer and look up the unique ID. The unique ID 1364 * should not be found. If it is, the ID is already in use. 1365 */ 1366 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1367 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1368 if (i != MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1369 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1370 return (MPS_DIAG_FAILURE); 1371 } 1372 1373 /* 1374 * The buffer's unique ID should not be registered yet, and the given 1375 * unique ID cannot be 0. 1376 */ 1377 if ((pBuffer->unique_id != MPS_FW_DIAG_INVALID_UID) || 1378 (unique_id == MPS_FW_DIAG_INVALID_UID)) { 1379 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1380 return (MPS_DIAG_FAILURE); 1381 } 1382 1383 /* 1384 * If this buffer is already posted as immediate, just change owner. 1385 */ 1386 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1387 (pBuffer->unique_id == MPS_FW_DIAG_INVALID_UID)) { 1388 pBuffer->immediate = FALSE; 1389 pBuffer->unique_id = unique_id; 1390 return (MPS_DIAG_SUCCESS); 1391 } 1392 1393 /* 1394 * Post a new buffer after checking if it's enabled. The DMA buffer 1395 * that is allocated will be contiguous (nsegments = 1). 1396 */ 1397 if (!pBuffer->enabled) { 1398 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1399 return (MPS_DIAG_FAILURE); 1400 } 1401 bus_dma_template_init(&t, sc->mps_parent_dmat); 1402 BUS_DMA_TEMPLATE_FILL(&t, BD_NSEGMENTS(1), BD_MAXSIZE(buffer_size), 1403 BD_MAXSEGSIZE(buffer_size), BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT)); 1404 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1405 mps_dprint(sc, MPS_ERROR, 1406 "Cannot allocate FW diag buffer DMA tag\n"); 1407 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1408 status = MPS_DIAG_FAILURE; 1409 goto bailout; 1410 } 1411 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1412 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1413 mps_dprint(sc, MPS_ERROR, 1414 "Cannot allocate FW diag buffer memory\n"); 1415 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1416 status = MPS_DIAG_FAILURE; 1417 goto bailout; 1418 } 1419 bzero(sc->fw_diag_buffer, buffer_size); 1420 1421 ctx = malloc(sizeof(*ctx), M_MPSUSER, M_WAITOK | M_ZERO); 1422 ctx->addr = &sc->fw_diag_busaddr; 1423 ctx->buffer_dmat = sc->fw_diag_dmat; 1424 ctx->buffer_dmamap = sc->fw_diag_map; 1425 ctx->softc = sc; 1426 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1427 sc->fw_diag_buffer, buffer_size, mps_memaddr_wait_cb, 1428 ctx, 0); 1429 1430 if (error == EINPROGRESS) { 1431 /* XXX KDM */ 1432 device_printf(sc->mps_dev, "%s: Deferred bus_dmamap_load\n", 1433 __func__); 1434 /* 1435 * Wait for the load to complete. If we're interrupted, 1436 * bail out. 1437 */ 1438 mps_lock(sc); 1439 if (ctx->completed == 0) { 1440 error = msleep(ctx, &sc->mps_mtx, PCATCH, "mpswait", 0); 1441 if (error != 0) { 1442 /* 1443 * We got an error from msleep(9). This is 1444 * most likely due to a signal. Tell 1445 * mpr_memaddr_wait_cb() that we've abandoned 1446 * the context, so it needs to clean up when 1447 * it is called. 1448 */ 1449 ctx->abandoned = 1; 1450 1451 /* The callback will free this memory */ 1452 ctx = NULL; 1453 mps_unlock(sc); 1454 1455 device_printf(sc->mps_dev, "Cannot " 1456 "bus_dmamap_load FW diag buffer, error = " 1457 "%d returned from msleep\n", error); 1458 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1459 status = MPS_DIAG_FAILURE; 1460 goto bailout; 1461 } 1462 } 1463 mps_unlock(sc); 1464 } 1465 1466 if ((error != 0) || (ctx->error != 0)) { 1467 device_printf(sc->mps_dev, "Cannot bus_dmamap_load FW diag " 1468 "buffer, %serror = %d\n", error ? "" : "callback ", 1469 error ? error : ctx->error); 1470 *return_code = MPS_FW_DIAG_ERROR_NO_BUFFER; 1471 status = MPS_DIAG_FAILURE; 1472 goto bailout; 1473 } 1474 1475 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1476 1477 pBuffer->size = buffer_size; 1478 1479 /* 1480 * Copy the given info to the diag buffer and post the buffer. 1481 */ 1482 pBuffer->buffer_type = buffer_type; 1483 pBuffer->immediate = FALSE; 1484 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1485 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1486 i++) { 1487 pBuffer->product_specific[i] = 1488 diag_register->ProductSpecific[i]; 1489 } 1490 } 1491 pBuffer->extended_type = extended_type; 1492 pBuffer->unique_id = unique_id; 1493 status = mps_post_fw_diag_buffer(sc, pBuffer, return_code); 1494 1495 bailout: 1496 /* 1497 * In case there was a failure, free the DMA buffer. 1498 */ 1499 if (status == MPS_DIAG_FAILURE) { 1500 if (sc->fw_diag_busaddr != 0) { 1501 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1502 sc->fw_diag_busaddr = 0; 1503 } 1504 if (sc->fw_diag_buffer != NULL) { 1505 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1506 sc->fw_diag_map); 1507 sc->fw_diag_buffer = NULL; 1508 } 1509 if (sc->fw_diag_dmat != NULL) { 1510 bus_dma_tag_destroy(sc->fw_diag_dmat); 1511 sc->fw_diag_dmat = NULL; 1512 } 1513 } 1514 1515 if (ctx != NULL) 1516 free(ctx, M_MPSUSER); 1517 1518 return (status); 1519 } 1520 1521 static int 1522 mps_diag_unregister(struct mps_softc *sc, 1523 mps_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1524 { 1525 mps_fw_diagnostic_buffer_t *pBuffer; 1526 uint8_t i; 1527 uint32_t unique_id; 1528 int status; 1529 1530 unique_id = diag_unregister->UniqueId; 1531 1532 /* 1533 * Get the current buffer and look up the unique ID. The unique ID 1534 * should be there. 1535 */ 1536 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1537 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1538 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1539 return (MPS_DIAG_FAILURE); 1540 } 1541 1542 pBuffer = &sc->fw_diag_buffer_list[i]; 1543 1544 /* 1545 * Try to release the buffer from FW before freeing it. If release 1546 * fails, don't free the DMA buffer in case FW tries to access it 1547 * later. If buffer is not owned by firmware, can't release it. 1548 */ 1549 if (!pBuffer->owned_by_firmware) { 1550 status = MPS_DIAG_SUCCESS; 1551 } else { 1552 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1553 MPS_FW_DIAG_TYPE_UNREGISTER); 1554 } 1555 1556 /* 1557 * At this point, return the current status no matter what happens with 1558 * the DMA buffer. 1559 */ 1560 pBuffer->unique_id = MPS_FW_DIAG_INVALID_UID; 1561 if (status == MPS_DIAG_SUCCESS) { 1562 if (sc->fw_diag_busaddr != 0) { 1563 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1564 sc->fw_diag_busaddr = 0; 1565 } 1566 if (sc->fw_diag_buffer != NULL) { 1567 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1568 sc->fw_diag_map); 1569 sc->fw_diag_buffer = NULL; 1570 } 1571 if (sc->fw_diag_dmat != NULL) { 1572 bus_dma_tag_destroy(sc->fw_diag_dmat); 1573 sc->fw_diag_dmat = NULL; 1574 } 1575 } 1576 1577 return (status); 1578 } 1579 1580 static int 1581 mps_diag_query(struct mps_softc *sc, mps_fw_diag_query_t *diag_query, 1582 uint32_t *return_code) 1583 { 1584 mps_fw_diagnostic_buffer_t *pBuffer; 1585 uint8_t i; 1586 uint32_t unique_id; 1587 1588 unique_id = diag_query->UniqueId; 1589 1590 /* 1591 * If ID is valid, query on ID. 1592 * If ID is invalid, query on buffer type. 1593 */ 1594 if (unique_id == MPS_FW_DIAG_INVALID_UID) { 1595 i = diag_query->BufferType; 1596 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1597 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1598 return (MPS_DIAG_FAILURE); 1599 } 1600 } else { 1601 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1602 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1603 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1604 return (MPS_DIAG_FAILURE); 1605 } 1606 } 1607 1608 /* 1609 * Fill query structure with the diag buffer info. 1610 */ 1611 pBuffer = &sc->fw_diag_buffer_list[i]; 1612 diag_query->BufferType = pBuffer->buffer_type; 1613 diag_query->ExtendedType = pBuffer->extended_type; 1614 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1615 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1616 i++) { 1617 diag_query->ProductSpecific[i] = 1618 pBuffer->product_specific[i]; 1619 } 1620 } 1621 diag_query->TotalBufferSize = pBuffer->size; 1622 diag_query->DriverAddedBufferSize = 0; 1623 diag_query->UniqueId = pBuffer->unique_id; 1624 diag_query->ApplicationFlags = 0; 1625 diag_query->DiagnosticFlags = 0; 1626 1627 /* 1628 * Set/Clear application flags 1629 */ 1630 if (pBuffer->immediate) { 1631 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_APP_OWNED; 1632 } else { 1633 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_APP_OWNED; 1634 } 1635 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1636 diag_query->ApplicationFlags |= MPS_FW_DIAG_FLAG_BUFFER_VALID; 1637 } else { 1638 diag_query->ApplicationFlags &= ~MPS_FW_DIAG_FLAG_BUFFER_VALID; 1639 } 1640 if (pBuffer->owned_by_firmware) { 1641 diag_query->ApplicationFlags |= 1642 MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1643 } else { 1644 diag_query->ApplicationFlags &= 1645 ~MPS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1646 } 1647 1648 return (MPS_DIAG_SUCCESS); 1649 } 1650 1651 static int 1652 mps_diag_read_buffer(struct mps_softc *sc, 1653 mps_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1654 uint32_t *return_code) 1655 { 1656 mps_fw_diagnostic_buffer_t *pBuffer; 1657 uint8_t i, *pData; 1658 uint32_t unique_id; 1659 int status; 1660 1661 unique_id = diag_read_buffer->UniqueId; 1662 1663 /* 1664 * Get the current buffer and look up the unique ID. The unique ID 1665 * should be there. 1666 */ 1667 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1668 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1669 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1670 return (MPS_DIAG_FAILURE); 1671 } 1672 1673 pBuffer = &sc->fw_diag_buffer_list[i]; 1674 1675 /* 1676 * Make sure requested read is within limits 1677 */ 1678 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1679 pBuffer->size) { 1680 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1681 return (MPS_DIAG_FAILURE); 1682 } 1683 1684 /* Sync the DMA map before we copy to userland. */ 1685 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1686 BUS_DMASYNC_POSTREAD); 1687 1688 /* 1689 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1690 * buffer that was allocated is one contiguous buffer. 1691 */ 1692 pData = (uint8_t *)(sc->fw_diag_buffer + 1693 diag_read_buffer->StartingOffset); 1694 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1695 return (MPS_DIAG_FAILURE); 1696 diag_read_buffer->Status = 0; 1697 1698 /* 1699 * Set or clear the Force Release flag. 1700 */ 1701 if (pBuffer->force_release) { 1702 diag_read_buffer->Flags |= MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1703 } else { 1704 diag_read_buffer->Flags &= ~MPS_FW_DIAG_FLAG_FORCE_RELEASE; 1705 } 1706 1707 /* 1708 * If buffer is to be reregistered, make sure it's not already owned by 1709 * firmware first. 1710 */ 1711 status = MPS_DIAG_SUCCESS; 1712 if (!pBuffer->owned_by_firmware) { 1713 if (diag_read_buffer->Flags & MPS_FW_DIAG_FLAG_REREGISTER) { 1714 status = mps_post_fw_diag_buffer(sc, pBuffer, 1715 return_code); 1716 } 1717 } 1718 1719 return (status); 1720 } 1721 1722 static int 1723 mps_diag_release(struct mps_softc *sc, mps_fw_diag_release_t *diag_release, 1724 uint32_t *return_code) 1725 { 1726 mps_fw_diagnostic_buffer_t *pBuffer; 1727 uint8_t i; 1728 uint32_t unique_id; 1729 int status; 1730 1731 unique_id = diag_release->UniqueId; 1732 1733 /* 1734 * Get the current buffer and look up the unique ID. The unique ID 1735 * should be there. 1736 */ 1737 i = mps_get_fw_diag_buffer_number(sc, unique_id); 1738 if (i == MPS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1739 *return_code = MPS_FW_DIAG_ERROR_INVALID_UID; 1740 return (MPS_DIAG_FAILURE); 1741 } 1742 1743 pBuffer = &sc->fw_diag_buffer_list[i]; 1744 1745 /* 1746 * If buffer is not owned by firmware, it's already been released. 1747 */ 1748 if (!pBuffer->owned_by_firmware) { 1749 *return_code = MPS_FW_DIAG_ERROR_ALREADY_RELEASED; 1750 return (MPS_DIAG_FAILURE); 1751 } 1752 1753 /* 1754 * Release the buffer. 1755 */ 1756 status = mps_release_fw_diag_buffer(sc, pBuffer, return_code, 1757 MPS_FW_DIAG_TYPE_RELEASE); 1758 return (status); 1759 } 1760 1761 static int 1762 mps_do_diag_action(struct mps_softc *sc, uint32_t action, uint8_t *diag_action, 1763 uint32_t length, uint32_t *return_code) 1764 { 1765 mps_fw_diag_register_t diag_register; 1766 mps_fw_diag_unregister_t diag_unregister; 1767 mps_fw_diag_query_t diag_query; 1768 mps_diag_read_buffer_t diag_read_buffer; 1769 mps_fw_diag_release_t diag_release; 1770 int status = MPS_DIAG_SUCCESS; 1771 uint32_t original_return_code; 1772 1773 original_return_code = *return_code; 1774 *return_code = MPS_FW_DIAG_ERROR_SUCCESS; 1775 1776 switch (action) { 1777 case MPS_FW_DIAG_TYPE_REGISTER: 1778 if (!length) { 1779 *return_code = 1780 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1781 status = MPS_DIAG_FAILURE; 1782 break; 1783 } 1784 if (copyin(diag_action, &diag_register, 1785 sizeof(diag_register)) != 0) 1786 return (MPS_DIAG_FAILURE); 1787 status = mps_diag_register(sc, &diag_register, 1788 return_code); 1789 break; 1790 1791 case MPS_FW_DIAG_TYPE_UNREGISTER: 1792 if (length < sizeof(diag_unregister)) { 1793 *return_code = 1794 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1795 status = MPS_DIAG_FAILURE; 1796 break; 1797 } 1798 if (copyin(diag_action, &diag_unregister, 1799 sizeof(diag_unregister)) != 0) 1800 return (MPS_DIAG_FAILURE); 1801 status = mps_diag_unregister(sc, &diag_unregister, 1802 return_code); 1803 break; 1804 1805 case MPS_FW_DIAG_TYPE_QUERY: 1806 if (length < sizeof (diag_query)) { 1807 *return_code = 1808 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1809 status = MPS_DIAG_FAILURE; 1810 break; 1811 } 1812 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1813 != 0) 1814 return (MPS_DIAG_FAILURE); 1815 status = mps_diag_query(sc, &diag_query, return_code); 1816 if (status == MPS_DIAG_SUCCESS) 1817 if (copyout(&diag_query, diag_action, 1818 sizeof (diag_query)) != 0) 1819 return (MPS_DIAG_FAILURE); 1820 break; 1821 1822 case MPS_FW_DIAG_TYPE_READ_BUFFER: 1823 if (copyin(diag_action, &diag_read_buffer, 1824 sizeof(diag_read_buffer)) != 0) 1825 return (MPS_DIAG_FAILURE); 1826 if (length < diag_read_buffer.BytesToRead) { 1827 *return_code = 1828 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1829 status = MPS_DIAG_FAILURE; 1830 break; 1831 } 1832 status = mps_diag_read_buffer(sc, &diag_read_buffer, 1833 PTRIN(diag_read_buffer.PtrDataBuffer), 1834 return_code); 1835 if (status == MPS_DIAG_SUCCESS) { 1836 if (copyout(&diag_read_buffer, diag_action, 1837 sizeof(diag_read_buffer) - 1838 sizeof(diag_read_buffer.PtrDataBuffer)) != 1839 0) 1840 return (MPS_DIAG_FAILURE); 1841 } 1842 break; 1843 1844 case MPS_FW_DIAG_TYPE_RELEASE: 1845 if (length < sizeof(diag_release)) { 1846 *return_code = 1847 MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1848 status = MPS_DIAG_FAILURE; 1849 break; 1850 } 1851 if (copyin(diag_action, &diag_release, 1852 sizeof(diag_release)) != 0) 1853 return (MPS_DIAG_FAILURE); 1854 status = mps_diag_release(sc, &diag_release, 1855 return_code); 1856 break; 1857 1858 default: 1859 *return_code = MPS_FW_DIAG_ERROR_INVALID_PARAMETER; 1860 status = MPS_DIAG_FAILURE; 1861 break; 1862 } 1863 1864 if ((status == MPS_DIAG_FAILURE) && 1865 (original_return_code == MPS_FW_DIAG_NEW) && 1866 (*return_code != MPS_FW_DIAG_ERROR_SUCCESS)) 1867 status = MPS_DIAG_SUCCESS; 1868 1869 return (status); 1870 } 1871 1872 static int 1873 mps_user_diag_action(struct mps_softc *sc, mps_diag_action_t *data) 1874 { 1875 int status; 1876 1877 /* 1878 * Only allow one diag action at one time. 1879 */ 1880 if (sc->mps_flags & MPS_FLAGS_BUSY) { 1881 mps_dprint(sc, MPS_USER, "%s: Only one FW diag command " 1882 "allowed at a single time.", __func__); 1883 return (EBUSY); 1884 } 1885 sc->mps_flags |= MPS_FLAGS_BUSY; 1886 1887 /* 1888 * Send diag action request 1889 */ 1890 if (data->Action == MPS_FW_DIAG_TYPE_REGISTER || 1891 data->Action == MPS_FW_DIAG_TYPE_UNREGISTER || 1892 data->Action == MPS_FW_DIAG_TYPE_QUERY || 1893 data->Action == MPS_FW_DIAG_TYPE_READ_BUFFER || 1894 data->Action == MPS_FW_DIAG_TYPE_RELEASE) { 1895 status = mps_do_diag_action(sc, data->Action, 1896 PTRIN(data->PtrDiagAction), data->Length, 1897 &data->ReturnCode); 1898 } else 1899 status = EINVAL; 1900 1901 sc->mps_flags &= ~MPS_FLAGS_BUSY; 1902 return (status); 1903 } 1904 1905 /* 1906 * Copy the event recording mask and the event queue size out. For 1907 * clarification, the event recording mask (events_to_record) is not the same 1908 * thing as the event mask (event_mask). events_to_record has a bit set for 1909 * every event type that is to be recorded by the driver, and event_mask has a 1910 * bit cleared for every event that is allowed into the driver from the IOC. 1911 * They really have nothing to do with each other. 1912 */ 1913 static void 1914 mps_user_event_query(struct mps_softc *sc, mps_event_query_t *data) 1915 { 1916 uint8_t i; 1917 1918 mps_lock(sc); 1919 data->Entries = MPS_EVENT_QUEUE_SIZE; 1920 1921 for (i = 0; i < 4; i++) { 1922 data->Types[i] = sc->events_to_record[i]; 1923 } 1924 mps_unlock(sc); 1925 } 1926 1927 /* 1928 * Set the driver's event mask according to what's been given. See 1929 * mps_user_event_query for explanation of the event recording mask and the IOC 1930 * event mask. It's the app's responsibility to enable event logging by setting 1931 * the bits in events_to_record. Initially, no events will be logged. 1932 */ 1933 static void 1934 mps_user_event_enable(struct mps_softc *sc, mps_event_enable_t *data) 1935 { 1936 uint8_t i; 1937 1938 mps_lock(sc); 1939 for (i = 0; i < 4; i++) { 1940 sc->events_to_record[i] = data->Types[i]; 1941 } 1942 mps_unlock(sc); 1943 } 1944 1945 /* 1946 * Copy out the events that have been recorded, up to the max events allowed. 1947 */ 1948 static int 1949 mps_user_event_report(struct mps_softc *sc, mps_event_report_t *data) 1950 { 1951 int status = 0; 1952 uint32_t size; 1953 1954 mps_lock(sc); 1955 size = data->Size; 1956 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 1957 mps_unlock(sc); 1958 if (copyout((void *)sc->recorded_events, 1959 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 1960 status = EFAULT; 1961 mps_lock(sc); 1962 } else { 1963 /* 1964 * data->Size value is not large enough to copy event data. 1965 */ 1966 status = EFAULT; 1967 } 1968 1969 /* 1970 * Change size value to match the number of bytes that were copied. 1971 */ 1972 if (status == 0) 1973 data->Size = sizeof(sc->recorded_events); 1974 mps_unlock(sc); 1975 1976 return (status); 1977 } 1978 1979 /* 1980 * Record events into the driver from the IOC if they are not masked. 1981 */ 1982 void 1983 mpssas_record_event(struct mps_softc *sc, 1984 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 1985 { 1986 uint32_t event; 1987 int i, j; 1988 uint16_t event_data_len; 1989 boolean_t sendAEN = FALSE; 1990 1991 event = event_reply->Event; 1992 1993 /* 1994 * Generate a system event to let anyone who cares know that a 1995 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 1996 * event mask is set to. 1997 */ 1998 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 1999 sendAEN = TRUE; 2000 } 2001 2002 /* 2003 * Record the event only if its corresponding bit is set in 2004 * events_to_record. event_index is the index into recorded_events and 2005 * event_number is the overall number of an event being recorded since 2006 * start-of-day. event_index will roll over; event_number will never 2007 * roll over. 2008 */ 2009 i = (uint8_t)(event / 32); 2010 j = (uint8_t)(event % 32); 2011 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2012 i = sc->event_index; 2013 sc->recorded_events[i].Type = event; 2014 sc->recorded_events[i].Number = ++sc->event_number; 2015 bzero(sc->recorded_events[i].Data, MPS_MAX_EVENT_DATA_LENGTH * 2016 4); 2017 event_data_len = event_reply->EventDataLength; 2018 2019 if (event_data_len > 0) { 2020 /* 2021 * Limit data to size in m_event entry 2022 */ 2023 if (event_data_len > MPS_MAX_EVENT_DATA_LENGTH) { 2024 event_data_len = MPS_MAX_EVENT_DATA_LENGTH; 2025 } 2026 for (j = 0; j < event_data_len; j++) { 2027 sc->recorded_events[i].Data[j] = 2028 event_reply->EventData[j]; 2029 } 2030 2031 /* 2032 * check for index wrap-around 2033 */ 2034 if (++i == MPS_EVENT_QUEUE_SIZE) { 2035 i = 0; 2036 } 2037 sc->event_index = (uint8_t)i; 2038 2039 /* 2040 * Set flag to send the event. 2041 */ 2042 sendAEN = TRUE; 2043 } 2044 } 2045 2046 /* 2047 * Generate a system event if flag is set to let anyone who cares know 2048 * that an event has occurred. 2049 */ 2050 if (sendAEN) { 2051 //SLM-how to send a system event (see kqueue, kevent) 2052 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2053 // "SAS", NULL, NULL, DDI_NOSLEEP); 2054 } 2055 } 2056 2057 static int 2058 mps_user_reg_access(struct mps_softc *sc, mps_reg_access_t *data) 2059 { 2060 int status = 0; 2061 2062 switch (data->Command) { 2063 /* 2064 * IO access is not supported. 2065 */ 2066 case REG_IO_READ: 2067 case REG_IO_WRITE: 2068 mps_dprint(sc, MPS_USER, "IO access is not supported. " 2069 "Use memory access."); 2070 status = EINVAL; 2071 break; 2072 2073 case REG_MEM_READ: 2074 data->RegData = mps_regread(sc, data->RegOffset); 2075 break; 2076 2077 case REG_MEM_WRITE: 2078 mps_regwrite(sc, data->RegOffset, data->RegData); 2079 break; 2080 2081 default: 2082 status = EINVAL; 2083 break; 2084 } 2085 2086 return (status); 2087 } 2088 2089 static int 2090 mps_user_btdh(struct mps_softc *sc, mps_btdh_mapping_t *data) 2091 { 2092 uint8_t bt2dh = FALSE; 2093 uint8_t dh2bt = FALSE; 2094 uint16_t dev_handle, bus, target; 2095 2096 bus = data->Bus; 2097 target = data->TargetID; 2098 dev_handle = data->DevHandle; 2099 2100 /* 2101 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2102 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2103 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2104 * invalid. 2105 */ 2106 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2107 dh2bt = TRUE; 2108 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2109 bt2dh = TRUE; 2110 if (!dh2bt && !bt2dh) 2111 return (EINVAL); 2112 2113 /* 2114 * Only handle bus of 0. Make sure target is within range. 2115 */ 2116 if (bt2dh) { 2117 if (bus != 0) 2118 return (EINVAL); 2119 2120 if (target >= sc->max_devices) { 2121 mps_dprint(sc, MPS_FAULT, "Target ID is out of range " 2122 "for Bus/Target to DevHandle mapping."); 2123 return (EINVAL); 2124 } 2125 dev_handle = sc->mapping_table[target].dev_handle; 2126 if (dev_handle) 2127 data->DevHandle = dev_handle; 2128 } else { 2129 bus = 0; 2130 target = mps_mapping_get_tid_from_handle(sc, dev_handle); 2131 data->Bus = bus; 2132 data->TargetID = target; 2133 } 2134 2135 return (0); 2136 } 2137 2138 static int 2139 mps_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2140 struct thread *td) 2141 { 2142 struct mps_softc *sc; 2143 struct mps_cfg_page_req *page_req; 2144 struct mps_ext_cfg_page_req *ext_page_req; 2145 void *mps_page; 2146 int error, msleep_ret; 2147 2148 mps_page = NULL; 2149 sc = dev->si_drv1; 2150 page_req = (void *)arg; 2151 ext_page_req = (void *)arg; 2152 2153 switch (cmd) { 2154 case MPSIO_READ_CFG_HEADER: 2155 mps_lock(sc); 2156 error = mps_user_read_cfg_header(sc, page_req); 2157 mps_unlock(sc); 2158 break; 2159 case MPSIO_READ_CFG_PAGE: 2160 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2161 error = EINVAL; 2162 break; 2163 } 2164 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK | M_ZERO); 2165 error = copyin(page_req->buf, mps_page, 2166 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2167 if (error) 2168 break; 2169 mps_lock(sc); 2170 error = mps_user_read_cfg_page(sc, page_req, mps_page); 2171 mps_unlock(sc); 2172 if (error) 2173 break; 2174 error = copyout(mps_page, page_req->buf, page_req->len); 2175 break; 2176 case MPSIO_READ_EXT_CFG_HEADER: 2177 mps_lock(sc); 2178 error = mps_user_read_extcfg_header(sc, ext_page_req); 2179 mps_unlock(sc); 2180 break; 2181 case MPSIO_READ_EXT_CFG_PAGE: 2182 if (ext_page_req->len < 2183 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2184 error = EINVAL; 2185 break; 2186 } 2187 mps_page = malloc(ext_page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2188 error = copyin(ext_page_req->buf, mps_page, 2189 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2190 if (error) 2191 break; 2192 mps_lock(sc); 2193 error = mps_user_read_extcfg_page(sc, ext_page_req, mps_page); 2194 mps_unlock(sc); 2195 if (error) 2196 break; 2197 error = copyout(mps_page, ext_page_req->buf, ext_page_req->len); 2198 break; 2199 case MPSIO_WRITE_CFG_PAGE: 2200 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2201 error = EINVAL; 2202 break; 2203 } 2204 mps_page = malloc(page_req->len, M_MPSUSER, M_WAITOK|M_ZERO); 2205 error = copyin(page_req->buf, mps_page, page_req->len); 2206 if (error) 2207 break; 2208 mps_lock(sc); 2209 error = mps_user_write_cfg_page(sc, page_req, mps_page); 2210 mps_unlock(sc); 2211 break; 2212 case MPSIO_MPS_COMMAND: 2213 error = mps_user_command(sc, (struct mps_usr_command *)arg); 2214 break; 2215 case MPTIOCTL_PASS_THRU: 2216 /* 2217 * The user has requested to pass through a command to be 2218 * executed by the MPT firmware. Call our routine which does 2219 * this. Only allow one passthru IOCTL at one time. 2220 */ 2221 error = mps_user_pass_thru(sc, (mps_pass_thru_t *)arg); 2222 break; 2223 case MPTIOCTL_GET_ADAPTER_DATA: 2224 /* 2225 * The user has requested to read adapter data. Call our 2226 * routine which does this. 2227 */ 2228 error = 0; 2229 mps_user_get_adapter_data(sc, (mps_adapter_data_t *)arg); 2230 break; 2231 case MPTIOCTL_GET_PCI_INFO: 2232 /* 2233 * The user has requested to read pci info. Call 2234 * our routine which does this. 2235 */ 2236 mps_lock(sc); 2237 error = 0; 2238 mps_user_read_pci_info(sc, (mps_pci_info_t *)arg); 2239 mps_unlock(sc); 2240 break; 2241 case MPTIOCTL_RESET_ADAPTER: 2242 mps_lock(sc); 2243 sc->port_enable_complete = 0; 2244 uint32_t reinit_start = time_uptime; 2245 error = mps_reinit(sc); 2246 /* Sleep for 300 second. */ 2247 msleep_ret = msleep(&sc->port_enable_complete, &sc->mps_mtx, PRIBIO, 2248 "mps_porten", 300 * hz); 2249 mps_unlock(sc); 2250 if (msleep_ret) 2251 printf("Port Enable did not complete after Diag " 2252 "Reset msleep error %d.\n", msleep_ret); 2253 else 2254 mps_dprint(sc, MPS_USER, 2255 "Hard Reset with Port Enable completed in %d seconds.\n", 2256 (uint32_t) (time_uptime - reinit_start)); 2257 break; 2258 case MPTIOCTL_DIAG_ACTION: 2259 /* 2260 * The user has done a diag buffer action. Call our routine 2261 * which does this. Only allow one diag action at one time. 2262 */ 2263 mps_lock(sc); 2264 error = mps_user_diag_action(sc, (mps_diag_action_t *)arg); 2265 mps_unlock(sc); 2266 break; 2267 case MPTIOCTL_EVENT_QUERY: 2268 /* 2269 * The user has done an event query. Call our routine which does 2270 * this. 2271 */ 2272 error = 0; 2273 mps_user_event_query(sc, (mps_event_query_t *)arg); 2274 break; 2275 case MPTIOCTL_EVENT_ENABLE: 2276 /* 2277 * The user has done an event enable. Call our routine which 2278 * does this. 2279 */ 2280 error = 0; 2281 mps_user_event_enable(sc, (mps_event_enable_t *)arg); 2282 break; 2283 case MPTIOCTL_EVENT_REPORT: 2284 /* 2285 * The user has done an event report. Call our routine which 2286 * does this. 2287 */ 2288 error = mps_user_event_report(sc, (mps_event_report_t *)arg); 2289 break; 2290 case MPTIOCTL_REG_ACCESS: 2291 /* 2292 * The user has requested register access. Call our routine 2293 * which does this. 2294 */ 2295 mps_lock(sc); 2296 error = mps_user_reg_access(sc, (mps_reg_access_t *)arg); 2297 mps_unlock(sc); 2298 break; 2299 case MPTIOCTL_BTDH_MAPPING: 2300 /* 2301 * The user has requested to translate a bus/target to a 2302 * DevHandle or a DevHandle to a bus/target. Call our routine 2303 * which does this. 2304 */ 2305 error = mps_user_btdh(sc, (mps_btdh_mapping_t *)arg); 2306 break; 2307 default: 2308 error = ENOIOCTL; 2309 break; 2310 } 2311 2312 if (mps_page != NULL) 2313 free(mps_page, M_MPSUSER); 2314 2315 return (error); 2316 } 2317 2318 #ifdef COMPAT_FREEBSD32 2319 2320 struct mps_cfg_page_req32 { 2321 MPI2_CONFIG_PAGE_HEADER header; 2322 uint32_t page_address; 2323 uint32_t buf; 2324 int len; 2325 uint16_t ioc_status; 2326 }; 2327 2328 struct mps_ext_cfg_page_req32 { 2329 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2330 uint32_t page_address; 2331 uint32_t buf; 2332 int len; 2333 uint16_t ioc_status; 2334 }; 2335 2336 struct mps_raid_action32 { 2337 uint8_t action; 2338 uint8_t volume_bus; 2339 uint8_t volume_id; 2340 uint8_t phys_disk_num; 2341 uint32_t action_data_word; 2342 uint32_t buf; 2343 int len; 2344 uint32_t volume_status; 2345 uint32_t action_data[4]; 2346 uint16_t action_status; 2347 uint16_t ioc_status; 2348 uint8_t write; 2349 }; 2350 2351 struct mps_usr_command32 { 2352 uint32_t req; 2353 uint32_t req_len; 2354 uint32_t rpl; 2355 uint32_t rpl_len; 2356 uint32_t buf; 2357 int len; 2358 uint32_t flags; 2359 }; 2360 2361 #define MPSIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mps_cfg_page_req32) 2362 #define MPSIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mps_cfg_page_req32) 2363 #define MPSIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mps_ext_cfg_page_req32) 2364 #define MPSIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mps_ext_cfg_page_req32) 2365 #define MPSIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mps_cfg_page_req32) 2366 #define MPSIO_RAID_ACTION32 _IOWR('M', 205, struct mps_raid_action32) 2367 #define MPSIO_MPS_COMMAND32 _IOWR('M', 210, struct mps_usr_command32) 2368 2369 static int 2370 mps_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2371 struct thread *td) 2372 { 2373 struct mps_cfg_page_req32 *page32 = _arg; 2374 struct mps_ext_cfg_page_req32 *ext32 = _arg; 2375 struct mps_raid_action32 *raid32 = _arg; 2376 struct mps_usr_command32 *user32 = _arg; 2377 union { 2378 struct mps_cfg_page_req page; 2379 struct mps_ext_cfg_page_req ext; 2380 struct mps_raid_action raid; 2381 struct mps_usr_command user; 2382 } arg; 2383 u_long cmd; 2384 int error; 2385 2386 switch (cmd32) { 2387 case MPSIO_READ_CFG_HEADER32: 2388 case MPSIO_READ_CFG_PAGE32: 2389 case MPSIO_WRITE_CFG_PAGE32: 2390 if (cmd32 == MPSIO_READ_CFG_HEADER32) 2391 cmd = MPSIO_READ_CFG_HEADER; 2392 else if (cmd32 == MPSIO_READ_CFG_PAGE32) 2393 cmd = MPSIO_READ_CFG_PAGE; 2394 else 2395 cmd = MPSIO_WRITE_CFG_PAGE; 2396 CP(*page32, arg.page, header); 2397 CP(*page32, arg.page, page_address); 2398 PTRIN_CP(*page32, arg.page, buf); 2399 CP(*page32, arg.page, len); 2400 CP(*page32, arg.page, ioc_status); 2401 break; 2402 2403 case MPSIO_READ_EXT_CFG_HEADER32: 2404 case MPSIO_READ_EXT_CFG_PAGE32: 2405 if (cmd32 == MPSIO_READ_EXT_CFG_HEADER32) 2406 cmd = MPSIO_READ_EXT_CFG_HEADER; 2407 else 2408 cmd = MPSIO_READ_EXT_CFG_PAGE; 2409 CP(*ext32, arg.ext, header); 2410 CP(*ext32, arg.ext, page_address); 2411 PTRIN_CP(*ext32, arg.ext, buf); 2412 CP(*ext32, arg.ext, len); 2413 CP(*ext32, arg.ext, ioc_status); 2414 break; 2415 2416 case MPSIO_RAID_ACTION32: 2417 cmd = MPSIO_RAID_ACTION; 2418 CP(*raid32, arg.raid, action); 2419 CP(*raid32, arg.raid, volume_bus); 2420 CP(*raid32, arg.raid, volume_id); 2421 CP(*raid32, arg.raid, phys_disk_num); 2422 CP(*raid32, arg.raid, action_data_word); 2423 PTRIN_CP(*raid32, arg.raid, buf); 2424 CP(*raid32, arg.raid, len); 2425 CP(*raid32, arg.raid, volume_status); 2426 bcopy(raid32->action_data, arg.raid.action_data, 2427 sizeof arg.raid.action_data); 2428 CP(*raid32, arg.raid, ioc_status); 2429 CP(*raid32, arg.raid, write); 2430 break; 2431 2432 case MPSIO_MPS_COMMAND32: 2433 cmd = MPSIO_MPS_COMMAND; 2434 PTRIN_CP(*user32, arg.user, req); 2435 CP(*user32, arg.user, req_len); 2436 PTRIN_CP(*user32, arg.user, rpl); 2437 CP(*user32, arg.user, rpl_len); 2438 PTRIN_CP(*user32, arg.user, buf); 2439 CP(*user32, arg.user, len); 2440 CP(*user32, arg.user, flags); 2441 break; 2442 default: 2443 return (ENOIOCTL); 2444 } 2445 2446 error = mps_ioctl(dev, cmd, &arg, flag, td); 2447 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2448 switch (cmd32) { 2449 case MPSIO_READ_CFG_HEADER32: 2450 case MPSIO_READ_CFG_PAGE32: 2451 case MPSIO_WRITE_CFG_PAGE32: 2452 CP(arg.page, *page32, header); 2453 CP(arg.page, *page32, page_address); 2454 PTROUT_CP(arg.page, *page32, buf); 2455 CP(arg.page, *page32, len); 2456 CP(arg.page, *page32, ioc_status); 2457 break; 2458 2459 case MPSIO_READ_EXT_CFG_HEADER32: 2460 case MPSIO_READ_EXT_CFG_PAGE32: 2461 CP(arg.ext, *ext32, header); 2462 CP(arg.ext, *ext32, page_address); 2463 PTROUT_CP(arg.ext, *ext32, buf); 2464 CP(arg.ext, *ext32, len); 2465 CP(arg.ext, *ext32, ioc_status); 2466 break; 2467 2468 case MPSIO_RAID_ACTION32: 2469 CP(arg.raid, *raid32, action); 2470 CP(arg.raid, *raid32, volume_bus); 2471 CP(arg.raid, *raid32, volume_id); 2472 CP(arg.raid, *raid32, phys_disk_num); 2473 CP(arg.raid, *raid32, action_data_word); 2474 PTROUT_CP(arg.raid, *raid32, buf); 2475 CP(arg.raid, *raid32, len); 2476 CP(arg.raid, *raid32, volume_status); 2477 bcopy(arg.raid.action_data, raid32->action_data, 2478 sizeof arg.raid.action_data); 2479 CP(arg.raid, *raid32, ioc_status); 2480 CP(arg.raid, *raid32, write); 2481 break; 2482 2483 case MPSIO_MPS_COMMAND32: 2484 PTROUT_CP(arg.user, *user32, req); 2485 CP(arg.user, *user32, req_len); 2486 PTROUT_CP(arg.user, *user32, rpl); 2487 CP(arg.user, *user32, rpl_len); 2488 PTROUT_CP(arg.user, *user32, buf); 2489 CP(arg.user, *user32, len); 2490 CP(arg.user, *user32, flags); 2491 break; 2492 } 2493 } 2494 2495 return (error); 2496 } 2497 #endif /* COMPAT_FREEBSD32 */ 2498 2499 static int 2500 mps_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2501 struct thread *td) 2502 { 2503 #ifdef COMPAT_FREEBSD32 2504 if (SV_CURPROC_FLAG(SV_ILP32)) 2505 return (mps_ioctl32(dev, com, arg, flag, td)); 2506 #endif 2507 return (mps_ioctl(dev, com, arg, flag, td)); 2508 } 2509