xref: /freebsd/sys/dev/lge/if_lge.c (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001
6  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
41  * documentation not available, but ask me nicely.
42  *
43  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
44  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
45  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
46  * are three supported methods for data transfer between host and
47  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
48  * Propulsion Technology (tm) DMA. The latter mechanism is a form
49  * of double buffer DMA where the packet data is copied to a
50  * pre-allocated DMA buffer who's physical address has been loaded
51  * into a table at device initialization time. The rationale is that
52  * the virtual to physical address translation needed for normal
53  * scatter/gather DMA is more expensive than the data copy needed
54  * for double buffering. This may be true in Windows NT and the like,
55  * but it isn't true for us, at least on the x86 arch. This driver
56  * uses the scatter/gather I/O method for both TX and RX.
57  *
58  * The LXT1001 only supports TCP/IP checksum offload on receive.
59  * Also, the VLAN tagging is done using a 16-entry table which allows
60  * the chip to perform hardware filtering based on VLAN tags. Sadly,
61  * our vlan support doesn't currently play well with this kind of
62  * hardware support.
63  *
64  * Special thanks to:
65  * - Jeff James at Intel, for arranging to have the LXT1001 manual
66  *   released (at long last)
67  * - Beny Chen at D-Link, for actually sending it to me
68  * - Brad Short and Keith Alexis at SMC, for sending me sample
69  *   SMC9462SX and SMC9462TX adapters for testing
70  * - Paul Saab at Y!, for not killing me (though it remains to be seen
71  *   if in fact he did me much of a favor)
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 
83 #include <net/if.h>
84 #include <net/if_var.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_types.h>
90 
91 #include <net/bpf.h>
92 
93 #include <vm/vm.h>              /* for vtophys */
94 #include <vm/pmap.h>            /* for vtophys */
95 #include <machine/bus.h>
96 #include <machine/resource.h>
97 #include <sys/bus.h>
98 #include <sys/rman.h>
99 
100 #include <dev/mii/mii.h>
101 #include <dev/mii/miivar.h>
102 
103 #include <dev/pci/pcireg.h>
104 #include <dev/pci/pcivar.h>
105 
106 #define LGE_USEIOSPACE
107 
108 #include <dev/lge/if_lgereg.h>
109 
110 /* "device miibus" required.  See GENERIC if you get errors here. */
111 #include "miibus_if.h"
112 
113 /*
114  * Various supported device vendors/types and their names.
115  */
116 static const struct lge_type lge_devs[] = {
117 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
118 	{ 0, 0, NULL }
119 };
120 
121 static int lge_probe(device_t);
122 static int lge_attach(device_t);
123 static int lge_detach(device_t);
124 
125 static int lge_alloc_jumbo_mem(struct lge_softc *);
126 static void lge_free_jumbo_mem(struct lge_softc *);
127 static void *lge_jalloc(struct lge_softc *);
128 static void lge_jfree(struct mbuf *);
129 
130 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
131 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
132 static void lge_rxeof(struct lge_softc *, int);
133 static void lge_rxeoc(struct lge_softc *);
134 static void lge_txeof(struct lge_softc *);
135 static void lge_intr(void *);
136 static void lge_tick(void *);
137 static void lge_start(struct ifnet *);
138 static void lge_start_locked(struct ifnet *);
139 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
140 static void lge_init(void *);
141 static void lge_init_locked(struct lge_softc *);
142 static void lge_stop(struct lge_softc *);
143 static void lge_watchdog(struct lge_softc *);
144 static int lge_shutdown(device_t);
145 static int lge_ifmedia_upd(struct ifnet *);
146 static void lge_ifmedia_upd_locked(struct ifnet *);
147 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
148 
149 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
150 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
151 
152 static int lge_miibus_readreg(device_t, int, int);
153 static int lge_miibus_writereg(device_t, int, int, int);
154 static void lge_miibus_statchg(device_t);
155 
156 static void lge_setmulti(struct lge_softc *);
157 static void lge_reset(struct lge_softc *);
158 static int lge_list_rx_init(struct lge_softc *);
159 static int lge_list_tx_init(struct lge_softc *);
160 
161 #ifdef LGE_USEIOSPACE
162 #define LGE_RES			SYS_RES_IOPORT
163 #define LGE_RID			LGE_PCI_LOIO
164 #else
165 #define LGE_RES			SYS_RES_MEMORY
166 #define LGE_RID			LGE_PCI_LOMEM
167 #endif
168 
169 static device_method_t lge_methods[] = {
170 	/* Device interface */
171 	DEVMETHOD(device_probe,		lge_probe),
172 	DEVMETHOD(device_attach,	lge_attach),
173 	DEVMETHOD(device_detach,	lge_detach),
174 	DEVMETHOD(device_shutdown,	lge_shutdown),
175 
176 	/* MII interface */
177 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
180 
181 	DEVMETHOD_END
182 };
183 
184 static driver_t lge_driver = {
185 	"lge",
186 	lge_methods,
187 	sizeof(struct lge_softc)
188 };
189 
190 static devclass_t lge_devclass;
191 
192 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
193 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
194 MODULE_DEPEND(lge, pci, 1, 1, 1);
195 MODULE_DEPEND(lge, ether, 1, 1, 1);
196 MODULE_DEPEND(lge, miibus, 1, 1, 1);
197 
198 #define LGE_SETBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg,				\
200 		CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg,				\
204 		CSR_READ_4(sc, reg) & ~(x))
205 
206 #define SIO_SET(x)					\
207 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
208 
209 #define SIO_CLR(x)					\
210 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
211 
212 /*
213  * Read a word of data stored in the EEPROM at address 'addr.'
214  */
215 static void
216 lge_eeprom_getword(sc, addr, dest)
217 	struct lge_softc	*sc;
218 	int			addr;
219 	u_int16_t		*dest;
220 {
221 	int			i;
222 	u_int32_t		val;
223 
224 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
225 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
226 
227 	for (i = 0; i < LGE_TIMEOUT; i++)
228 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
229 			break;
230 
231 	if (i == LGE_TIMEOUT) {
232 		device_printf(sc->lge_dev, "EEPROM read timed out\n");
233 		return;
234 	}
235 
236 	val = CSR_READ_4(sc, LGE_EEDATA);
237 
238 	if (addr & 1)
239 		*dest = (val >> 16) & 0xFFFF;
240 	else
241 		*dest = val & 0xFFFF;
242 
243 	return;
244 }
245 
246 /*
247  * Read a sequence of words from the EEPROM.
248  */
249 static void
250 lge_read_eeprom(sc, dest, off, cnt, swap)
251 	struct lge_softc	*sc;
252 	caddr_t			dest;
253 	int			off;
254 	int			cnt;
255 	int			swap;
256 {
257 	int			i;
258 	u_int16_t		word = 0, *ptr;
259 
260 	for (i = 0; i < cnt; i++) {
261 		lge_eeprom_getword(sc, off + i, &word);
262 		ptr = (u_int16_t *)(dest + (i * 2));
263 		if (swap)
264 			*ptr = ntohs(word);
265 		else
266 			*ptr = word;
267 	}
268 
269 	return;
270 }
271 
272 static int
273 lge_miibus_readreg(dev, phy, reg)
274 	device_t		dev;
275 	int			phy, reg;
276 {
277 	struct lge_softc	*sc;
278 	int			i;
279 
280 	sc = device_get_softc(dev);
281 
282 	/*
283 	 * If we have a non-PCS PHY, pretend that the internal
284 	 * autoneg stuff at PHY address 0 isn't there so that
285 	 * the miibus code will find only the GMII PHY.
286 	 */
287 	if (sc->lge_pcs == 0 && phy == 0)
288 		return(0);
289 
290 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
291 
292 	for (i = 0; i < LGE_TIMEOUT; i++)
293 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
294 			break;
295 
296 	if (i == LGE_TIMEOUT) {
297 		device_printf(sc->lge_dev, "PHY read timed out\n");
298 		return(0);
299 	}
300 
301 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
302 }
303 
304 static int
305 lge_miibus_writereg(dev, phy, reg, data)
306 	device_t		dev;
307 	int			phy, reg, data;
308 {
309 	struct lge_softc	*sc;
310 	int			i;
311 
312 	sc = device_get_softc(dev);
313 
314 	CSR_WRITE_4(sc, LGE_GMIICTL,
315 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
316 
317 	for (i = 0; i < LGE_TIMEOUT; i++)
318 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
319 			break;
320 
321 	if (i == LGE_TIMEOUT) {
322 		device_printf(sc->lge_dev, "PHY write timed out\n");
323 		return(0);
324 	}
325 
326 	return(0);
327 }
328 
329 static void
330 lge_miibus_statchg(dev)
331 	device_t		dev;
332 {
333 	struct lge_softc	*sc;
334 	struct mii_data		*mii;
335 
336 	sc = device_get_softc(dev);
337 	mii = device_get_softc(sc->lge_miibus);
338 
339 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
340 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
341 	case IFM_1000_T:
342 	case IFM_1000_SX:
343 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
344 		break;
345 	case IFM_100_TX:
346 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
347 		break;
348 	case IFM_10_T:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
350 		break;
351 	default:
352 		/*
353 		 * Choose something, even if it's wrong. Clearing
354 		 * all the bits will hose autoneg on the internal
355 		 * PHY.
356 		 */
357 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
358 		break;
359 	}
360 
361 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
362 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
363 	} else {
364 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
365 	}
366 
367 	return;
368 }
369 
370 static void
371 lge_setmulti(sc)
372 	struct lge_softc	*sc;
373 {
374 	struct ifnet		*ifp;
375 	struct ifmultiaddr	*ifma;
376 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
377 
378 	ifp = sc->lge_ifp;
379 	LGE_LOCK_ASSERT(sc);
380 
381 	/* Make sure multicast hash table is enabled. */
382 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
383 
384 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
385 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
386 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
387 		return;
388 	}
389 
390 	/* first, zot all the existing hash bits */
391 	CSR_WRITE_4(sc, LGE_MAR0, 0);
392 	CSR_WRITE_4(sc, LGE_MAR1, 0);
393 
394 	/* now program new ones */
395 	if_maddr_rlock(ifp);
396 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
397 		if (ifma->ifma_addr->sa_family != AF_LINK)
398 			continue;
399 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
400 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
401 		if (h < 32)
402 			hashes[0] |= (1 << h);
403 		else
404 			hashes[1] |= (1 << (h - 32));
405 	}
406 	if_maddr_runlock(ifp);
407 
408 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
409 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
410 
411 	return;
412 }
413 
414 static void
415 lge_reset(sc)
416 	struct lge_softc	*sc;
417 {
418 	int			i;
419 
420 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
421 
422 	for (i = 0; i < LGE_TIMEOUT; i++) {
423 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
424 			break;
425 	}
426 
427 	if (i == LGE_TIMEOUT)
428 		device_printf(sc->lge_dev, "reset never completed\n");
429 
430 	/* Wait a little while for the chip to get its brains in order. */
431 	DELAY(1000);
432 
433         return;
434 }
435 
436 /*
437  * Probe for a Level 1 chip. Check the PCI vendor and device
438  * IDs against our list and return a device name if we find a match.
439  */
440 static int
441 lge_probe(dev)
442 	device_t		dev;
443 {
444 	const struct lge_type	*t;
445 
446 	t = lge_devs;
447 
448 	while(t->lge_name != NULL) {
449 		if ((pci_get_vendor(dev) == t->lge_vid) &&
450 		    (pci_get_device(dev) == t->lge_did)) {
451 			device_set_desc(dev, t->lge_name);
452 			return(BUS_PROBE_DEFAULT);
453 		}
454 		t++;
455 	}
456 
457 	return(ENXIO);
458 }
459 
460 /*
461  * Attach the interface. Allocate softc structures, do ifmedia
462  * setup and ethernet/BPF attach.
463  */
464 static int
465 lge_attach(dev)
466 	device_t		dev;
467 {
468 	u_char			eaddr[ETHER_ADDR_LEN];
469 	struct lge_softc	*sc;
470 	struct ifnet		*ifp = NULL;
471 	int			error = 0, rid;
472 
473 	sc = device_get_softc(dev);
474 	sc->lge_dev = dev;
475 
476 	mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
477 	    MTX_DEF);
478 	callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
479 
480 	/*
481 	 * Map control/status registers.
482 	 */
483 	pci_enable_busmaster(dev);
484 
485 	rid = LGE_RID;
486 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
487 
488 	if (sc->lge_res == NULL) {
489 		device_printf(dev, "couldn't map ports/memory\n");
490 		error = ENXIO;
491 		goto fail;
492 	}
493 
494 	sc->lge_btag = rman_get_bustag(sc->lge_res);
495 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
496 
497 	/* Allocate interrupt */
498 	rid = 0;
499 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
500 	    RF_SHAREABLE | RF_ACTIVE);
501 
502 	if (sc->lge_irq == NULL) {
503 		device_printf(dev, "couldn't map interrupt\n");
504 		error = ENXIO;
505 		goto fail;
506 	}
507 
508 	/* Reset the adapter. */
509 	lge_reset(sc);
510 
511 	/*
512 	 * Get station address from the EEPROM.
513 	 */
514 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
515 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
516 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
517 
518 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
519 	    M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
520 
521 	if (sc->lge_ldata == NULL) {
522 		device_printf(dev, "no memory for list buffers!\n");
523 		error = ENXIO;
524 		goto fail;
525 	}
526 
527 	/* Try to allocate memory for jumbo buffers. */
528 	if (lge_alloc_jumbo_mem(sc)) {
529 		device_printf(dev, "jumbo buffer allocation failed\n");
530 		error = ENXIO;
531 		goto fail;
532 	}
533 
534 	ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
535 	if (ifp == NULL) {
536 		device_printf(dev, "can not if_alloc()\n");
537 		error = ENOSPC;
538 		goto fail;
539 	}
540 	ifp->if_softc = sc;
541 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
542 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
543 	ifp->if_ioctl = lge_ioctl;
544 	ifp->if_start = lge_start;
545 	ifp->if_init = lge_init;
546 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
547 	ifp->if_capabilities = IFCAP_RXCSUM;
548 	ifp->if_capenable = ifp->if_capabilities;
549 
550 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
551 		sc->lge_pcs = 1;
552 	else
553 		sc->lge_pcs = 0;
554 
555 	/*
556 	 * Do MII setup.
557 	 */
558 	error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd,
559 	    lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
560 	if (error != 0) {
561 		device_printf(dev, "attaching PHYs failed\n");
562 		goto fail;
563 	}
564 
565 	/*
566 	 * Call MI attach routine.
567 	 */
568 	ether_ifattach(ifp, eaddr);
569 
570 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
571 	    NULL, lge_intr, sc, &sc->lge_intrhand);
572 
573 	if (error) {
574 		ether_ifdetach(ifp);
575 		device_printf(dev, "couldn't set up irq\n");
576 		goto fail;
577 	}
578 	return (0);
579 
580 fail:
581 	lge_free_jumbo_mem(sc);
582 	if (sc->lge_ldata)
583 		contigfree(sc->lge_ldata,
584 		    sizeof(struct lge_list_data), M_DEVBUF);
585 	if (ifp)
586 		if_free(ifp);
587 	if (sc->lge_irq)
588 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
589 	if (sc->lge_res)
590 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
591 	mtx_destroy(&sc->lge_mtx);
592 	return(error);
593 }
594 
595 static int
596 lge_detach(dev)
597 	device_t		dev;
598 {
599 	struct lge_softc	*sc;
600 	struct ifnet		*ifp;
601 
602 	sc = device_get_softc(dev);
603 	ifp = sc->lge_ifp;
604 
605 	LGE_LOCK(sc);
606 	lge_reset(sc);
607 	lge_stop(sc);
608 	LGE_UNLOCK(sc);
609 	callout_drain(&sc->lge_stat_callout);
610 	ether_ifdetach(ifp);
611 
612 	bus_generic_detach(dev);
613 	device_delete_child(dev, sc->lge_miibus);
614 
615 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
616 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
617 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
618 
619 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
620 	if_free(ifp);
621 	lge_free_jumbo_mem(sc);
622 	mtx_destroy(&sc->lge_mtx);
623 
624 	return(0);
625 }
626 
627 /*
628  * Initialize the transmit descriptors.
629  */
630 static int
631 lge_list_tx_init(sc)
632 	struct lge_softc	*sc;
633 {
634 	struct lge_list_data	*ld;
635 	struct lge_ring_data	*cd;
636 	int			i;
637 
638 	cd = &sc->lge_cdata;
639 	ld = sc->lge_ldata;
640 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
641 		ld->lge_tx_list[i].lge_mbuf = NULL;
642 		ld->lge_tx_list[i].lge_ctl = 0;
643 	}
644 
645 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
646 
647 	return(0);
648 }
649 
650 
651 /*
652  * Initialize the RX descriptors and allocate mbufs for them. Note that
653  * we arralge the descriptors in a closed ring, so that the last descriptor
654  * points back to the first.
655  */
656 static int
657 lge_list_rx_init(sc)
658 	struct lge_softc	*sc;
659 {
660 	struct lge_list_data	*ld;
661 	struct lge_ring_data	*cd;
662 	int			i;
663 
664 	ld = sc->lge_ldata;
665 	cd = &sc->lge_cdata;
666 
667 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
668 
669 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
670 
671 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
672 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
673 			break;
674 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
675 			return(ENOBUFS);
676 	}
677 
678 	/* Clear possible 'rx command queue empty' interrupt. */
679 	CSR_READ_4(sc, LGE_ISR);
680 
681 	return(0);
682 }
683 
684 /*
685  * Initialize an RX descriptor and attach an MBUF cluster.
686  */
687 static int
688 lge_newbuf(sc, c, m)
689 	struct lge_softc	*sc;
690 	struct lge_rx_desc	*c;
691 	struct mbuf		*m;
692 {
693 	struct mbuf		*m_new = NULL;
694 	char			*buf = NULL;
695 
696 	if (m == NULL) {
697 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
698 		if (m_new == NULL) {
699 			device_printf(sc->lge_dev, "no memory for rx list "
700 			    "-- packet dropped!\n");
701 			return(ENOBUFS);
702 		}
703 
704 		/* Allocate the jumbo buffer */
705 		buf = lge_jalloc(sc);
706 		if (buf == NULL) {
707 #ifdef LGE_VERBOSE
708 			device_printf(sc->lge_dev, "jumbo allocation failed "
709 			    "-- packet dropped!\n");
710 #endif
711 			m_freem(m_new);
712 			return(ENOBUFS);
713 		}
714 		/* Attach the buffer to the mbuf */
715 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
716 		m_extadd(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree, sc, NULL,
717 		    0, EXT_NET_DRV);
718 	} else {
719 		m_new = m;
720 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
721 		m_new->m_data = m_new->m_ext.ext_buf;
722 	}
723 
724 	/*
725 	 * Adjust alignment so packet payload begins on a
726 	 * longword boundary. Mandatory for Alpha, useful on
727 	 * x86 too.
728 	*/
729 	m_adj(m_new, ETHER_ALIGN);
730 
731 	c->lge_mbuf = m_new;
732 	c->lge_fragptr_hi = 0;
733 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
734 	c->lge_fraglen = m_new->m_len;
735 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
736 	c->lge_sts = 0;
737 
738 	/*
739 	 * Put this buffer in the RX command FIFO. To do this,
740 	 * we just write the physical address of the descriptor
741 	 * into the RX descriptor address registers. Note that
742 	 * there are two registers, one high DWORD and one low
743 	 * DWORD, which lets us specify a 64-bit address if
744 	 * desired. We only use a 32-bit address for now.
745 	 * Writing to the low DWORD register is what actually
746 	 * causes the command to be issued, so we do that
747 	 * last.
748 	 */
749 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
750 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
751 
752 	return(0);
753 }
754 
755 static int
756 lge_alloc_jumbo_mem(sc)
757 	struct lge_softc	*sc;
758 {
759 	caddr_t			ptr;
760 	int			i;
761 	struct lge_jpool_entry   *entry;
762 
763 	/* Grab a big chunk o' storage. */
764 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
765 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
766 
767 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
768 		device_printf(sc->lge_dev, "no memory for jumbo buffers!\n");
769 		return(ENOBUFS);
770 	}
771 
772 	SLIST_INIT(&sc->lge_jfree_listhead);
773 	SLIST_INIT(&sc->lge_jinuse_listhead);
774 
775 	/*
776 	 * Now divide it up into 9K pieces and save the addresses
777 	 * in an array.
778 	 */
779 	ptr = sc->lge_cdata.lge_jumbo_buf;
780 	for (i = 0; i < LGE_JSLOTS; i++) {
781 		sc->lge_cdata.lge_jslots[i] = ptr;
782 		ptr += LGE_JLEN;
783 		entry = malloc(sizeof(struct lge_jpool_entry),
784 		    M_DEVBUF, M_NOWAIT);
785 		if (entry == NULL) {
786 			device_printf(sc->lge_dev, "no memory for jumbo "
787 			    "buffer queue!\n");
788 			return(ENOBUFS);
789 		}
790 		entry->slot = i;
791 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
792 		    entry, jpool_entries);
793 	}
794 
795 	return(0);
796 }
797 
798 static void
799 lge_free_jumbo_mem(sc)
800 	struct lge_softc	*sc;
801 {
802 	struct lge_jpool_entry	*entry;
803 
804 	if (sc->lge_cdata.lge_jumbo_buf == NULL)
805 		return;
806 
807 	while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) {
808 		device_printf(sc->lge_dev,
809 		    "asked to free buffer that is in use!\n");
810 		SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
811 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry,
812 		    jpool_entries);
813 	}
814 	while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) {
815 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
816 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
817 		free(entry, M_DEVBUF);
818 	}
819 
820 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
821 
822 	return;
823 }
824 
825 /*
826  * Allocate a jumbo buffer.
827  */
828 static void *
829 lge_jalloc(sc)
830 	struct lge_softc	*sc;
831 {
832 	struct lge_jpool_entry   *entry;
833 
834 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
835 
836 	if (entry == NULL) {
837 #ifdef LGE_VERBOSE
838 		device_printf(sc->lge_dev, "no free jumbo buffers\n");
839 #endif
840 		return(NULL);
841 	}
842 
843 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
844 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
845 	return(sc->lge_cdata.lge_jslots[entry->slot]);
846 }
847 
848 /*
849  * Release a jumbo buffer.
850  */
851 static void
852 lge_jfree(struct mbuf *m)
853 {
854 	struct lge_softc	*sc;
855 	int		        i;
856 	struct lge_jpool_entry   *entry;
857 
858 	/* Extract the softc struct pointer. */
859 	sc = m->m_ext.ext_arg1;
860 
861 	if (sc == NULL)
862 		panic("lge_jfree: can't find softc pointer!");
863 
864 	/* calculate the slot this buffer belongs to */
865 	i = ((vm_offset_t)m->m_ext.ext_buf
866 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
867 
868 	if ((i < 0) || (i >= LGE_JSLOTS))
869 		panic("lge_jfree: asked to free buffer that we don't manage!");
870 
871 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
872 	if (entry == NULL)
873 		panic("lge_jfree: buffer not in use!");
874 	entry->slot = i;
875 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
876 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
877 }
878 
879 /*
880  * A frame has been uploaded: pass the resulting mbuf chain up to
881  * the higher level protocols.
882  */
883 static void
884 lge_rxeof(sc, cnt)
885 	struct lge_softc	*sc;
886 	int			cnt;
887 {
888         struct mbuf		*m;
889         struct ifnet		*ifp;
890 	struct lge_rx_desc	*cur_rx;
891 	int			c, i, total_len = 0;
892 	u_int32_t		rxsts, rxctl;
893 
894 	ifp = sc->lge_ifp;
895 
896 	/* Find out how many frames were processed. */
897 	c = cnt;
898 	i = sc->lge_cdata.lge_rx_cons;
899 
900 	/* Suck them in. */
901 	while(c) {
902 		struct mbuf		*m0 = NULL;
903 
904 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
905 		rxctl = cur_rx->lge_ctl;
906 		rxsts = cur_rx->lge_sts;
907 		m = cur_rx->lge_mbuf;
908 		cur_rx->lge_mbuf = NULL;
909 		total_len = LGE_RXBYTES(cur_rx);
910 		LGE_INC(i, LGE_RX_LIST_CNT);
911 		c--;
912 
913 		/*
914 		 * If an error occurs, update stats, clear the
915 		 * status word and leave the mbuf cluster in place:
916 		 * it should simply get re-used next time this descriptor
917 	 	 * comes up in the ring.
918 		 */
919 		if (rxctl & LGE_RXCTL_ERRMASK) {
920 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
921 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
922 			continue;
923 		}
924 
925 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
926 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
927 			    ifp, NULL);
928 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
929 			if (m0 == NULL) {
930 				device_printf(sc->lge_dev, "no receive buffers "
931 				    "available -- packet dropped!\n");
932 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
933 				continue;
934 			}
935 			m = m0;
936 		} else {
937 			m->m_pkthdr.rcvif = ifp;
938 			m->m_pkthdr.len = m->m_len = total_len;
939 		}
940 
941 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
942 
943 		/* Do IP checksum checking. */
944 		if (rxsts & LGE_RXSTS_ISIP)
945 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
946 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
947 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
948 		if ((rxsts & LGE_RXSTS_ISTCP &&
949 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
950 		    (rxsts & LGE_RXSTS_ISUDP &&
951 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
952 			m->m_pkthdr.csum_flags |=
953 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
954 			m->m_pkthdr.csum_data = 0xffff;
955 		}
956 
957 		LGE_UNLOCK(sc);
958 		(*ifp->if_input)(ifp, m);
959 		LGE_LOCK(sc);
960 	}
961 
962 	sc->lge_cdata.lge_rx_cons = i;
963 
964 	return;
965 }
966 
967 static void
968 lge_rxeoc(sc)
969 	struct lge_softc	*sc;
970 {
971 	struct ifnet		*ifp;
972 
973 	ifp = sc->lge_ifp;
974 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
975 	lge_init_locked(sc);
976 	return;
977 }
978 
979 /*
980  * A frame was downloaded to the chip. It's safe for us to clean up
981  * the list buffers.
982  */
983 
984 static void
985 lge_txeof(sc)
986 	struct lge_softc	*sc;
987 {
988 	struct lge_tx_desc	*cur_tx = NULL;
989 	struct ifnet		*ifp;
990 	u_int32_t		idx, txdone;
991 
992 	ifp = sc->lge_ifp;
993 
994 	/* Clear the timeout timer. */
995 	sc->lge_timer = 0;
996 
997 	/*
998 	 * Go through our tx list and free mbufs for those
999 	 * frames that have been transmitted.
1000 	 */
1001 	idx = sc->lge_cdata.lge_tx_cons;
1002 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1003 
1004 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1005 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1006 
1007 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1008 		if (cur_tx->lge_mbuf != NULL) {
1009 			m_freem(cur_tx->lge_mbuf);
1010 			cur_tx->lge_mbuf = NULL;
1011 		}
1012 		cur_tx->lge_ctl = 0;
1013 
1014 		txdone--;
1015 		LGE_INC(idx, LGE_TX_LIST_CNT);
1016 		sc->lge_timer = 0;
1017 	}
1018 
1019 	sc->lge_cdata.lge_tx_cons = idx;
1020 
1021 	if (cur_tx != NULL)
1022 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1023 
1024 	return;
1025 }
1026 
1027 static void
1028 lge_tick(xsc)
1029 	void			*xsc;
1030 {
1031 	struct lge_softc	*sc;
1032 	struct mii_data		*mii;
1033 	struct ifnet		*ifp;
1034 
1035 	sc = xsc;
1036 	ifp = sc->lge_ifp;
1037 	LGE_LOCK_ASSERT(sc);
1038 
1039 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1040 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, CSR_READ_4(sc, LGE_STATSVAL));
1041 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1042 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, CSR_READ_4(sc, LGE_STATSVAL));
1043 
1044 	if (!sc->lge_link) {
1045 		mii = device_get_softc(sc->lge_miibus);
1046 		mii_tick(mii);
1047 		if (mii->mii_media_status & IFM_ACTIVE &&
1048 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1049 			sc->lge_link++;
1050 			if (bootverbose &&
1051 		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1052 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1053 				device_printf(sc->lge_dev, "gigabit link up\n");
1054 			if (ifp->if_snd.ifq_head != NULL)
1055 				lge_start_locked(ifp);
1056 		}
1057 	}
1058 
1059 	if (sc->lge_timer != 0 && --sc->lge_timer == 0)
1060 		lge_watchdog(sc);
1061 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1062 
1063 	return;
1064 }
1065 
1066 static void
1067 lge_intr(arg)
1068 	void			*arg;
1069 {
1070 	struct lge_softc	*sc;
1071 	struct ifnet		*ifp;
1072 	u_int32_t		status;
1073 
1074 	sc = arg;
1075 	ifp = sc->lge_ifp;
1076 	LGE_LOCK(sc);
1077 
1078 	/* Suppress unwanted interrupts */
1079 	if (!(ifp->if_flags & IFF_UP)) {
1080 		lge_stop(sc);
1081 		LGE_UNLOCK(sc);
1082 		return;
1083 	}
1084 
1085 	for (;;) {
1086 		/*
1087 		 * Reading the ISR register clears all interrupts, and
1088 		 * clears the 'interrupts enabled' bit in the IMR
1089 		 * register.
1090 		 */
1091 		status = CSR_READ_4(sc, LGE_ISR);
1092 
1093 		if ((status & LGE_INTRS) == 0)
1094 			break;
1095 
1096 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1097 			lge_txeof(sc);
1098 
1099 		if (status & LGE_ISR_RXDMA_DONE)
1100 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1101 
1102 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1103 			lge_rxeoc(sc);
1104 
1105 		if (status & LGE_ISR_PHY_INTR) {
1106 			sc->lge_link = 0;
1107 			callout_stop(&sc->lge_stat_callout);
1108 			lge_tick(sc);
1109 		}
1110 	}
1111 
1112 	/* Re-enable interrupts. */
1113 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1114 
1115 	if (ifp->if_snd.ifq_head != NULL)
1116 		lge_start_locked(ifp);
1117 
1118 	LGE_UNLOCK(sc);
1119 	return;
1120 }
1121 
1122 /*
1123  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1124  * pointers to the fragment pointers.
1125  */
1126 static int
1127 lge_encap(sc, m_head, txidx)
1128 	struct lge_softc	*sc;
1129 	struct mbuf		*m_head;
1130 	u_int32_t		*txidx;
1131 {
1132 	struct lge_frag		*f = NULL;
1133 	struct lge_tx_desc	*cur_tx;
1134 	struct mbuf		*m;
1135 	int			frag = 0, tot_len = 0;
1136 
1137 	/*
1138  	 * Start packing the mbufs in this chain into
1139 	 * the fragment pointers. Stop when we run out
1140  	 * of fragments or hit the end of the mbuf chain.
1141 	 */
1142 	m = m_head;
1143 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1144 	frag = 0;
1145 
1146 	for (m = m_head; m != NULL; m = m->m_next) {
1147 		if (m->m_len != 0) {
1148 			tot_len += m->m_len;
1149 			f = &cur_tx->lge_frags[frag];
1150 			f->lge_fraglen = m->m_len;
1151 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1152 			f->lge_fragptr_hi = 0;
1153 			frag++;
1154 		}
1155 	}
1156 
1157 	if (m != NULL)
1158 		return(ENOBUFS);
1159 
1160 	cur_tx->lge_mbuf = m_head;
1161 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1162 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1163 
1164 	/* Queue for transmit */
1165 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1166 
1167 	return(0);
1168 }
1169 
1170 /*
1171  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1172  * to the mbuf data regions directly in the transmit lists. We also save a
1173  * copy of the pointers since the transmit list fragment pointers are
1174  * physical addresses.
1175  */
1176 
1177 static void
1178 lge_start(ifp)
1179 	struct ifnet		*ifp;
1180 {
1181 	struct lge_softc	*sc;
1182 
1183 	sc = ifp->if_softc;
1184 	LGE_LOCK(sc);
1185 	lge_start_locked(ifp);
1186 	LGE_UNLOCK(sc);
1187 }
1188 
1189 static void
1190 lge_start_locked(ifp)
1191 	struct ifnet		*ifp;
1192 {
1193 	struct lge_softc	*sc;
1194 	struct mbuf		*m_head = NULL;
1195 	u_int32_t		idx;
1196 
1197 	sc = ifp->if_softc;
1198 
1199 	if (!sc->lge_link)
1200 		return;
1201 
1202 	idx = sc->lge_cdata.lge_tx_prod;
1203 
1204 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1205 		return;
1206 
1207 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1208 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1209 			break;
1210 
1211 		IF_DEQUEUE(&ifp->if_snd, m_head);
1212 		if (m_head == NULL)
1213 			break;
1214 
1215 		if (lge_encap(sc, m_head, &idx)) {
1216 			IF_PREPEND(&ifp->if_snd, m_head);
1217 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1218 			break;
1219 		}
1220 
1221 		/*
1222 		 * If there's a BPF listener, bounce a copy of this frame
1223 		 * to him.
1224 		 */
1225 		BPF_MTAP(ifp, m_head);
1226 	}
1227 
1228 	sc->lge_cdata.lge_tx_prod = idx;
1229 
1230 	/*
1231 	 * Set a timeout in case the chip goes out to lunch.
1232 	 */
1233 	sc->lge_timer = 5;
1234 
1235 	return;
1236 }
1237 
1238 static void
1239 lge_init(xsc)
1240 	void			*xsc;
1241 {
1242 	struct lge_softc	*sc = xsc;
1243 
1244 	LGE_LOCK(sc);
1245 	lge_init_locked(sc);
1246 	LGE_UNLOCK(sc);
1247 }
1248 
1249 static void
1250 lge_init_locked(sc)
1251 	struct lge_softc	*sc;
1252 {
1253 	struct ifnet		*ifp = sc->lge_ifp;
1254 
1255 	LGE_LOCK_ASSERT(sc);
1256 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1257 		return;
1258 
1259 	/*
1260 	 * Cancel pending I/O and free all RX/TX buffers.
1261 	 */
1262 	lge_stop(sc);
1263 	lge_reset(sc);
1264 
1265 	/* Set MAC address */
1266 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
1267 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
1268 
1269 	/* Init circular RX list. */
1270 	if (lge_list_rx_init(sc) == ENOBUFS) {
1271 		device_printf(sc->lge_dev, "initialization failed: no "
1272 		    "memory for rx buffers\n");
1273 		lge_stop(sc);
1274 		return;
1275 	}
1276 
1277 	/*
1278 	 * Init tx descriptors.
1279 	 */
1280 	lge_list_tx_init(sc);
1281 
1282 	/* Set initial value for MODE1 register. */
1283 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1284 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1285 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1286 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1287 
1288 	 /* If we want promiscuous mode, set the allframes bit. */
1289 	if (ifp->if_flags & IFF_PROMISC) {
1290 		CSR_WRITE_4(sc, LGE_MODE1,
1291 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1292 	} else {
1293 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1294 	}
1295 
1296 	/*
1297 	 * Set the capture broadcast bit to capture broadcast frames.
1298 	 */
1299 	if (ifp->if_flags & IFF_BROADCAST) {
1300 		CSR_WRITE_4(sc, LGE_MODE1,
1301 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1302 	} else {
1303 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1304 	}
1305 
1306 	/* Packet padding workaround? */
1307 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1308 
1309 	/* No error frames */
1310 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1311 
1312 	/* Receive large frames */
1313 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1314 
1315 	/* Workaround: disable RX/TX flow control */
1316 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1317 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1318 
1319 	/* Make sure to strip CRC from received frames */
1320 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1321 
1322 	/* Turn off magic packet mode */
1323 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1324 
1325 	/* Turn off all VLAN stuff */
1326 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1327 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1328 
1329 	/* Workarond: FIFO overflow */
1330 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1331 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1332 
1333 	/*
1334 	 * Load the multicast filter.
1335 	 */
1336 	lge_setmulti(sc);
1337 
1338 	/*
1339 	 * Enable hardware checksum validation for all received IPv4
1340 	 * packets, do not reject packets with bad checksums.
1341 	 */
1342 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1343 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1344 	    LGE_MODE2_RX_ERRCSUM);
1345 
1346 	/*
1347 	 * Enable the delivery of PHY interrupts based on
1348 	 * link/speed/duplex status chalges.
1349 	 */
1350 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1351 
1352 	/* Enable receiver and transmitter. */
1353 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1354 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1355 
1356 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1357 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1358 
1359 	/*
1360 	 * Enable interrupts.
1361 	 */
1362 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1363 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1364 
1365 	lge_ifmedia_upd_locked(ifp);
1366 
1367 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1368 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1369 
1370 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1371 
1372 	return;
1373 }
1374 
1375 /*
1376  * Set media options.
1377  */
1378 static int
1379 lge_ifmedia_upd(ifp)
1380 	struct ifnet		*ifp;
1381 {
1382 	struct lge_softc	*sc;
1383 
1384 	sc = ifp->if_softc;
1385 	LGE_LOCK(sc);
1386 	lge_ifmedia_upd_locked(ifp);
1387 	LGE_UNLOCK(sc);
1388 
1389 	return(0);
1390 }
1391 
1392 static void
1393 lge_ifmedia_upd_locked(ifp)
1394 	struct ifnet		*ifp;
1395 {
1396 	struct lge_softc	*sc;
1397 	struct mii_data		*mii;
1398 	struct mii_softc	*miisc;
1399 
1400 	sc = ifp->if_softc;
1401 
1402 	LGE_LOCK_ASSERT(sc);
1403 	mii = device_get_softc(sc->lge_miibus);
1404 	sc->lge_link = 0;
1405 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1406 		PHY_RESET(miisc);
1407 	mii_mediachg(mii);
1408 }
1409 
1410 /*
1411  * Report current media status.
1412  */
1413 static void
1414 lge_ifmedia_sts(ifp, ifmr)
1415 	struct ifnet		*ifp;
1416 	struct ifmediareq	*ifmr;
1417 {
1418 	struct lge_softc	*sc;
1419 	struct mii_data		*mii;
1420 
1421 	sc = ifp->if_softc;
1422 
1423 	LGE_LOCK(sc);
1424 	mii = device_get_softc(sc->lge_miibus);
1425 	mii_pollstat(mii);
1426 	ifmr->ifm_active = mii->mii_media_active;
1427 	ifmr->ifm_status = mii->mii_media_status;
1428 	LGE_UNLOCK(sc);
1429 
1430 	return;
1431 }
1432 
1433 static int
1434 lge_ioctl(ifp, command, data)
1435 	struct ifnet		*ifp;
1436 	u_long			command;
1437 	caddr_t			data;
1438 {
1439 	struct lge_softc	*sc = ifp->if_softc;
1440 	struct ifreq		*ifr = (struct ifreq *) data;
1441 	struct mii_data		*mii;
1442 	int			error = 0;
1443 
1444 	switch(command) {
1445 	case SIOCSIFMTU:
1446 		LGE_LOCK(sc);
1447 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1448 			error = EINVAL;
1449 		else
1450 			ifp->if_mtu = ifr->ifr_mtu;
1451 		LGE_UNLOCK(sc);
1452 		break;
1453 	case SIOCSIFFLAGS:
1454 		LGE_LOCK(sc);
1455 		if (ifp->if_flags & IFF_UP) {
1456 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1457 			    ifp->if_flags & IFF_PROMISC &&
1458 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1459 				CSR_WRITE_4(sc, LGE_MODE1,
1460 				    LGE_MODE1_SETRST_CTL1|
1461 				    LGE_MODE1_RX_PROMISC);
1462 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1463 			    !(ifp->if_flags & IFF_PROMISC) &&
1464 			    sc->lge_if_flags & IFF_PROMISC) {
1465 				CSR_WRITE_4(sc, LGE_MODE1,
1466 				    LGE_MODE1_RX_PROMISC);
1467 			} else {
1468 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1469 				lge_init_locked(sc);
1470 			}
1471 		} else {
1472 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1473 				lge_stop(sc);
1474 		}
1475 		sc->lge_if_flags = ifp->if_flags;
1476 		LGE_UNLOCK(sc);
1477 		error = 0;
1478 		break;
1479 	case SIOCADDMULTI:
1480 	case SIOCDELMULTI:
1481 		LGE_LOCK(sc);
1482 		lge_setmulti(sc);
1483 		LGE_UNLOCK(sc);
1484 		error = 0;
1485 		break;
1486 	case SIOCGIFMEDIA:
1487 	case SIOCSIFMEDIA:
1488 		mii = device_get_softc(sc->lge_miibus);
1489 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1490 		break;
1491 	default:
1492 		error = ether_ioctl(ifp, command, data);
1493 		break;
1494 	}
1495 
1496 	return(error);
1497 }
1498 
1499 static void
1500 lge_watchdog(sc)
1501 	struct lge_softc	*sc;
1502 {
1503 	struct ifnet		*ifp;
1504 
1505 	LGE_LOCK_ASSERT(sc);
1506 	ifp = sc->lge_ifp;
1507 
1508 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1509 	if_printf(ifp, "watchdog timeout\n");
1510 
1511 	lge_stop(sc);
1512 	lge_reset(sc);
1513 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1514 	lge_init_locked(sc);
1515 
1516 	if (ifp->if_snd.ifq_head != NULL)
1517 		lge_start_locked(ifp);
1518 }
1519 
1520 /*
1521  * Stop the adapter and free any mbufs allocated to the
1522  * RX and TX lists.
1523  */
1524 static void
1525 lge_stop(sc)
1526 	struct lge_softc	*sc;
1527 {
1528 	int			i;
1529 	struct ifnet		*ifp;
1530 
1531 	LGE_LOCK_ASSERT(sc);
1532 	ifp = sc->lge_ifp;
1533 	sc->lge_timer = 0;
1534 	callout_stop(&sc->lge_stat_callout);
1535 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1536 
1537 	/* Disable receiver and transmitter. */
1538 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1539 	sc->lge_link = 0;
1540 
1541 	/*
1542 	 * Free data in the RX lists.
1543 	 */
1544 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1545 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1546 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1547 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1548 		}
1549 	}
1550 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1551 		sizeof(sc->lge_ldata->lge_rx_list));
1552 
1553 	/*
1554 	 * Free the TX list buffers.
1555 	 */
1556 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1557 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1558 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1559 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1560 		}
1561 	}
1562 
1563 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1564 		sizeof(sc->lge_ldata->lge_tx_list));
1565 
1566 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1567 
1568 	return;
1569 }
1570 
1571 /*
1572  * Stop all chip I/O so that the kernel's probe routines don't
1573  * get confused by errant DMAs when rebooting.
1574  */
1575 static int
1576 lge_shutdown(dev)
1577 	device_t		dev;
1578 {
1579 	struct lge_softc	*sc;
1580 
1581 	sc = device_get_softc(dev);
1582 
1583 	LGE_LOCK(sc);
1584 	lge_reset(sc);
1585 	lge_stop(sc);
1586 	LGE_UNLOCK(sc);
1587 
1588 	return (0);
1589 }
1590