xref: /freebsd/sys/dev/iwi/if_iwi.c (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004, 2005
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
7  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*-
36  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
37  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
38  */
39 
40 #include <sys/param.h>
41 #include <sys/sysctl.h>
42 #include <sys/sockio.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/module.h>
51 #include <sys/bus.h>
52 #include <sys/endian.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/linker.h>
57 #include <sys/firmware.h>
58 #include <sys/taskqueue.h>
59 
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <net/bpf.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/ethernet.h>
72 #include <net/if_dl.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 
76 #include <net80211/ieee80211_var.h>
77 #include <net80211/ieee80211_radiotap.h>
78 #include <net80211/ieee80211_input.h>
79 #include <net80211/ieee80211_regdomain.h>
80 
81 #include <netinet/in.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #include <netinet/if_ether.h>
86 
87 #include <dev/iwi/if_iwireg.h>
88 #include <dev/iwi/if_iwivar.h>
89 #include <dev/iwi/if_iwi_ioctl.h>
90 
91 #define IWI_DEBUG
92 #ifdef IWI_DEBUG
93 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
94 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
95 int iwi_debug = 0;
96 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
97 
98 static const char *iwi_fw_states[] = {
99 	"IDLE", 		/* IWI_FW_IDLE */
100 	"LOADING",		/* IWI_FW_LOADING */
101 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
102 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
103 	"SCANNING",		/* IWI_FW_SCANNING */
104 };
105 #else
106 #define DPRINTF(x)
107 #define DPRINTFN(n, x)
108 #endif
109 
110 MODULE_DEPEND(iwi, pci,  1, 1, 1);
111 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
112 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
113 
114 enum {
115 	IWI_LED_TX,
116 	IWI_LED_RX,
117 	IWI_LED_POLL,
118 };
119 
120 struct iwi_ident {
121 	uint16_t	vendor;
122 	uint16_t	device;
123 	const char	*name;
124 };
125 
126 static const struct iwi_ident iwi_ident_table[] = {
127 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
128 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
129 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
130 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
131 
132 	{ 0, 0, NULL }
133 };
134 
135 static const uint8_t def_chan_2ghz[] =
136 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
137 static const uint8_t def_chan_5ghz_band1[] =
138 	{ 36, 40, 44, 48, 52, 56, 60, 64 };
139 static const uint8_t def_chan_5ghz_band2[] =
140 	{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
141 static const uint8_t def_chan_5ghz_band3[] =
142 	{ 149, 153, 157, 161, 165 };
143 
144 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
145 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
146 		    const uint8_t [IEEE80211_ADDR_LEN],
147 		    const uint8_t [IEEE80211_ADDR_LEN]);
148 static void	iwi_vap_delete(struct ieee80211vap *);
149 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
150 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
151 		    int);
152 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
153 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
154 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
155 		    int, bus_addr_t, bus_addr_t);
156 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
157 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
158 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
159 		    int);
160 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
161 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
162 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
163 		    const uint8_t [IEEE80211_ADDR_LEN]);
164 static void	iwi_node_free(struct ieee80211_node *);
165 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
166 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
167 static void	iwi_wme_init(struct iwi_softc *);
168 static int	iwi_wme_setparams(struct iwi_softc *);
169 static int	iwi_wme_update(struct ieee80211com *);
170 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
171 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
172 		    struct iwi_frame *);
173 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
174 static void	iwi_rx_intr(struct iwi_softc *);
175 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
176 static void	iwi_intr(void *);
177 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
178 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
179 static int	iwi_tx_start(struct iwi_softc *, struct mbuf *,
180 		    struct ieee80211_node *, int);
181 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
182 		    const struct ieee80211_bpf_params *);
183 static void	iwi_start(struct iwi_softc *);
184 static int	iwi_transmit(struct ieee80211com *, struct mbuf *);
185 static void	iwi_watchdog(void *);
186 static int	iwi_ioctl(struct ieee80211com *, u_long, void *);
187 static void	iwi_parent(struct ieee80211com *);
188 static void	iwi_stop_master(struct iwi_softc *);
189 static int	iwi_reset(struct iwi_softc *);
190 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
191 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
192 static void	iwi_release_fw_dma(struct iwi_softc *sc);
193 static int	iwi_config(struct iwi_softc *);
194 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
195 static void	iwi_put_firmware(struct iwi_softc *);
196 static void	iwi_monitor_scan(void *, int);
197 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
198 static void	iwi_scan_start(struct ieee80211com *);
199 static void	iwi_scan_end(struct ieee80211com *);
200 static void	iwi_set_channel(struct ieee80211com *);
201 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
202 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
203 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
204 static void	iwi_disassoc(void *, int);
205 static int	iwi_disassociate(struct iwi_softc *, int quiet);
206 static void	iwi_init_locked(struct iwi_softc *);
207 static void	iwi_init(void *);
208 static int	iwi_init_fw_dma(struct iwi_softc *, int);
209 static void	iwi_stop_locked(void *);
210 static void	iwi_stop(struct iwi_softc *);
211 static void	iwi_restart(void *, int);
212 static int	iwi_getrfkill(struct iwi_softc *);
213 static void	iwi_radio_on(void *, int);
214 static void	iwi_radio_off(void *, int);
215 static void	iwi_sysctlattach(struct iwi_softc *);
216 static void	iwi_led_event(struct iwi_softc *, int);
217 static void	iwi_ledattach(struct iwi_softc *);
218 static void	iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
219 static void	iwi_getradiocaps(struct ieee80211com *, int, int *,
220 		    struct ieee80211_channel []);
221 
222 static int iwi_probe(device_t);
223 static int iwi_attach(device_t);
224 static int iwi_detach(device_t);
225 static int iwi_shutdown(device_t);
226 static int iwi_suspend(device_t);
227 static int iwi_resume(device_t);
228 
229 static device_method_t iwi_methods[] = {
230 	/* Device interface */
231 	DEVMETHOD(device_probe,		iwi_probe),
232 	DEVMETHOD(device_attach,	iwi_attach),
233 	DEVMETHOD(device_detach,	iwi_detach),
234 	DEVMETHOD(device_shutdown,	iwi_shutdown),
235 	DEVMETHOD(device_suspend,	iwi_suspend),
236 	DEVMETHOD(device_resume,	iwi_resume),
237 
238 	DEVMETHOD_END
239 };
240 
241 static driver_t iwi_driver = {
242 	"iwi",
243 	iwi_methods,
244 	sizeof (struct iwi_softc)
245 };
246 
247 static devclass_t iwi_devclass;
248 
249 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
250 
251 MODULE_VERSION(iwi, 1);
252 
253 static __inline uint8_t
254 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
255 {
256 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
257 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
258 }
259 
260 static __inline uint32_t
261 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
262 {
263 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
264 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
265 }
266 
267 static int
268 iwi_probe(device_t dev)
269 {
270 	const struct iwi_ident *ident;
271 
272 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
273 		if (pci_get_vendor(dev) == ident->vendor &&
274 		    pci_get_device(dev) == ident->device) {
275 			device_set_desc(dev, ident->name);
276 			return (BUS_PROBE_DEFAULT);
277 		}
278 	}
279 	return ENXIO;
280 }
281 
282 static int
283 iwi_attach(device_t dev)
284 {
285 	struct iwi_softc *sc = device_get_softc(dev);
286 	struct ieee80211com *ic = &sc->sc_ic;
287 	uint16_t val;
288 	int i, error;
289 
290 	sc->sc_dev = dev;
291 	sc->sc_ledevent = ticks;
292 
293 	IWI_LOCK_INIT(sc);
294 	mbufq_init(&sc->sc_snd, ifqmaxlen);
295 
296 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
297 
298 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
299 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
300 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
301 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
302 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
303 
304 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
305 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
306 
307 	pci_write_config(dev, 0x41, 0, 1);
308 
309 	/* enable bus-mastering */
310 	pci_enable_busmaster(dev);
311 
312 	i = PCIR_BAR(0);
313 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
314 	if (sc->mem == NULL) {
315 		device_printf(dev, "could not allocate memory resource\n");
316 		goto fail;
317 	}
318 
319 	sc->sc_st = rman_get_bustag(sc->mem);
320 	sc->sc_sh = rman_get_bushandle(sc->mem);
321 
322 	i = 0;
323 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
324 	    RF_ACTIVE | RF_SHAREABLE);
325 	if (sc->irq == NULL) {
326 		device_printf(dev, "could not allocate interrupt resource\n");
327 		goto fail;
328 	}
329 
330 	if (iwi_reset(sc) != 0) {
331 		device_printf(dev, "could not reset adapter\n");
332 		goto fail;
333 	}
334 
335 	/*
336 	 * Allocate rings.
337 	 */
338 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
339 		device_printf(dev, "could not allocate Cmd ring\n");
340 		goto fail;
341 	}
342 
343 	for (i = 0; i < 4; i++) {
344 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
345 		    IWI_CSR_TX1_RIDX + i * 4,
346 		    IWI_CSR_TX1_WIDX + i * 4);
347 		if (error != 0) {
348 			device_printf(dev, "could not allocate Tx ring %d\n",
349 				i+i);
350 			goto fail;
351 		}
352 	}
353 
354 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
355 		device_printf(dev, "could not allocate Rx ring\n");
356 		goto fail;
357 	}
358 
359 	iwi_wme_init(sc);
360 
361 	ic->ic_softc = sc;
362 	ic->ic_name = device_get_nameunit(dev);
363 	ic->ic_opmode = IEEE80211_M_STA;
364 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
365 
366 	/* set device capabilities */
367 	ic->ic_caps =
368 	      IEEE80211_C_STA		/* station mode supported */
369 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
370 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
371 	    | IEEE80211_C_PMGT		/* power save supported */
372 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
373 	    | IEEE80211_C_WPA		/* 802.11i */
374 	    | IEEE80211_C_WME		/* 802.11e */
375 #if 0
376 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
377 #endif
378 	    ;
379 
380 	/* read MAC address from EEPROM */
381 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
382 	ic->ic_macaddr[0] = val & 0xff;
383 	ic->ic_macaddr[1] = val >> 8;
384 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
385 	ic->ic_macaddr[2] = val & 0xff;
386 	ic->ic_macaddr[3] = val >> 8;
387 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
388 	ic->ic_macaddr[4] = val & 0xff;
389 	ic->ic_macaddr[5] = val >> 8;
390 
391 	iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
392 	    ic->ic_channels);
393 
394 	ieee80211_ifattach(ic);
395 	/* override default methods */
396 	ic->ic_node_alloc = iwi_node_alloc;
397 	sc->sc_node_free = ic->ic_node_free;
398 	ic->ic_node_free = iwi_node_free;
399 	ic->ic_raw_xmit = iwi_raw_xmit;
400 	ic->ic_scan_start = iwi_scan_start;
401 	ic->ic_scan_end = iwi_scan_end;
402 	ic->ic_set_channel = iwi_set_channel;
403 	ic->ic_scan_curchan = iwi_scan_curchan;
404 	ic->ic_scan_mindwell = iwi_scan_mindwell;
405 	ic->ic_wme.wme_update = iwi_wme_update;
406 
407 	ic->ic_vap_create = iwi_vap_create;
408 	ic->ic_vap_delete = iwi_vap_delete;
409 	ic->ic_ioctl = iwi_ioctl;
410 	ic->ic_transmit = iwi_transmit;
411 	ic->ic_parent = iwi_parent;
412 	ic->ic_getradiocaps = iwi_getradiocaps;
413 
414 	ieee80211_radiotap_attach(ic,
415 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
416 		IWI_TX_RADIOTAP_PRESENT,
417 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
418 		IWI_RX_RADIOTAP_PRESENT);
419 
420 	iwi_sysctlattach(sc);
421 	iwi_ledattach(sc);
422 
423 	/*
424 	 * Hook our interrupt after all initialization is complete.
425 	 */
426 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
427 	    NULL, iwi_intr, sc, &sc->sc_ih);
428 	if (error != 0) {
429 		device_printf(dev, "could not set up interrupt\n");
430 		goto fail;
431 	}
432 
433 	if (bootverbose)
434 		ieee80211_announce(ic);
435 
436 	return 0;
437 fail:
438 	/* XXX fix */
439 	iwi_detach(dev);
440 	return ENXIO;
441 }
442 
443 static int
444 iwi_detach(device_t dev)
445 {
446 	struct iwi_softc *sc = device_get_softc(dev);
447 	struct ieee80211com *ic = &sc->sc_ic;
448 
449 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
450 
451 	/* NB: do early to drain any pending tasks */
452 	ieee80211_draintask(ic, &sc->sc_radiontask);
453 	ieee80211_draintask(ic, &sc->sc_radiofftask);
454 	ieee80211_draintask(ic, &sc->sc_restarttask);
455 	ieee80211_draintask(ic, &sc->sc_disassoctask);
456 	ieee80211_draintask(ic, &sc->sc_monitortask);
457 
458 	iwi_stop(sc);
459 
460 	ieee80211_ifdetach(ic);
461 
462 	iwi_put_firmware(sc);
463 	iwi_release_fw_dma(sc);
464 
465 	iwi_free_cmd_ring(sc, &sc->cmdq);
466 	iwi_free_tx_ring(sc, &sc->txq[0]);
467 	iwi_free_tx_ring(sc, &sc->txq[1]);
468 	iwi_free_tx_ring(sc, &sc->txq[2]);
469 	iwi_free_tx_ring(sc, &sc->txq[3]);
470 	iwi_free_rx_ring(sc, &sc->rxq);
471 
472 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
473 
474 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
475 	    sc->mem);
476 
477 	delete_unrhdr(sc->sc_unr);
478 	mbufq_drain(&sc->sc_snd);
479 
480 	IWI_LOCK_DESTROY(sc);
481 
482 	return 0;
483 }
484 
485 static struct ieee80211vap *
486 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
487     enum ieee80211_opmode opmode, int flags,
488     const uint8_t bssid[IEEE80211_ADDR_LEN],
489     const uint8_t mac[IEEE80211_ADDR_LEN])
490 {
491 	struct iwi_softc *sc = ic->ic_softc;
492 	struct iwi_vap *ivp;
493 	struct ieee80211vap *vap;
494 	int i;
495 
496 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
497 		return NULL;
498 	/*
499 	 * Get firmware image (and possibly dma memory) on mode change.
500 	 */
501 	if (iwi_get_firmware(sc, opmode))
502 		return NULL;
503 	/* allocate DMA memory for mapping firmware image */
504 	i = sc->fw_fw.size;
505 	if (sc->fw_boot.size > i)
506 		i = sc->fw_boot.size;
507 	/* XXX do we dma the ucode as well ? */
508 	if (sc->fw_uc.size > i)
509 		i = sc->fw_uc.size;
510 	if (iwi_init_fw_dma(sc, i))
511 		return NULL;
512 
513 	ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
514 	vap = &ivp->iwi_vap;
515 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
516 	/* override the default, the setting comes from the linux driver */
517 	vap->iv_bmissthreshold = 24;
518 	/* override with driver methods */
519 	ivp->iwi_newstate = vap->iv_newstate;
520 	vap->iv_newstate = iwi_newstate;
521 
522 	/* complete setup */
523 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
524 	    mac);
525 	ic->ic_opmode = opmode;
526 	return vap;
527 }
528 
529 static void
530 iwi_vap_delete(struct ieee80211vap *vap)
531 {
532 	struct iwi_vap *ivp = IWI_VAP(vap);
533 
534 	ieee80211_vap_detach(vap);
535 	free(ivp, M_80211_VAP);
536 }
537 
538 static void
539 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
540 {
541 	if (error != 0)
542 		return;
543 
544 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
545 
546 	*(bus_addr_t *)arg = segs[0].ds_addr;
547 }
548 
549 static int
550 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
551 {
552 	int error;
553 
554 	ring->count = count;
555 	ring->queued = 0;
556 	ring->cur = ring->next = 0;
557 
558 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
559 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
560 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
561 	    NULL, NULL, &ring->desc_dmat);
562 	if (error != 0) {
563 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
564 		goto fail;
565 	}
566 
567 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
568 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
569 	if (error != 0) {
570 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
571 		goto fail;
572 	}
573 
574 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
575 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
576 	if (error != 0) {
577 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
578 		goto fail;
579 	}
580 
581 	return 0;
582 
583 fail:	iwi_free_cmd_ring(sc, ring);
584 	return error;
585 }
586 
587 static void
588 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
589 {
590 	ring->queued = 0;
591 	ring->cur = ring->next = 0;
592 }
593 
594 static void
595 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
596 {
597 	if (ring->desc != NULL) {
598 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
599 		    BUS_DMASYNC_POSTWRITE);
600 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
601 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
602 	}
603 
604 	if (ring->desc_dmat != NULL)
605 		bus_dma_tag_destroy(ring->desc_dmat);
606 }
607 
608 static int
609 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
610     bus_addr_t csr_ridx, bus_addr_t csr_widx)
611 {
612 	int i, error;
613 
614 	ring->count = count;
615 	ring->queued = 0;
616 	ring->cur = ring->next = 0;
617 	ring->csr_ridx = csr_ridx;
618 	ring->csr_widx = csr_widx;
619 
620 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
621 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
622 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
623 	    NULL, &ring->desc_dmat);
624 	if (error != 0) {
625 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
626 		goto fail;
627 	}
628 
629 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
630 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
631 	if (error != 0) {
632 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
633 		goto fail;
634 	}
635 
636 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
637 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
638 	if (error != 0) {
639 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
640 		goto fail;
641 	}
642 
643 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
644 	    M_NOWAIT | M_ZERO);
645 	if (ring->data == NULL) {
646 		device_printf(sc->sc_dev, "could not allocate soft data\n");
647 		error = ENOMEM;
648 		goto fail;
649 	}
650 
651 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
652 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
653 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
654 	if (error != 0) {
655 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
656 		goto fail;
657 	}
658 
659 	for (i = 0; i < count; i++) {
660 		error = bus_dmamap_create(ring->data_dmat, 0,
661 		    &ring->data[i].map);
662 		if (error != 0) {
663 			device_printf(sc->sc_dev, "could not create DMA map\n");
664 			goto fail;
665 		}
666 	}
667 
668 	return 0;
669 
670 fail:	iwi_free_tx_ring(sc, ring);
671 	return error;
672 }
673 
674 static void
675 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
676 {
677 	struct iwi_tx_data *data;
678 	int i;
679 
680 	for (i = 0; i < ring->count; i++) {
681 		data = &ring->data[i];
682 
683 		if (data->m != NULL) {
684 			bus_dmamap_sync(ring->data_dmat, data->map,
685 			    BUS_DMASYNC_POSTWRITE);
686 			bus_dmamap_unload(ring->data_dmat, data->map);
687 			m_freem(data->m);
688 			data->m = NULL;
689 		}
690 
691 		if (data->ni != NULL) {
692 			ieee80211_free_node(data->ni);
693 			data->ni = NULL;
694 		}
695 	}
696 
697 	ring->queued = 0;
698 	ring->cur = ring->next = 0;
699 }
700 
701 static void
702 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
703 {
704 	struct iwi_tx_data *data;
705 	int i;
706 
707 	if (ring->desc != NULL) {
708 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
709 		    BUS_DMASYNC_POSTWRITE);
710 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
711 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
712 	}
713 
714 	if (ring->desc_dmat != NULL)
715 		bus_dma_tag_destroy(ring->desc_dmat);
716 
717 	if (ring->data != NULL) {
718 		for (i = 0; i < ring->count; i++) {
719 			data = &ring->data[i];
720 
721 			if (data->m != NULL) {
722 				bus_dmamap_sync(ring->data_dmat, data->map,
723 				    BUS_DMASYNC_POSTWRITE);
724 				bus_dmamap_unload(ring->data_dmat, data->map);
725 				m_freem(data->m);
726 			}
727 
728 			if (data->ni != NULL)
729 				ieee80211_free_node(data->ni);
730 
731 			if (data->map != NULL)
732 				bus_dmamap_destroy(ring->data_dmat, data->map);
733 		}
734 
735 		free(ring->data, M_DEVBUF);
736 	}
737 
738 	if (ring->data_dmat != NULL)
739 		bus_dma_tag_destroy(ring->data_dmat);
740 }
741 
742 static int
743 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
744 {
745 	struct iwi_rx_data *data;
746 	int i, error;
747 
748 	ring->count = count;
749 	ring->cur = 0;
750 
751 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
752 	    M_NOWAIT | M_ZERO);
753 	if (ring->data == NULL) {
754 		device_printf(sc->sc_dev, "could not allocate soft data\n");
755 		error = ENOMEM;
756 		goto fail;
757 	}
758 
759 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
760 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
761 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
762 	if (error != 0) {
763 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
764 		goto fail;
765 	}
766 
767 	for (i = 0; i < count; i++) {
768 		data = &ring->data[i];
769 
770 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
771 		if (error != 0) {
772 			device_printf(sc->sc_dev, "could not create DMA map\n");
773 			goto fail;
774 		}
775 
776 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
777 		if (data->m == NULL) {
778 			device_printf(sc->sc_dev,
779 			    "could not allocate rx mbuf\n");
780 			error = ENOMEM;
781 			goto fail;
782 		}
783 
784 		error = bus_dmamap_load(ring->data_dmat, data->map,
785 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
786 		    &data->physaddr, 0);
787 		if (error != 0) {
788 			device_printf(sc->sc_dev,
789 			    "could not load rx buf DMA map");
790 			goto fail;
791 		}
792 
793 		data->reg = IWI_CSR_RX_BASE + i * 4;
794 	}
795 
796 	return 0;
797 
798 fail:	iwi_free_rx_ring(sc, ring);
799 	return error;
800 }
801 
802 static void
803 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
804 {
805 	ring->cur = 0;
806 }
807 
808 static void
809 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
810 {
811 	struct iwi_rx_data *data;
812 	int i;
813 
814 	if (ring->data != NULL) {
815 		for (i = 0; i < ring->count; i++) {
816 			data = &ring->data[i];
817 
818 			if (data->m != NULL) {
819 				bus_dmamap_sync(ring->data_dmat, data->map,
820 				    BUS_DMASYNC_POSTREAD);
821 				bus_dmamap_unload(ring->data_dmat, data->map);
822 				m_freem(data->m);
823 			}
824 
825 			if (data->map != NULL)
826 				bus_dmamap_destroy(ring->data_dmat, data->map);
827 		}
828 
829 		free(ring->data, M_DEVBUF);
830 	}
831 
832 	if (ring->data_dmat != NULL)
833 		bus_dma_tag_destroy(ring->data_dmat);
834 }
835 
836 static int
837 iwi_shutdown(device_t dev)
838 {
839 	struct iwi_softc *sc = device_get_softc(dev);
840 
841 	iwi_stop(sc);
842 	iwi_put_firmware(sc);		/* ??? XXX */
843 
844 	return 0;
845 }
846 
847 static int
848 iwi_suspend(device_t dev)
849 {
850 	struct iwi_softc *sc = device_get_softc(dev);
851 	struct ieee80211com *ic = &sc->sc_ic;
852 
853 	ieee80211_suspend_all(ic);
854 	return 0;
855 }
856 
857 static int
858 iwi_resume(device_t dev)
859 {
860 	struct iwi_softc *sc = device_get_softc(dev);
861 	struct ieee80211com *ic = &sc->sc_ic;
862 
863 	pci_write_config(dev, 0x41, 0, 1);
864 
865 	ieee80211_resume_all(ic);
866 	return 0;
867 }
868 
869 static struct ieee80211_node *
870 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
871 {
872 	struct iwi_node *in;
873 
874 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
875 	if (in == NULL)
876 		return NULL;
877 	/* XXX assign sta table entry for adhoc */
878 	in->in_station = -1;
879 
880 	return &in->in_node;
881 }
882 
883 static void
884 iwi_node_free(struct ieee80211_node *ni)
885 {
886 	struct ieee80211com *ic = ni->ni_ic;
887 	struct iwi_softc *sc = ic->ic_softc;
888 	struct iwi_node *in = (struct iwi_node *)ni;
889 
890 	if (in->in_station != -1) {
891 		DPRINTF(("%s mac %6D station %u\n", __func__,
892 		    ni->ni_macaddr, ":", in->in_station));
893 		free_unr(sc->sc_unr, in->in_station);
894 	}
895 
896 	sc->sc_node_free(ni);
897 }
898 
899 /*
900  * Convert h/w rate code to IEEE rate code.
901  */
902 static int
903 iwi_cvtrate(int iwirate)
904 {
905 	switch (iwirate) {
906 	case IWI_RATE_DS1:	return 2;
907 	case IWI_RATE_DS2:	return 4;
908 	case IWI_RATE_DS5:	return 11;
909 	case IWI_RATE_DS11:	return 22;
910 	case IWI_RATE_OFDM6:	return 12;
911 	case IWI_RATE_OFDM9:	return 18;
912 	case IWI_RATE_OFDM12:	return 24;
913 	case IWI_RATE_OFDM18:	return 36;
914 	case IWI_RATE_OFDM24:	return 48;
915 	case IWI_RATE_OFDM36:	return 72;
916 	case IWI_RATE_OFDM48:	return 96;
917 	case IWI_RATE_OFDM54:	return 108;
918 	}
919 	return 0;
920 }
921 
922 /*
923  * The firmware automatically adapts the transmit speed.  We report its current
924  * value here.
925  */
926 static void
927 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
928 {
929 	struct ieee80211vap *vap = ifp->if_softc;
930 	struct ieee80211com *ic = vap->iv_ic;
931 	struct iwi_softc *sc = ic->ic_softc;
932 	struct ieee80211_node *ni;
933 
934 	/* read current transmission rate from adapter */
935 	ni = ieee80211_ref_node(vap->iv_bss);
936 	ni->ni_txrate =
937 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
938 	ieee80211_free_node(ni);
939 	ieee80211_media_status(ifp, imr);
940 }
941 
942 static int
943 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
944 {
945 	struct iwi_vap *ivp = IWI_VAP(vap);
946 	struct ieee80211com *ic = vap->iv_ic;
947 	struct iwi_softc *sc = ic->ic_softc;
948 	IWI_LOCK_DECL;
949 
950 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
951 		ieee80211_state_name[vap->iv_state],
952 		ieee80211_state_name[nstate], sc->flags));
953 
954 	IEEE80211_UNLOCK(ic);
955 	IWI_LOCK(sc);
956 	switch (nstate) {
957 	case IEEE80211_S_INIT:
958 		/*
959 		 * NB: don't try to do this if iwi_stop_master has
960 		 *     shutdown the firmware and disabled interrupts.
961 		 */
962 		if (vap->iv_state == IEEE80211_S_RUN &&
963 		    (sc->flags & IWI_FLAG_FW_INITED))
964 			iwi_disassociate(sc, 0);
965 		break;
966 	case IEEE80211_S_AUTH:
967 		iwi_auth_and_assoc(sc, vap);
968 		break;
969 	case IEEE80211_S_RUN:
970 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
971 		    vap->iv_state == IEEE80211_S_SCAN) {
972 			/*
973 			 * XXX when joining an ibss network we are called
974 			 * with a SCAN -> RUN transition on scan complete.
975 			 * Use that to call iwi_auth_and_assoc.  On completing
976 			 * the join we are then called again with an
977 			 * AUTH -> RUN transition and we want to do nothing.
978 			 * This is all totally bogus and needs to be redone.
979 			 */
980 			iwi_auth_and_assoc(sc, vap);
981 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
982 			ieee80211_runtask(ic, &sc->sc_monitortask);
983 		break;
984 	case IEEE80211_S_ASSOC:
985 		/*
986 		 * If we are transitioning from AUTH then just wait
987 		 * for the ASSOC status to come back from the firmware.
988 		 * Otherwise we need to issue the association request.
989 		 */
990 		if (vap->iv_state == IEEE80211_S_AUTH)
991 			break;
992 		iwi_auth_and_assoc(sc, vap);
993 		break;
994 	default:
995 		break;
996 	}
997 	IWI_UNLOCK(sc);
998 	IEEE80211_LOCK(ic);
999 	return ivp->iwi_newstate(vap, nstate, arg);
1000 }
1001 
1002 /*
1003  * WME parameters coming from IEEE 802.11e specification.  These values are
1004  * already declared in ieee80211_proto.c, but they are static so they can't
1005  * be reused here.
1006  */
1007 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1008 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1009 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1010 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1011 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1012 };
1013 
1014 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1015 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1016 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1017 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1018 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1019 };
1020 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1021 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1022 
1023 static void
1024 iwi_wme_init(struct iwi_softc *sc)
1025 {
1026 	const struct wmeParams *wmep;
1027 	int ac;
1028 
1029 	memset(sc->wme, 0, sizeof sc->wme);
1030 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1031 		/* set WME values for CCK modulation */
1032 		wmep = &iwi_wme_cck_params[ac];
1033 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1034 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1035 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1036 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1037 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1038 
1039 		/* set WME values for OFDM modulation */
1040 		wmep = &iwi_wme_ofdm_params[ac];
1041 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1042 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1043 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1044 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1045 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1046 	}
1047 }
1048 
1049 static int
1050 iwi_wme_setparams(struct iwi_softc *sc)
1051 {
1052 	struct ieee80211com *ic = &sc->sc_ic;
1053 	struct chanAccParams chp;
1054 	const struct wmeParams *wmep;
1055 	int ac;
1056 
1057 	ieee80211_wme_ic_getparams(ic, &chp);
1058 
1059 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1060 		/* set WME values for current operating mode */
1061 		wmep = &chp.cap_wmeParams[ac];
1062 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1063 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1064 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1065 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1066 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1067 	}
1068 
1069 	DPRINTF(("Setting WME parameters\n"));
1070 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1071 }
1072 #undef IWI_USEC
1073 #undef IWI_EXP2
1074 
1075 static int
1076 iwi_wme_update(struct ieee80211com *ic)
1077 {
1078 	struct iwi_softc *sc = ic->ic_softc;
1079 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1080 	IWI_LOCK_DECL;
1081 
1082 	/*
1083 	 * We may be called to update the WME parameters in
1084 	 * the adapter at various places.  If we're already
1085 	 * associated then initiate the request immediately;
1086 	 * otherwise we assume the params will get sent down
1087 	 * to the adapter as part of the work iwi_auth_and_assoc
1088 	 * does.
1089 	 */
1090 	if (vap->iv_state == IEEE80211_S_RUN) {
1091 		IWI_LOCK(sc);
1092 		iwi_wme_setparams(sc);
1093 		IWI_UNLOCK(sc);
1094 	}
1095 	return (0);
1096 }
1097 
1098 static int
1099 iwi_wme_setie(struct iwi_softc *sc)
1100 {
1101 	struct ieee80211_wme_info wme;
1102 
1103 	memset(&wme, 0, sizeof wme);
1104 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1105 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1106 	wme.wme_oui[0] = 0x00;
1107 	wme.wme_oui[1] = 0x50;
1108 	wme.wme_oui[2] = 0xf2;
1109 	wme.wme_type = WME_OUI_TYPE;
1110 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1111 	wme.wme_version = WME_VERSION;
1112 	wme.wme_info = 0;
1113 
1114 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1115 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1116 }
1117 
1118 /*
1119  * Read 16 bits at address 'addr' from the serial EEPROM.
1120  */
1121 static uint16_t
1122 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1123 {
1124 	uint32_t tmp;
1125 	uint16_t val;
1126 	int n;
1127 
1128 	/* clock C once before the first command */
1129 	IWI_EEPROM_CTL(sc, 0);
1130 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1131 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1132 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1133 
1134 	/* write start bit (1) */
1135 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1136 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1137 
1138 	/* write READ opcode (10) */
1139 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1140 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1141 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1142 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1143 
1144 	/* write address A7-A0 */
1145 	for (n = 7; n >= 0; n--) {
1146 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1147 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1148 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1149 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1150 	}
1151 
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1153 
1154 	/* read data Q15-Q0 */
1155 	val = 0;
1156 	for (n = 15; n >= 0; n--) {
1157 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1158 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1159 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1160 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1161 	}
1162 
1163 	IWI_EEPROM_CTL(sc, 0);
1164 
1165 	/* clear Chip Select and clock C */
1166 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1167 	IWI_EEPROM_CTL(sc, 0);
1168 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1169 
1170 	return val;
1171 }
1172 
1173 static void
1174 iwi_setcurchan(struct iwi_softc *sc, int chan)
1175 {
1176 	struct ieee80211com *ic = &sc->sc_ic;
1177 
1178 	sc->curchan = chan;
1179 	ieee80211_radiotap_chan_change(ic);
1180 }
1181 
1182 static void
1183 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1184     struct iwi_frame *frame)
1185 {
1186 	struct ieee80211com *ic = &sc->sc_ic;
1187 	struct mbuf *mnew, *m;
1188 	struct ieee80211_node *ni;
1189 	int type, error, framelen;
1190 	int8_t rssi, nf;
1191 	IWI_LOCK_DECL;
1192 
1193 	framelen = le16toh(frame->len);
1194 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1195 		/*
1196 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1197 		 *     out of bounds; need to figure out how to limit
1198 		 *     frame size in the firmware
1199 		 */
1200 		/* XXX stat */
1201 		DPRINTFN(1,
1202 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1203 		    le16toh(frame->len), frame->chan, frame->rssi,
1204 		    frame->rssi_dbm));
1205 		return;
1206 	}
1207 
1208 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1209 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1210 
1211 	if (frame->chan != sc->curchan)
1212 		iwi_setcurchan(sc, frame->chan);
1213 
1214 	/*
1215 	 * Try to allocate a new mbuf for this ring element and load it before
1216 	 * processing the current mbuf. If the ring element cannot be loaded,
1217 	 * drop the received packet and reuse the old mbuf. In the unlikely
1218 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1219 	 */
1220 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1221 	if (mnew == NULL) {
1222 		counter_u64_add(ic->ic_ierrors, 1);
1223 		return;
1224 	}
1225 
1226 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1227 
1228 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1229 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1230 	    0);
1231 	if (error != 0) {
1232 		m_freem(mnew);
1233 
1234 		/* try to reload the old mbuf */
1235 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1236 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1237 		    &data->physaddr, 0);
1238 		if (error != 0) {
1239 			/* very unlikely that it will fail... */
1240 			panic("%s: could not load old rx mbuf",
1241 			    device_get_name(sc->sc_dev));
1242 		}
1243 		counter_u64_add(ic->ic_ierrors, 1);
1244 		return;
1245 	}
1246 
1247 	/*
1248 	 * New mbuf successfully loaded, update Rx ring and continue
1249 	 * processing.
1250 	 */
1251 	m = data->m;
1252 	data->m = mnew;
1253 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1254 
1255 	/* finalize mbuf */
1256 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1257 	    sizeof (struct iwi_frame) + framelen;
1258 
1259 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1260 
1261 	rssi = frame->rssi_dbm;
1262 	nf = -95;
1263 	if (ieee80211_radiotap_active(ic)) {
1264 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1265 
1266 		tap->wr_flags = 0;
1267 		tap->wr_antsignal = rssi;
1268 		tap->wr_antnoise = nf;
1269 		tap->wr_rate = iwi_cvtrate(frame->rate);
1270 		tap->wr_antenna = frame->antenna;
1271 	}
1272 	IWI_UNLOCK(sc);
1273 
1274 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1275 	if (ni != NULL) {
1276 		type = ieee80211_input(ni, m, rssi, nf);
1277 		ieee80211_free_node(ni);
1278 	} else
1279 		type = ieee80211_input_all(ic, m, rssi, nf);
1280 
1281 	IWI_LOCK(sc);
1282 	if (sc->sc_softled) {
1283 		/*
1284 		 * Blink for any data frame.  Otherwise do a
1285 		 * heartbeat-style blink when idle.  The latter
1286 		 * is mainly for station mode where we depend on
1287 		 * periodic beacon frames to trigger the poll event.
1288 		 */
1289 		if (type == IEEE80211_FC0_TYPE_DATA) {
1290 			sc->sc_rxrate = frame->rate;
1291 			iwi_led_event(sc, IWI_LED_RX);
1292 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1293 			iwi_led_event(sc, IWI_LED_POLL);
1294 	}
1295 }
1296 
1297 /*
1298  * Check for an association response frame to see if QoS
1299  * has been negotiated.  We parse just enough to figure
1300  * out if we're supposed to use QoS.  The proper solution
1301  * is to pass the frame up so ieee80211_input can do the
1302  * work but that's made hard by how things currently are
1303  * done in the driver.
1304  */
1305 static void
1306 iwi_checkforqos(struct ieee80211vap *vap,
1307 	const struct ieee80211_frame *wh, int len)
1308 {
1309 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1310 	const uint8_t *frm, *efrm, *wme;
1311 	struct ieee80211_node *ni;
1312 	uint16_t capinfo, status, associd;
1313 
1314 	/* NB: +8 for capinfo, status, associd, and first ie */
1315 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1316 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1317 		return;
1318 	/*
1319 	 * asresp frame format
1320 	 *	[2] capability information
1321 	 *	[2] status
1322 	 *	[2] association ID
1323 	 *	[tlv] supported rates
1324 	 *	[tlv] extended supported rates
1325 	 *	[tlv] WME
1326 	 */
1327 	frm = (const uint8_t *)&wh[1];
1328 	efrm = ((const uint8_t *) wh) + len;
1329 
1330 	capinfo = le16toh(*(const uint16_t *)frm);
1331 	frm += 2;
1332 	status = le16toh(*(const uint16_t *)frm);
1333 	frm += 2;
1334 	associd = le16toh(*(const uint16_t *)frm);
1335 	frm += 2;
1336 
1337 	wme = NULL;
1338 	while (efrm - frm > 1) {
1339 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1340 		switch (*frm) {
1341 		case IEEE80211_ELEMID_VENDOR:
1342 			if (iswmeoui(frm))
1343 				wme = frm;
1344 			break;
1345 		}
1346 		frm += frm[1] + 2;
1347 	}
1348 
1349 	ni = ieee80211_ref_node(vap->iv_bss);
1350 	ni->ni_capinfo = capinfo;
1351 	ni->ni_associd = associd & 0x3fff;
1352 	if (wme != NULL)
1353 		ni->ni_flags |= IEEE80211_NODE_QOS;
1354 	else
1355 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1356 	ieee80211_free_node(ni);
1357 #undef SUBTYPE
1358 }
1359 
1360 static void
1361 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1362 {
1363 	struct iwi_notif_link_quality *lq;
1364 	int len;
1365 
1366 	len = le16toh(notif->len);
1367 
1368 	DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1369 	    notif->type,
1370 	    len,
1371 	    sizeof(struct iwi_notif_link_quality)
1372 	    ));
1373 
1374 	/* enforce length */
1375 	if (len != sizeof(struct iwi_notif_link_quality)) {
1376 		DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1377 		    notif->type,
1378 		    len));
1379 		return;
1380 	}
1381 
1382 	lq = (struct iwi_notif_link_quality *)(notif + 1);
1383 	memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1384 	sc->sc_linkqual_valid = 1;
1385 }
1386 
1387 /*
1388  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1389  */
1390 
1391 static void
1392 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1393 {
1394 	struct ieee80211com *ic = &sc->sc_ic;
1395 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1396 	struct iwi_notif_scan_channel *chan;
1397 	struct iwi_notif_scan_complete *scan;
1398 	struct iwi_notif_authentication *auth;
1399 	struct iwi_notif_association *assoc;
1400 	struct iwi_notif_beacon_state *beacon;
1401 
1402 	switch (notif->type) {
1403 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1404 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1405 
1406 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1407 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1408 
1409 		/* Reset the timer, the scan is still going */
1410 		sc->sc_state_timer = 3;
1411 		break;
1412 
1413 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1414 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1415 
1416 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1417 		    scan->status));
1418 
1419 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1420 
1421 		/*
1422 		 * Monitor mode works by doing a passive scan to set
1423 		 * the channel and enable rx.  Because we don't want
1424 		 * to abort a scan lest the firmware crash we scan
1425 		 * for a short period of time and automatically restart
1426 		 * the scan when notified the sweep has completed.
1427 		 */
1428 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1429 			ieee80211_runtask(ic, &sc->sc_monitortask);
1430 			break;
1431 		}
1432 
1433 		if (scan->status == IWI_SCAN_COMPLETED) {
1434 			/* NB: don't need to defer, net80211 does it for us */
1435 			ieee80211_scan_next(vap);
1436 		}
1437 		break;
1438 
1439 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1440 		auth = (struct iwi_notif_authentication *)(notif + 1);
1441 		switch (auth->state) {
1442 		case IWI_AUTH_SUCCESS:
1443 			DPRINTFN(2, ("Authentication succeeeded\n"));
1444 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1445 			break;
1446 		case IWI_AUTH_FAIL:
1447 			/*
1448 			 * These are delivered as an unsolicited deauth
1449 			 * (e.g. due to inactivity) or in response to an
1450 			 * associate request.
1451 			 */
1452 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1453 			if (vap->iv_state != IEEE80211_S_RUN) {
1454 				DPRINTFN(2, ("Authentication failed\n"));
1455 				vap->iv_stats.is_rx_auth_fail++;
1456 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1457 			} else {
1458 				DPRINTFN(2, ("Deauthenticated\n"));
1459 				vap->iv_stats.is_rx_deauth++;
1460 			}
1461 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1462 			break;
1463 		case IWI_AUTH_SENT_1:
1464 		case IWI_AUTH_RECV_2:
1465 		case IWI_AUTH_SEQ1_PASS:
1466 			break;
1467 		case IWI_AUTH_SEQ1_FAIL:
1468 			DPRINTFN(2, ("Initial authentication handshake failed; "
1469 				"you probably need shared key\n"));
1470 			vap->iv_stats.is_rx_auth_fail++;
1471 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1472 			/* XXX retry shared key when in auto */
1473 			break;
1474 		default:
1475 			device_printf(sc->sc_dev,
1476 			    "unknown authentication state %u\n", auth->state);
1477 			break;
1478 		}
1479 		break;
1480 
1481 	case IWI_NOTIF_TYPE_ASSOCIATION:
1482 		assoc = (struct iwi_notif_association *)(notif + 1);
1483 		switch (assoc->state) {
1484 		case IWI_AUTH_SUCCESS:
1485 			/* re-association, do nothing */
1486 			break;
1487 		case IWI_ASSOC_SUCCESS:
1488 			DPRINTFN(2, ("Association succeeded\n"));
1489 			sc->flags |= IWI_FLAG_ASSOCIATED;
1490 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1491 			iwi_checkforqos(vap,
1492 			    (const struct ieee80211_frame *)(assoc+1),
1493 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1494 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1495 			break;
1496 		case IWI_ASSOC_INIT:
1497 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1498 			switch (sc->fw_state) {
1499 			case IWI_FW_ASSOCIATING:
1500 				DPRINTFN(2, ("Association failed\n"));
1501 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1502 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1503 				break;
1504 
1505 			case IWI_FW_DISASSOCIATING:
1506 				DPRINTFN(2, ("Dissassociated\n"));
1507 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1508 				vap->iv_stats.is_rx_disassoc++;
1509 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1510 				break;
1511 			}
1512 			break;
1513 		default:
1514 			device_printf(sc->sc_dev,
1515 			    "unknown association state %u\n", assoc->state);
1516 			break;
1517 		}
1518 		break;
1519 
1520 	case IWI_NOTIF_TYPE_BEACON:
1521 		/* XXX check struct length */
1522 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1523 
1524 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1525 		    beacon->state, le32toh(beacon->number)));
1526 
1527 		if (beacon->state == IWI_BEACON_MISS) {
1528 			/*
1529 			 * The firmware notifies us of every beacon miss
1530 			 * so we need to track the count against the
1531 			 * configured threshold before notifying the
1532 			 * 802.11 layer.
1533 			 * XXX try to roam, drop assoc only on much higher count
1534 			 */
1535 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1536 				DPRINTF(("Beacon miss: %u >= %u\n",
1537 				    le32toh(beacon->number),
1538 				    vap->iv_bmissthreshold));
1539 				vap->iv_stats.is_beacon_miss++;
1540 				/*
1541 				 * It's pointless to notify the 802.11 layer
1542 				 * as it'll try to send a probe request (which
1543 				 * we'll discard) and then timeout and drop us
1544 				 * into scan state.  Instead tell the firmware
1545 				 * to disassociate and then on completion we'll
1546 				 * kick the state machine to scan.
1547 				 */
1548 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1549 			}
1550 		}
1551 		break;
1552 
1553 	case IWI_NOTIF_TYPE_CALIBRATION:
1554 	case IWI_NOTIF_TYPE_NOISE:
1555 		/* XXX handle? */
1556 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1557 		break;
1558 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1559 		iwi_notif_link_quality(sc, notif);
1560 		break;
1561 
1562 	default:
1563 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1564 		    notif->type, notif->flags, le16toh(notif->len)));
1565 		break;
1566 	}
1567 }
1568 
1569 static void
1570 iwi_rx_intr(struct iwi_softc *sc)
1571 {
1572 	struct iwi_rx_data *data;
1573 	struct iwi_hdr *hdr;
1574 	uint32_t hw;
1575 
1576 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1577 
1578 	for (; sc->rxq.cur != hw;) {
1579 		data = &sc->rxq.data[sc->rxq.cur];
1580 
1581 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1582 		    BUS_DMASYNC_POSTREAD);
1583 
1584 		hdr = mtod(data->m, struct iwi_hdr *);
1585 
1586 		switch (hdr->type) {
1587 		case IWI_HDR_TYPE_FRAME:
1588 			iwi_frame_intr(sc, data, sc->rxq.cur,
1589 			    (struct iwi_frame *)(hdr + 1));
1590 			break;
1591 
1592 		case IWI_HDR_TYPE_NOTIF:
1593 			iwi_notification_intr(sc,
1594 			    (struct iwi_notif *)(hdr + 1));
1595 			break;
1596 
1597 		default:
1598 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1599 			    hdr->type);
1600 		}
1601 
1602 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1603 
1604 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1605 	}
1606 
1607 	/* tell the firmware what we have processed */
1608 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1609 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1610 }
1611 
1612 static void
1613 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1614 {
1615 	struct iwi_tx_data *data;
1616 	uint32_t hw;
1617 
1618 	hw = CSR_READ_4(sc, txq->csr_ridx);
1619 
1620 	while (txq->next != hw) {
1621 		data = &txq->data[txq->next];
1622 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1623 		bus_dmamap_sync(txq->data_dmat, data->map,
1624 		    BUS_DMASYNC_POSTWRITE);
1625 		bus_dmamap_unload(txq->data_dmat, data->map);
1626 		ieee80211_tx_complete(data->ni, data->m, 0);
1627 		data->ni = NULL;
1628 		data->m = NULL;
1629 		txq->queued--;
1630 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1631 	}
1632 	sc->sc_tx_timer = 0;
1633 	if (sc->sc_softled)
1634 		iwi_led_event(sc, IWI_LED_TX);
1635 	iwi_start(sc);
1636 }
1637 
1638 static void
1639 iwi_fatal_error_intr(struct iwi_softc *sc)
1640 {
1641 	struct ieee80211com *ic = &sc->sc_ic;
1642 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1643 
1644 	device_printf(sc->sc_dev, "firmware error\n");
1645 	if (vap != NULL)
1646 		ieee80211_cancel_scan(vap);
1647 	ieee80211_runtask(ic, &sc->sc_restarttask);
1648 
1649 	sc->flags &= ~IWI_FLAG_BUSY;
1650 	sc->sc_busy_timer = 0;
1651 	wakeup(sc);
1652 }
1653 
1654 static void
1655 iwi_radio_off_intr(struct iwi_softc *sc)
1656 {
1657 
1658 	ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
1659 }
1660 
1661 static void
1662 iwi_intr(void *arg)
1663 {
1664 	struct iwi_softc *sc = arg;
1665 	uint32_t r;
1666 	IWI_LOCK_DECL;
1667 
1668 	IWI_LOCK(sc);
1669 
1670 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1671 		IWI_UNLOCK(sc);
1672 		return;
1673 	}
1674 
1675 	/* acknowledge interrupts */
1676 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1677 
1678 	if (r & IWI_INTR_FATAL_ERROR) {
1679 		iwi_fatal_error_intr(sc);
1680 		goto done;
1681 	}
1682 
1683 	if (r & IWI_INTR_FW_INITED) {
1684 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1685 			wakeup(sc);
1686 	}
1687 
1688 	if (r & IWI_INTR_RADIO_OFF)
1689 		iwi_radio_off_intr(sc);
1690 
1691 	if (r & IWI_INTR_CMD_DONE) {
1692 		sc->flags &= ~IWI_FLAG_BUSY;
1693 		sc->sc_busy_timer = 0;
1694 		wakeup(sc);
1695 	}
1696 
1697 	if (r & IWI_INTR_TX1_DONE)
1698 		iwi_tx_intr(sc, &sc->txq[0]);
1699 
1700 	if (r & IWI_INTR_TX2_DONE)
1701 		iwi_tx_intr(sc, &sc->txq[1]);
1702 
1703 	if (r & IWI_INTR_TX3_DONE)
1704 		iwi_tx_intr(sc, &sc->txq[2]);
1705 
1706 	if (r & IWI_INTR_TX4_DONE)
1707 		iwi_tx_intr(sc, &sc->txq[3]);
1708 
1709 	if (r & IWI_INTR_RX_DONE)
1710 		iwi_rx_intr(sc);
1711 
1712 	if (r & IWI_INTR_PARITY_ERROR) {
1713 		/* XXX rate-limit */
1714 		device_printf(sc->sc_dev, "parity error\n");
1715 	}
1716 done:
1717 	IWI_UNLOCK(sc);
1718 }
1719 
1720 static int
1721 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1722 {
1723 	struct iwi_cmd_desc *desc;
1724 
1725 	IWI_LOCK_ASSERT(sc);
1726 
1727 	if (sc->flags & IWI_FLAG_BUSY) {
1728 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1729 			__func__, type);
1730 		return EAGAIN;
1731 	}
1732 	sc->flags |= IWI_FLAG_BUSY;
1733 	sc->sc_busy_timer = 2;
1734 
1735 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1736 
1737 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1738 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1739 	desc->type = type;
1740 	desc->len = len;
1741 	memcpy(desc->data, data, len);
1742 
1743 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1744 	    BUS_DMASYNC_PREWRITE);
1745 
1746 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1747 	    type, len));
1748 
1749 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1750 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1751 
1752 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1753 }
1754 
1755 static void
1756 iwi_write_ibssnode(struct iwi_softc *sc,
1757 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1758 {
1759 	struct iwi_ibssnode node;
1760 
1761 	/* write node information into NIC memory */
1762 	memset(&node, 0, sizeof node);
1763 	IEEE80211_ADDR_COPY(node.bssid, addr);
1764 
1765 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1766 
1767 	CSR_WRITE_REGION_1(sc,
1768 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1769 	    (uint8_t *)&node, sizeof node);
1770 }
1771 
1772 static int
1773 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1774     int ac)
1775 {
1776 	struct ieee80211vap *vap = ni->ni_vap;
1777 	struct iwi_node *in = (struct iwi_node *)ni;
1778 	const struct ieee80211_frame *wh;
1779 	struct ieee80211_key *k;
1780 	struct iwi_tx_ring *txq = &sc->txq[ac];
1781 	struct iwi_tx_data *data;
1782 	struct iwi_tx_desc *desc;
1783 	struct mbuf *mnew;
1784 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1785 	int error, nsegs, hdrlen, i;
1786 	int ismcast, flags, xflags, staid;
1787 
1788 	IWI_LOCK_ASSERT(sc);
1789 	wh = mtod(m0, const struct ieee80211_frame *);
1790 	/* NB: only data frames use this path */
1791 	hdrlen = ieee80211_hdrsize(wh);
1792 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1793 	flags = xflags = 0;
1794 
1795 	if (!ismcast)
1796 		flags |= IWI_DATA_FLAG_NEED_ACK;
1797 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1798 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1799 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1800 		xflags |= IWI_DATA_XFLAG_QOS;
1801 		if (ieee80211_wme_vap_ac_is_noack(vap, ac))
1802 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1803 	}
1804 
1805 	/*
1806 	 * This is only used in IBSS mode where the firmware expect an index
1807 	 * in a h/w table instead of a destination address.
1808 	 */
1809 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1810 		if (!ismcast) {
1811 			if (in->in_station == -1) {
1812 				in->in_station = alloc_unr(sc->sc_unr);
1813 				if (in->in_station == -1) {
1814 					/* h/w table is full */
1815 					if_inc_counter(ni->ni_vap->iv_ifp,
1816 					    IFCOUNTER_OERRORS, 1);
1817 					m_freem(m0);
1818 					ieee80211_free_node(ni);
1819 					return 0;
1820 				}
1821 				iwi_write_ibssnode(sc,
1822 					ni->ni_macaddr, in->in_station);
1823 			}
1824 			staid = in->in_station;
1825 		} else {
1826 			/*
1827 			 * Multicast addresses have no associated node
1828 			 * so there will be no station entry.  We reserve
1829 			 * entry 0 for one mcast address and use that.
1830 			 * If there are many being used this will be
1831 			 * expensive and we'll need to do a better job
1832 			 * but for now this handles the broadcast case.
1833 			 */
1834 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1835 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1836 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1837 			}
1838 			staid = 0;
1839 		}
1840 	} else
1841 		staid = 0;
1842 
1843 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1844 		k = ieee80211_crypto_encap(ni, m0);
1845 		if (k == NULL) {
1846 			m_freem(m0);
1847 			return ENOBUFS;
1848 		}
1849 
1850 		/* packet header may have moved, reset our local pointer */
1851 		wh = mtod(m0, struct ieee80211_frame *);
1852 	}
1853 
1854 	if (ieee80211_radiotap_active_vap(vap)) {
1855 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1856 
1857 		tap->wt_flags = 0;
1858 
1859 		ieee80211_radiotap_tx(vap, m0);
1860 	}
1861 
1862 	data = &txq->data[txq->cur];
1863 	desc = &txq->desc[txq->cur];
1864 
1865 	/* save and trim IEEE802.11 header */
1866 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1867 	m_adj(m0, hdrlen);
1868 
1869 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1870 	    &nsegs, 0);
1871 	if (error != 0 && error != EFBIG) {
1872 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1873 		    error);
1874 		m_freem(m0);
1875 		return error;
1876 	}
1877 	if (error != 0) {
1878 		mnew = m_defrag(m0, M_NOWAIT);
1879 		if (mnew == NULL) {
1880 			device_printf(sc->sc_dev,
1881 			    "could not defragment mbuf\n");
1882 			m_freem(m0);
1883 			return ENOBUFS;
1884 		}
1885 		m0 = mnew;
1886 
1887 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1888 		    m0, segs, &nsegs, 0);
1889 		if (error != 0) {
1890 			device_printf(sc->sc_dev,
1891 			    "could not map mbuf (error %d)\n", error);
1892 			m_freem(m0);
1893 			return error;
1894 		}
1895 	}
1896 
1897 	data->m = m0;
1898 	data->ni = ni;
1899 
1900 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1901 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1902 	desc->station = staid;
1903 	desc->cmd = IWI_DATA_CMD_TX;
1904 	desc->len = htole16(m0->m_pkthdr.len);
1905 	desc->flags = flags;
1906 	desc->xflags = xflags;
1907 
1908 #if 0
1909 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1910 		desc->wep_txkey = vap->iv_def_txkey;
1911 	else
1912 #endif
1913 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1914 
1915 	desc->nseg = htole32(nsegs);
1916 	for (i = 0; i < nsegs; i++) {
1917 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1918 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1919 	}
1920 
1921 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1922 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1923 
1924 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1925 	    ac, txq->cur, le16toh(desc->len), nsegs));
1926 
1927 	txq->queued++;
1928 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1929 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1930 
1931 	return 0;
1932 }
1933 
1934 static int
1935 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1936 	const struct ieee80211_bpf_params *params)
1937 {
1938 	/* no support; just discard */
1939 	m_freem(m);
1940 	ieee80211_free_node(ni);
1941 	return 0;
1942 }
1943 
1944 static int
1945 iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1946 {
1947 	struct iwi_softc *sc = ic->ic_softc;
1948 	int error;
1949 	IWI_LOCK_DECL;
1950 
1951 	IWI_LOCK(sc);
1952 	if (!sc->sc_running) {
1953 		IWI_UNLOCK(sc);
1954 		return (ENXIO);
1955 	}
1956 	error = mbufq_enqueue(&sc->sc_snd, m);
1957 	if (error) {
1958 		IWI_UNLOCK(sc);
1959 		return (error);
1960 	}
1961 	iwi_start(sc);
1962 	IWI_UNLOCK(sc);
1963 	return (0);
1964 }
1965 
1966 static void
1967 iwi_start(struct iwi_softc *sc)
1968 {
1969 	struct mbuf *m;
1970 	struct ieee80211_node *ni;
1971 	int ac;
1972 
1973 	IWI_LOCK_ASSERT(sc);
1974 
1975 	while ((m =  mbufq_dequeue(&sc->sc_snd)) != NULL) {
1976 		ac = M_WME_GETAC(m);
1977 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1978 			/* there is no place left in this ring; tail drop */
1979 			/* XXX tail drop */
1980 			mbufq_prepend(&sc->sc_snd, m);
1981 			break;
1982 		}
1983 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1984 		if (iwi_tx_start(sc, m, ni, ac) != 0) {
1985 			if_inc_counter(ni->ni_vap->iv_ifp,
1986 			    IFCOUNTER_OERRORS, 1);
1987 			ieee80211_free_node(ni);
1988 			break;
1989 		}
1990 		sc->sc_tx_timer = 5;
1991 	}
1992 }
1993 
1994 static void
1995 iwi_watchdog(void *arg)
1996 {
1997 	struct iwi_softc *sc = arg;
1998 	struct ieee80211com *ic = &sc->sc_ic;
1999 
2000 	IWI_LOCK_ASSERT(sc);
2001 
2002 	if (sc->sc_tx_timer > 0) {
2003 		if (--sc->sc_tx_timer == 0) {
2004 			device_printf(sc->sc_dev, "device timeout\n");
2005 			counter_u64_add(ic->ic_oerrors, 1);
2006 			ieee80211_runtask(ic, &sc->sc_restarttask);
2007 		}
2008 	}
2009 	if (sc->sc_state_timer > 0) {
2010 		if (--sc->sc_state_timer == 0) {
2011 			device_printf(sc->sc_dev,
2012 			    "firmware stuck in state %d, resetting\n",
2013 			    sc->fw_state);
2014 			if (sc->fw_state == IWI_FW_SCANNING)
2015 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2016 			ieee80211_runtask(ic, &sc->sc_restarttask);
2017 			sc->sc_state_timer = 3;
2018 		}
2019 	}
2020 	if (sc->sc_busy_timer > 0) {
2021 		if (--sc->sc_busy_timer == 0) {
2022 			device_printf(sc->sc_dev,
2023 			    "firmware command timeout, resetting\n");
2024 			ieee80211_runtask(ic, &sc->sc_restarttask);
2025 		}
2026 	}
2027 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2028 }
2029 
2030 static void
2031 iwi_parent(struct ieee80211com *ic)
2032 {
2033 	struct iwi_softc *sc = ic->ic_softc;
2034 	int startall = 0;
2035 	IWI_LOCK_DECL;
2036 
2037 	IWI_LOCK(sc);
2038 	if (ic->ic_nrunning > 0) {
2039 		if (!sc->sc_running) {
2040 			iwi_init_locked(sc);
2041 			startall = 1;
2042 		}
2043 	} else if (sc->sc_running)
2044 		iwi_stop_locked(sc);
2045 	IWI_UNLOCK(sc);
2046 	if (startall)
2047 		ieee80211_start_all(ic);
2048 }
2049 
2050 static int
2051 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
2052 {
2053 	struct ifreq *ifr = data;
2054 	struct iwi_softc *sc = ic->ic_softc;
2055 	int error;
2056 	IWI_LOCK_DECL;
2057 
2058 	IWI_LOCK(sc);
2059 	switch (cmd) {
2060 	case SIOCGIWISTATS:
2061 		/* XXX validate permissions/memory/etc? */
2062 		error = copyout(&sc->sc_linkqual, ifr->ifr_data,
2063 		    sizeof(struct iwi_notif_link_quality));
2064 		break;
2065 	case SIOCZIWISTATS:
2066 		memset(&sc->sc_linkqual, 0,
2067 		    sizeof(struct iwi_notif_link_quality));
2068 		error = 0;
2069 		break;
2070 	default:
2071 		error = ENOTTY;
2072 		break;
2073 	}
2074 	IWI_UNLOCK(sc);
2075 
2076 	return (error);
2077 }
2078 
2079 static void
2080 iwi_stop_master(struct iwi_softc *sc)
2081 {
2082 	uint32_t tmp;
2083 	int ntries;
2084 
2085 	/* disable interrupts */
2086 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2087 
2088 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2089 	for (ntries = 0; ntries < 5; ntries++) {
2090 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2091 			break;
2092 		DELAY(10);
2093 	}
2094 	if (ntries == 5)
2095 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2096 
2097 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2098 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2099 
2100 	sc->flags &= ~IWI_FLAG_FW_INITED;
2101 }
2102 
2103 static int
2104 iwi_reset(struct iwi_softc *sc)
2105 {
2106 	uint32_t tmp;
2107 	int i, ntries;
2108 
2109 	iwi_stop_master(sc);
2110 
2111 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2112 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2113 
2114 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2115 
2116 	/* wait for clock stabilization */
2117 	for (ntries = 0; ntries < 1000; ntries++) {
2118 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2119 			break;
2120 		DELAY(200);
2121 	}
2122 	if (ntries == 1000) {
2123 		device_printf(sc->sc_dev,
2124 		    "timeout waiting for clock stabilization\n");
2125 		return EIO;
2126 	}
2127 
2128 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2129 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2130 
2131 	DELAY(10);
2132 
2133 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2134 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2135 
2136 	/* clear NIC memory */
2137 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2138 	for (i = 0; i < 0xc000; i++)
2139 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2140 
2141 	return 0;
2142 }
2143 
2144 static const struct iwi_firmware_ohdr *
2145 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2146 {
2147 	const struct firmware *fp = fw->fp;
2148 	const struct iwi_firmware_ohdr *hdr;
2149 
2150 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2151 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2152 		return NULL;
2153 	}
2154 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2155 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2156 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2157 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2158 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2159 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2160 		    IWI_FW_REQ_MINOR);
2161 		return NULL;
2162 	}
2163 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2164 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2165 	fw->name = fp->name;
2166 	return hdr;
2167 }
2168 
2169 static const struct iwi_firmware_ohdr *
2170 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2171 {
2172 	const struct iwi_firmware_ohdr *hdr;
2173 
2174 	hdr = iwi_setup_ofw(sc, fw);
2175 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2176 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2177 		    fw->name);
2178 		hdr = NULL;
2179 	}
2180 	return hdr;
2181 }
2182 
2183 static void
2184 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2185 	  struct iwi_fw *uc, const char *ucname)
2186 {
2187 	if (fw->fp == NULL)
2188 		fw->fp = firmware_get(fwname);
2189 	/* NB: pre-3.0 ucode is packaged separately */
2190 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2191 		uc->fp = firmware_get(ucname);
2192 }
2193 
2194 /*
2195  * Get the required firmware images if not already loaded.
2196  * Note that we hold firmware images so long as the device
2197  * is marked up in case we need to reload them on device init.
2198  * This is necessary because we re-init the device sometimes
2199  * from a context where we cannot read from the filesystem
2200  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2201  * XXX return 0 on success, 1 on error.
2202  *
2203  * NB: the order of get'ing and put'ing images here is
2204  * intentional to support handling firmware images bundled
2205  * by operating mode and/or all together in one file with
2206  * the boot firmware as "master".
2207  */
2208 static int
2209 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2210 {
2211 	const struct iwi_firmware_hdr *hdr;
2212 	const struct firmware *fp;
2213 
2214 	/* invalidate cached firmware on mode change */
2215 	if (sc->fw_mode != opmode)
2216 		iwi_put_firmware(sc);
2217 
2218 	switch (opmode) {
2219 	case IEEE80211_M_STA:
2220 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2221 		break;
2222 	case IEEE80211_M_IBSS:
2223 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2224 		break;
2225 	case IEEE80211_M_MONITOR:
2226 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2227 			  &sc->fw_uc, "iwi_ucode_monitor");
2228 		break;
2229 	default:
2230 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2231 		return EINVAL;
2232 	}
2233 	fp = sc->fw_fw.fp;
2234 	if (fp == NULL) {
2235 		device_printf(sc->sc_dev, "could not load firmware\n");
2236 		goto bad;
2237 	}
2238 	if (fp->version < 300) {
2239 		/*
2240 		 * Firmware prior to 3.0 was packaged as separate
2241 		 * boot, firmware, and ucode images.  Verify the
2242 		 * ucode image was read in, retrieve the boot image
2243 		 * if needed, and check version stamps for consistency.
2244 		 * The version stamps in the data are also checked
2245 		 * above; this is a bit paranoid but is a cheap
2246 		 * safeguard against mis-packaging.
2247 		 */
2248 		if (sc->fw_uc.fp == NULL) {
2249 			device_printf(sc->sc_dev, "could not load ucode\n");
2250 			goto bad;
2251 		}
2252 		if (sc->fw_boot.fp == NULL) {
2253 			sc->fw_boot.fp = firmware_get("iwi_boot");
2254 			if (sc->fw_boot.fp == NULL) {
2255 				device_printf(sc->sc_dev,
2256 					"could not load boot firmware\n");
2257 				goto bad;
2258 			}
2259 		}
2260 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2261 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2262 			device_printf(sc->sc_dev,
2263 			    "firmware version mismatch: "
2264 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2265 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2266 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2267 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2268 			);
2269 			goto bad;
2270 		}
2271 		/*
2272 		 * Check and setup each image.
2273 		 */
2274 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2275 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2276 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2277 			goto bad;
2278 	} else {
2279 		/*
2280 		 * Check and setup combined image.
2281 		 */
2282 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2283 			device_printf(sc->sc_dev, "image '%s' too small\n",
2284 			    fp->name);
2285 			goto bad;
2286 		}
2287 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2288 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2289 				+ le32toh(hdr->fsize)) {
2290 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2291 			    fp->name);
2292 			goto bad;
2293 		}
2294 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2295 		sc->fw_boot.size = le32toh(hdr->bsize);
2296 		sc->fw_boot.name = fp->name;
2297 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2298 		sc->fw_uc.size = le32toh(hdr->usize);
2299 		sc->fw_uc.name = fp->name;
2300 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2301 		sc->fw_fw.size = le32toh(hdr->fsize);
2302 		sc->fw_fw.name = fp->name;
2303 	}
2304 #if 0
2305 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2306 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2307 #endif
2308 
2309 	sc->fw_mode = opmode;
2310 	return 0;
2311 bad:
2312 	iwi_put_firmware(sc);
2313 	return 1;
2314 }
2315 
2316 static void
2317 iwi_put_fw(struct iwi_fw *fw)
2318 {
2319 	if (fw->fp != NULL) {
2320 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2321 		fw->fp = NULL;
2322 	}
2323 	fw->data = NULL;
2324 	fw->size = 0;
2325 	fw->name = NULL;
2326 }
2327 
2328 /*
2329  * Release any cached firmware images.
2330  */
2331 static void
2332 iwi_put_firmware(struct iwi_softc *sc)
2333 {
2334 	iwi_put_fw(&sc->fw_uc);
2335 	iwi_put_fw(&sc->fw_fw);
2336 	iwi_put_fw(&sc->fw_boot);
2337 }
2338 
2339 static int
2340 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2341 {
2342 	uint32_t tmp;
2343 	const uint16_t *w;
2344 	const char *uc = fw->data;
2345 	size_t size = fw->size;
2346 	int i, ntries, error;
2347 
2348 	IWI_LOCK_ASSERT(sc);
2349 	error = 0;
2350 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2351 	    IWI_RST_STOP_MASTER);
2352 	for (ntries = 0; ntries < 5; ntries++) {
2353 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2354 			break;
2355 		DELAY(10);
2356 	}
2357 	if (ntries == 5) {
2358 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2359 		error = EIO;
2360 		goto fail;
2361 	}
2362 
2363 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2364 	DELAY(5000);
2365 
2366 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2367 	tmp &= ~IWI_RST_PRINCETON_RESET;
2368 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2369 
2370 	DELAY(5000);
2371 	MEM_WRITE_4(sc, 0x3000e0, 0);
2372 	DELAY(1000);
2373 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2374 	DELAY(1000);
2375 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2376 	DELAY(1000);
2377 	MEM_WRITE_1(sc, 0x200000, 0x00);
2378 	MEM_WRITE_1(sc, 0x200000, 0x40);
2379 	DELAY(1000);
2380 
2381 	/* write microcode into adapter memory */
2382 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2383 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2384 
2385 	MEM_WRITE_1(sc, 0x200000, 0x00);
2386 	MEM_WRITE_1(sc, 0x200000, 0x80);
2387 
2388 	/* wait until we get an answer */
2389 	for (ntries = 0; ntries < 100; ntries++) {
2390 		if (MEM_READ_1(sc, 0x200000) & 1)
2391 			break;
2392 		DELAY(100);
2393 	}
2394 	if (ntries == 100) {
2395 		device_printf(sc->sc_dev,
2396 		    "timeout waiting for ucode to initialize\n");
2397 		error = EIO;
2398 		goto fail;
2399 	}
2400 
2401 	/* read the answer or the firmware will not initialize properly */
2402 	for (i = 0; i < 7; i++)
2403 		MEM_READ_4(sc, 0x200004);
2404 
2405 	MEM_WRITE_1(sc, 0x200000, 0x00);
2406 
2407 fail:
2408 	return error;
2409 }
2410 
2411 /* macro to handle unaligned little endian data in firmware image */
2412 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2413 
2414 static int
2415 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2416 {
2417 	u_char *p, *end;
2418 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2419 	int ntries, error;
2420 
2421 	IWI_LOCK_ASSERT(sc);
2422 
2423 	/* copy firmware image to DMA memory */
2424 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2425 
2426 	/* make sure the adapter will get up-to-date values */
2427 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2428 
2429 	/* tell the adapter where the command blocks are stored */
2430 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2431 
2432 	/*
2433 	 * Store command blocks into adapter's internal memory using register
2434 	 * indirections. The adapter will read the firmware image through DMA
2435 	 * using information stored in command blocks.
2436 	 */
2437 	src = sc->fw_physaddr;
2438 	p = sc->fw_virtaddr;
2439 	end = p + fw->size;
2440 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2441 
2442 	while (p < end) {
2443 		dst = GETLE32(p); p += 4; src += 4;
2444 		len = GETLE32(p); p += 4; src += 4;
2445 		p += len;
2446 
2447 		while (len > 0) {
2448 			mlen = min(len, IWI_CB_MAXDATALEN);
2449 
2450 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2451 			sum = ctl ^ src ^ dst;
2452 
2453 			/* write a command block */
2454 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2455 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2456 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2457 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2458 
2459 			src += mlen;
2460 			dst += mlen;
2461 			len -= mlen;
2462 		}
2463 	}
2464 
2465 	/* write a fictive final command block (sentinel) */
2466 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2467 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2468 
2469 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2470 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2471 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2472 
2473 	/* tell the adapter to start processing command blocks */
2474 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2475 
2476 	/* wait until the adapter reaches the sentinel */
2477 	for (ntries = 0; ntries < 400; ntries++) {
2478 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2479 			break;
2480 		DELAY(100);
2481 	}
2482 	/* sync dma, just in case */
2483 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2484 	if (ntries == 400) {
2485 		device_printf(sc->sc_dev,
2486 		    "timeout processing command blocks for %s firmware\n",
2487 		    fw->name);
2488 		return EIO;
2489 	}
2490 
2491 	/* we're done with command blocks processing */
2492 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2493 
2494 	/* allow interrupts so we know when the firmware is ready */
2495 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2496 
2497 	/* tell the adapter to initialize the firmware */
2498 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2499 
2500 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2501 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2502 
2503 	/* wait at most one second for firmware initialization to complete */
2504 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2505 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2506 		    "initialization to complete\n", fw->name);
2507 	}
2508 
2509 	return error;
2510 }
2511 
2512 static int
2513 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2514 {
2515 	uint32_t data;
2516 
2517 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2518 		/* XXX set more fine-grained operation */
2519 		data = htole32(IWI_POWER_MODE_MAX);
2520 	} else
2521 		data = htole32(IWI_POWER_MODE_CAM);
2522 
2523 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2524 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2525 }
2526 
2527 static int
2528 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2529 {
2530 	struct iwi_wep_key wepkey;
2531 	struct ieee80211_key *wk;
2532 	int error, i;
2533 
2534 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2535 		wk = &vap->iv_nw_keys[i];
2536 
2537 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2538 		wepkey.idx = i;
2539 		wepkey.len = wk->wk_keylen;
2540 		memset(wepkey.key, 0, sizeof wepkey.key);
2541 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2542 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2543 		    wepkey.len));
2544 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2545 		    sizeof wepkey);
2546 		if (error != 0)
2547 			return error;
2548 	}
2549 	return 0;
2550 }
2551 
2552 static int
2553 iwi_config(struct iwi_softc *sc)
2554 {
2555 	struct ieee80211com *ic = &sc->sc_ic;
2556 	struct iwi_configuration config;
2557 	struct iwi_rateset rs;
2558 	struct iwi_txpower power;
2559 	uint32_t data;
2560 	int error, i;
2561 
2562 	IWI_LOCK_ASSERT(sc);
2563 
2564 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":"));
2565 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr,
2566 	    IEEE80211_ADDR_LEN);
2567 	if (error != 0)
2568 		return error;
2569 
2570 	memset(&config, 0, sizeof config);
2571 	config.bluetooth_coexistence = sc->bluetooth;
2572 	config.silence_threshold = 0x1e;
2573 	config.antenna = sc->antenna;
2574 	config.multicast_enabled = 1;
2575 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2576 	config.disable_unicast_decryption = 1;
2577 	config.disable_multicast_decryption = 1;
2578 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2579 		config.allow_invalid_frames = 1;
2580 		config.allow_beacon_and_probe_resp = 1;
2581 		config.allow_mgt = 1;
2582 	}
2583 	DPRINTF(("Configuring adapter\n"));
2584 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2585 	if (error != 0)
2586 		return error;
2587 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2588 		power.mode = IWI_MODE_11B;
2589 		power.nchan = 11;
2590 		for (i = 0; i < 11; i++) {
2591 			power.chan[i].chan = i + 1;
2592 			power.chan[i].power = IWI_TXPOWER_MAX;
2593 		}
2594 		DPRINTF(("Setting .11b channels tx power\n"));
2595 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2596 		if (error != 0)
2597 			return error;
2598 
2599 		power.mode = IWI_MODE_11G;
2600 		DPRINTF(("Setting .11g channels tx power\n"));
2601 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2602 		if (error != 0)
2603 			return error;
2604 	}
2605 
2606 	memset(&rs, 0, sizeof rs);
2607 	rs.mode = IWI_MODE_11G;
2608 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2609 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2610 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2611 	    rs.nrates);
2612 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2613 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2614 	if (error != 0)
2615 		return error;
2616 
2617 	memset(&rs, 0, sizeof rs);
2618 	rs.mode = IWI_MODE_11A;
2619 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2620 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2621 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2622 	    rs.nrates);
2623 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2624 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2625 	if (error != 0)
2626 		return error;
2627 
2628 	data = htole32(arc4random());
2629 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2630 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2631 	if (error != 0)
2632 		return error;
2633 
2634 	/* enable adapter */
2635 	DPRINTF(("Enabling adapter\n"));
2636 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2637 }
2638 
2639 static __inline void
2640 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2641 {
2642 	uint8_t *st = &scan->scan_type[ix / 2];
2643 	if (ix % 2)
2644 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2645 	else
2646 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2647 }
2648 
2649 static int
2650 scan_type(const struct ieee80211_scan_state *ss,
2651 	const struct ieee80211_channel *chan)
2652 {
2653 	/* We can only set one essid for a directed scan */
2654 	if (ss->ss_nssid != 0)
2655 		return IWI_SCAN_TYPE_BDIRECTED;
2656 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2657 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2658 		return IWI_SCAN_TYPE_BROADCAST;
2659 	return IWI_SCAN_TYPE_PASSIVE;
2660 }
2661 
2662 static __inline int
2663 scan_band(const struct ieee80211_channel *c)
2664 {
2665 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2666 }
2667 
2668 static void
2669 iwi_monitor_scan(void *arg, int npending)
2670 {
2671 	struct iwi_softc *sc = arg;
2672 	IWI_LOCK_DECL;
2673 
2674 	IWI_LOCK(sc);
2675 	(void) iwi_scanchan(sc, 2000, 0);
2676 	IWI_UNLOCK(sc);
2677 }
2678 
2679 /*
2680  * Start a scan on the current channel or all channels.
2681  */
2682 static int
2683 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2684 {
2685 	struct ieee80211com *ic = &sc->sc_ic;
2686 	struct ieee80211_channel *chan;
2687 	struct ieee80211_scan_state *ss;
2688 	struct iwi_scan_ext scan;
2689 	int error = 0;
2690 
2691 	IWI_LOCK_ASSERT(sc);
2692 	if (sc->fw_state == IWI_FW_SCANNING) {
2693 		/*
2694 		 * This should not happen as we only trigger scan_next after
2695 		 * completion
2696 		 */
2697 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2698 		return (EBUSY);
2699 	}
2700 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2701 
2702 	ss = ic->ic_scan;
2703 
2704 	memset(&scan, 0, sizeof scan);
2705 	scan.full_scan_index = htole32(++sc->sc_scangen);
2706 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2707 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2708 		/*
2709 		 * Use very short dwell times for when we send probe request
2710 		 * frames.  Without this bg scans hang.  Ideally this should
2711 		 * be handled with early-termination as done by net80211 but
2712 		 * that's not feasible (aborting a scan is problematic).
2713 		 */
2714 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2715 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2716 	} else {
2717 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2718 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2719 	}
2720 
2721 	/* We can only set one essid for a directed scan */
2722 	if (ss->ss_nssid != 0) {
2723 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2724 		    ss->ss_ssid[0].len);
2725 		if (error)
2726 			return (error);
2727 	}
2728 
2729 	if (allchan) {
2730 		int i, next, band, b, bstart;
2731 		/*
2732 		 * Convert scan list to run-length encoded channel list
2733 		 * the firmware requires (preserving the order setup by
2734 		 * net80211).  The first entry in each run specifies the
2735 		 * band and the count of items in the run.
2736 		 */
2737 		next = 0;		/* next open slot */
2738 		bstart = 0;		/* NB: not needed, silence compiler */
2739 		band = -1;		/* NB: impossible value */
2740 		KASSERT(ss->ss_last > 0, ("no channels"));
2741 		for (i = 0; i < ss->ss_last; i++) {
2742 			chan = ss->ss_chans[i];
2743 			b = scan_band(chan);
2744 			if (b != band) {
2745 				if (band != -1)
2746 					scan.channels[bstart] =
2747 					    (next - bstart) | band;
2748 				/* NB: this allocates a slot for the run-len */
2749 				band = b, bstart = next++;
2750 			}
2751 			if (next >= IWI_SCAN_CHANNELS) {
2752 				DPRINTF(("truncating scan list\n"));
2753 				break;
2754 			}
2755 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2756 			set_scan_type(&scan, next, scan_type(ss, chan));
2757 			next++;
2758 		}
2759 		scan.channels[bstart] = (next - bstart) | band;
2760 	} else {
2761 		/* Scan the current channel only */
2762 		chan = ic->ic_curchan;
2763 		scan.channels[0] = 1 | scan_band(chan);
2764 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2765 		set_scan_type(&scan, 1, scan_type(ss, chan));
2766 	}
2767 #ifdef IWI_DEBUG
2768 	if (iwi_debug > 0) {
2769 		static const char *scantype[8] =
2770 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2771 		int i;
2772 		printf("Scan request: index %u dwell %d/%d/%d\n"
2773 		    , le32toh(scan.full_scan_index)
2774 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2775 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2776 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2777 		);
2778 		i = 0;
2779 		do {
2780 			int run = scan.channels[i];
2781 			if (run == 0)
2782 				break;
2783 			printf("Scan %d %s channels:", run & 0x3f,
2784 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2785 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2786 				uint8_t type = scan.scan_type[i/2];
2787 				printf(" %u/%s", scan.channels[i],
2788 				    scantype[(i & 1 ? type : type>>4) & 7]);
2789 			}
2790 			printf("\n");
2791 		} while (i < IWI_SCAN_CHANNELS);
2792 	}
2793 #endif
2794 
2795 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2796 }
2797 
2798 static int
2799 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2800 {
2801 	struct iwi_sensitivity sens;
2802 
2803 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2804 
2805 	memset(&sens, 0, sizeof sens);
2806 	sens.rssi = htole16(rssi_dbm);
2807 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2808 }
2809 
2810 static int
2811 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2812 {
2813 	struct ieee80211com *ic = vap->iv_ic;
2814 	struct ifnet *ifp = vap->iv_ifp;
2815 	struct ieee80211_node *ni;
2816 	struct iwi_configuration config;
2817 	struct iwi_associate *assoc = &sc->assoc;
2818 	struct iwi_rateset rs;
2819 	uint16_t capinfo;
2820 	uint32_t data;
2821 	int error, mode;
2822 
2823 	IWI_LOCK_ASSERT(sc);
2824 
2825 	ni = ieee80211_ref_node(vap->iv_bss);
2826 
2827 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2828 		DPRINTF(("Already associated\n"));
2829 		return (-1);
2830 	}
2831 
2832 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2833 	error = 0;
2834 	mode = 0;
2835 
2836 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2837 		mode = IWI_MODE_11A;
2838 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2839 		mode = IWI_MODE_11G;
2840 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2841 		mode = IWI_MODE_11B;
2842 
2843 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2844 		memset(&config, 0, sizeof config);
2845 		config.bluetooth_coexistence = sc->bluetooth;
2846 		config.antenna = sc->antenna;
2847 		config.multicast_enabled = 1;
2848 		if (mode == IWI_MODE_11G)
2849 			config.use_protection = 1;
2850 		config.answer_pbreq =
2851 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2852 		config.disable_unicast_decryption = 1;
2853 		config.disable_multicast_decryption = 1;
2854 		DPRINTF(("Configuring adapter\n"));
2855 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2856 		if (error != 0)
2857 			goto done;
2858 	}
2859 
2860 #ifdef IWI_DEBUG
2861 	if (iwi_debug > 0) {
2862 		printf("Setting ESSID to ");
2863 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2864 		printf("\n");
2865 	}
2866 #endif
2867 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2868 	if (error != 0)
2869 		goto done;
2870 
2871 	error = iwi_setpowermode(sc, vap);
2872 	if (error != 0)
2873 		goto done;
2874 
2875 	data = htole32(vap->iv_rtsthreshold);
2876 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2877 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2878 	if (error != 0)
2879 		goto done;
2880 
2881 	data = htole32(vap->iv_fragthreshold);
2882 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2883 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2884 	if (error != 0)
2885 		goto done;
2886 
2887 	/* the rate set has already been "negotiated" */
2888 	memset(&rs, 0, sizeof rs);
2889 	rs.mode = mode;
2890 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2891 	rs.nrates = ni->ni_rates.rs_nrates;
2892 	if (rs.nrates > IWI_RATESET_SIZE) {
2893 		DPRINTF(("Truncating negotiated rate set from %u\n",
2894 		    rs.nrates));
2895 		rs.nrates = IWI_RATESET_SIZE;
2896 	}
2897 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2898 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2899 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2900 	if (error != 0)
2901 		goto done;
2902 
2903 	memset(assoc, 0, sizeof *assoc);
2904 
2905 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2906 		/* NB: don't treat WME setup as failure */
2907 		if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2908 			assoc->policy |= htole16(IWI_POLICY_WME);
2909 		/* XXX complain on failure? */
2910 	}
2911 
2912 	if (vap->iv_appie_wpa != NULL) {
2913 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2914 
2915 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2916 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2917 		if (error != 0)
2918 			goto done;
2919 	}
2920 
2921 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2922 	if (error != 0)
2923 		goto done;
2924 
2925 	assoc->mode = mode;
2926 	assoc->chan = ic->ic_curchan->ic_ieee;
2927 	/*
2928 	 * NB: do not arrange for shared key auth w/o privacy
2929 	 *     (i.e. a wep key); it causes a firmware error.
2930 	 */
2931 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2932 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2933 		assoc->auth = IWI_AUTH_SHARED;
2934 		/*
2935 		 * It's possible to have privacy marked but no default
2936 		 * key setup.  This typically is due to a user app bug
2937 		 * but if we blindly grab the key the firmware will
2938 		 * barf so avoid it for now.
2939 		 */
2940 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2941 			assoc->auth |= vap->iv_def_txkey << 4;
2942 
2943 		error = iwi_setwepkeys(sc, vap);
2944 		if (error != 0)
2945 			goto done;
2946 	}
2947 	if (vap->iv_flags & IEEE80211_F_WPA)
2948 		assoc->policy |= htole16(IWI_POLICY_WPA);
2949 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2950 		assoc->type = IWI_HC_IBSS_START;
2951 	else
2952 		assoc->type = IWI_HC_ASSOC;
2953 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2954 
2955 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2956 		capinfo = IEEE80211_CAPINFO_IBSS;
2957 	else
2958 		capinfo = IEEE80211_CAPINFO_ESS;
2959 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2960 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2961 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2962 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2963 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2964 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2965 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2966 	assoc->capinfo = htole16(capinfo);
2967 
2968 	assoc->lintval = htole16(ic->ic_lintval);
2969 	assoc->intval = htole16(ni->ni_intval);
2970 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2971 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2972 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2973 	else
2974 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2975 
2976 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2977 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2978 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2979 	    assoc->bssid, ":", assoc->dst, ":",
2980 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2981 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2982 	    le16toh(assoc->intval)));
2983 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2984 done:
2985 	ieee80211_free_node(ni);
2986 	if (error)
2987 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2988 
2989 	return (error);
2990 }
2991 
2992 static void
2993 iwi_disassoc(void *arg, int pending)
2994 {
2995 	struct iwi_softc *sc = arg;
2996 	IWI_LOCK_DECL;
2997 
2998 	IWI_LOCK(sc);
2999 	iwi_disassociate(sc, 0);
3000 	IWI_UNLOCK(sc);
3001 }
3002 
3003 static int
3004 iwi_disassociate(struct iwi_softc *sc, int quiet)
3005 {
3006 	struct iwi_associate *assoc = &sc->assoc;
3007 
3008 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3009 		DPRINTF(("Not associated\n"));
3010 		return (-1);
3011 	}
3012 
3013 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3014 
3015 	if (quiet)
3016 		assoc->type = IWI_HC_DISASSOC_QUIET;
3017 	else
3018 		assoc->type = IWI_HC_DISASSOC;
3019 
3020 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3021 	    assoc->bssid, ":", assoc->chan));
3022 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3023 }
3024 
3025 /*
3026  * release dma resources for the firmware
3027  */
3028 static void
3029 iwi_release_fw_dma(struct iwi_softc *sc)
3030 {
3031 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3032 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3033 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3034 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3035 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3036 		bus_dma_tag_destroy(sc->fw_dmat);
3037 
3038 	sc->fw_flags = 0;
3039 	sc->fw_dma_size = 0;
3040 	sc->fw_dmat = NULL;
3041 	sc->fw_map = NULL;
3042 	sc->fw_physaddr = 0;
3043 	sc->fw_virtaddr = NULL;
3044 }
3045 
3046 /*
3047  * allocate the dma descriptor for the firmware.
3048  * Return 0 on success, 1 on error.
3049  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3050  */
3051 static int
3052 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3053 {
3054 	if (sc->fw_dma_size >= size)
3055 		return 0;
3056 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3057 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3058 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3059 		device_printf(sc->sc_dev,
3060 		    "could not create firmware DMA tag\n");
3061 		goto error;
3062 	}
3063 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3064 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3065 	    &sc->fw_map) != 0) {
3066 		device_printf(sc->sc_dev,
3067 		    "could not allocate firmware DMA memory\n");
3068 		goto error;
3069 	}
3070 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3071 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3072 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3073 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3074 		goto error;
3075 	}
3076 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3077 	sc->fw_dma_size = size;
3078 	return 0;
3079 
3080 error:
3081 	iwi_release_fw_dma(sc);
3082 	return 1;
3083 }
3084 
3085 static void
3086 iwi_init_locked(struct iwi_softc *sc)
3087 {
3088 	struct iwi_rx_data *data;
3089 	int i;
3090 
3091 	IWI_LOCK_ASSERT(sc);
3092 
3093 	if (sc->fw_state == IWI_FW_LOADING) {
3094 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3095 		return;		/* XXX: condvar? */
3096 	}
3097 
3098 	iwi_stop_locked(sc);
3099 
3100 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3101 
3102 	if (iwi_reset(sc) != 0) {
3103 		device_printf(sc->sc_dev, "could not reset adapter\n");
3104 		goto fail;
3105 	}
3106 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3107 		device_printf(sc->sc_dev,
3108 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3109 		goto fail;
3110 	}
3111 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3112 		device_printf(sc->sc_dev,
3113 		    "could not load microcode %s\n", sc->fw_uc.name);
3114 		goto fail;
3115 	}
3116 
3117 	iwi_stop_master(sc);
3118 
3119 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3120 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3121 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3122 
3123 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3124 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3125 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3126 
3127 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3128 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3130 
3131 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3132 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3134 
3135 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3136 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3137 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3138 
3139 	for (i = 0; i < sc->rxq.count; i++) {
3140 		data = &sc->rxq.data[i];
3141 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3142 	}
3143 
3144 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3145 
3146 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3147 		device_printf(sc->sc_dev,
3148 		    "could not load main firmware %s\n", sc->fw_fw.name);
3149 		goto fail;
3150 	}
3151 	sc->flags |= IWI_FLAG_FW_INITED;
3152 
3153 	IWI_STATE_END(sc, IWI_FW_LOADING);
3154 
3155 	if (iwi_config(sc) != 0) {
3156 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3157 		goto fail2;
3158 	}
3159 
3160 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3161 	sc->sc_running = 1;
3162 	return;
3163 fail:
3164 	IWI_STATE_END(sc, IWI_FW_LOADING);
3165 fail2:
3166 	iwi_stop_locked(sc);
3167 }
3168 
3169 static void
3170 iwi_init(void *priv)
3171 {
3172 	struct iwi_softc *sc = priv;
3173 	struct ieee80211com *ic = &sc->sc_ic;
3174 	IWI_LOCK_DECL;
3175 
3176 	IWI_LOCK(sc);
3177 	iwi_init_locked(sc);
3178 	IWI_UNLOCK(sc);
3179 
3180 	if (sc->sc_running)
3181 		ieee80211_start_all(ic);
3182 }
3183 
3184 static void
3185 iwi_stop_locked(void *priv)
3186 {
3187 	struct iwi_softc *sc = priv;
3188 
3189 	IWI_LOCK_ASSERT(sc);
3190 
3191 	sc->sc_running = 0;
3192 
3193 	if (sc->sc_softled) {
3194 		callout_stop(&sc->sc_ledtimer);
3195 		sc->sc_blinking = 0;
3196 	}
3197 	callout_stop(&sc->sc_wdtimer);
3198 	callout_stop(&sc->sc_rftimer);
3199 
3200 	iwi_stop_master(sc);
3201 
3202 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3203 
3204 	/* reset rings */
3205 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3206 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3207 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3208 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3209 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3210 	iwi_reset_rx_ring(sc, &sc->rxq);
3211 
3212 	sc->sc_tx_timer = 0;
3213 	sc->sc_state_timer = 0;
3214 	sc->sc_busy_timer = 0;
3215 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3216 	sc->fw_state = IWI_FW_IDLE;
3217 	wakeup(sc);
3218 }
3219 
3220 static void
3221 iwi_stop(struct iwi_softc *sc)
3222 {
3223 	IWI_LOCK_DECL;
3224 
3225 	IWI_LOCK(sc);
3226 	iwi_stop_locked(sc);
3227 	IWI_UNLOCK(sc);
3228 }
3229 
3230 static void
3231 iwi_restart(void *arg, int npending)
3232 {
3233 	struct iwi_softc *sc = arg;
3234 
3235 	iwi_init(sc);
3236 }
3237 
3238 /*
3239  * Return whether or not the radio is enabled in hardware
3240  * (i.e. the rfkill switch is "off").
3241  */
3242 static int
3243 iwi_getrfkill(struct iwi_softc *sc)
3244 {
3245 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3246 }
3247 
3248 static void
3249 iwi_radio_on(void *arg, int pending)
3250 {
3251 	struct iwi_softc *sc = arg;
3252 	struct ieee80211com *ic = &sc->sc_ic;
3253 
3254 	device_printf(sc->sc_dev, "radio turned on\n");
3255 
3256 	iwi_init(sc);
3257 	ieee80211_notify_radio(ic, 1);
3258 }
3259 
3260 static void
3261 iwi_rfkill_poll(void *arg)
3262 {
3263 	struct iwi_softc *sc = arg;
3264 
3265 	IWI_LOCK_ASSERT(sc);
3266 
3267 	/*
3268 	 * Check for a change in rfkill state.  We get an
3269 	 * interrupt when a radio is disabled but not when
3270 	 * it is enabled so we must poll for the latter.
3271 	 */
3272 	if (!iwi_getrfkill(sc)) {
3273 		ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
3274 		return;
3275 	}
3276 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3277 }
3278 
3279 static void
3280 iwi_radio_off(void *arg, int pending)
3281 {
3282 	struct iwi_softc *sc = arg;
3283 	struct ieee80211com *ic = &sc->sc_ic;
3284 	IWI_LOCK_DECL;
3285 
3286 	device_printf(sc->sc_dev, "radio turned off\n");
3287 
3288 	ieee80211_notify_radio(ic, 0);
3289 
3290 	IWI_LOCK(sc);
3291 	iwi_stop_locked(sc);
3292 	iwi_rfkill_poll(sc);
3293 	IWI_UNLOCK(sc);
3294 }
3295 
3296 static int
3297 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3298 {
3299 	struct iwi_softc *sc = arg1;
3300 	uint32_t size, buf[128];
3301 
3302 	memset(buf, 0, sizeof buf);
3303 
3304 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3305 		return SYSCTL_OUT(req, buf, sizeof buf);
3306 
3307 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3308 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3309 
3310 	return SYSCTL_OUT(req, buf, size);
3311 }
3312 
3313 static int
3314 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3315 {
3316 	struct iwi_softc *sc = arg1;
3317 	int val = !iwi_getrfkill(sc);
3318 
3319 	return SYSCTL_OUT(req, &val, sizeof val);
3320 }
3321 
3322 /*
3323  * Add sysctl knobs.
3324  */
3325 static void
3326 iwi_sysctlattach(struct iwi_softc *sc)
3327 {
3328 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3329 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3330 
3331 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3332 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3333 	    "radio transmitter switch state (0=off, 1=on)");
3334 
3335 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3336 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3337 	    "statistics");
3338 
3339 	sc->bluetooth = 0;
3340 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3341 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3342 
3343 	sc->antenna = IWI_ANTENNA_AUTO;
3344 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3345 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3346 }
3347 
3348 /*
3349  * LED support.
3350  *
3351  * Different cards have different capabilities.  Some have three
3352  * led's while others have only one.  The linux ipw driver defines
3353  * led's for link state (associated or not), band (11a, 11g, 11b),
3354  * and for link activity.  We use one led and vary the blink rate
3355  * according to the tx/rx traffic a la the ath driver.
3356  */
3357 
3358 static __inline uint32_t
3359 iwi_toggle_event(uint32_t r)
3360 {
3361 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3362 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3363 }
3364 
3365 static uint32_t
3366 iwi_read_event(struct iwi_softc *sc)
3367 {
3368 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3369 }
3370 
3371 static void
3372 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3373 {
3374 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3375 }
3376 
3377 static void
3378 iwi_led_done(void *arg)
3379 {
3380 	struct iwi_softc *sc = arg;
3381 
3382 	sc->sc_blinking = 0;
3383 }
3384 
3385 /*
3386  * Turn the activity LED off: flip the pin and then set a timer so no
3387  * update will happen for the specified duration.
3388  */
3389 static void
3390 iwi_led_off(void *arg)
3391 {
3392 	struct iwi_softc *sc = arg;
3393 	uint32_t v;
3394 
3395 	v = iwi_read_event(sc);
3396 	v &= ~sc->sc_ledpin;
3397 	iwi_write_event(sc, iwi_toggle_event(v));
3398 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3399 }
3400 
3401 /*
3402  * Blink the LED according to the specified on/off times.
3403  */
3404 static void
3405 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3406 {
3407 	uint32_t v;
3408 
3409 	v = iwi_read_event(sc);
3410 	v |= sc->sc_ledpin;
3411 	iwi_write_event(sc, iwi_toggle_event(v));
3412 	sc->sc_blinking = 1;
3413 	sc->sc_ledoff = off;
3414 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3415 }
3416 
3417 static void
3418 iwi_led_event(struct iwi_softc *sc, int event)
3419 {
3420 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3421 	static const struct {
3422 		u_int		rate;		/* tx/rx iwi rate */
3423 		u_int16_t	timeOn;		/* LED on time (ms) */
3424 		u_int16_t	timeOff;	/* LED off time (ms) */
3425 	} blinkrates[] = {
3426 		{ IWI_RATE_OFDM54, 40,  10 },
3427 		{ IWI_RATE_OFDM48, 44,  11 },
3428 		{ IWI_RATE_OFDM36, 50,  13 },
3429 		{ IWI_RATE_OFDM24, 57,  14 },
3430 		{ IWI_RATE_OFDM18, 67,  16 },
3431 		{ IWI_RATE_OFDM12, 80,  20 },
3432 		{ IWI_RATE_DS11,  100,  25 },
3433 		{ IWI_RATE_OFDM9, 133,  34 },
3434 		{ IWI_RATE_OFDM6, 160,  40 },
3435 		{ IWI_RATE_DS5,   200,  50 },
3436 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3437 		{ IWI_RATE_DS2,   267,  66 },
3438 		{ IWI_RATE_DS1,   400, 100 },
3439 		{            0,   500, 130 },	/* unknown rate/polling */
3440 	};
3441 	uint32_t txrate;
3442 	int j = 0;			/* XXX silence compiler */
3443 
3444 	sc->sc_ledevent = ticks;	/* time of last event */
3445 	if (sc->sc_blinking)		/* don't interrupt active blink */
3446 		return;
3447 	switch (event) {
3448 	case IWI_LED_POLL:
3449 		j = nitems(blinkrates)-1;
3450 		break;
3451 	case IWI_LED_TX:
3452 		/* read current transmission rate from adapter */
3453 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3454 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3455 			for (j = 0; j < nitems(blinkrates)-1; j++)
3456 				if (blinkrates[j].rate == txrate)
3457 					break;
3458 			sc->sc_txrix = j;
3459 		} else
3460 			j = sc->sc_txrix;
3461 		break;
3462 	case IWI_LED_RX:
3463 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3464 			for (j = 0; j < nitems(blinkrates)-1; j++)
3465 				if (blinkrates[j].rate == sc->sc_rxrate)
3466 					break;
3467 			sc->sc_rxrix = j;
3468 		} else
3469 			j = sc->sc_rxrix;
3470 		break;
3471 	}
3472 	/* XXX beware of overflow */
3473 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3474 		(blinkrates[j].timeOff * hz) / 1000);
3475 }
3476 
3477 static int
3478 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3479 {
3480 	struct iwi_softc *sc = arg1;
3481 	int softled = sc->sc_softled;
3482 	int error;
3483 
3484 	error = sysctl_handle_int(oidp, &softled, 0, req);
3485 	if (error || !req->newptr)
3486 		return error;
3487 	softled = (softled != 0);
3488 	if (softled != sc->sc_softled) {
3489 		if (softled) {
3490 			uint32_t v = iwi_read_event(sc);
3491 			v &= ~sc->sc_ledpin;
3492 			iwi_write_event(sc, iwi_toggle_event(v));
3493 		}
3494 		sc->sc_softled = softled;
3495 	}
3496 	return 0;
3497 }
3498 
3499 static void
3500 iwi_ledattach(struct iwi_softc *sc)
3501 {
3502 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3503 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3504 
3505 	sc->sc_blinking = 0;
3506 	sc->sc_ledstate = 1;
3507 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3508 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3509 
3510 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3511 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3512 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3513 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3514 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3515 		"pin setting to turn activity LED on");
3516 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3517 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3518 		"idle time for inactivity LED (ticks)");
3519 	/* XXX for debugging */
3520 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3521 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3522 		"NIC type from EEPROM");
3523 
3524 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3525 	sc->sc_softled = 1;
3526 
3527 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3528 	if (sc->sc_nictype == 1) {
3529 		/*
3530 		 * NB: led's are reversed.
3531 		 */
3532 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3533 	}
3534 }
3535 
3536 static void
3537 iwi_scan_start(struct ieee80211com *ic)
3538 {
3539 	/* ignore */
3540 }
3541 
3542 static void
3543 iwi_set_channel(struct ieee80211com *ic)
3544 {
3545 	struct iwi_softc *sc = ic->ic_softc;
3546 
3547 	if (sc->fw_state == IWI_FW_IDLE)
3548 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3549 }
3550 
3551 static void
3552 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3553 {
3554 	struct ieee80211vap *vap = ss->ss_vap;
3555 	struct iwi_softc *sc = vap->iv_ic->ic_softc;
3556 	IWI_LOCK_DECL;
3557 
3558 	IWI_LOCK(sc);
3559 	if (iwi_scanchan(sc, maxdwell, 0))
3560 		ieee80211_cancel_scan(vap);
3561 	IWI_UNLOCK(sc);
3562 }
3563 
3564 static void
3565 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3566 {
3567 	/* NB: don't try to abort scan; wait for firmware to finish */
3568 }
3569 
3570 static void
3571 iwi_scan_end(struct ieee80211com *ic)
3572 {
3573 	struct iwi_softc *sc = ic->ic_softc;
3574 	IWI_LOCK_DECL;
3575 
3576 	IWI_LOCK(sc);
3577 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3578 	/* NB: make sure we're still scanning */
3579 	if (sc->fw_state == IWI_FW_SCANNING)
3580 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3581 	IWI_UNLOCK(sc);
3582 }
3583 
3584 static void
3585 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
3586 {
3587 	struct iwi_softc *sc = ic->ic_softc;
3588 	device_t dev = sc->sc_dev;
3589 
3590 	memset(bands, 0, bands_sz);
3591 	setbit(bands, IEEE80211_MODE_11B);
3592 	setbit(bands, IEEE80211_MODE_11G);
3593 	if (pci_get_device(dev) >= 0x4223)
3594 		setbit(bands, IEEE80211_MODE_11A);
3595 }
3596 
3597 static void
3598 iwi_getradiocaps(struct ieee80211com *ic,
3599     int maxchans, int *nchans, struct ieee80211_channel chans[])
3600 {
3601 	uint8_t bands[IEEE80211_MODE_BYTES];
3602 
3603 	iwi_collect_bands(ic, bands, sizeof(bands));
3604 	*nchans = 0;
3605 	if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
3606 		ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
3607 		    def_chan_2ghz, nitems(def_chan_2ghz), bands, 0);
3608 	if (isset(bands, IEEE80211_MODE_11A)) {
3609 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3610 		    def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
3611 		    bands, 0);
3612 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3613 		    def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
3614 		    bands, 0);
3615 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3616 		    def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
3617 		    bands, 0);
3618 	}
3619 }
3620