1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * Copyright 2000-2020 Broadcom Inc. 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD 60 * 61 * $FreeBSD$ 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 /* TODO Move headers to mprvar */ 68 #include <sys/types.h> 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/selinfo.h> 73 #include <sys/module.h> 74 #include <sys/bus.h> 75 #include <sys/conf.h> 76 #include <sys/bio.h> 77 #include <sys/malloc.h> 78 #include <sys/uio.h> 79 #include <sys/sysctl.h> 80 #include <sys/ioccom.h> 81 #include <sys/endian.h> 82 #include <sys/queue.h> 83 #include <sys/kthread.h> 84 #include <sys/taskqueue.h> 85 #include <sys/proc.h> 86 #include <sys/sysent.h> 87 88 #include <machine/bus.h> 89 #include <machine/resource.h> 90 #include <sys/rman.h> 91 92 #include <cam/cam.h> 93 #include <cam/cam_ccb.h> 94 95 #include <dev/mpr/mpi/mpi2_type.h> 96 #include <dev/mpr/mpi/mpi2.h> 97 #include <dev/mpr/mpi/mpi2_ioc.h> 98 #include <dev/mpr/mpi/mpi2_cnfg.h> 99 #include <dev/mpr/mpi/mpi2_init.h> 100 #include <dev/mpr/mpi/mpi2_tool.h> 101 #include <dev/mpr/mpi/mpi2_pci.h> 102 #include <dev/mpr/mpr_ioctl.h> 103 #include <dev/mpr/mprvar.h> 104 #include <dev/mpr/mpr_table.h> 105 #include <dev/mpr/mpr_sas.h> 106 #include <dev/pci/pcivar.h> 107 #include <dev/pci/pcireg.h> 108 109 static d_open_t mpr_open; 110 static d_close_t mpr_close; 111 static d_ioctl_t mpr_ioctl_devsw; 112 113 static struct cdevsw mpr_cdevsw = { 114 .d_version = D_VERSION, 115 .d_flags = 0, 116 .d_open = mpr_open, 117 .d_close = mpr_close, 118 .d_ioctl = mpr_ioctl_devsw, 119 .d_name = "mpr", 120 }; 121 122 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 123 static mpr_user_f mpi_pre_ioc_facts; 124 static mpr_user_f mpi_pre_port_facts; 125 static mpr_user_f mpi_pre_fw_download; 126 static mpr_user_f mpi_pre_fw_upload; 127 static mpr_user_f mpi_pre_sata_passthrough; 128 static mpr_user_f mpi_pre_smp_passthrough; 129 static mpr_user_f mpi_pre_config; 130 static mpr_user_f mpi_pre_sas_io_unit_control; 131 132 static int mpr_user_read_cfg_header(struct mpr_softc *, 133 struct mpr_cfg_page_req *); 134 static int mpr_user_read_cfg_page(struct mpr_softc *, 135 struct mpr_cfg_page_req *, void *); 136 static int mpr_user_read_extcfg_header(struct mpr_softc *, 137 struct mpr_ext_cfg_page_req *); 138 static int mpr_user_read_extcfg_page(struct mpr_softc *, 139 struct mpr_ext_cfg_page_req *, void *); 140 static int mpr_user_write_cfg_page(struct mpr_softc *, 141 struct mpr_cfg_page_req *, void *); 142 static int mpr_user_setup_request(struct mpr_command *, 143 struct mpr_usr_command *); 144 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 145 146 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 147 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 148 mpr_adapter_data_t *data); 149 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 150 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 151 uint32_t unique_id); 152 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 153 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 154 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 155 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 156 uint32_t diag_type); 157 static int mpr_diag_register(struct mpr_softc *sc, 158 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 159 static int mpr_diag_unregister(struct mpr_softc *sc, 160 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 161 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 162 uint32_t *return_code); 163 static int mpr_diag_read_buffer(struct mpr_softc *sc, 164 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 165 uint32_t *return_code); 166 static int mpr_diag_release(struct mpr_softc *sc, 167 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 168 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 169 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 170 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 171 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 172 static void mpr_user_event_enable(struct mpr_softc *sc, 173 mpr_event_enable_t *data); 174 static int mpr_user_event_report(struct mpr_softc *sc, 175 mpr_event_report_t *data); 176 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 177 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 178 179 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 180 181 /* Macros from compat/freebsd32/freebsd32.h */ 182 #define PTRIN(v) (void *)(uintptr_t)(v) 183 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 184 185 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 186 #define PTRIN_CP(src,dst,fld) \ 187 do { (dst).fld = PTRIN((src).fld); } while (0) 188 #define PTROUT_CP(src,dst,fld) \ 189 do { (dst).fld = PTROUT((src).fld); } while (0) 190 191 /* 192 * MPI functions that support IEEE SGLs for SAS3. 193 */ 194 static uint8_t ieee_sgl_func_list[] = { 195 MPI2_FUNCTION_SCSI_IO_REQUEST, 196 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 197 MPI2_FUNCTION_SMP_PASSTHROUGH, 198 MPI2_FUNCTION_SATA_PASSTHROUGH, 199 MPI2_FUNCTION_FW_UPLOAD, 200 MPI2_FUNCTION_FW_DOWNLOAD, 201 MPI2_FUNCTION_TARGET_ASSIST, 202 MPI2_FUNCTION_TARGET_STATUS_SEND, 203 MPI2_FUNCTION_TOOLBOX 204 }; 205 206 int 207 mpr_attach_user(struct mpr_softc *sc) 208 { 209 int unit; 210 211 unit = device_get_unit(sc->mpr_dev); 212 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640, 213 "mpr%d", unit); 214 215 if (sc->mpr_cdev == NULL) 216 return (ENOMEM); 217 218 sc->mpr_cdev->si_drv1 = sc; 219 return (0); 220 } 221 222 void 223 mpr_detach_user(struct mpr_softc *sc) 224 { 225 226 /* XXX: do a purge of pending requests? */ 227 if (sc->mpr_cdev != NULL) 228 destroy_dev(sc->mpr_cdev); 229 } 230 231 static int 232 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td) 233 { 234 235 return (0); 236 } 237 238 static int 239 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td) 240 { 241 242 return (0); 243 } 244 245 static int 246 mpr_user_read_cfg_header(struct mpr_softc *sc, 247 struct mpr_cfg_page_req *page_req) 248 { 249 MPI2_CONFIG_PAGE_HEADER *hdr; 250 struct mpr_config_params params; 251 int error; 252 253 hdr = ¶ms.hdr.Struct; 254 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 255 params.page_address = le32toh(page_req->page_address); 256 hdr->PageVersion = 0; 257 hdr->PageLength = 0; 258 hdr->PageNumber = page_req->header.PageNumber; 259 hdr->PageType = page_req->header.PageType; 260 params.buffer = NULL; 261 params.length = 0; 262 params.callback = NULL; 263 264 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 265 /* 266 * Leave the request. Without resetting the chip, it's 267 * still owned by it and we'll just get into trouble 268 * freeing it now. Mark it as abandoned so that if it 269 * shows up later it can be freed. 270 */ 271 mpr_printf(sc, "read_cfg_header timed out\n"); 272 return (ETIMEDOUT); 273 } 274 275 page_req->ioc_status = htole16(params.status); 276 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 277 MPI2_IOCSTATUS_SUCCESS) { 278 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 279 } 280 281 return (0); 282 } 283 284 static int 285 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 286 void *buf) 287 { 288 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 289 struct mpr_config_params params; 290 int error; 291 292 reqhdr = buf; 293 hdr = ¶ms.hdr.Struct; 294 hdr->PageVersion = reqhdr->PageVersion; 295 hdr->PageLength = reqhdr->PageLength; 296 hdr->PageNumber = reqhdr->PageNumber; 297 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 298 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 299 params.page_address = le32toh(page_req->page_address); 300 params.buffer = buf; 301 params.length = le32toh(page_req->len); 302 params.callback = NULL; 303 304 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 305 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 306 return (ETIMEDOUT); 307 } 308 309 page_req->ioc_status = htole16(params.status); 310 return (0); 311 } 312 313 static int 314 mpr_user_read_extcfg_header(struct mpr_softc *sc, 315 struct mpr_ext_cfg_page_req *ext_page_req) 316 { 317 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 318 struct mpr_config_params params; 319 int error; 320 321 hdr = ¶ms.hdr.Ext; 322 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 323 hdr->PageVersion = ext_page_req->header.PageVersion; 324 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 325 hdr->ExtPageLength = 0; 326 hdr->PageNumber = ext_page_req->header.PageNumber; 327 hdr->ExtPageType = ext_page_req->header.ExtPageType; 328 params.page_address = le32toh(ext_page_req->page_address); 329 params.buffer = NULL; 330 params.length = 0; 331 params.callback = NULL; 332 333 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 334 /* 335 * Leave the request. Without resetting the chip, it's 336 * still owned by it and we'll just get into trouble 337 * freeing it now. Mark it as abandoned so that if it 338 * shows up later it can be freed. 339 */ 340 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 341 return (ETIMEDOUT); 342 } 343 344 ext_page_req->ioc_status = htole16(params.status); 345 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 346 MPI2_IOCSTATUS_SUCCESS) { 347 ext_page_req->header.PageVersion = hdr->PageVersion; 348 ext_page_req->header.PageNumber = hdr->PageNumber; 349 ext_page_req->header.PageType = hdr->PageType; 350 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 351 ext_page_req->header.ExtPageType = hdr->ExtPageType; 352 } 353 354 return (0); 355 } 356 357 static int 358 mpr_user_read_extcfg_page(struct mpr_softc *sc, 359 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 360 { 361 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 362 struct mpr_config_params params; 363 int error; 364 365 reqhdr = buf; 366 hdr = ¶ms.hdr.Ext; 367 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 368 params.page_address = le32toh(ext_page_req->page_address); 369 hdr->PageVersion = reqhdr->PageVersion; 370 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 371 hdr->PageNumber = reqhdr->PageNumber; 372 hdr->ExtPageType = reqhdr->ExtPageType; 373 hdr->ExtPageLength = reqhdr->ExtPageLength; 374 params.buffer = buf; 375 params.length = le32toh(ext_page_req->len); 376 params.callback = NULL; 377 378 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 379 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 380 return (ETIMEDOUT); 381 } 382 383 ext_page_req->ioc_status = htole16(params.status); 384 return (0); 385 } 386 387 static int 388 mpr_user_write_cfg_page(struct mpr_softc *sc, 389 struct mpr_cfg_page_req *page_req, void *buf) 390 { 391 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 392 struct mpr_config_params params; 393 u_int hdr_attr; 394 int error; 395 396 reqhdr = buf; 397 hdr = ¶ms.hdr.Struct; 398 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 399 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 400 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 401 mpr_printf(sc, "page type 0x%x not changeable\n", 402 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 403 return (EINVAL); 404 } 405 406 /* 407 * There isn't any point in restoring stripped out attributes 408 * if you then mask them going down to issue the request. 409 */ 410 411 hdr->PageVersion = reqhdr->PageVersion; 412 hdr->PageLength = reqhdr->PageLength; 413 hdr->PageNumber = reqhdr->PageNumber; 414 hdr->PageType = reqhdr->PageType; 415 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 416 params.page_address = le32toh(page_req->page_address); 417 params.buffer = buf; 418 params.length = le32toh(page_req->len); 419 params.callback = NULL; 420 421 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 422 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 423 return (ETIMEDOUT); 424 } 425 426 page_req->ioc_status = htole16(params.status); 427 return (0); 428 } 429 430 void 431 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 432 { 433 int off, space; 434 435 space = (int)cm->cm_sc->reqframesz; 436 off = (uintptr_t)sge - (uintptr_t)req; 437 438 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 439 req, sge, off, space)); 440 441 cm->cm_sge = sge; 442 cm->cm_sglsize = space - off; 443 } 444 445 /* 446 * Prepare the mpr_command for an IOC_FACTS request. 447 */ 448 static int 449 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 450 { 451 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 452 MPI2_IOC_FACTS_REPLY *rpl; 453 454 if (cmd->req_len != sizeof *req) 455 return (EINVAL); 456 if (cmd->rpl_len != sizeof *rpl) 457 return (EINVAL); 458 459 cm->cm_sge = NULL; 460 cm->cm_sglsize = 0; 461 return (0); 462 } 463 464 /* 465 * Prepare the mpr_command for a PORT_FACTS request. 466 */ 467 static int 468 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 469 { 470 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 471 MPI2_PORT_FACTS_REPLY *rpl; 472 473 if (cmd->req_len != sizeof *req) 474 return (EINVAL); 475 if (cmd->rpl_len != sizeof *rpl) 476 return (EINVAL); 477 478 cm->cm_sge = NULL; 479 cm->cm_sglsize = 0; 480 return (0); 481 } 482 483 /* 484 * Prepare the mpr_command for a FW_DOWNLOAD request. 485 */ 486 static int 487 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 488 { 489 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 490 MPI2_FW_DOWNLOAD_REPLY *rpl; 491 int error; 492 493 if (cmd->req_len != sizeof *req) 494 return (EINVAL); 495 if (cmd->rpl_len != sizeof *rpl) 496 return (EINVAL); 497 498 if (cmd->len == 0) 499 return (EINVAL); 500 501 error = copyin(cmd->buf, cm->cm_data, cmd->len); 502 if (error != 0) 503 return (error); 504 505 mpr_init_sge(cm, req, &req->SGL); 506 507 /* 508 * For now, the F/W image must be provided in a single request. 509 */ 510 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 511 return (EINVAL); 512 if (req->TotalImageSize != cmd->len) 513 return (EINVAL); 514 515 req->ImageOffset = 0; 516 req->ImageSize = cmd->len; 517 518 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 519 520 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 521 } 522 523 /* 524 * Prepare the mpr_command for a FW_UPLOAD request. 525 */ 526 static int 527 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 528 { 529 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 530 MPI2_FW_UPLOAD_REPLY *rpl; 531 532 if (cmd->req_len != sizeof *req) 533 return (EINVAL); 534 if (cmd->rpl_len != sizeof *rpl) 535 return (EINVAL); 536 537 mpr_init_sge(cm, req, &req->SGL); 538 if (cmd->len == 0) { 539 /* Perhaps just asking what the size of the fw is? */ 540 return (0); 541 } 542 543 req->ImageOffset = 0; 544 req->ImageSize = cmd->len; 545 546 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 547 548 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 549 } 550 551 /* 552 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 553 */ 554 static int 555 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 556 { 557 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 558 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 559 560 if (cmd->req_len != sizeof *req) 561 return (EINVAL); 562 if (cmd->rpl_len != sizeof *rpl) 563 return (EINVAL); 564 565 mpr_init_sge(cm, req, &req->SGL); 566 return (0); 567 } 568 569 /* 570 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 571 */ 572 static int 573 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 574 { 575 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 576 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 577 578 if (cmd->req_len != sizeof *req) 579 return (EINVAL); 580 if (cmd->rpl_len != sizeof *rpl) 581 return (EINVAL); 582 583 mpr_init_sge(cm, req, &req->SGL); 584 return (0); 585 } 586 587 /* 588 * Prepare the mpr_command for a CONFIG request. 589 */ 590 static int 591 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 592 { 593 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 594 MPI2_CONFIG_REPLY *rpl; 595 596 if (cmd->req_len != sizeof *req) 597 return (EINVAL); 598 if (cmd->rpl_len != sizeof *rpl) 599 return (EINVAL); 600 601 mpr_init_sge(cm, req, &req->PageBufferSGE); 602 return (0); 603 } 604 605 /* 606 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 607 */ 608 static int 609 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 610 struct mpr_usr_command *cmd) 611 { 612 613 cm->cm_sge = NULL; 614 cm->cm_sglsize = 0; 615 return (0); 616 } 617 618 /* 619 * A set of functions to prepare an mpr_command for the various 620 * supported requests. 621 */ 622 struct mpr_user_func { 623 U8 Function; 624 mpr_user_f *f_pre; 625 } mpr_user_func_list[] = { 626 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 627 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 628 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 629 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 630 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 631 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 632 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 633 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 634 { 0xFF, NULL } /* list end */ 635 }; 636 637 static int 638 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 639 { 640 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 641 struct mpr_user_func *f; 642 643 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 644 if (hdr->Function == f->Function) 645 return (f->f_pre(cm, cmd)); 646 } 647 return (EINVAL); 648 } 649 650 static int 651 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 652 { 653 MPI2_REQUEST_HEADER *hdr; 654 MPI2_DEFAULT_REPLY *rpl = NULL; 655 void *buf = NULL; 656 struct mpr_command *cm = NULL; 657 int err = 0; 658 int sz; 659 660 mpr_lock(sc); 661 cm = mpr_alloc_command(sc); 662 663 if (cm == NULL) { 664 mpr_printf(sc, "%s: no mpr requests\n", __func__); 665 err = ENOMEM; 666 goto RetFree; 667 } 668 mpr_unlock(sc); 669 670 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 671 672 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 673 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 674 675 if (cmd->req_len > (int)sc->reqframesz) { 676 err = EINVAL; 677 goto RetFreeUnlocked; 678 } 679 err = copyin(cmd->req, hdr, cmd->req_len); 680 if (err != 0) 681 goto RetFreeUnlocked; 682 683 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 684 hdr->Function, hdr->MsgFlags); 685 686 if (cmd->len > 0) { 687 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 688 cm->cm_data = buf; 689 cm->cm_length = cmd->len; 690 } else { 691 cm->cm_data = NULL; 692 cm->cm_length = 0; 693 } 694 695 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 696 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 697 698 err = mpr_user_setup_request(cm, cmd); 699 if (err == EINVAL) { 700 mpr_printf(sc, "%s: unsupported parameter or unsupported " 701 "function in request (function = 0x%X)\n", __func__, 702 hdr->Function); 703 } 704 if (err != 0) 705 goto RetFreeUnlocked; 706 707 mpr_lock(sc); 708 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 709 710 if (err || (cm == NULL)) { 711 mpr_printf(sc, "%s: invalid request: error %d\n", 712 __func__, err); 713 goto RetFree; 714 } 715 716 if (cm != NULL) 717 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 718 if (rpl != NULL) 719 sz = rpl->MsgLength * 4; 720 else 721 sz = 0; 722 723 if (sz > cmd->rpl_len) { 724 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 725 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 726 sz = cmd->rpl_len; 727 } 728 729 mpr_unlock(sc); 730 copyout(rpl, cmd->rpl, sz); 731 if (buf != NULL) 732 copyout(buf, cmd->buf, cmd->len); 733 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 734 735 RetFreeUnlocked: 736 mpr_lock(sc); 737 RetFree: 738 if (cm != NULL) 739 mpr_free_command(sc, cm); 740 mpr_unlock(sc); 741 if (buf != NULL) 742 free(buf, M_MPRUSER); 743 return (err); 744 } 745 746 static int 747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 748 { 749 MPI2_REQUEST_HEADER *hdr, tmphdr; 750 MPI2_DEFAULT_REPLY *rpl; 751 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 752 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 753 struct mpr_command *cm = NULL; 754 int i, err = 0, dir = 0, sz; 755 uint8_t tool, function = 0; 756 u_int sense_len; 757 struct mprsas_target *targ = NULL; 758 759 /* 760 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 761 * bit to denote that a passthru is being processed. 762 */ 763 mpr_lock(sc); 764 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 765 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 766 "allowed at a single time.", __func__); 767 mpr_unlock(sc); 768 return (EBUSY); 769 } 770 sc->mpr_flags |= MPR_FLAGS_BUSY; 771 mpr_unlock(sc); 772 773 /* 774 * Do some validation on data direction. Valid cases are: 775 * 1) DataSize is 0 and direction is NONE 776 * 2) DataSize is non-zero and one of: 777 * a) direction is READ or 778 * b) direction is WRITE or 779 * c) direction is BOTH and DataOutSize is non-zero 780 * If valid and the direction is BOTH, change the direction to READ. 781 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 782 */ 783 if (((data->DataSize == 0) && 784 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 785 ((data->DataSize != 0) && 786 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 787 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 788 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 789 (data->DataOutSize != 0))))) { 790 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 791 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 792 else 793 data->DataOutSize = 0; 794 } else { 795 err = EINVAL; 796 goto RetFreeUnlocked; 797 } 798 799 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 800 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 801 data->PtrRequest, data->RequestSize, data->PtrReply, 802 data->ReplySize, data->PtrData, data->DataSize, 803 data->PtrDataOut, data->DataOutSize, data->DataDirection); 804 805 /* 806 * copy in the header so we know what we're dealing with before we 807 * commit to allocating a command for it. 808 */ 809 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 810 if (err != 0) 811 goto RetFreeUnlocked; 812 813 if (data->RequestSize > (int)sc->reqframesz) { 814 err = EINVAL; 815 goto RetFreeUnlocked; 816 } 817 818 function = tmphdr.Function; 819 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 820 function, tmphdr.MsgFlags); 821 822 /* 823 * Handle a passthru TM request. 824 */ 825 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 826 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 827 828 mpr_lock(sc); 829 cm = mprsas_alloc_tm(sc); 830 if (cm == NULL) { 831 err = EINVAL; 832 goto Ret; 833 } 834 835 /* Copy the header in. Only a small fixup is needed. */ 836 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 837 bcopy(&tmphdr, task, data->RequestSize); 838 task->TaskMID = cm->cm_desc.Default.SMID; 839 840 cm->cm_data = NULL; 841 cm->cm_complete = NULL; 842 cm->cm_complete_data = NULL; 843 844 targ = mprsas_find_target_by_handle(sc->sassc, 0, 845 task->DevHandle); 846 if (targ == NULL) { 847 mpr_dprint(sc, MPR_INFO, 848 "%s %d : invalid handle for requested TM 0x%x \n", 849 __func__, __LINE__, task->DevHandle); 850 err = 1; 851 } else { 852 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 853 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 854 } 855 856 if (err != 0) { 857 err = EIO; 858 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 859 __func__); 860 } 861 /* 862 * Copy the reply data and sense data to user space. 863 */ 864 if ((cm != NULL) && (cm->cm_reply != NULL)) { 865 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 866 sz = rpl->MsgLength * 4; 867 868 if (sz > data->ReplySize) { 869 mpr_printf(sc, "%s: user reply buffer (%d) " 870 "smaller than returned buffer (%d)\n", 871 __func__, data->ReplySize, sz); 872 } 873 mpr_unlock(sc); 874 copyout(cm->cm_reply, PTRIN(data->PtrReply), 875 data->ReplySize); 876 mpr_lock(sc); 877 } 878 mprsas_free_tm(sc, cm); 879 goto Ret; 880 } 881 882 mpr_lock(sc); 883 cm = mpr_alloc_command(sc); 884 885 if (cm == NULL) { 886 mpr_printf(sc, "%s: no mpr requests\n", __func__); 887 err = ENOMEM; 888 goto Ret; 889 } 890 mpr_unlock(sc); 891 892 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 893 bcopy(&tmphdr, hdr, data->RequestSize); 894 895 /* 896 * Do some checking to make sure the IOCTL request contains a valid 897 * request. Then set the SGL info. 898 */ 899 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 900 901 /* 902 * Set up for read, write or both. From check above, DataOutSize will 903 * be 0 if direction is READ or WRITE, but it will have some non-zero 904 * value if the direction is BOTH. So, just use the biggest size to get 905 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 906 * up; the first is for the request and the second will contain the 907 * response data. cm_out_len needs to be set here and this will be used 908 * when the SGLs are set up. 909 */ 910 cm->cm_data = NULL; 911 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 912 cm->cm_out_len = data->DataOutSize; 913 cm->cm_flags = 0; 914 if (cm->cm_length != 0) { 915 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK | 916 M_ZERO); 917 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 918 if (data->DataOutSize) { 919 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 920 err = copyin(PTRIN(data->PtrDataOut), 921 cm->cm_data, data->DataOutSize); 922 } else if (data->DataDirection == 923 MPR_PASS_THRU_DIRECTION_WRITE) { 924 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 925 err = copyin(PTRIN(data->PtrData), 926 cm->cm_data, data->DataSize); 927 } 928 if (err != 0) 929 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 930 "data from user space\n", __func__); 931 } 932 /* 933 * Set this flag only if processing a command that does not need an 934 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 935 * the flag only for that tool if processing a Toolbox function. 936 */ 937 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 938 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 939 if (function == ieee_sgl_func_list[i]) { 940 if (function == MPI2_FUNCTION_TOOLBOX) 941 { 942 tool = (uint8_t)hdr->FunctionDependent1; 943 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 944 break; 945 } 946 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 947 break; 948 } 949 } 950 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 951 952 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 953 nvme_encap_request = 954 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 955 cm->cm_desc.Default.RequestFlags = 956 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 957 958 /* 959 * Get the Physical Address of the sense buffer. 960 * Save the user's Error Response buffer address and use that 961 * field to hold the sense buffer address. 962 * Clear the internal sense buffer, which will potentially hold 963 * the Completion Queue Entry on return, or 0 if no Entry. 964 * Build the PRPs and set direction bits. 965 * Send the request. 966 */ 967 cm->nvme_error_response = 968 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 969 ErrorResponseBaseAddress.High << 32) | 970 (uint64_t)nvme_encap_request-> 971 ErrorResponseBaseAddress.Low); 972 nvme_encap_request->ErrorResponseBaseAddress.High = 973 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 974 nvme_encap_request->ErrorResponseBaseAddress.Low = 975 htole32(cm->cm_sense_busaddr); 976 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 977 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 978 data->DataSize, data->DataOutSize); 979 } 980 981 /* 982 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 983 * uses SCSI IO or Fast Path SCSI IO descriptor. 984 */ 985 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 986 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 987 MPI2_SCSI_IO_REQUEST *scsi_io_req; 988 989 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 990 /* 991 * Put SGE for data and data_out buffer at the end of 992 * scsi_io_request message header (64 bytes in total). 993 * Following above SGEs, the residual space will be used by 994 * sense data. 995 */ 996 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 997 64); 998 scsi_io_req->SenseBufferLowAddress = 999 htole32(cm->cm_sense_busaddr); 1000 1001 /* 1002 * Set SGLOffset0 value. This is the number of dwords that SGL 1003 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 1004 */ 1005 scsi_io_req->SGLOffset0 = 24; 1006 1007 /* 1008 * Setup descriptor info. RAID passthrough must use the 1009 * default request descriptor which is already set, so if this 1010 * is a SCSI IO request, change the descriptor to SCSI IO or 1011 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1012 * handle the reply in the mprsas_scsio_complete function. 1013 */ 1014 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1015 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1016 scsi_io_req->DevHandle); 1017 1018 if (!targ) { 1019 printf("No Target found for handle %d\n", 1020 scsi_io_req->DevHandle); 1021 err = EINVAL; 1022 goto RetFreeUnlocked; 1023 } 1024 1025 if (targ->scsi_req_desc_type == 1026 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1027 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1028 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1029 if (!sc->atomic_desc_capable) { 1030 cm->cm_desc.FastPathSCSIIO.DevHandle = 1031 scsi_io_req->DevHandle; 1032 } 1033 scsi_io_req->IoFlags |= 1034 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1035 } else { 1036 cm->cm_desc.SCSIIO.RequestFlags = 1037 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1038 if (!sc->atomic_desc_capable) { 1039 cm->cm_desc.SCSIIO.DevHandle = 1040 scsi_io_req->DevHandle; 1041 } 1042 } 1043 1044 /* 1045 * Make sure the DevHandle is not 0 because this is a 1046 * likely error. 1047 */ 1048 if (scsi_io_req->DevHandle == 0) { 1049 err = EINVAL; 1050 goto RetFreeUnlocked; 1051 } 1052 } 1053 } 1054 1055 mpr_lock(sc); 1056 1057 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1058 1059 if (err || (cm == NULL)) { 1060 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1061 err); 1062 goto RetFree; 1063 } 1064 1065 /* 1066 * Sync the DMA data, if any. Then copy the data to user space. 1067 */ 1068 if (cm->cm_data != NULL) { 1069 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1070 dir = BUS_DMASYNC_POSTREAD; 1071 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1072 dir = BUS_DMASYNC_POSTWRITE; 1073 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1074 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1075 1076 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1077 mpr_unlock(sc); 1078 err = copyout(cm->cm_data, 1079 PTRIN(data->PtrData), data->DataSize); 1080 mpr_lock(sc); 1081 if (err != 0) 1082 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1083 "IOCTL data to user space\n", __func__); 1084 } 1085 } 1086 1087 /* 1088 * Copy the reply data and sense data to user space. 1089 */ 1090 if (cm->cm_reply != NULL) { 1091 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1092 sz = rpl->MsgLength * 4; 1093 1094 if (sz > data->ReplySize) { 1095 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1096 "than returned buffer (%d)\n", __func__, 1097 data->ReplySize, sz); 1098 } 1099 mpr_unlock(sc); 1100 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1101 mpr_lock(sc); 1102 1103 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1104 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1105 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1106 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1107 sense_len = 1108 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1109 SenseCount)), sizeof(struct 1110 scsi_sense_data)); 1111 mpr_unlock(sc); 1112 copyout(cm->cm_sense, (PTRIN(data->PtrReply + 1113 sizeof(MPI2_SCSI_IO_REPLY))), sense_len); 1114 mpr_lock(sc); 1115 } 1116 } 1117 1118 /* 1119 * Copy out the NVMe Error Reponse to user. The Error Response 1120 * buffer is given by the user, but a sense buffer is used to 1121 * get that data from the IOC. The user's 1122 * ErrorResponseBaseAddress is saved in the 1123 * 'nvme_error_response' field before the command because that 1124 * field is set to a sense buffer. When the command is 1125 * complete, the Error Response data from the IOC is copied to 1126 * that user address after it is checked for validity. 1127 * Also note that 'sense' buffers are not defined for 1128 * NVMe commands. Sense terminalogy is only used here so that 1129 * the same IOCTL structure and sense buffers can be used for 1130 * NVMe. 1131 */ 1132 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1133 if (cm->nvme_error_response == NULL) { 1134 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1135 "buffer is NULL. Response data will not be " 1136 "returned.\n"); 1137 mpr_unlock(sc); 1138 goto RetFreeUnlocked; 1139 } 1140 1141 nvme_error_reply = 1142 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1143 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1144 NVME_ERROR_RESPONSE_SIZE); 1145 mpr_unlock(sc); 1146 copyout(cm->cm_sense, 1147 (PTRIN(data->PtrReply + 1148 sizeof(MPI2_SCSI_IO_REPLY))), sz); 1149 mpr_lock(sc); 1150 } 1151 } 1152 mpr_unlock(sc); 1153 1154 RetFreeUnlocked: 1155 mpr_lock(sc); 1156 1157 RetFree: 1158 if (cm != NULL) { 1159 if (cm->cm_data) 1160 free(cm->cm_data, M_MPRUSER); 1161 mpr_free_command(sc, cm); 1162 } 1163 Ret: 1164 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1165 mpr_unlock(sc); 1166 1167 return (err); 1168 } 1169 1170 static void 1171 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1172 { 1173 Mpi2ConfigReply_t mpi_reply; 1174 Mpi2BiosPage3_t config_page; 1175 1176 /* 1177 * Use the PCI interface functions to get the Bus, Device, and Function 1178 * information. 1179 */ 1180 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1181 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1182 data->PciInformation.u.bits.FunctionNumber = 1183 pci_get_function(sc->mpr_dev); 1184 1185 /* 1186 * Get the FW version that should already be saved in IOC Facts. 1187 */ 1188 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1189 1190 /* 1191 * General device info. 1192 */ 1193 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1194 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1195 else 1196 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1197 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1198 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1199 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1200 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1201 1202 /* 1203 * Get the driver version. 1204 */ 1205 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1206 1207 /* 1208 * Need to get BIOS Config Page 3 for the BIOS Version. 1209 */ 1210 data->BiosVersion = 0; 1211 mpr_lock(sc); 1212 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1213 printf("%s: Error while retrieving BIOS Version\n", __func__); 1214 else 1215 data->BiosVersion = config_page.BiosVersion; 1216 mpr_unlock(sc); 1217 } 1218 1219 static void 1220 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1221 { 1222 int i; 1223 1224 /* 1225 * Use the PCI interface functions to get the Bus, Device, and Function 1226 * information. 1227 */ 1228 data->BusNumber = pci_get_bus(sc->mpr_dev); 1229 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1230 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1231 1232 /* 1233 * Now get the interrupt vector and the pci header. The vector can 1234 * only be 0 right now. The header is the first 256 bytes of config 1235 * space. 1236 */ 1237 data->InterruptVector = 0; 1238 for (i = 0; i < sizeof (data->PciHeader); i++) { 1239 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1240 } 1241 } 1242 1243 static uint8_t 1244 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1245 { 1246 uint8_t index; 1247 1248 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1249 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1250 return (index); 1251 } 1252 } 1253 1254 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1255 } 1256 1257 static int 1258 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1259 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1260 { 1261 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1262 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1263 struct mpr_command *cm = NULL; 1264 int i, status; 1265 1266 /* 1267 * If buffer is not enabled, just leave. 1268 */ 1269 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1270 if (!pBuffer->enabled) { 1271 return (MPR_DIAG_FAILURE); 1272 } 1273 1274 /* 1275 * Clear some flags initially. 1276 */ 1277 pBuffer->force_release = FALSE; 1278 pBuffer->valid_data = FALSE; 1279 pBuffer->owned_by_firmware = FALSE; 1280 1281 /* 1282 * Get a command. 1283 */ 1284 cm = mpr_alloc_command(sc); 1285 if (cm == NULL) { 1286 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1287 return (MPR_DIAG_FAILURE); 1288 } 1289 1290 /* 1291 * Build the request for releasing the FW Diag Buffer and send it. 1292 */ 1293 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1294 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1295 req->BufferType = pBuffer->buffer_type; 1296 req->ExtendedType = pBuffer->extended_type; 1297 req->BufferLength = pBuffer->size; 1298 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1299 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1300 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1301 cm->cm_data = NULL; 1302 cm->cm_length = 0; 1303 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1304 cm->cm_complete_data = NULL; 1305 1306 /* 1307 * Send command synchronously. 1308 */ 1309 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1310 if (status || (cm == NULL)) { 1311 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1312 status); 1313 status = MPR_DIAG_FAILURE; 1314 goto done; 1315 } 1316 1317 /* 1318 * Process POST reply. 1319 */ 1320 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1321 if (reply == NULL) { 1322 mpr_printf(sc, "%s: reply is NULL, probably due to " 1323 "reinitialization", __func__); 1324 status = MPR_DIAG_FAILURE; 1325 goto done; 1326 } 1327 1328 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1329 MPI2_IOCSTATUS_SUCCESS) { 1330 status = MPR_DIAG_FAILURE; 1331 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1332 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1333 "TransferLength = 0x%x\n", __func__, 1334 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1335 le32toh(reply->TransferLength)); 1336 goto done; 1337 } 1338 1339 /* 1340 * Post was successful. 1341 */ 1342 pBuffer->valid_data = TRUE; 1343 pBuffer->owned_by_firmware = TRUE; 1344 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1345 status = MPR_DIAG_SUCCESS; 1346 1347 done: 1348 if (cm != NULL) 1349 mpr_free_command(sc, cm); 1350 return (status); 1351 } 1352 1353 static int 1354 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1355 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1356 uint32_t diag_type) 1357 { 1358 MPI2_DIAG_RELEASE_REQUEST *req; 1359 MPI2_DIAG_RELEASE_REPLY *reply; 1360 struct mpr_command *cm = NULL; 1361 int status; 1362 1363 /* 1364 * If buffer is not enabled, just leave. 1365 */ 1366 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1367 if (!pBuffer->enabled) { 1368 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1369 "supported by the IOC", __func__); 1370 return (MPR_DIAG_FAILURE); 1371 } 1372 1373 /* 1374 * Clear some flags initially. 1375 */ 1376 pBuffer->force_release = FALSE; 1377 pBuffer->valid_data = FALSE; 1378 pBuffer->owned_by_firmware = FALSE; 1379 1380 /* 1381 * Get a command. 1382 */ 1383 cm = mpr_alloc_command(sc); 1384 if (cm == NULL) { 1385 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1386 return (MPR_DIAG_FAILURE); 1387 } 1388 1389 /* 1390 * Build the request for releasing the FW Diag Buffer and send it. 1391 */ 1392 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1393 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1394 req->BufferType = pBuffer->buffer_type; 1395 cm->cm_data = NULL; 1396 cm->cm_length = 0; 1397 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1398 cm->cm_complete_data = NULL; 1399 1400 /* 1401 * Send command synchronously. 1402 */ 1403 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1404 if (status || (cm == NULL)) { 1405 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1406 status); 1407 status = MPR_DIAG_FAILURE; 1408 goto done; 1409 } 1410 1411 /* 1412 * Process RELEASE reply. 1413 */ 1414 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1415 if (reply == NULL) { 1416 mpr_printf(sc, "%s: reply is NULL, probably due to " 1417 "reinitialization", __func__); 1418 status = MPR_DIAG_FAILURE; 1419 goto done; 1420 } 1421 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1422 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1423 status = MPR_DIAG_FAILURE; 1424 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1425 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1426 __func__, le16toh(reply->IOCStatus), 1427 le32toh(reply->IOCLogInfo)); 1428 goto done; 1429 } 1430 1431 /* 1432 * Release was successful. 1433 */ 1434 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1435 status = MPR_DIAG_SUCCESS; 1436 1437 /* 1438 * If this was for an UNREGISTER diag type command, clear the unique ID. 1439 */ 1440 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1441 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1442 } 1443 1444 done: 1445 if (cm != NULL) 1446 mpr_free_command(sc, cm); 1447 1448 return (status); 1449 } 1450 1451 static int 1452 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1453 uint32_t *return_code) 1454 { 1455 bus_dma_tag_template_t t; 1456 mpr_fw_diagnostic_buffer_t *pBuffer; 1457 struct mpr_busdma_context *ctx; 1458 uint8_t extended_type, buffer_type, i; 1459 uint32_t buffer_size; 1460 uint32_t unique_id; 1461 int status; 1462 int error; 1463 1464 extended_type = diag_register->ExtendedType; 1465 buffer_type = diag_register->BufferType; 1466 buffer_size = diag_register->RequestedBufferSize; 1467 unique_id = diag_register->UniqueId; 1468 ctx = NULL; 1469 error = 0; 1470 1471 /* 1472 * Check for valid buffer type 1473 */ 1474 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1475 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1476 return (MPR_DIAG_FAILURE); 1477 } 1478 1479 /* 1480 * Get the current buffer and look up the unique ID. The unique ID 1481 * should not be found. If it is, the ID is already in use. 1482 */ 1483 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1484 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1485 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1486 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1487 return (MPR_DIAG_FAILURE); 1488 } 1489 1490 /* 1491 * The buffer's unique ID should not be registered yet, and the given 1492 * unique ID cannot be 0. 1493 */ 1494 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1495 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1496 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1497 return (MPR_DIAG_FAILURE); 1498 } 1499 1500 /* 1501 * If this buffer is already posted as immediate, just change owner. 1502 */ 1503 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1504 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1505 pBuffer->immediate = FALSE; 1506 pBuffer->unique_id = unique_id; 1507 return (MPR_DIAG_SUCCESS); 1508 } 1509 1510 /* 1511 * Post a new buffer after checking if it's enabled. The DMA buffer 1512 * that is allocated will be contiguous (nsegments = 1). 1513 */ 1514 if (!pBuffer->enabled) { 1515 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1516 return (MPR_DIAG_FAILURE); 1517 } 1518 bus_dma_template_init(&t, sc->mpr_parent_dmat); 1519 t.lowaddr = BUS_SPACE_MAXADDR_32BIT; 1520 t.maxsize = t.maxsegsize = buffer_size; 1521 t.nsegments = 1; 1522 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) { 1523 mpr_dprint(sc, MPR_ERROR, 1524 "Cannot allocate FW diag buffer DMA tag\n"); 1525 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1526 status = MPR_DIAG_FAILURE; 1527 goto bailout; 1528 } 1529 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1530 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1531 mpr_dprint(sc, MPR_ERROR, 1532 "Cannot allocate FW diag buffer memory\n"); 1533 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1534 status = MPR_DIAG_FAILURE; 1535 goto bailout; 1536 } 1537 bzero(sc->fw_diag_buffer, buffer_size); 1538 1539 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1540 if (ctx == NULL) { 1541 device_printf(sc->mpr_dev, "%s: context malloc failed\n", 1542 __func__); 1543 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1544 status = MPR_DIAG_FAILURE; 1545 goto bailout; 1546 } 1547 ctx->addr = &sc->fw_diag_busaddr; 1548 ctx->buffer_dmat = sc->fw_diag_dmat; 1549 ctx->buffer_dmamap = sc->fw_diag_map; 1550 ctx->softc = sc; 1551 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1552 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1553 ctx, 0); 1554 if (error == EINPROGRESS) { 1555 1556 /* XXX KDM */ 1557 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1558 __func__); 1559 /* 1560 * Wait for the load to complete. If we're interrupted, 1561 * bail out. 1562 */ 1563 mpr_lock(sc); 1564 if (ctx->completed == 0) { 1565 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0); 1566 if (error != 0) { 1567 /* 1568 * We got an error from msleep(9). This is 1569 * most likely due to a signal. Tell 1570 * mpr_memaddr_wait_cb() that we've abandoned 1571 * the context, so it needs to clean up when 1572 * it is called. 1573 */ 1574 ctx->abandoned = 1; 1575 1576 /* The callback will free this memory */ 1577 ctx = NULL; 1578 mpr_unlock(sc); 1579 1580 device_printf(sc->mpr_dev, "Cannot " 1581 "bus_dmamap_load FW diag buffer, error = " 1582 "%d returned from msleep\n", error); 1583 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1584 status = MPR_DIAG_FAILURE; 1585 goto bailout; 1586 } 1587 } 1588 mpr_unlock(sc); 1589 } 1590 1591 if ((error != 0) || (ctx->error != 0)) { 1592 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1593 "buffer, %serror = %d\n", error ? "" : "callback ", 1594 error ? error : ctx->error); 1595 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1596 status = MPR_DIAG_FAILURE; 1597 goto bailout; 1598 } 1599 1600 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1601 1602 pBuffer->size = buffer_size; 1603 1604 /* 1605 * Copy the given info to the diag buffer and post the buffer. 1606 */ 1607 pBuffer->buffer_type = buffer_type; 1608 pBuffer->immediate = FALSE; 1609 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1610 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1611 i++) { 1612 pBuffer->product_specific[i] = 1613 diag_register->ProductSpecific[i]; 1614 } 1615 } 1616 pBuffer->extended_type = extended_type; 1617 pBuffer->unique_id = unique_id; 1618 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1619 1620 bailout: 1621 1622 /* 1623 * In case there was a failure, free the DMA buffer. 1624 */ 1625 if (status == MPR_DIAG_FAILURE) { 1626 if (sc->fw_diag_busaddr != 0) { 1627 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1628 sc->fw_diag_busaddr = 0; 1629 } 1630 if (sc->fw_diag_buffer != NULL) { 1631 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1632 sc->fw_diag_map); 1633 sc->fw_diag_buffer = NULL; 1634 } 1635 if (sc->fw_diag_dmat != NULL) { 1636 bus_dma_tag_destroy(sc->fw_diag_dmat); 1637 sc->fw_diag_dmat = NULL; 1638 } 1639 } 1640 1641 if (ctx != NULL) 1642 free(ctx, M_MPR); 1643 1644 return (status); 1645 } 1646 1647 static int 1648 mpr_diag_unregister(struct mpr_softc *sc, 1649 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1650 { 1651 mpr_fw_diagnostic_buffer_t *pBuffer; 1652 uint8_t i; 1653 uint32_t unique_id; 1654 int status; 1655 1656 unique_id = diag_unregister->UniqueId; 1657 1658 /* 1659 * Get the current buffer and look up the unique ID. The unique ID 1660 * should be there. 1661 */ 1662 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1663 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1664 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1665 return (MPR_DIAG_FAILURE); 1666 } 1667 1668 pBuffer = &sc->fw_diag_buffer_list[i]; 1669 1670 /* 1671 * Try to release the buffer from FW before freeing it. If release 1672 * fails, don't free the DMA buffer in case FW tries to access it 1673 * later. If buffer is not owned by firmware, can't release it. 1674 */ 1675 if (!pBuffer->owned_by_firmware) { 1676 status = MPR_DIAG_SUCCESS; 1677 } else { 1678 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1679 MPR_FW_DIAG_TYPE_UNREGISTER); 1680 } 1681 1682 /* 1683 * At this point, return the current status no matter what happens with 1684 * the DMA buffer. 1685 */ 1686 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1687 if (status == MPR_DIAG_SUCCESS) { 1688 if (sc->fw_diag_busaddr != 0) { 1689 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1690 sc->fw_diag_busaddr = 0; 1691 } 1692 if (sc->fw_diag_buffer != NULL) { 1693 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1694 sc->fw_diag_map); 1695 sc->fw_diag_buffer = NULL; 1696 } 1697 if (sc->fw_diag_dmat != NULL) { 1698 bus_dma_tag_destroy(sc->fw_diag_dmat); 1699 sc->fw_diag_dmat = NULL; 1700 } 1701 } 1702 1703 return (status); 1704 } 1705 1706 static int 1707 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1708 uint32_t *return_code) 1709 { 1710 mpr_fw_diagnostic_buffer_t *pBuffer; 1711 uint8_t i; 1712 uint32_t unique_id; 1713 1714 unique_id = diag_query->UniqueId; 1715 1716 /* 1717 * If ID is valid, query on ID. 1718 * If ID is invalid, query on buffer type. 1719 */ 1720 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1721 i = diag_query->BufferType; 1722 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1723 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1724 return (MPR_DIAG_FAILURE); 1725 } 1726 } else { 1727 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1728 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1729 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1730 return (MPR_DIAG_FAILURE); 1731 } 1732 } 1733 1734 /* 1735 * Fill query structure with the diag buffer info. 1736 */ 1737 pBuffer = &sc->fw_diag_buffer_list[i]; 1738 diag_query->BufferType = pBuffer->buffer_type; 1739 diag_query->ExtendedType = pBuffer->extended_type; 1740 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1741 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1742 i++) { 1743 diag_query->ProductSpecific[i] = 1744 pBuffer->product_specific[i]; 1745 } 1746 } 1747 diag_query->TotalBufferSize = pBuffer->size; 1748 diag_query->DriverAddedBufferSize = 0; 1749 diag_query->UniqueId = pBuffer->unique_id; 1750 diag_query->ApplicationFlags = 0; 1751 diag_query->DiagnosticFlags = 0; 1752 1753 /* 1754 * Set/Clear application flags 1755 */ 1756 if (pBuffer->immediate) { 1757 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1758 } else { 1759 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1760 } 1761 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1762 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1763 } else { 1764 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1765 } 1766 if (pBuffer->owned_by_firmware) { 1767 diag_query->ApplicationFlags |= 1768 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1769 } else { 1770 diag_query->ApplicationFlags &= 1771 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1772 } 1773 1774 return (MPR_DIAG_SUCCESS); 1775 } 1776 1777 static int 1778 mpr_diag_read_buffer(struct mpr_softc *sc, 1779 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1780 uint32_t *return_code) 1781 { 1782 mpr_fw_diagnostic_buffer_t *pBuffer; 1783 uint8_t i, *pData; 1784 uint32_t unique_id; 1785 int status; 1786 1787 unique_id = diag_read_buffer->UniqueId; 1788 1789 /* 1790 * Get the current buffer and look up the unique ID. The unique ID 1791 * should be there. 1792 */ 1793 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1794 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1795 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1796 return (MPR_DIAG_FAILURE); 1797 } 1798 1799 pBuffer = &sc->fw_diag_buffer_list[i]; 1800 1801 /* 1802 * Make sure requested read is within limits 1803 */ 1804 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1805 pBuffer->size) { 1806 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1807 return (MPR_DIAG_FAILURE); 1808 } 1809 1810 /* Sync the DMA map before we copy to userland. */ 1811 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1812 BUS_DMASYNC_POSTREAD); 1813 1814 /* 1815 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1816 * buffer that was allocated is one contiguous buffer. 1817 */ 1818 pData = (uint8_t *)(sc->fw_diag_buffer + 1819 diag_read_buffer->StartingOffset); 1820 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1821 return (MPR_DIAG_FAILURE); 1822 diag_read_buffer->Status = 0; 1823 1824 /* 1825 * Set or clear the Force Release flag. 1826 */ 1827 if (pBuffer->force_release) { 1828 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1829 } else { 1830 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1831 } 1832 1833 /* 1834 * If buffer is to be reregistered, make sure it's not already owned by 1835 * firmware first. 1836 */ 1837 status = MPR_DIAG_SUCCESS; 1838 if (!pBuffer->owned_by_firmware) { 1839 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1840 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1841 return_code); 1842 } 1843 } 1844 1845 return (status); 1846 } 1847 1848 static int 1849 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1850 uint32_t *return_code) 1851 { 1852 mpr_fw_diagnostic_buffer_t *pBuffer; 1853 uint8_t i; 1854 uint32_t unique_id; 1855 int status; 1856 1857 unique_id = diag_release->UniqueId; 1858 1859 /* 1860 * Get the current buffer and look up the unique ID. The unique ID 1861 * should be there. 1862 */ 1863 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1864 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1865 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1866 return (MPR_DIAG_FAILURE); 1867 } 1868 1869 pBuffer = &sc->fw_diag_buffer_list[i]; 1870 1871 /* 1872 * If buffer is not owned by firmware, it's already been released. 1873 */ 1874 if (!pBuffer->owned_by_firmware) { 1875 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1876 return (MPR_DIAG_FAILURE); 1877 } 1878 1879 /* 1880 * Release the buffer. 1881 */ 1882 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1883 MPR_FW_DIAG_TYPE_RELEASE); 1884 return (status); 1885 } 1886 1887 static int 1888 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1889 uint32_t length, uint32_t *return_code) 1890 { 1891 mpr_fw_diag_register_t diag_register; 1892 mpr_fw_diag_unregister_t diag_unregister; 1893 mpr_fw_diag_query_t diag_query; 1894 mpr_diag_read_buffer_t diag_read_buffer; 1895 mpr_fw_diag_release_t diag_release; 1896 int status = MPR_DIAG_SUCCESS; 1897 uint32_t original_return_code; 1898 1899 original_return_code = *return_code; 1900 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1901 1902 switch (action) { 1903 case MPR_FW_DIAG_TYPE_REGISTER: 1904 if (!length) { 1905 *return_code = 1906 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1907 status = MPR_DIAG_FAILURE; 1908 break; 1909 } 1910 if (copyin(diag_action, &diag_register, 1911 sizeof(diag_register)) != 0) 1912 return (MPR_DIAG_FAILURE); 1913 status = mpr_diag_register(sc, &diag_register, 1914 return_code); 1915 break; 1916 1917 case MPR_FW_DIAG_TYPE_UNREGISTER: 1918 if (length < sizeof(diag_unregister)) { 1919 *return_code = 1920 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1921 status = MPR_DIAG_FAILURE; 1922 break; 1923 } 1924 if (copyin(diag_action, &diag_unregister, 1925 sizeof(diag_unregister)) != 0) 1926 return (MPR_DIAG_FAILURE); 1927 status = mpr_diag_unregister(sc, &diag_unregister, 1928 return_code); 1929 break; 1930 1931 case MPR_FW_DIAG_TYPE_QUERY: 1932 if (length < sizeof (diag_query)) { 1933 *return_code = 1934 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1935 status = MPR_DIAG_FAILURE; 1936 break; 1937 } 1938 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1939 != 0) 1940 return (MPR_DIAG_FAILURE); 1941 status = mpr_diag_query(sc, &diag_query, return_code); 1942 if (status == MPR_DIAG_SUCCESS) 1943 if (copyout(&diag_query, diag_action, 1944 sizeof (diag_query)) != 0) 1945 return (MPR_DIAG_FAILURE); 1946 break; 1947 1948 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1949 if (copyin(diag_action, &diag_read_buffer, 1950 sizeof(diag_read_buffer)) != 0) 1951 return (MPR_DIAG_FAILURE); 1952 if (length < diag_read_buffer.BytesToRead) { 1953 *return_code = 1954 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1955 status = MPR_DIAG_FAILURE; 1956 break; 1957 } 1958 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1959 PTRIN(diag_read_buffer.PtrDataBuffer), 1960 return_code); 1961 if (status == MPR_DIAG_SUCCESS) { 1962 if (copyout(&diag_read_buffer, diag_action, 1963 sizeof(diag_read_buffer) - 1964 sizeof(diag_read_buffer.PtrDataBuffer)) != 1965 0) 1966 return (MPR_DIAG_FAILURE); 1967 } 1968 break; 1969 1970 case MPR_FW_DIAG_TYPE_RELEASE: 1971 if (length < sizeof(diag_release)) { 1972 *return_code = 1973 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1974 status = MPR_DIAG_FAILURE; 1975 break; 1976 } 1977 if (copyin(diag_action, &diag_release, 1978 sizeof(diag_release)) != 0) 1979 return (MPR_DIAG_FAILURE); 1980 status = mpr_diag_release(sc, &diag_release, 1981 return_code); 1982 break; 1983 1984 default: 1985 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1986 status = MPR_DIAG_FAILURE; 1987 break; 1988 } 1989 1990 if ((status == MPR_DIAG_FAILURE) && 1991 (original_return_code == MPR_FW_DIAG_NEW) && 1992 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1993 status = MPR_DIAG_SUCCESS; 1994 1995 return (status); 1996 } 1997 1998 static int 1999 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 2000 { 2001 int status; 2002 2003 /* 2004 * Only allow one diag action at one time. 2005 */ 2006 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 2007 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 2008 "allowed at a single time.", __func__); 2009 return (EBUSY); 2010 } 2011 sc->mpr_flags |= MPR_FLAGS_BUSY; 2012 2013 /* 2014 * Send diag action request 2015 */ 2016 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2017 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2018 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2019 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2020 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2021 status = mpr_do_diag_action(sc, data->Action, 2022 PTRIN(data->PtrDiagAction), data->Length, 2023 &data->ReturnCode); 2024 } else 2025 status = EINVAL; 2026 2027 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2028 return (status); 2029 } 2030 2031 /* 2032 * Copy the event recording mask and the event queue size out. For 2033 * clarification, the event recording mask (events_to_record) is not the same 2034 * thing as the event mask (event_mask). events_to_record has a bit set for 2035 * every event type that is to be recorded by the driver, and event_mask has a 2036 * bit cleared for every event that is allowed into the driver from the IOC. 2037 * They really have nothing to do with each other. 2038 */ 2039 static void 2040 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2041 { 2042 uint8_t i; 2043 2044 mpr_lock(sc); 2045 data->Entries = MPR_EVENT_QUEUE_SIZE; 2046 2047 for (i = 0; i < 4; i++) { 2048 data->Types[i] = sc->events_to_record[i]; 2049 } 2050 mpr_unlock(sc); 2051 } 2052 2053 /* 2054 * Set the driver's event mask according to what's been given. See 2055 * mpr_user_event_query for explanation of the event recording mask and the IOC 2056 * event mask. It's the app's responsibility to enable event logging by setting 2057 * the bits in events_to_record. Initially, no events will be logged. 2058 */ 2059 static void 2060 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2061 { 2062 uint8_t i; 2063 2064 mpr_lock(sc); 2065 for (i = 0; i < 4; i++) { 2066 sc->events_to_record[i] = data->Types[i]; 2067 } 2068 mpr_unlock(sc); 2069 } 2070 2071 /* 2072 * Copy out the events that have been recorded, up to the max events allowed. 2073 */ 2074 static int 2075 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2076 { 2077 int status = 0; 2078 uint32_t size; 2079 2080 mpr_lock(sc); 2081 size = data->Size; 2082 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2083 mpr_unlock(sc); 2084 if (copyout((void *)sc->recorded_events, 2085 PTRIN(data->PtrEvents), size) != 0) 2086 status = EFAULT; 2087 mpr_lock(sc); 2088 } else { 2089 /* 2090 * data->Size value is not large enough to copy event data. 2091 */ 2092 status = EFAULT; 2093 } 2094 2095 /* 2096 * Change size value to match the number of bytes that were copied. 2097 */ 2098 if (status == 0) 2099 data->Size = sizeof(sc->recorded_events); 2100 mpr_unlock(sc); 2101 2102 return (status); 2103 } 2104 2105 /* 2106 * Record events into the driver from the IOC if they are not masked. 2107 */ 2108 void 2109 mprsas_record_event(struct mpr_softc *sc, 2110 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2111 { 2112 uint32_t event; 2113 int i, j; 2114 uint16_t event_data_len; 2115 boolean_t sendAEN = FALSE; 2116 2117 event = event_reply->Event; 2118 2119 /* 2120 * Generate a system event to let anyone who cares know that a 2121 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2122 * event mask is set to. 2123 */ 2124 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2125 sendAEN = TRUE; 2126 } 2127 2128 /* 2129 * Record the event only if its corresponding bit is set in 2130 * events_to_record. event_index is the index into recorded_events and 2131 * event_number is the overall number of an event being recorded since 2132 * start-of-day. event_index will roll over; event_number will never 2133 * roll over. 2134 */ 2135 i = (uint8_t)(event / 32); 2136 j = (uint8_t)(event % 32); 2137 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2138 i = sc->event_index; 2139 sc->recorded_events[i].Type = event; 2140 sc->recorded_events[i].Number = ++sc->event_number; 2141 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2142 4); 2143 event_data_len = event_reply->EventDataLength; 2144 2145 if (event_data_len > 0) { 2146 /* 2147 * Limit data to size in m_event entry 2148 */ 2149 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2150 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2151 } 2152 for (j = 0; j < event_data_len; j++) { 2153 sc->recorded_events[i].Data[j] = 2154 event_reply->EventData[j]; 2155 } 2156 2157 /* 2158 * check for index wrap-around 2159 */ 2160 if (++i == MPR_EVENT_QUEUE_SIZE) { 2161 i = 0; 2162 } 2163 sc->event_index = (uint8_t)i; 2164 2165 /* 2166 * Set flag to send the event. 2167 */ 2168 sendAEN = TRUE; 2169 } 2170 } 2171 2172 /* 2173 * Generate a system event if flag is set to let anyone who cares know 2174 * that an event has occurred. 2175 */ 2176 if (sendAEN) { 2177 //SLM-how to send a system event (see kqueue, kevent) 2178 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2179 // "SAS", NULL, NULL, DDI_NOSLEEP); 2180 } 2181 } 2182 2183 static int 2184 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2185 { 2186 int status = 0; 2187 2188 switch (data->Command) { 2189 /* 2190 * IO access is not supported. 2191 */ 2192 case REG_IO_READ: 2193 case REG_IO_WRITE: 2194 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2195 "Use memory access."); 2196 status = EINVAL; 2197 break; 2198 2199 case REG_MEM_READ: 2200 data->RegData = mpr_regread(sc, data->RegOffset); 2201 break; 2202 2203 case REG_MEM_WRITE: 2204 mpr_regwrite(sc, data->RegOffset, data->RegData); 2205 break; 2206 2207 default: 2208 status = EINVAL; 2209 break; 2210 } 2211 2212 return (status); 2213 } 2214 2215 static int 2216 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2217 { 2218 uint8_t bt2dh = FALSE; 2219 uint8_t dh2bt = FALSE; 2220 uint16_t dev_handle, bus, target; 2221 2222 bus = data->Bus; 2223 target = data->TargetID; 2224 dev_handle = data->DevHandle; 2225 2226 /* 2227 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2228 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2229 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2230 * invalid. 2231 */ 2232 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2233 dh2bt = TRUE; 2234 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2235 bt2dh = TRUE; 2236 if (!dh2bt && !bt2dh) 2237 return (EINVAL); 2238 2239 /* 2240 * Only handle bus of 0. Make sure target is within range. 2241 */ 2242 if (bt2dh) { 2243 if (bus != 0) 2244 return (EINVAL); 2245 2246 if (target > sc->max_devices) { 2247 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2248 "for Bus/Target to DevHandle mapping."); 2249 return (EINVAL); 2250 } 2251 dev_handle = sc->mapping_table[target].dev_handle; 2252 if (dev_handle) 2253 data->DevHandle = dev_handle; 2254 } else { 2255 bus = 0; 2256 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2257 data->Bus = bus; 2258 data->TargetID = target; 2259 } 2260 2261 return (0); 2262 } 2263 2264 static int 2265 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag, 2266 struct thread *td) 2267 { 2268 struct mpr_softc *sc; 2269 struct mpr_cfg_page_req *page_req; 2270 struct mpr_ext_cfg_page_req *ext_page_req; 2271 void *mpr_page; 2272 int error, msleep_ret; 2273 2274 mpr_page = NULL; 2275 sc = dev->si_drv1; 2276 page_req = (void *)arg; 2277 ext_page_req = (void *)arg; 2278 2279 switch (cmd) { 2280 case MPRIO_READ_CFG_HEADER: 2281 mpr_lock(sc); 2282 error = mpr_user_read_cfg_header(sc, page_req); 2283 mpr_unlock(sc); 2284 break; 2285 case MPRIO_READ_CFG_PAGE: 2286 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2287 error = copyin(page_req->buf, mpr_page, 2288 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2289 if (error) 2290 break; 2291 mpr_lock(sc); 2292 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2293 mpr_unlock(sc); 2294 if (error) 2295 break; 2296 error = copyout(mpr_page, page_req->buf, page_req->len); 2297 break; 2298 case MPRIO_READ_EXT_CFG_HEADER: 2299 mpr_lock(sc); 2300 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2301 mpr_unlock(sc); 2302 break; 2303 case MPRIO_READ_EXT_CFG_PAGE: 2304 mpr_page = malloc(ext_page_req->len, M_MPRUSER, 2305 M_WAITOK | M_ZERO); 2306 error = copyin(ext_page_req->buf, mpr_page, 2307 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2308 if (error) 2309 break; 2310 mpr_lock(sc); 2311 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2312 mpr_unlock(sc); 2313 if (error) 2314 break; 2315 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2316 break; 2317 case MPRIO_WRITE_CFG_PAGE: 2318 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2319 error = copyin(page_req->buf, mpr_page, page_req->len); 2320 if (error) 2321 break; 2322 mpr_lock(sc); 2323 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2324 mpr_unlock(sc); 2325 break; 2326 case MPRIO_MPR_COMMAND: 2327 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2328 break; 2329 case MPTIOCTL_PASS_THRU: 2330 /* 2331 * The user has requested to pass through a command to be 2332 * executed by the MPT firmware. Call our routine which does 2333 * this. Only allow one passthru IOCTL at one time. 2334 */ 2335 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2336 break; 2337 case MPTIOCTL_GET_ADAPTER_DATA: 2338 /* 2339 * The user has requested to read adapter data. Call our 2340 * routine which does this. 2341 */ 2342 error = 0; 2343 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2344 break; 2345 case MPTIOCTL_GET_PCI_INFO: 2346 /* 2347 * The user has requested to read pci info. Call 2348 * our routine which does this. 2349 */ 2350 mpr_lock(sc); 2351 error = 0; 2352 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2353 mpr_unlock(sc); 2354 break; 2355 case MPTIOCTL_RESET_ADAPTER: 2356 mpr_lock(sc); 2357 sc->port_enable_complete = 0; 2358 uint32_t reinit_start = time_uptime; 2359 error = mpr_reinit(sc); 2360 /* Sleep for 300 second. */ 2361 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx, 2362 PRIBIO, "mpr_porten", 300 * hz); 2363 mpr_unlock(sc); 2364 if (msleep_ret) 2365 printf("Port Enable did not complete after Diag " 2366 "Reset msleep error %d.\n", msleep_ret); 2367 else 2368 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2369 "completed in %d seconds.\n", 2370 (uint32_t)(time_uptime - reinit_start)); 2371 break; 2372 case MPTIOCTL_DIAG_ACTION: 2373 /* 2374 * The user has done a diag buffer action. Call our routine 2375 * which does this. Only allow one diag action at one time. 2376 */ 2377 mpr_lock(sc); 2378 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2379 mpr_unlock(sc); 2380 break; 2381 case MPTIOCTL_EVENT_QUERY: 2382 /* 2383 * The user has done an event query. Call our routine which does 2384 * this. 2385 */ 2386 error = 0; 2387 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2388 break; 2389 case MPTIOCTL_EVENT_ENABLE: 2390 /* 2391 * The user has done an event enable. Call our routine which 2392 * does this. 2393 */ 2394 error = 0; 2395 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2396 break; 2397 case MPTIOCTL_EVENT_REPORT: 2398 /* 2399 * The user has done an event report. Call our routine which 2400 * does this. 2401 */ 2402 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2403 break; 2404 case MPTIOCTL_REG_ACCESS: 2405 /* 2406 * The user has requested register access. Call our routine 2407 * which does this. 2408 */ 2409 mpr_lock(sc); 2410 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2411 mpr_unlock(sc); 2412 break; 2413 case MPTIOCTL_BTDH_MAPPING: 2414 /* 2415 * The user has requested to translate a bus/target to a 2416 * DevHandle or a DevHandle to a bus/target. Call our routine 2417 * which does this. 2418 */ 2419 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2420 break; 2421 default: 2422 error = ENOIOCTL; 2423 break; 2424 } 2425 2426 if (mpr_page != NULL) 2427 free(mpr_page, M_MPRUSER); 2428 2429 return (error); 2430 } 2431 2432 #ifdef COMPAT_FREEBSD32 2433 2434 struct mpr_cfg_page_req32 { 2435 MPI2_CONFIG_PAGE_HEADER header; 2436 uint32_t page_address; 2437 uint32_t buf; 2438 int len; 2439 uint16_t ioc_status; 2440 }; 2441 2442 struct mpr_ext_cfg_page_req32 { 2443 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2444 uint32_t page_address; 2445 uint32_t buf; 2446 int len; 2447 uint16_t ioc_status; 2448 }; 2449 2450 struct mpr_raid_action32 { 2451 uint8_t action; 2452 uint8_t volume_bus; 2453 uint8_t volume_id; 2454 uint8_t phys_disk_num; 2455 uint32_t action_data_word; 2456 uint32_t buf; 2457 int len; 2458 uint32_t volume_status; 2459 uint32_t action_data[4]; 2460 uint16_t action_status; 2461 uint16_t ioc_status; 2462 uint8_t write; 2463 }; 2464 2465 struct mpr_usr_command32 { 2466 uint32_t req; 2467 uint32_t req_len; 2468 uint32_t rpl; 2469 uint32_t rpl_len; 2470 uint32_t buf; 2471 int len; 2472 uint32_t flags; 2473 }; 2474 2475 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2476 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2477 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2478 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2479 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2480 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2481 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2482 2483 static int 2484 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2485 struct thread *td) 2486 { 2487 struct mpr_cfg_page_req32 *page32 = _arg; 2488 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2489 struct mpr_raid_action32 *raid32 = _arg; 2490 struct mpr_usr_command32 *user32 = _arg; 2491 union { 2492 struct mpr_cfg_page_req page; 2493 struct mpr_ext_cfg_page_req ext; 2494 struct mpr_raid_action raid; 2495 struct mpr_usr_command user; 2496 } arg; 2497 u_long cmd; 2498 int error; 2499 2500 switch (cmd32) { 2501 case MPRIO_READ_CFG_HEADER32: 2502 case MPRIO_READ_CFG_PAGE32: 2503 case MPRIO_WRITE_CFG_PAGE32: 2504 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2505 cmd = MPRIO_READ_CFG_HEADER; 2506 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2507 cmd = MPRIO_READ_CFG_PAGE; 2508 else 2509 cmd = MPRIO_WRITE_CFG_PAGE; 2510 CP(*page32, arg.page, header); 2511 CP(*page32, arg.page, page_address); 2512 PTRIN_CP(*page32, arg.page, buf); 2513 CP(*page32, arg.page, len); 2514 CP(*page32, arg.page, ioc_status); 2515 break; 2516 2517 case MPRIO_READ_EXT_CFG_HEADER32: 2518 case MPRIO_READ_EXT_CFG_PAGE32: 2519 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2520 cmd = MPRIO_READ_EXT_CFG_HEADER; 2521 else 2522 cmd = MPRIO_READ_EXT_CFG_PAGE; 2523 CP(*ext32, arg.ext, header); 2524 CP(*ext32, arg.ext, page_address); 2525 PTRIN_CP(*ext32, arg.ext, buf); 2526 CP(*ext32, arg.ext, len); 2527 CP(*ext32, arg.ext, ioc_status); 2528 break; 2529 2530 case MPRIO_RAID_ACTION32: 2531 cmd = MPRIO_RAID_ACTION; 2532 CP(*raid32, arg.raid, action); 2533 CP(*raid32, arg.raid, volume_bus); 2534 CP(*raid32, arg.raid, volume_id); 2535 CP(*raid32, arg.raid, phys_disk_num); 2536 CP(*raid32, arg.raid, action_data_word); 2537 PTRIN_CP(*raid32, arg.raid, buf); 2538 CP(*raid32, arg.raid, len); 2539 CP(*raid32, arg.raid, volume_status); 2540 bcopy(raid32->action_data, arg.raid.action_data, 2541 sizeof arg.raid.action_data); 2542 CP(*raid32, arg.raid, ioc_status); 2543 CP(*raid32, arg.raid, write); 2544 break; 2545 2546 case MPRIO_MPR_COMMAND32: 2547 cmd = MPRIO_MPR_COMMAND; 2548 PTRIN_CP(*user32, arg.user, req); 2549 CP(*user32, arg.user, req_len); 2550 PTRIN_CP(*user32, arg.user, rpl); 2551 CP(*user32, arg.user, rpl_len); 2552 PTRIN_CP(*user32, arg.user, buf); 2553 CP(*user32, arg.user, len); 2554 CP(*user32, arg.user, flags); 2555 break; 2556 default: 2557 return (ENOIOCTL); 2558 } 2559 2560 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2561 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2562 switch (cmd32) { 2563 case MPRIO_READ_CFG_HEADER32: 2564 case MPRIO_READ_CFG_PAGE32: 2565 case MPRIO_WRITE_CFG_PAGE32: 2566 CP(arg.page, *page32, header); 2567 CP(arg.page, *page32, page_address); 2568 PTROUT_CP(arg.page, *page32, buf); 2569 CP(arg.page, *page32, len); 2570 CP(arg.page, *page32, ioc_status); 2571 break; 2572 2573 case MPRIO_READ_EXT_CFG_HEADER32: 2574 case MPRIO_READ_EXT_CFG_PAGE32: 2575 CP(arg.ext, *ext32, header); 2576 CP(arg.ext, *ext32, page_address); 2577 PTROUT_CP(arg.ext, *ext32, buf); 2578 CP(arg.ext, *ext32, len); 2579 CP(arg.ext, *ext32, ioc_status); 2580 break; 2581 2582 case MPRIO_RAID_ACTION32: 2583 CP(arg.raid, *raid32, action); 2584 CP(arg.raid, *raid32, volume_bus); 2585 CP(arg.raid, *raid32, volume_id); 2586 CP(arg.raid, *raid32, phys_disk_num); 2587 CP(arg.raid, *raid32, action_data_word); 2588 PTROUT_CP(arg.raid, *raid32, buf); 2589 CP(arg.raid, *raid32, len); 2590 CP(arg.raid, *raid32, volume_status); 2591 bcopy(arg.raid.action_data, raid32->action_data, 2592 sizeof arg.raid.action_data); 2593 CP(arg.raid, *raid32, ioc_status); 2594 CP(arg.raid, *raid32, write); 2595 break; 2596 2597 case MPRIO_MPR_COMMAND32: 2598 PTROUT_CP(arg.user, *user32, req); 2599 CP(arg.user, *user32, req_len); 2600 PTROUT_CP(arg.user, *user32, rpl); 2601 CP(arg.user, *user32, rpl_len); 2602 PTROUT_CP(arg.user, *user32, buf); 2603 CP(arg.user, *user32, len); 2604 CP(arg.user, *user32, flags); 2605 break; 2606 } 2607 } 2608 2609 return (error); 2610 } 2611 #endif /* COMPAT_FREEBSD32 */ 2612 2613 static int 2614 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag, 2615 struct thread *td) 2616 { 2617 #ifdef COMPAT_FREEBSD32 2618 if (SV_CURPROC_FLAG(SV_ILP32)) 2619 return (mpr_ioctl32(dev, com, arg, flag, td)); 2620 #endif 2621 return (mpr_ioctl(dev, com, arg, flag, td)); 2622 } 2623