1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 */ 61 62 #include <sys/cdefs.h> 63 /* TODO Move headers to mprvar */ 64 #include <sys/types.h> 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/selinfo.h> 69 #include <sys/module.h> 70 #include <sys/bus.h> 71 #include <sys/conf.h> 72 #include <sys/bio.h> 73 #include <sys/abi_compat.h> 74 #include <sys/malloc.h> 75 #include <sys/uio.h> 76 #include <sys/sysctl.h> 77 #include <sys/ioccom.h> 78 #include <sys/endian.h> 79 #include <sys/queue.h> 80 #include <sys/kthread.h> 81 #include <sys/taskqueue.h> 82 #include <sys/proc.h> 83 #include <sys/sysent.h> 84 85 #include <machine/bus.h> 86 #include <machine/resource.h> 87 #include <sys/rman.h> 88 89 #include <cam/cam.h> 90 #include <cam/cam_ccb.h> 91 92 #include <dev/mpr/mpi/mpi2_type.h> 93 #include <dev/mpr/mpi/mpi2.h> 94 #include <dev/mpr/mpi/mpi2_ioc.h> 95 #include <dev/mpr/mpi/mpi2_cnfg.h> 96 #include <dev/mpr/mpi/mpi2_init.h> 97 #include <dev/mpr/mpi/mpi2_tool.h> 98 #include <dev/mpr/mpi/mpi2_pci.h> 99 #include <dev/mpr/mpr_ioctl.h> 100 #include <dev/mpr/mprvar.h> 101 #include <dev/mpr/mpr_table.h> 102 #include <dev/mpr/mpr_sas.h> 103 #include <dev/pci/pcivar.h> 104 #include <dev/pci/pcireg.h> 105 106 static d_open_t mpr_open; 107 static d_close_t mpr_close; 108 static d_ioctl_t mpr_ioctl_devsw; 109 110 static struct cdevsw mpr_cdevsw = { 111 .d_version = D_VERSION, 112 .d_flags = 0, 113 .d_open = mpr_open, 114 .d_close = mpr_close, 115 .d_ioctl = mpr_ioctl_devsw, 116 .d_name = "mpr", 117 }; 118 119 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 120 static mpr_user_f mpi_pre_ioc_facts; 121 static mpr_user_f mpi_pre_port_facts; 122 static mpr_user_f mpi_pre_fw_download; 123 static mpr_user_f mpi_pre_fw_upload; 124 static mpr_user_f mpi_pre_sata_passthrough; 125 static mpr_user_f mpi_pre_smp_passthrough; 126 static mpr_user_f mpi_pre_config; 127 static mpr_user_f mpi_pre_sas_io_unit_control; 128 129 static int mpr_user_read_cfg_header(struct mpr_softc *, 130 struct mpr_cfg_page_req *); 131 static int mpr_user_read_cfg_page(struct mpr_softc *, 132 struct mpr_cfg_page_req *, void *); 133 static int mpr_user_read_extcfg_header(struct mpr_softc *, 134 struct mpr_ext_cfg_page_req *); 135 static int mpr_user_read_extcfg_page(struct mpr_softc *, 136 struct mpr_ext_cfg_page_req *, void *); 137 static int mpr_user_write_cfg_page(struct mpr_softc *, 138 struct mpr_cfg_page_req *, void *); 139 static int mpr_user_setup_request(struct mpr_command *, 140 struct mpr_usr_command *); 141 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 142 143 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 144 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 145 mpr_adapter_data_t *data); 146 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 147 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 148 uint32_t unique_id); 149 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 150 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 151 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 152 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 153 uint32_t diag_type); 154 static int mpr_diag_register(struct mpr_softc *sc, 155 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 156 static int mpr_diag_unregister(struct mpr_softc *sc, 157 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 158 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 159 uint32_t *return_code); 160 static int mpr_diag_read_buffer(struct mpr_softc *sc, 161 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 162 uint32_t *return_code); 163 static int mpr_diag_release(struct mpr_softc *sc, 164 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 165 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 166 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 167 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 168 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 169 static void mpr_user_event_enable(struct mpr_softc *sc, 170 mpr_event_enable_t *data); 171 static int mpr_user_event_report(struct mpr_softc *sc, 172 mpr_event_report_t *data); 173 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 174 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 175 176 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 177 178 /* 179 * MPI functions that support IEEE SGLs for SAS3. 180 */ 181 static uint8_t ieee_sgl_func_list[] = { 182 MPI2_FUNCTION_SCSI_IO_REQUEST, 183 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 184 MPI2_FUNCTION_SMP_PASSTHROUGH, 185 MPI2_FUNCTION_SATA_PASSTHROUGH, 186 MPI2_FUNCTION_FW_UPLOAD, 187 MPI2_FUNCTION_FW_DOWNLOAD, 188 MPI2_FUNCTION_TARGET_ASSIST, 189 MPI2_FUNCTION_TARGET_STATUS_SEND, 190 MPI2_FUNCTION_TOOLBOX 191 }; 192 193 int 194 mpr_attach_user(struct mpr_softc *sc) 195 { 196 int unit; 197 198 unit = device_get_unit(sc->mpr_dev); 199 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 200 "mpr%d", unit); 201 202 if (sc->mpr_cdev == NULL) 203 return (ENOMEM); 204 205 sc->mpr_cdev->si_drv1 = sc; 206 return (0); 207 } 208 209 void 210 mpr_detach_user(struct mpr_softc *sc) 211 { 212 213 /* XXX: do a purge of pending requests? */ 214 if (sc->mpr_cdev != NULL) 215 destroy_dev(sc->mpr_cdev); 216 } 217 218 static int 219 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 220 { 221 222 return (0); 223 } 224 225 static int 226 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 227 { 228 229 return (0); 230 } 231 232 static int 233 mpr_user_read_cfg_header(struct mpr_softc *sc, 234 struct mpr_cfg_page_req *page_req) 235 { 236 MPI2_CONFIG_PAGE_HEADER *hdr; 237 struct mpr_config_params params; 238 int error; 239 240 hdr = ¶ms.hdr.Struct; 241 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 242 params.page_address = le32toh(page_req->page_address); 243 hdr->PageVersion = 0; 244 hdr->PageLength = 0; 245 hdr->PageNumber = page_req->header.PageNumber; 246 hdr->PageType = page_req->header.PageType; 247 params.buffer = NULL; 248 params.length = 0; 249 params.callback = NULL; 250 251 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 252 /* 253 * Leave the request. Without resetting the chip, it's 254 * still owned by it and we'll just get into trouble 255 * freeing it now. Mark it as abandoned so that if it 256 * shows up later it can be freed. 257 */ 258 mpr_printf(sc, "read_cfg_header timed out\n"); 259 return (ETIMEDOUT); 260 } 261 262 page_req->ioc_status = htole16(params.status); 263 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 264 MPI2_IOCSTATUS_SUCCESS) { 265 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 266 } 267 268 return (0); 269 } 270 271 static int 272 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 273 void *buf) 274 { 275 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 276 struct mpr_config_params params; 277 int error; 278 279 reqhdr = buf; 280 hdr = ¶ms.hdr.Struct; 281 hdr->PageVersion = reqhdr->PageVersion; 282 hdr->PageLength = reqhdr->PageLength; 283 hdr->PageNumber = reqhdr->PageNumber; 284 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 285 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 286 params.page_address = le32toh(page_req->page_address); 287 params.buffer = buf; 288 params.length = le32toh(page_req->len); 289 params.callback = NULL; 290 291 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 292 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 293 return (ETIMEDOUT); 294 } 295 296 page_req->ioc_status = htole16(params.status); 297 return (0); 298 } 299 300 static int 301 mpr_user_read_extcfg_header(struct mpr_softc *sc, 302 struct mpr_ext_cfg_page_req *ext_page_req) 303 { 304 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 305 struct mpr_config_params params; 306 int error; 307 308 hdr = ¶ms.hdr.Ext; 309 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 310 hdr->PageVersion = ext_page_req->header.PageVersion; 311 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 312 hdr->ExtPageLength = 0; 313 hdr->PageNumber = ext_page_req->header.PageNumber; 314 hdr->ExtPageType = ext_page_req->header.ExtPageType; 315 params.page_address = le32toh(ext_page_req->page_address); 316 params.buffer = NULL; 317 params.length = 0; 318 params.callback = NULL; 319 320 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 321 /* 322 * Leave the request. Without resetting the chip, it's 323 * still owned by it and we'll just get into trouble 324 * freeing it now. Mark it as abandoned so that if it 325 * shows up later it can be freed. 326 */ 327 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 328 return (ETIMEDOUT); 329 } 330 331 ext_page_req->ioc_status = htole16(params.status); 332 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 333 MPI2_IOCSTATUS_SUCCESS) { 334 ext_page_req->header.PageVersion = hdr->PageVersion; 335 ext_page_req->header.PageNumber = hdr->PageNumber; 336 ext_page_req->header.PageType = hdr->PageType; 337 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 338 ext_page_req->header.ExtPageType = hdr->ExtPageType; 339 } 340 341 return (0); 342 } 343 344 static int 345 mpr_user_read_extcfg_page(struct mpr_softc *sc, 346 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 347 { 348 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 349 struct mpr_config_params params; 350 int error; 351 352 reqhdr = buf; 353 hdr = ¶ms.hdr.Ext; 354 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 355 params.page_address = le32toh(ext_page_req->page_address); 356 hdr->PageVersion = reqhdr->PageVersion; 357 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 358 hdr->PageNumber = reqhdr->PageNumber; 359 hdr->ExtPageType = reqhdr->ExtPageType; 360 hdr->ExtPageLength = reqhdr->ExtPageLength; 361 params.buffer = buf; 362 params.length = le32toh(ext_page_req->len); 363 params.callback = NULL; 364 365 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 366 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 367 return (ETIMEDOUT); 368 } 369 370 ext_page_req->ioc_status = htole16(params.status); 371 return (0); 372 } 373 374 static int 375 mpr_user_write_cfg_page(struct mpr_softc *sc, 376 struct mpr_cfg_page_req *page_req, void *buf) 377 { 378 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 379 struct mpr_config_params params; 380 u_int hdr_attr; 381 int error; 382 383 reqhdr = buf; 384 hdr = ¶ms.hdr.Struct; 385 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 386 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 387 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 388 mpr_printf(sc, "page type 0x%x not changeable\n", 389 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 390 return (EINVAL); 391 } 392 393 /* 394 * There isn't any point in restoring stripped out attributes 395 * if you then mask them going down to issue the request. 396 */ 397 398 hdr->PageVersion = reqhdr->PageVersion; 399 hdr->PageLength = reqhdr->PageLength; 400 hdr->PageNumber = reqhdr->PageNumber; 401 hdr->PageType = reqhdr->PageType; 402 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 403 params.page_address = le32toh(page_req->page_address); 404 params.buffer = buf; 405 params.length = le32toh(page_req->len); 406 params.callback = NULL; 407 408 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 409 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 410 return (ETIMEDOUT); 411 } 412 413 page_req->ioc_status = htole16(params.status); 414 return (0); 415 } 416 417 void 418 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 419 { 420 int off, space; 421 422 space = (int)cm->cm_sc->reqframesz; 423 off = (uintptr_t)sge - (uintptr_t)req; 424 425 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 426 req, sge, off, space)); 427 428 cm->cm_sge = sge; 429 cm->cm_sglsize = space - off; 430 } 431 432 /* 433 * Prepare the mpr_command for an IOC_FACTS request. 434 */ 435 static int 436 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 437 { 438 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 439 MPI2_IOC_FACTS_REPLY *rpl; 440 441 if (cmd->req_len != sizeof *req) 442 return (EINVAL); 443 if (cmd->rpl_len != sizeof *rpl) 444 return (EINVAL); 445 446 cm->cm_sge = NULL; 447 cm->cm_sglsize = 0; 448 return (0); 449 } 450 451 /* 452 * Prepare the mpr_command for a PORT_FACTS request. 453 */ 454 static int 455 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 456 { 457 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 458 MPI2_PORT_FACTS_REPLY *rpl; 459 460 if (cmd->req_len != sizeof *req) 461 return (EINVAL); 462 if (cmd->rpl_len != sizeof *rpl) 463 return (EINVAL); 464 465 cm->cm_sge = NULL; 466 cm->cm_sglsize = 0; 467 return (0); 468 } 469 470 /* 471 * Prepare the mpr_command for a FW_DOWNLOAD request. 472 */ 473 static int 474 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 475 { 476 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 477 MPI2_FW_DOWNLOAD_REPLY *rpl; 478 int error; 479 480 if (cmd->req_len != sizeof *req) 481 return (EINVAL); 482 if (cmd->rpl_len != sizeof *rpl) 483 return (EINVAL); 484 485 if (cmd->len == 0) 486 return (EINVAL); 487 488 error = copyin(cmd->buf, cm->cm_data, cmd->len); 489 if (error != 0) 490 return (error); 491 492 mpr_init_sge(cm, req, &req->SGL); 493 494 /* 495 * For now, the F/W image must be provided in a single request. 496 */ 497 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 498 return (EINVAL); 499 if (req->TotalImageSize != cmd->len) 500 return (EINVAL); 501 502 req->ImageOffset = 0; 503 req->ImageSize = cmd->len; 504 505 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 506 507 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 508 } 509 510 /* 511 * Prepare the mpr_command for a FW_UPLOAD request. 512 */ 513 static int 514 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 515 { 516 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 517 MPI2_FW_UPLOAD_REPLY *rpl; 518 519 if (cmd->req_len != sizeof *req) 520 return (EINVAL); 521 if (cmd->rpl_len != sizeof *rpl) 522 return (EINVAL); 523 524 mpr_init_sge(cm, req, &req->SGL); 525 if (cmd->len == 0) { 526 /* Perhaps just asking what the size of the fw is? */ 527 return (0); 528 } 529 530 req->ImageOffset = 0; 531 req->ImageSize = cmd->len; 532 533 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 534 535 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 536 } 537 538 /* 539 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 540 */ 541 static int 542 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 543 { 544 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 545 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 546 547 if (cmd->req_len != sizeof *req) 548 return (EINVAL); 549 if (cmd->rpl_len != sizeof *rpl) 550 return (EINVAL); 551 552 mpr_init_sge(cm, req, &req->SGL); 553 return (0); 554 } 555 556 /* 557 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 558 */ 559 static int 560 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 561 { 562 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 563 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 564 565 if (cmd->req_len != sizeof *req) 566 return (EINVAL); 567 if (cmd->rpl_len != sizeof *rpl) 568 return (EINVAL); 569 570 mpr_init_sge(cm, req, &req->SGL); 571 return (0); 572 } 573 574 /* 575 * Prepare the mpr_command for a CONFIG request. 576 */ 577 static int 578 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 579 { 580 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 581 MPI2_CONFIG_REPLY *rpl; 582 583 if (cmd->req_len != sizeof *req) 584 return (EINVAL); 585 if (cmd->rpl_len != sizeof *rpl) 586 return (EINVAL); 587 588 mpr_init_sge(cm, req, &req->PageBufferSGE); 589 return (0); 590 } 591 592 /* 593 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 594 */ 595 static int 596 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 597 struct mpr_usr_command *cmd) 598 { 599 600 cm->cm_sge = NULL; 601 cm->cm_sglsize = 0; 602 return (0); 603 } 604 605 /* 606 * A set of functions to prepare an mpr_command for the various 607 * supported requests. 608 */ 609 struct mpr_user_func { 610 U8 Function; 611 mpr_user_f *f_pre; 612 } mpr_user_func_list[] = { 613 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 614 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 615 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 616 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 617 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 618 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 619 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 620 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 621 { 0xFF, NULL } /* list end */ 622 }; 623 624 static int 625 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 626 { 627 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 628 struct mpr_user_func *f; 629 630 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 631 if (hdr->Function == f->Function) 632 return (f->f_pre(cm, cmd)); 633 } 634 return (EINVAL); 635 } 636 637 static int 638 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 639 { 640 MPI2_REQUEST_HEADER *hdr; 641 MPI2_DEFAULT_REPLY *rpl = NULL; 642 void *buf = NULL; 643 struct mpr_command *cm = NULL; 644 int err = 0; 645 int sz; 646 647 mpr_lock(sc); 648 cm = mpr_alloc_command(sc); 649 650 if (cm == NULL) { 651 mpr_printf(sc, "%s: no mpr requests\n", __func__); 652 err = ENOMEM; 653 goto RetFree; 654 } 655 mpr_unlock(sc); 656 657 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 658 659 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 660 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 661 662 if (cmd->req_len > (int)sc->reqframesz) { 663 err = EINVAL; 664 goto RetFreeUnlocked; 665 } 666 err = copyin(cmd->req, hdr, cmd->req_len); 667 if (err != 0) 668 goto RetFreeUnlocked; 669 670 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 671 hdr->Function, hdr->MsgFlags); 672 673 if (cmd->len > 0) { 674 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 675 cm->cm_data = buf; 676 cm->cm_length = cmd->len; 677 } else { 678 cm->cm_data = NULL; 679 cm->cm_length = 0; 680 } 681 682 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 683 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 684 685 err = mpr_user_setup_request(cm, cmd); 686 if (err == EINVAL) { 687 mpr_printf(sc, "%s: unsupported parameter or unsupported " 688 "function in request (function = 0x%X)\n", __func__, 689 hdr->Function); 690 } 691 if (err != 0) 692 goto RetFreeUnlocked; 693 694 mpr_lock(sc); 695 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 696 697 if (err || (cm == NULL)) { 698 mpr_printf(sc, "%s: invalid request: error %d\n", 699 __func__, err); 700 goto RetFree; 701 } 702 703 if (cm != NULL) 704 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 705 if (rpl != NULL) 706 sz = rpl->MsgLength * 4; 707 else 708 sz = 0; 709 710 if (sz > cmd->rpl_len) { 711 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 712 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 713 sz = cmd->rpl_len; 714 } 715 716 mpr_unlock(sc); 717 err = copyout(rpl, cmd->rpl, sz); 718 if (buf != NULL && err == 0) 719 err = copyout(buf, cmd->buf, cmd->len); 720 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 721 722 RetFreeUnlocked: 723 mpr_lock(sc); 724 RetFree: 725 if (cm != NULL) 726 mpr_free_command(sc, cm); 727 mpr_unlock(sc); 728 if (buf != NULL) 729 free(buf, M_MPRUSER); 730 return (err); 731 } 732 733 static int 734 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 735 { 736 MPI2_REQUEST_HEADER *hdr, *tmphdr; 737 MPI2_DEFAULT_REPLY *rpl; 738 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 739 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 740 struct mpr_command *cm = NULL; 741 void *req = NULL; 742 int i, err = 0, dir = 0, sz; 743 uint8_t tool, function = 0; 744 u_int sense_len; 745 struct mprsas_target *targ = NULL; 746 747 /* 748 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 749 * bit to denote that a passthru is being processed. 750 */ 751 mpr_lock(sc); 752 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 753 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 754 "allowed at a single time.", __func__); 755 mpr_unlock(sc); 756 return (EBUSY); 757 } 758 sc->mpr_flags |= MPR_FLAGS_BUSY; 759 mpr_unlock(sc); 760 761 /* 762 * Do some validation on data direction. Valid cases are: 763 * 1) DataSize is 0 and direction is NONE 764 * 2) DataSize is non-zero and one of: 765 * a) direction is READ or 766 * b) direction is WRITE or 767 * c) direction is BOTH and DataOutSize is non-zero 768 * If valid and the direction is BOTH, change the direction to READ. 769 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 770 */ 771 if (((data->DataSize == 0) && 772 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 773 ((data->DataSize != 0) && 774 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 775 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 776 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 777 (data->DataOutSize != 0))))) { 778 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 779 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 780 else 781 data->DataOutSize = 0; 782 } else { 783 err = EINVAL; 784 goto RetFreeUnlocked; 785 } 786 787 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 788 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 789 data->PtrRequest, data->RequestSize, data->PtrReply, 790 data->ReplySize, data->PtrData, data->DataSize, 791 data->PtrDataOut, data->DataOutSize, data->DataDirection); 792 793 if (data->RequestSize > sc->reqframesz) { 794 err = EINVAL; 795 goto RetFreeUnlocked; 796 } 797 798 req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO); 799 tmphdr = (MPI2_REQUEST_HEADER *)req; 800 801 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize); 802 if (err != 0) 803 goto RetFreeUnlocked; 804 805 function = tmphdr->Function; 806 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 807 function, tmphdr->MsgFlags); 808 809 /* 810 * Handle a passthru TM request. 811 */ 812 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 813 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 814 815 mpr_lock(sc); 816 cm = mprsas_alloc_tm(sc); 817 if (cm == NULL) { 818 err = EINVAL; 819 goto Ret; 820 } 821 822 /* Copy the header in. Only a small fixup is needed. */ 823 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 824 memcpy(task, req, data->RequestSize); 825 task->TaskMID = cm->cm_desc.Default.SMID; 826 827 cm->cm_data = NULL; 828 cm->cm_complete = NULL; 829 cm->cm_complete_data = NULL; 830 831 targ = mprsas_find_target_by_handle(sc->sassc, 0, 832 task->DevHandle); 833 if (targ == NULL) { 834 mpr_dprint(sc, MPR_INFO, 835 "%s %d : invalid handle for requested TM 0x%x \n", 836 __func__, __LINE__, task->DevHandle); 837 err = 1; 838 } else { 839 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 840 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 841 } 842 843 if (err != 0) { 844 err = EIO; 845 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 846 __func__); 847 } 848 /* 849 * Copy the reply data and sense data to user space. 850 */ 851 if (err == 0 && cm != NULL && cm->cm_reply != NULL) { 852 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 853 sz = rpl->MsgLength * 4; 854 855 if (bootverbose && sz > data->ReplySize) { 856 mpr_printf(sc, "%s: user reply buffer (%d) " 857 "smaller than returned buffer (%d)\n", 858 __func__, data->ReplySize, sz); 859 } 860 mpr_unlock(sc); 861 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 862 MIN(sz, data->ReplySize)); 863 mpr_lock(sc); 864 } 865 mprsas_free_tm(sc, cm); 866 goto Ret; 867 } 868 869 mpr_lock(sc); 870 cm = mpr_alloc_command(sc); 871 if (cm == NULL) { 872 mpr_printf(sc, "%s: no mpr requests\n", __func__); 873 err = ENOMEM; 874 goto Ret; 875 } 876 mpr_unlock(sc); 877 878 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 879 memcpy(hdr, req, data->RequestSize); 880 881 /* 882 * Do some checking to make sure the IOCTL request contains a valid 883 * request. Then set the SGL info. 884 */ 885 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 886 887 /* 888 * Set up for read, write or both. From check above, DataOutSize will 889 * be 0 if direction is READ or WRITE, but it will have some non-zero 890 * value if the direction is BOTH. So, just use the biggest size to get 891 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 892 * up; the first is for the request and the second will contain the 893 * response data. cm_out_len needs to be set here and this will be used 894 * when the SGLs are set up. 895 */ 896 cm->cm_data = NULL; 897 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 898 cm->cm_out_len = data->DataOutSize; 899 cm->cm_flags = 0; 900 if (cm->cm_length != 0) { 901 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 902 M_ZERO); 903 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 904 if (data->DataOutSize) { 905 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 906 err = copyin(PTRIN(data->PtrDataOut), 907 cm->cm_data, data->DataOutSize); 908 } else if (data->DataDirection == 909 MPR_PASS_THRU_DIRECTION_WRITE) { 910 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 911 err = copyin(PTRIN(data->PtrData), 912 cm->cm_data, data->DataSize); 913 } 914 if (err != 0) 915 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 916 "data from user space\n", __func__); 917 } 918 /* 919 * Set this flag only if processing a command that does not need an 920 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 921 * the flag only for that tool if processing a Toolbox function. 922 */ 923 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 924 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 925 if (function == ieee_sgl_func_list[i]) { 926 if (function == MPI2_FUNCTION_TOOLBOX) 927 { 928 tool = (uint8_t)hdr->FunctionDependent1; 929 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 930 break; 931 } 932 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 933 break; 934 } 935 } 936 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 937 938 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 939 nvme_encap_request = 940 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 941 cm->cm_desc.Default.RequestFlags = 942 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 943 944 /* 945 * Get the Physical Address of the sense buffer. 946 * Save the user's Error Response buffer address and use that 947 * field to hold the sense buffer address. 948 * Clear the internal sense buffer, which will potentially hold 949 * the Completion Queue Entry on return, or 0 if no Entry. 950 * Build the PRPs and set direction bits. 951 * Send the request. 952 */ 953 cm->nvme_error_response = 954 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 955 ErrorResponseBaseAddress.High << 32) | 956 (uint64_t)nvme_encap_request-> 957 ErrorResponseBaseAddress.Low); 958 nvme_encap_request->ErrorResponseBaseAddress.High = 959 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 960 nvme_encap_request->ErrorResponseBaseAddress.Low = 961 htole32(cm->cm_sense_busaddr); 962 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 963 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 964 data->DataSize, data->DataOutSize); 965 } 966 967 /* 968 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 969 * uses SCSI IO or Fast Path SCSI IO descriptor. 970 */ 971 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 972 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 973 MPI2_SCSI_IO_REQUEST *scsi_io_req; 974 975 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 976 /* 977 * Put SGE for data and data_out buffer at the end of 978 * scsi_io_request message header (64 bytes in total). 979 * Following above SGEs, the residual space will be used by 980 * sense data. 981 */ 982 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 983 64); 984 scsi_io_req->SenseBufferLowAddress = 985 htole32(cm->cm_sense_busaddr); 986 987 /* 988 * Set SGLOffset0 value. This is the number of dwords that SGL 989 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 990 */ 991 scsi_io_req->SGLOffset0 = 24; 992 993 /* 994 * Setup descriptor info. RAID passthrough must use the 995 * default request descriptor which is already set, so if this 996 * is a SCSI IO request, change the descriptor to SCSI IO or 997 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 998 * handle the reply in the mprsas_scsio_complete function. 999 */ 1000 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1001 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1002 scsi_io_req->DevHandle); 1003 1004 if (!targ) { 1005 printf("No Target found for handle %d\n", 1006 scsi_io_req->DevHandle); 1007 err = EINVAL; 1008 goto RetFreeUnlocked; 1009 } 1010 1011 if (targ->scsi_req_desc_type == 1012 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1013 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1014 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1015 if (!sc->atomic_desc_capable) { 1016 cm->cm_desc.FastPathSCSIIO.DevHandle = 1017 scsi_io_req->DevHandle; 1018 } 1019 scsi_io_req->IoFlags |= 1020 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1021 } else { 1022 cm->cm_desc.SCSIIO.RequestFlags = 1023 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1024 if (!sc->atomic_desc_capable) { 1025 cm->cm_desc.SCSIIO.DevHandle = 1026 scsi_io_req->DevHandle; 1027 } 1028 } 1029 1030 /* 1031 * Make sure the DevHandle is not 0 because this is a 1032 * likely error. 1033 */ 1034 if (scsi_io_req->DevHandle == 0) { 1035 err = EINVAL; 1036 goto RetFreeUnlocked; 1037 } 1038 } 1039 } 1040 1041 mpr_lock(sc); 1042 1043 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1044 1045 if (err || (cm == NULL)) { 1046 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1047 err); 1048 goto RetFree; 1049 } 1050 1051 /* 1052 * Sync the DMA data, if any. Then copy the data to user space. 1053 */ 1054 if (cm->cm_data != NULL) { 1055 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1056 dir = BUS_DMASYNC_POSTREAD; 1057 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1058 dir = BUS_DMASYNC_POSTWRITE; 1059 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1060 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1061 1062 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1063 mpr_unlock(sc); 1064 err = copyout(cm->cm_data, 1065 PTRIN(data->PtrData), data->DataSize); 1066 mpr_lock(sc); 1067 if (err != 0) 1068 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1069 "IOCTL data to user space\n", __func__); 1070 } 1071 } 1072 1073 /* 1074 * Copy the reply data and sense data to user space. 1075 */ 1076 if (err == 0 && cm->cm_reply != NULL) { 1077 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1078 sz = rpl->MsgLength * 4; 1079 1080 if (bootverbose && sz > data->ReplySize) { 1081 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1082 "than returned buffer (%d)\n", __func__, 1083 data->ReplySize, sz); 1084 } 1085 mpr_unlock(sc); 1086 err = copyout(cm->cm_reply, PTRIN(data->PtrReply), 1087 MIN(sz, data->ReplySize)); 1088 if (err != 0) 1089 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1090 "IOCTL data to user space\n", __func__); 1091 mpr_lock(sc); 1092 1093 if (err == 0 && 1094 (function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1095 function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1096 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1097 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1098 sense_len = 1099 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1100 SenseCount)), sizeof(struct 1101 scsi_sense_data)); 1102 mpr_unlock(sc); 1103 err = copyout(cm->cm_sense, 1104 PTRIN(data->PtrReply + 1105 sizeof(MPI2_SCSI_IO_REPLY)), sense_len); 1106 if (err != 0) 1107 mpr_dprint(sc, MPR_FAULT, 1108 "%s: failed to copy IOCTL data to " 1109 "user space\n", __func__); 1110 mpr_lock(sc); 1111 } 1112 } 1113 1114 /* 1115 * Copy out the NVMe Error Reponse to user. The Error Response 1116 * buffer is given by the user, but a sense buffer is used to 1117 * get that data from the IOC. The user's 1118 * ErrorResponseBaseAddress is saved in the 1119 * 'nvme_error_response' field before the command because that 1120 * field is set to a sense buffer. When the command is 1121 * complete, the Error Response data from the IOC is copied to 1122 * that user address after it is checked for validity. 1123 * Also note that 'sense' buffers are not defined for 1124 * NVMe commands. Sense terminalogy is only used here so that 1125 * the same IOCTL structure and sense buffers can be used for 1126 * NVMe. 1127 */ 1128 if (err == 0 && function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1129 if (cm->nvme_error_response == NULL) { 1130 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1131 "buffer is NULL. Response data will not be " 1132 "returned.\n"); 1133 mpr_unlock(sc); 1134 goto RetFreeUnlocked; 1135 } 1136 1137 nvme_error_reply = 1138 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1139 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1140 NVME_ERROR_RESPONSE_SIZE); 1141 mpr_unlock(sc); 1142 err = copyout(cm->cm_sense, 1143 (PTRIN(data->PtrReply + 1144 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1145 if (err != 0) 1146 mpr_dprint(sc, MPR_FAULT, 1147 "%s: failed to copy IOCTL data to " 1148 "user space\n", __func__); 1149 mpr_lock(sc); 1150 } 1151 } 1152 mpr_unlock(sc); 1153 1154 RetFreeUnlocked: 1155 mpr_lock(sc); 1156 1157 RetFree: 1158 if (cm != NULL) { 1159 if (cm->cm_data) 1160 free(cm->cm_data, M_MPRUSER); 1161 mpr_free_command(sc, cm); 1162 } 1163 Ret: 1164 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1165 mpr_unlock(sc); 1166 free(req, M_MPRUSER); 1167 1168 return (err); 1169 } 1170 1171 static void 1172 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1173 { 1174 Mpi2ConfigReply_t mpi_reply; 1175 Mpi2BiosPage3_t config_page; 1176 1177 /* 1178 * Use the PCI interface functions to get the Bus, Device, and Function 1179 * information. 1180 */ 1181 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1182 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1183 data->PciInformation.u.bits.FunctionNumber = 1184 pci_get_function(sc->mpr_dev); 1185 1186 /* 1187 * Get the FW version that should already be saved in IOC Facts. 1188 */ 1189 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1190 1191 /* 1192 * General device info. 1193 */ 1194 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1195 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1196 else 1197 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1198 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1199 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1200 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1201 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1202 1203 /* 1204 * Get the driver version. 1205 */ 1206 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1207 1208 /* 1209 * Need to get BIOS Config Page 3 for the BIOS Version. 1210 */ 1211 data->BiosVersion = 0; 1212 mpr_lock(sc); 1213 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1214 printf("%s: Error while retrieving BIOS Version\n", __func__); 1215 else 1216 data->BiosVersion = config_page.BiosVersion; 1217 mpr_unlock(sc); 1218 } 1219 1220 static void 1221 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1222 { 1223 int i; 1224 1225 /* 1226 * Use the PCI interface functions to get the Bus, Device, and Function 1227 * information. 1228 */ 1229 data->BusNumber = pci_get_bus(sc->mpr_dev); 1230 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1231 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1232 1233 /* 1234 * Now get the interrupt vector and the pci header. The vector can 1235 * only be 0 right now. The header is the first 256 bytes of config 1236 * space. 1237 */ 1238 data->InterruptVector = 0; 1239 for (i = 0; i < sizeof (data->PciHeader); i++) { 1240 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1241 } 1242 } 1243 1244 static uint8_t 1245 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1246 { 1247 uint8_t index; 1248 1249 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1250 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1251 return (index); 1252 } 1253 } 1254 1255 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1256 } 1257 1258 static int 1259 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1260 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1261 { 1262 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1263 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1264 struct mpr_command *cm = NULL; 1265 int i, status; 1266 1267 /* 1268 * If buffer is not enabled, just leave. 1269 */ 1270 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1271 if (!pBuffer->enabled) { 1272 return (MPR_DIAG_FAILURE); 1273 } 1274 1275 /* 1276 * Clear some flags initially. 1277 */ 1278 pBuffer->force_release = FALSE; 1279 pBuffer->valid_data = FALSE; 1280 pBuffer->owned_by_firmware = FALSE; 1281 1282 /* 1283 * Get a command. 1284 */ 1285 cm = mpr_alloc_command(sc); 1286 if (cm == NULL) { 1287 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1288 return (MPR_DIAG_FAILURE); 1289 } 1290 1291 /* 1292 * Build the request for releasing the FW Diag Buffer and send it. 1293 */ 1294 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1295 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1296 req->BufferType = pBuffer->buffer_type; 1297 req->ExtendedType = pBuffer->extended_type; 1298 req->BufferLength = pBuffer->size; 1299 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1300 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1301 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1302 cm->cm_data = NULL; 1303 cm->cm_length = 0; 1304 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1305 cm->cm_complete_data = NULL; 1306 1307 /* 1308 * Send command synchronously. 1309 */ 1310 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1311 if (status || (cm == NULL)) { 1312 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1313 status); 1314 status = MPR_DIAG_FAILURE; 1315 goto done; 1316 } 1317 1318 /* 1319 * Process POST reply. 1320 */ 1321 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1322 if (reply == NULL) { 1323 mpr_printf(sc, "%s: reply is NULL, probably due to " 1324 "reinitialization\n", __func__); 1325 status = MPR_DIAG_FAILURE; 1326 goto done; 1327 } 1328 1329 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1330 MPI2_IOCSTATUS_SUCCESS) { 1331 status = MPR_DIAG_FAILURE; 1332 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1333 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1334 "TransferLength = 0x%x\n", __func__, 1335 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1336 le32toh(reply->TransferLength)); 1337 goto done; 1338 } 1339 1340 /* 1341 * Post was successful. 1342 */ 1343 pBuffer->valid_data = TRUE; 1344 pBuffer->owned_by_firmware = TRUE; 1345 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1346 status = MPR_DIAG_SUCCESS; 1347 1348 done: 1349 if (cm != NULL) 1350 mpr_free_command(sc, cm); 1351 return (status); 1352 } 1353 1354 static int 1355 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1356 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1357 uint32_t diag_type) 1358 { 1359 MPI2_DIAG_RELEASE_REQUEST *req; 1360 MPI2_DIAG_RELEASE_REPLY *reply; 1361 struct mpr_command *cm = NULL; 1362 int status; 1363 1364 /* 1365 * If buffer is not enabled, just leave. 1366 */ 1367 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1368 if (!pBuffer->enabled) { 1369 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1370 "supported by the IOC", __func__); 1371 return (MPR_DIAG_FAILURE); 1372 } 1373 1374 /* 1375 * Clear some flags initially. 1376 */ 1377 pBuffer->force_release = FALSE; 1378 pBuffer->valid_data = FALSE; 1379 pBuffer->owned_by_firmware = FALSE; 1380 1381 /* 1382 * Get a command. 1383 */ 1384 cm = mpr_alloc_command(sc); 1385 if (cm == NULL) { 1386 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1387 return (MPR_DIAG_FAILURE); 1388 } 1389 1390 /* 1391 * Build the request for releasing the FW Diag Buffer and send it. 1392 */ 1393 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1394 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1395 req->BufferType = pBuffer->buffer_type; 1396 cm->cm_data = NULL; 1397 cm->cm_length = 0; 1398 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1399 cm->cm_complete_data = NULL; 1400 1401 /* 1402 * Send command synchronously. 1403 */ 1404 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1405 if (status || (cm == NULL)) { 1406 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1407 status); 1408 status = MPR_DIAG_FAILURE; 1409 goto done; 1410 } 1411 1412 /* 1413 * Process RELEASE reply. 1414 */ 1415 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1416 if (reply == NULL) { 1417 mpr_printf(sc, "%s: reply is NULL, probably due to " 1418 "reinitialization\n", __func__); 1419 status = MPR_DIAG_FAILURE; 1420 goto done; 1421 } 1422 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1423 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1424 status = MPR_DIAG_FAILURE; 1425 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1426 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1427 __func__, le16toh(reply->IOCStatus), 1428 le32toh(reply->IOCLogInfo)); 1429 goto done; 1430 } 1431 1432 /* 1433 * Release was successful. 1434 */ 1435 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1436 status = MPR_DIAG_SUCCESS; 1437 1438 /* 1439 * If this was for an UNREGISTER diag type command, clear the unique ID. 1440 */ 1441 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1442 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1443 } 1444 1445 done: 1446 if (cm != NULL) 1447 mpr_free_command(sc, cm); 1448 1449 return (status); 1450 } 1451 1452 static int 1453 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1454 uint32_t *return_code) 1455 { 1456 bus_dma_template_t t; 1457 mpr_fw_diagnostic_buffer_t *pBuffer; 1458 struct mpr_busdma_context *ctx; 1459 uint8_t extended_type, buffer_type, i; 1460 uint32_t buffer_size; 1461 uint32_t unique_id; 1462 int status; 1463 int error; 1464 1465 extended_type = diag_register->ExtendedType; 1466 buffer_type = diag_register->BufferType; 1467 buffer_size = diag_register->RequestedBufferSize; 1468 unique_id = diag_register->UniqueId; 1469 ctx = NULL; 1470 error = 0; 1471 1472 /* 1473 * Check for valid buffer type 1474 */ 1475 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1476 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1477 return (MPR_DIAG_FAILURE); 1478 } 1479 1480 /* 1481 * Get the current buffer and look up the unique ID. The unique ID 1482 * should not be found. If it is, the ID is already in use. 1483 */ 1484 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1485 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1486 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1487 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1488 return (MPR_DIAG_FAILURE); 1489 } 1490 1491 /* 1492 * The buffer's unique ID should not be registered yet, and the given 1493 * unique ID cannot be 0. 1494 */ 1495 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1496 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1497 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1498 return (MPR_DIAG_FAILURE); 1499 } 1500 1501 /* 1502 * If this buffer is already posted as immediate, just change owner. 1503 */ 1504 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1505 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1506 pBuffer->immediate = FALSE; 1507 pBuffer->unique_id = unique_id; 1508 return (MPR_DIAG_SUCCESS); 1509 } 1510 1511 /* 1512 * Post a new buffer after checking if it's enabled. The DMA buffer 1513 * that is allocated will be contiguous (nsegments = 1). 1514 */ 1515 if (!pBuffer->enabled) { 1516 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1517 return (MPR_DIAG_FAILURE); 1518 } 1519 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1520 BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT), 1521 BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size), 1522 BD_NSEGMENTS(1)); 1523 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1524 mpr_dprint(sc, MPR_ERROR, 1525 "Cannot allocate FW diag buffer DMA tag\n"); 1526 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1527 status = MPR_DIAG_FAILURE; 1528 goto bailout; 1529 } 1530 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1531 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1532 mpr_dprint(sc, MPR_ERROR, 1533 "Cannot allocate FW diag buffer memory\n"); 1534 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1535 status = MPR_DIAG_FAILURE; 1536 goto bailout; 1537 } 1538 bzero(sc->fw_diag_buffer, buffer_size); 1539 1540 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1541 ctx->addr = &sc->fw_diag_busaddr; 1542 ctx->buffer_dmat = sc->fw_diag_dmat; 1543 ctx->buffer_dmamap = sc->fw_diag_map; 1544 ctx->softc = sc; 1545 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1546 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1547 ctx, 0); 1548 if (error == EINPROGRESS) { 1549 /* XXX KDM */ 1550 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1551 __func__); 1552 /* 1553 * Wait for the load to complete. If we're interrupted, 1554 * bail out. 1555 */ 1556 mpr_lock(sc); 1557 if (ctx->completed == 0) { 1558 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1559 if (error != 0) { 1560 /* 1561 * We got an error from msleep(9). This is 1562 * most likely due to a signal. Tell 1563 * mpr_memaddr_wait_cb() that we've abandoned 1564 * the context, so it needs to clean up when 1565 * it is called. 1566 */ 1567 ctx->abandoned = 1; 1568 1569 /* The callback will free this memory */ 1570 ctx = NULL; 1571 mpr_unlock(sc); 1572 1573 device_printf(sc->mpr_dev, "Cannot " 1574 "bus_dmamap_load FW diag buffer, error = " 1575 "%d returned from msleep\n", error); 1576 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1577 status = MPR_DIAG_FAILURE; 1578 goto bailout; 1579 } 1580 } 1581 mpr_unlock(sc); 1582 } 1583 1584 if ((error != 0) || (ctx->error != 0)) { 1585 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1586 "buffer, %serror = %d\n", error ? "" : "callback ", 1587 error ? error : ctx->error); 1588 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1589 status = MPR_DIAG_FAILURE; 1590 goto bailout; 1591 } 1592 1593 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1594 1595 pBuffer->size = buffer_size; 1596 1597 /* 1598 * Copy the given info to the diag buffer and post the buffer. 1599 */ 1600 pBuffer->buffer_type = buffer_type; 1601 pBuffer->immediate = FALSE; 1602 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1603 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1604 i++) { 1605 pBuffer->product_specific[i] = 1606 diag_register->ProductSpecific[i]; 1607 } 1608 } 1609 pBuffer->extended_type = extended_type; 1610 pBuffer->unique_id = unique_id; 1611 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1612 1613 bailout: 1614 1615 /* 1616 * In case there was a failure, free the DMA buffer. 1617 */ 1618 if (status == MPR_DIAG_FAILURE) { 1619 if (sc->fw_diag_busaddr != 0) { 1620 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1621 sc->fw_diag_busaddr = 0; 1622 } 1623 if (sc->fw_diag_buffer != NULL) { 1624 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1625 sc->fw_diag_map); 1626 sc->fw_diag_buffer = NULL; 1627 } 1628 if (sc->fw_diag_dmat != NULL) { 1629 bus_dma_tag_destroy(sc->fw_diag_dmat); 1630 sc->fw_diag_dmat = NULL; 1631 } 1632 } 1633 1634 if (ctx != NULL) 1635 free(ctx, M_MPR); 1636 1637 return (status); 1638 } 1639 1640 static int 1641 mpr_diag_unregister(struct mpr_softc *sc, 1642 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1643 { 1644 mpr_fw_diagnostic_buffer_t *pBuffer; 1645 uint8_t i; 1646 uint32_t unique_id; 1647 int status; 1648 1649 unique_id = diag_unregister->UniqueId; 1650 1651 /* 1652 * Get the current buffer and look up the unique ID. The unique ID 1653 * should be there. 1654 */ 1655 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1656 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1657 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1658 return (MPR_DIAG_FAILURE); 1659 } 1660 1661 pBuffer = &sc->fw_diag_buffer_list[i]; 1662 1663 /* 1664 * Try to release the buffer from FW before freeing it. If release 1665 * fails, don't free the DMA buffer in case FW tries to access it 1666 * later. If buffer is not owned by firmware, can't release it. 1667 */ 1668 if (!pBuffer->owned_by_firmware) { 1669 status = MPR_DIAG_SUCCESS; 1670 } else { 1671 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1672 MPR_FW_DIAG_TYPE_UNREGISTER); 1673 } 1674 1675 /* 1676 * At this point, return the current status no matter what happens with 1677 * the DMA buffer. 1678 */ 1679 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1680 if (status == MPR_DIAG_SUCCESS) { 1681 if (sc->fw_diag_busaddr != 0) { 1682 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1683 sc->fw_diag_busaddr = 0; 1684 } 1685 if (sc->fw_diag_buffer != NULL) { 1686 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1687 sc->fw_diag_map); 1688 sc->fw_diag_buffer = NULL; 1689 } 1690 if (sc->fw_diag_dmat != NULL) { 1691 bus_dma_tag_destroy(sc->fw_diag_dmat); 1692 sc->fw_diag_dmat = NULL; 1693 } 1694 } 1695 1696 return (status); 1697 } 1698 1699 static int 1700 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1701 uint32_t *return_code) 1702 { 1703 mpr_fw_diagnostic_buffer_t *pBuffer; 1704 uint8_t i; 1705 uint32_t unique_id; 1706 1707 unique_id = diag_query->UniqueId; 1708 1709 /* 1710 * If ID is valid, query on ID. 1711 * If ID is invalid, query on buffer type. 1712 */ 1713 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1714 i = diag_query->BufferType; 1715 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1716 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1717 return (MPR_DIAG_FAILURE); 1718 } 1719 } else { 1720 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1721 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1722 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1723 return (MPR_DIAG_FAILURE); 1724 } 1725 } 1726 1727 /* 1728 * Fill query structure with the diag buffer info. 1729 */ 1730 pBuffer = &sc->fw_diag_buffer_list[i]; 1731 diag_query->BufferType = pBuffer->buffer_type; 1732 diag_query->ExtendedType = pBuffer->extended_type; 1733 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1734 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1735 i++) { 1736 diag_query->ProductSpecific[i] = 1737 pBuffer->product_specific[i]; 1738 } 1739 } 1740 diag_query->TotalBufferSize = pBuffer->size; 1741 diag_query->DriverAddedBufferSize = 0; 1742 diag_query->UniqueId = pBuffer->unique_id; 1743 diag_query->ApplicationFlags = 0; 1744 diag_query->DiagnosticFlags = 0; 1745 1746 /* 1747 * Set/Clear application flags 1748 */ 1749 if (pBuffer->immediate) { 1750 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1751 } else { 1752 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1753 } 1754 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1755 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1756 } else { 1757 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1758 } 1759 if (pBuffer->owned_by_firmware) { 1760 diag_query->ApplicationFlags |= 1761 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1762 } else { 1763 diag_query->ApplicationFlags &= 1764 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1765 } 1766 1767 return (MPR_DIAG_SUCCESS); 1768 } 1769 1770 static int 1771 mpr_diag_read_buffer(struct mpr_softc *sc, 1772 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1773 uint32_t *return_code) 1774 { 1775 mpr_fw_diagnostic_buffer_t *pBuffer; 1776 uint8_t i, *pData; 1777 uint32_t unique_id; 1778 int status; 1779 1780 unique_id = diag_read_buffer->UniqueId; 1781 1782 /* 1783 * Get the current buffer and look up the unique ID. The unique ID 1784 * should be there. 1785 */ 1786 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1787 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1788 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1789 return (MPR_DIAG_FAILURE); 1790 } 1791 1792 pBuffer = &sc->fw_diag_buffer_list[i]; 1793 1794 /* 1795 * Make sure requested read is within limits 1796 */ 1797 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1798 pBuffer->size) { 1799 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1800 return (MPR_DIAG_FAILURE); 1801 } 1802 1803 /* Sync the DMA map before we copy to userland. */ 1804 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1805 BUS_DMASYNC_POSTREAD); 1806 1807 /* 1808 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1809 * buffer that was allocated is one contiguous buffer. 1810 */ 1811 pData = (uint8_t *)(sc->fw_diag_buffer + 1812 diag_read_buffer->StartingOffset); 1813 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1814 return (MPR_DIAG_FAILURE); 1815 diag_read_buffer->Status = 0; 1816 1817 /* 1818 * Set or clear the Force Release flag. 1819 */ 1820 if (pBuffer->force_release) { 1821 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1822 } else { 1823 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1824 } 1825 1826 /* 1827 * If buffer is to be reregistered, make sure it's not already owned by 1828 * firmware first. 1829 */ 1830 status = MPR_DIAG_SUCCESS; 1831 if (!pBuffer->owned_by_firmware) { 1832 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1833 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1834 return_code); 1835 } 1836 } 1837 1838 return (status); 1839 } 1840 1841 static int 1842 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1843 uint32_t *return_code) 1844 { 1845 mpr_fw_diagnostic_buffer_t *pBuffer; 1846 uint8_t i; 1847 uint32_t unique_id; 1848 int status; 1849 1850 unique_id = diag_release->UniqueId; 1851 1852 /* 1853 * Get the current buffer and look up the unique ID. The unique ID 1854 * should be there. 1855 */ 1856 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1857 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1858 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1859 return (MPR_DIAG_FAILURE); 1860 } 1861 1862 pBuffer = &sc->fw_diag_buffer_list[i]; 1863 1864 /* 1865 * If buffer is not owned by firmware, it's already been released. 1866 */ 1867 if (!pBuffer->owned_by_firmware) { 1868 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1869 return (MPR_DIAG_FAILURE); 1870 } 1871 1872 /* 1873 * Release the buffer. 1874 */ 1875 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1876 MPR_FW_DIAG_TYPE_RELEASE); 1877 return (status); 1878 } 1879 1880 static int 1881 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1882 uint32_t length, uint32_t *return_code) 1883 { 1884 mpr_fw_diag_register_t diag_register; 1885 mpr_fw_diag_unregister_t diag_unregister; 1886 mpr_fw_diag_query_t diag_query; 1887 mpr_diag_read_buffer_t diag_read_buffer; 1888 mpr_fw_diag_release_t diag_release; 1889 int status = MPR_DIAG_SUCCESS; 1890 uint32_t original_return_code; 1891 1892 original_return_code = *return_code; 1893 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1894 1895 switch (action) { 1896 case MPR_FW_DIAG_TYPE_REGISTER: 1897 if (!length) { 1898 *return_code = 1899 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1900 status = MPR_DIAG_FAILURE; 1901 break; 1902 } 1903 if (copyin(diag_action, &diag_register, 1904 sizeof(diag_register)) != 0) 1905 return (MPR_DIAG_FAILURE); 1906 status = mpr_diag_register(sc, &diag_register, 1907 return_code); 1908 break; 1909 1910 case MPR_FW_DIAG_TYPE_UNREGISTER: 1911 if (length < sizeof(diag_unregister)) { 1912 *return_code = 1913 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1914 status = MPR_DIAG_FAILURE; 1915 break; 1916 } 1917 if (copyin(diag_action, &diag_unregister, 1918 sizeof(diag_unregister)) != 0) 1919 return (MPR_DIAG_FAILURE); 1920 status = mpr_diag_unregister(sc, &diag_unregister, 1921 return_code); 1922 break; 1923 1924 case MPR_FW_DIAG_TYPE_QUERY: 1925 if (length < sizeof (diag_query)) { 1926 *return_code = 1927 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1928 status = MPR_DIAG_FAILURE; 1929 break; 1930 } 1931 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1932 != 0) 1933 return (MPR_DIAG_FAILURE); 1934 status = mpr_diag_query(sc, &diag_query, return_code); 1935 if (status == MPR_DIAG_SUCCESS) 1936 if (copyout(&diag_query, diag_action, 1937 sizeof (diag_query)) != 0) 1938 return (MPR_DIAG_FAILURE); 1939 break; 1940 1941 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1942 if (copyin(diag_action, &diag_read_buffer, 1943 sizeof(diag_read_buffer)) != 0) 1944 return (MPR_DIAG_FAILURE); 1945 if (length < diag_read_buffer.BytesToRead) { 1946 *return_code = 1947 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1948 status = MPR_DIAG_FAILURE; 1949 break; 1950 } 1951 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1952 PTRIN(diag_read_buffer.PtrDataBuffer), 1953 return_code); 1954 if (status == MPR_DIAG_SUCCESS) { 1955 if (copyout(&diag_read_buffer, diag_action, 1956 sizeof(diag_read_buffer) - 1957 sizeof(diag_read_buffer.PtrDataBuffer)) != 1958 0) 1959 return (MPR_DIAG_FAILURE); 1960 } 1961 break; 1962 1963 case MPR_FW_DIAG_TYPE_RELEASE: 1964 if (length < sizeof(diag_release)) { 1965 *return_code = 1966 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1967 status = MPR_DIAG_FAILURE; 1968 break; 1969 } 1970 if (copyin(diag_action, &diag_release, 1971 sizeof(diag_release)) != 0) 1972 return (MPR_DIAG_FAILURE); 1973 status = mpr_diag_release(sc, &diag_release, 1974 return_code); 1975 break; 1976 1977 default: 1978 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1979 status = MPR_DIAG_FAILURE; 1980 break; 1981 } 1982 1983 if ((status == MPR_DIAG_FAILURE) && 1984 (original_return_code == MPR_FW_DIAG_NEW) && 1985 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1986 status = MPR_DIAG_SUCCESS; 1987 1988 return (status); 1989 } 1990 1991 static int 1992 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1993 { 1994 int status; 1995 1996 /* 1997 * Only allow one diag action at one time. 1998 */ 1999 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 2000 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 2001 "allowed at a single time.", __func__); 2002 return (EBUSY); 2003 } 2004 sc->mpr_flags |= MPR_FLAGS_BUSY; 2005 2006 /* 2007 * Send diag action request 2008 */ 2009 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2010 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2011 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2012 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2013 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2014 status = mpr_do_diag_action(sc, data->Action, 2015 PTRIN(data->PtrDiagAction), data->Length, 2016 &data->ReturnCode); 2017 } else 2018 status = EINVAL; 2019 2020 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2021 return (status); 2022 } 2023 2024 /* 2025 * Copy the event recording mask and the event queue size out. For 2026 * clarification, the event recording mask (events_to_record) is not the same 2027 * thing as the event mask (event_mask). events_to_record has a bit set for 2028 * every event type that is to be recorded by the driver, and event_mask has a 2029 * bit cleared for every event that is allowed into the driver from the IOC. 2030 * They really have nothing to do with each other. 2031 */ 2032 static void 2033 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2034 { 2035 uint8_t i; 2036 2037 mpr_lock(sc); 2038 data->Entries = MPR_EVENT_QUEUE_SIZE; 2039 2040 for (i = 0; i < 4; i++) { 2041 data->Types[i] = sc->events_to_record[i]; 2042 } 2043 mpr_unlock(sc); 2044 } 2045 2046 /* 2047 * Set the driver's event mask according to what's been given. See 2048 * mpr_user_event_query for explanation of the event recording mask and the IOC 2049 * event mask. It's the app's responsibility to enable event logging by setting 2050 * the bits in events_to_record. Initially, no events will be logged. 2051 */ 2052 static void 2053 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2054 { 2055 uint8_t i; 2056 2057 mpr_lock(sc); 2058 for (i = 0; i < 4; i++) { 2059 sc->events_to_record[i] = data->Types[i]; 2060 } 2061 mpr_unlock(sc); 2062 } 2063 2064 /* 2065 * Copy out the events that have been recorded, up to the max events allowed. 2066 */ 2067 static int 2068 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2069 { 2070 int status = 0; 2071 uint32_t size; 2072 2073 mpr_lock(sc); 2074 size = data->Size; 2075 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2076 mpr_unlock(sc); 2077 if (copyout((void *)sc->recorded_events, 2078 PTRIN(data->PtrEvents), sizeof(sc->recorded_events)) != 0) 2079 status = EFAULT; 2080 mpr_lock(sc); 2081 } else { 2082 /* 2083 * data->Size value is not large enough to copy event data. 2084 */ 2085 status = EFAULT; 2086 } 2087 2088 /* 2089 * Change size value to match the number of bytes that were copied. 2090 */ 2091 if (status == 0) 2092 data->Size = sizeof(sc->recorded_events); 2093 mpr_unlock(sc); 2094 2095 return (status); 2096 } 2097 2098 /* 2099 * Record events into the driver from the IOC if they are not masked. 2100 */ 2101 void 2102 mprsas_record_event(struct mpr_softc *sc, 2103 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2104 { 2105 uint32_t event; 2106 int i, j; 2107 uint16_t event_data_len; 2108 boolean_t sendAEN = FALSE; 2109 2110 event = event_reply->Event; 2111 2112 /* 2113 * Generate a system event to let anyone who cares know that a 2114 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2115 * event mask is set to. 2116 */ 2117 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2118 sendAEN = TRUE; 2119 } 2120 2121 /* 2122 * Record the event only if its corresponding bit is set in 2123 * events_to_record. event_index is the index into recorded_events and 2124 * event_number is the overall number of an event being recorded since 2125 * start-of-day. event_index will roll over; event_number will never 2126 * roll over. 2127 */ 2128 i = (uint8_t)(event / 32); 2129 j = (uint8_t)(event % 32); 2130 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2131 i = sc->event_index; 2132 sc->recorded_events[i].Type = event; 2133 sc->recorded_events[i].Number = ++sc->event_number; 2134 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2135 4); 2136 event_data_len = event_reply->EventDataLength; 2137 2138 if (event_data_len > 0) { 2139 /* 2140 * Limit data to size in m_event entry 2141 */ 2142 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2143 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2144 } 2145 for (j = 0; j < event_data_len; j++) { 2146 sc->recorded_events[i].Data[j] = 2147 event_reply->EventData[j]; 2148 } 2149 2150 /* 2151 * check for index wrap-around 2152 */ 2153 if (++i == MPR_EVENT_QUEUE_SIZE) { 2154 i = 0; 2155 } 2156 sc->event_index = (uint8_t)i; 2157 2158 /* 2159 * Set flag to send the event. 2160 */ 2161 sendAEN = TRUE; 2162 } 2163 } 2164 2165 /* 2166 * Generate a system event if flag is set to let anyone who cares know 2167 * that an event has occurred. 2168 */ 2169 if (sendAEN) { 2170 //SLM-how to send a system event (see kqueue, kevent) 2171 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2172 // "SAS", NULL, NULL, DDI_NOSLEEP); 2173 } 2174 } 2175 2176 static int 2177 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2178 { 2179 int status = 0; 2180 2181 switch (data->Command) { 2182 /* 2183 * IO access is not supported. 2184 */ 2185 case REG_IO_READ: 2186 case REG_IO_WRITE: 2187 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2188 "Use memory access."); 2189 status = EINVAL; 2190 break; 2191 2192 case REG_MEM_READ: 2193 data->RegData = mpr_regread(sc, data->RegOffset); 2194 break; 2195 2196 case REG_MEM_WRITE: 2197 mpr_regwrite(sc, data->RegOffset, data->RegData); 2198 break; 2199 2200 default: 2201 status = EINVAL; 2202 break; 2203 } 2204 2205 return (status); 2206 } 2207 2208 static int 2209 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2210 { 2211 uint8_t bt2dh = FALSE; 2212 uint8_t dh2bt = FALSE; 2213 uint16_t dev_handle, bus, target; 2214 2215 bus = data->Bus; 2216 target = data->TargetID; 2217 dev_handle = data->DevHandle; 2218 2219 /* 2220 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2221 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2222 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2223 * invalid. 2224 */ 2225 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2226 dh2bt = TRUE; 2227 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2228 bt2dh = TRUE; 2229 if (!dh2bt && !bt2dh) 2230 return (EINVAL); 2231 2232 /* 2233 * Only handle bus of 0. Make sure target is within range. 2234 */ 2235 if (bt2dh) { 2236 if (bus != 0) 2237 return (EINVAL); 2238 2239 if (target >= sc->max_devices) { 2240 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2241 "for Bus/Target to DevHandle mapping."); 2242 return (EINVAL); 2243 } 2244 dev_handle = sc->mapping_table[target].dev_handle; 2245 if (dev_handle) 2246 data->DevHandle = dev_handle; 2247 } else { 2248 bus = 0; 2249 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2250 data->Bus = bus; 2251 data->TargetID = target; 2252 } 2253 2254 return (0); 2255 } 2256 2257 static int 2258 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2259 struct thread *td) 2260 { 2261 struct mpr_softc *sc; 2262 struct mpr_cfg_page_req *page_req; 2263 struct mpr_ext_cfg_page_req *ext_page_req; 2264 void *mpr_page; 2265 int error, msleep_ret; 2266 2267 mpr_page = NULL; 2268 sc = dev->si_drv1; 2269 page_req = (void *)arg; 2270 ext_page_req = (void *)arg; 2271 2272 switch (cmd) { 2273 case MPRIO_READ_CFG_HEADER: 2274 mpr_lock(sc); 2275 error = mpr_user_read_cfg_header(sc, page_req); 2276 mpr_unlock(sc); 2277 break; 2278 case MPRIO_READ_CFG_PAGE: 2279 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2280 error = EINVAL; 2281 break; 2282 } 2283 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2284 error = copyin(page_req->buf, mpr_page, 2285 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2286 if (error) 2287 break; 2288 mpr_lock(sc); 2289 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2290 mpr_unlock(sc); 2291 if (error) 2292 break; 2293 error = copyout(mpr_page, page_req->buf, page_req->len); 2294 break; 2295 case MPRIO_READ_EXT_CFG_HEADER: 2296 mpr_lock(sc); 2297 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2298 mpr_unlock(sc); 2299 break; 2300 case MPRIO_READ_EXT_CFG_PAGE: 2301 if (ext_page_req->len < 2302 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) { 2303 error = EINVAL; 2304 break; 2305 } 2306 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2307 M_WAITOK | M_ZERO); 2308 error = copyin(ext_page_req->buf, mpr_page, 2309 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2310 if (error) 2311 break; 2312 mpr_lock(sc); 2313 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2314 mpr_unlock(sc); 2315 if (error) 2316 break; 2317 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2318 break; 2319 case MPRIO_WRITE_CFG_PAGE: 2320 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) { 2321 error = EINVAL; 2322 break; 2323 } 2324 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2325 error = copyin(page_req->buf, mpr_page, page_req->len); 2326 if (error) 2327 break; 2328 mpr_lock(sc); 2329 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2330 mpr_unlock(sc); 2331 break; 2332 case MPRIO_MPR_COMMAND: 2333 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2334 break; 2335 case MPTIOCTL_PASS_THRU: 2336 /* 2337 * The user has requested to pass through a command to be 2338 * executed by the MPT firmware. Call our routine which does 2339 * this. Only allow one passthru IOCTL at one time. 2340 */ 2341 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2342 break; 2343 case MPTIOCTL_GET_ADAPTER_DATA: 2344 /* 2345 * The user has requested to read adapter data. Call our 2346 * routine which does this. 2347 */ 2348 error = 0; 2349 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2350 break; 2351 case MPTIOCTL_GET_PCI_INFO: 2352 /* 2353 * The user has requested to read pci info. Call 2354 * our routine which does this. 2355 */ 2356 mpr_lock(sc); 2357 error = 0; 2358 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2359 mpr_unlock(sc); 2360 break; 2361 case MPTIOCTL_RESET_ADAPTER: 2362 mpr_lock(sc); 2363 sc->port_enable_complete = 0; 2364 uint32_t reinit_start = time_uptime; 2365 error = mpr_reinit(sc); 2366 /* Sleep for 300 second. */ 2367 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2368 PRIBIO, "mpr_porten", 300 * hz); 2369 mpr_unlock(sc); 2370 if (msleep_ret) 2371 printf("Port Enable did not complete after Diag " 2372 "Reset msleep error %d.\n", msleep_ret); 2373 else 2374 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2375 "completed in %d seconds.\n", 2376 (uint32_t)(time_uptime - reinit_start)); 2377 break; 2378 case MPTIOCTL_DIAG_ACTION: 2379 /* 2380 * The user has done a diag buffer action. Call our routine 2381 * which does this. Only allow one diag action at one time. 2382 */ 2383 mpr_lock(sc); 2384 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2385 mpr_unlock(sc); 2386 break; 2387 case MPTIOCTL_EVENT_QUERY: 2388 /* 2389 * The user has done an event query. Call our routine which does 2390 * this. 2391 */ 2392 error = 0; 2393 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2394 break; 2395 case MPTIOCTL_EVENT_ENABLE: 2396 /* 2397 * The user has done an event enable. Call our routine which 2398 * does this. 2399 */ 2400 error = 0; 2401 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2402 break; 2403 case MPTIOCTL_EVENT_REPORT: 2404 /* 2405 * The user has done an event report. Call our routine which 2406 * does this. 2407 */ 2408 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2409 break; 2410 case MPTIOCTL_REG_ACCESS: 2411 /* 2412 * The user has requested register access. Call our routine 2413 * which does this. 2414 */ 2415 mpr_lock(sc); 2416 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2417 mpr_unlock(sc); 2418 break; 2419 case MPTIOCTL_BTDH_MAPPING: 2420 /* 2421 * The user has requested to translate a bus/target to a 2422 * DevHandle or a DevHandle to a bus/target. Call our routine 2423 * which does this. 2424 */ 2425 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2426 break; 2427 default: 2428 error = ENOIOCTL; 2429 break; 2430 } 2431 2432 if (mpr_page != NULL) 2433 free(mpr_page, M_MPRUSER); 2434 2435 return (error); 2436 } 2437 2438 #ifdef COMPAT_FREEBSD32 2439 2440 struct mpr_cfg_page_req32 { 2441 MPI2_CONFIG_PAGE_HEADER header; 2442 uint32_t page_address; 2443 uint32_t buf; 2444 int len; 2445 uint16_t ioc_status; 2446 }; 2447 2448 struct mpr_ext_cfg_page_req32 { 2449 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2450 uint32_t page_address; 2451 uint32_t buf; 2452 int len; 2453 uint16_t ioc_status; 2454 }; 2455 2456 struct mpr_raid_action32 { 2457 uint8_t action; 2458 uint8_t volume_bus; 2459 uint8_t volume_id; 2460 uint8_t phys_disk_num; 2461 uint32_t action_data_word; 2462 uint32_t buf; 2463 int len; 2464 uint32_t volume_status; 2465 uint32_t action_data[4]; 2466 uint16_t action_status; 2467 uint16_t ioc_status; 2468 uint8_t write; 2469 }; 2470 2471 struct mpr_usr_command32 { 2472 uint32_t req; 2473 uint32_t req_len; 2474 uint32_t rpl; 2475 uint32_t rpl_len; 2476 uint32_t buf; 2477 int len; 2478 uint32_t flags; 2479 }; 2480 2481 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2482 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2483 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2484 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2485 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2486 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2487 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2488 2489 static int 2490 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2491 struct thread *td) 2492 { 2493 struct mpr_cfg_page_req32 *page32 = _arg; 2494 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2495 struct mpr_raid_action32 *raid32 = _arg; 2496 struct mpr_usr_command32 *user32 = _arg; 2497 union { 2498 struct mpr_cfg_page_req page; 2499 struct mpr_ext_cfg_page_req ext; 2500 struct mpr_raid_action raid; 2501 struct mpr_usr_command user; 2502 } arg; 2503 u_long cmd; 2504 int error; 2505 2506 switch (cmd32) { 2507 case MPRIO_READ_CFG_HEADER32: 2508 case MPRIO_READ_CFG_PAGE32: 2509 case MPRIO_WRITE_CFG_PAGE32: 2510 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2511 cmd = MPRIO_READ_CFG_HEADER; 2512 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2513 cmd = MPRIO_READ_CFG_PAGE; 2514 else 2515 cmd = MPRIO_WRITE_CFG_PAGE; 2516 CP(*page32, arg.page, header); 2517 CP(*page32, arg.page, page_address); 2518 PTRIN_CP(*page32, arg.page, buf); 2519 CP(*page32, arg.page, len); 2520 CP(*page32, arg.page, ioc_status); 2521 break; 2522 2523 case MPRIO_READ_EXT_CFG_HEADER32: 2524 case MPRIO_READ_EXT_CFG_PAGE32: 2525 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2526 cmd = MPRIO_READ_EXT_CFG_HEADER; 2527 else 2528 cmd = MPRIO_READ_EXT_CFG_PAGE; 2529 CP(*ext32, arg.ext, header); 2530 CP(*ext32, arg.ext, page_address); 2531 PTRIN_CP(*ext32, arg.ext, buf); 2532 CP(*ext32, arg.ext, len); 2533 CP(*ext32, arg.ext, ioc_status); 2534 break; 2535 2536 case MPRIO_RAID_ACTION32: 2537 cmd = MPRIO_RAID_ACTION; 2538 CP(*raid32, arg.raid, action); 2539 CP(*raid32, arg.raid, volume_bus); 2540 CP(*raid32, arg.raid, volume_id); 2541 CP(*raid32, arg.raid, phys_disk_num); 2542 CP(*raid32, arg.raid, action_data_word); 2543 PTRIN_CP(*raid32, arg.raid, buf); 2544 CP(*raid32, arg.raid, len); 2545 CP(*raid32, arg.raid, volume_status); 2546 bcopy(raid32->action_data, arg.raid.action_data, 2547 sizeof arg.raid.action_data); 2548 CP(*raid32, arg.raid, ioc_status); 2549 CP(*raid32, arg.raid, write); 2550 break; 2551 2552 case MPRIO_MPR_COMMAND32: 2553 cmd = MPRIO_MPR_COMMAND; 2554 PTRIN_CP(*user32, arg.user, req); 2555 CP(*user32, arg.user, req_len); 2556 PTRIN_CP(*user32, arg.user, rpl); 2557 CP(*user32, arg.user, rpl_len); 2558 PTRIN_CP(*user32, arg.user, buf); 2559 CP(*user32, arg.user, len); 2560 CP(*user32, arg.user, flags); 2561 break; 2562 default: 2563 return (ENOIOCTL); 2564 } 2565 2566 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2567 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2568 switch (cmd32) { 2569 case MPRIO_READ_CFG_HEADER32: 2570 case MPRIO_READ_CFG_PAGE32: 2571 case MPRIO_WRITE_CFG_PAGE32: 2572 CP(arg.page, *page32, header); 2573 CP(arg.page, *page32, page_address); 2574 PTROUT_CP(arg.page, *page32, buf); 2575 CP(arg.page, *page32, len); 2576 CP(arg.page, *page32, ioc_status); 2577 break; 2578 2579 case MPRIO_READ_EXT_CFG_HEADER32: 2580 case MPRIO_READ_EXT_CFG_PAGE32: 2581 CP(arg.ext, *ext32, header); 2582 CP(arg.ext, *ext32, page_address); 2583 PTROUT_CP(arg.ext, *ext32, buf); 2584 CP(arg.ext, *ext32, len); 2585 CP(arg.ext, *ext32, ioc_status); 2586 break; 2587 2588 case MPRIO_RAID_ACTION32: 2589 CP(arg.raid, *raid32, action); 2590 CP(arg.raid, *raid32, volume_bus); 2591 CP(arg.raid, *raid32, volume_id); 2592 CP(arg.raid, *raid32, phys_disk_num); 2593 CP(arg.raid, *raid32, action_data_word); 2594 PTROUT_CP(arg.raid, *raid32, buf); 2595 CP(arg.raid, *raid32, len); 2596 CP(arg.raid, *raid32, volume_status); 2597 bcopy(arg.raid.action_data, raid32->action_data, 2598 sizeof arg.raid.action_data); 2599 CP(arg.raid, *raid32, ioc_status); 2600 CP(arg.raid, *raid32, write); 2601 break; 2602 2603 case MPRIO_MPR_COMMAND32: 2604 PTROUT_CP(arg.user, *user32, req); 2605 CP(arg.user, *user32, req_len); 2606 PTROUT_CP(arg.user, *user32, rpl); 2607 CP(arg.user, *user32, rpl_len); 2608 PTROUT_CP(arg.user, *user32, buf); 2609 CP(arg.user, *user32, len); 2610 CP(arg.user, *user32, flags); 2611 break; 2612 } 2613 } 2614 2615 return (error); 2616 } 2617 #endif /* COMPAT_FREEBSD32 */ 2618 2619 static int 2620 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2621 struct thread *td) 2622 { 2623 #ifdef COMPAT_FREEBSD32 2624 if (SV_CURPROC_FLAG(SV_ILP32)) 2625 return (mpr_ioctl32(dev, com, arg, flag, td)); 2626 #endif 2627 return (mpr_ioctl(dev, com, arg, flag, td)); 2628 } 2629