1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004, 2005 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /*- 36 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 37 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 38 */ 39 40 #include <sys/param.h> 41 #include <sys/sysctl.h> 42 #include <sys/sockio.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/socket.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/module.h> 51 #include <sys/bus.h> 52 #include <sys/endian.h> 53 #include <sys/proc.h> 54 #include <sys/mount.h> 55 #include <sys/namei.h> 56 #include <sys/linker.h> 57 #include <sys/firmware.h> 58 #include <sys/taskqueue.h> 59 60 #include <machine/bus.h> 61 #include <machine/resource.h> 62 #include <sys/rman.h> 63 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <net/bpf.h> 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_arp.h> 71 #include <net/ethernet.h> 72 #include <net/if_dl.h> 73 #include <net/if_media.h> 74 #include <net/if_types.h> 75 76 #include <net80211/ieee80211_var.h> 77 #include <net80211/ieee80211_radiotap.h> 78 #include <net80211/ieee80211_input.h> 79 #include <net80211/ieee80211_regdomain.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/if_ether.h> 86 87 #include <dev/iwi/if_iwireg.h> 88 #include <dev/iwi/if_iwivar.h> 89 #include <dev/iwi/if_iwi_ioctl.h> 90 91 #define IWI_DEBUG 92 #ifdef IWI_DEBUG 93 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 94 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 95 int iwi_debug = 0; 96 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 97 98 static const char *iwi_fw_states[] = { 99 "IDLE", /* IWI_FW_IDLE */ 100 "LOADING", /* IWI_FW_LOADING */ 101 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 102 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 103 "SCANNING", /* IWI_FW_SCANNING */ 104 }; 105 #else 106 #define DPRINTF(x) 107 #define DPRINTFN(n, x) 108 #endif 109 110 MODULE_DEPEND(iwi, pci, 1, 1, 1); 111 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 112 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 113 114 enum { 115 IWI_LED_TX, 116 IWI_LED_RX, 117 IWI_LED_POLL, 118 }; 119 120 struct iwi_ident { 121 uint16_t vendor; 122 uint16_t device; 123 const char *name; 124 }; 125 126 static const struct iwi_ident iwi_ident_table[] = { 127 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 128 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 129 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 130 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 131 132 { 0, 0, NULL } 133 }; 134 135 static const uint8_t def_chan_5ghz_band1[] = 136 { 36, 40, 44, 48, 52, 56, 60, 64 }; 137 static const uint8_t def_chan_5ghz_band2[] = 138 { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; 139 static const uint8_t def_chan_5ghz_band3[] = 140 { 149, 153, 157, 161, 165 }; 141 142 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 143 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 144 const uint8_t [IEEE80211_ADDR_LEN], 145 const uint8_t [IEEE80211_ADDR_LEN]); 146 static void iwi_vap_delete(struct ieee80211vap *); 147 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 148 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 149 int); 150 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 151 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 152 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 153 int, bus_addr_t, bus_addr_t); 154 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 155 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 156 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 157 int); 158 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 159 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 160 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void iwi_node_free(struct ieee80211_node *); 163 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 164 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 165 static void iwi_wme_init(struct iwi_softc *); 166 static int iwi_wme_setparams(struct iwi_softc *); 167 static int iwi_wme_update(struct ieee80211com *); 168 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 169 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 170 struct iwi_frame *); 171 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 172 static void iwi_rx_intr(struct iwi_softc *); 173 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 174 static void iwi_intr(void *); 175 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 176 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 177 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 178 struct ieee80211_node *, int); 179 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 180 const struct ieee80211_bpf_params *); 181 static void iwi_start(struct iwi_softc *); 182 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 183 static void iwi_watchdog(void *); 184 static int iwi_ioctl(struct ieee80211com *, u_long, void *); 185 static void iwi_parent(struct ieee80211com *); 186 static void iwi_stop_master(struct iwi_softc *); 187 static int iwi_reset(struct iwi_softc *); 188 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 189 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 190 static void iwi_release_fw_dma(struct iwi_softc *sc); 191 static int iwi_config(struct iwi_softc *); 192 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 193 static void iwi_put_firmware(struct iwi_softc *); 194 static void iwi_monitor_scan(void *, int); 195 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 196 static void iwi_scan_start(struct ieee80211com *); 197 static void iwi_scan_end(struct ieee80211com *); 198 static void iwi_set_channel(struct ieee80211com *); 199 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 200 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 201 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 202 static void iwi_disassoc(void *, int); 203 static int iwi_disassociate(struct iwi_softc *, int quiet); 204 static void iwi_init_locked(struct iwi_softc *); 205 static void iwi_init(void *); 206 static int iwi_init_fw_dma(struct iwi_softc *, int); 207 static void iwi_stop_locked(void *); 208 static void iwi_stop(struct iwi_softc *); 209 static void iwi_restart(void *, int); 210 static int iwi_getrfkill(struct iwi_softc *); 211 static void iwi_radio_on(void *, int); 212 static void iwi_radio_off(void *, int); 213 static void iwi_sysctlattach(struct iwi_softc *); 214 static void iwi_led_event(struct iwi_softc *, int); 215 static void iwi_ledattach(struct iwi_softc *); 216 static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t); 217 static void iwi_getradiocaps(struct ieee80211com *, int, int *, 218 struct ieee80211_channel []); 219 220 static int iwi_probe(device_t); 221 static int iwi_attach(device_t); 222 static int iwi_detach(device_t); 223 static int iwi_shutdown(device_t); 224 static int iwi_suspend(device_t); 225 static int iwi_resume(device_t); 226 227 static device_method_t iwi_methods[] = { 228 /* Device interface */ 229 DEVMETHOD(device_probe, iwi_probe), 230 DEVMETHOD(device_attach, iwi_attach), 231 DEVMETHOD(device_detach, iwi_detach), 232 DEVMETHOD(device_shutdown, iwi_shutdown), 233 DEVMETHOD(device_suspend, iwi_suspend), 234 DEVMETHOD(device_resume, iwi_resume), 235 236 DEVMETHOD_END 237 }; 238 239 static driver_t iwi_driver = { 240 "iwi", 241 iwi_methods, 242 sizeof (struct iwi_softc) 243 }; 244 245 DRIVER_MODULE(iwi, pci, iwi_driver, NULL, NULL); 246 247 MODULE_VERSION(iwi, 1); 248 249 static __inline uint8_t 250 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 251 { 252 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 253 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 254 } 255 256 static __inline uint32_t 257 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 258 { 259 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 260 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 261 } 262 263 static int 264 iwi_probe(device_t dev) 265 { 266 const struct iwi_ident *ident; 267 268 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 269 if (pci_get_vendor(dev) == ident->vendor && 270 pci_get_device(dev) == ident->device) { 271 device_set_desc(dev, ident->name); 272 return (BUS_PROBE_DEFAULT); 273 } 274 } 275 return ENXIO; 276 } 277 278 static int 279 iwi_attach(device_t dev) 280 { 281 struct iwi_softc *sc = device_get_softc(dev); 282 struct ieee80211com *ic = &sc->sc_ic; 283 uint16_t val; 284 int i, error; 285 286 sc->sc_dev = dev; 287 sc->sc_ledevent = ticks; 288 289 IWI_LOCK_INIT(sc); 290 mbufq_init(&sc->sc_snd, ifqmaxlen); 291 292 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 293 294 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 295 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 296 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 297 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 298 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 299 300 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 301 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 302 303 pci_write_config(dev, 0x41, 0, 1); 304 305 /* enable bus-mastering */ 306 pci_enable_busmaster(dev); 307 308 i = PCIR_BAR(0); 309 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 310 if (sc->mem == NULL) { 311 device_printf(dev, "could not allocate memory resource\n"); 312 goto fail; 313 } 314 315 sc->sc_st = rman_get_bustag(sc->mem); 316 sc->sc_sh = rman_get_bushandle(sc->mem); 317 318 i = 0; 319 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 320 RF_ACTIVE | RF_SHAREABLE); 321 if (sc->irq == NULL) { 322 device_printf(dev, "could not allocate interrupt resource\n"); 323 goto fail; 324 } 325 326 if (iwi_reset(sc) != 0) { 327 device_printf(dev, "could not reset adapter\n"); 328 goto fail; 329 } 330 331 /* 332 * Allocate rings. 333 */ 334 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 335 device_printf(dev, "could not allocate Cmd ring\n"); 336 goto fail; 337 } 338 339 for (i = 0; i < 4; i++) { 340 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 341 IWI_CSR_TX1_RIDX + i * 4, 342 IWI_CSR_TX1_WIDX + i * 4); 343 if (error != 0) { 344 device_printf(dev, "could not allocate Tx ring %d\n", 345 i+i); 346 goto fail; 347 } 348 } 349 350 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 351 device_printf(dev, "could not allocate Rx ring\n"); 352 goto fail; 353 } 354 355 iwi_wme_init(sc); 356 357 ic->ic_softc = sc; 358 ic->ic_name = device_get_nameunit(dev); 359 ic->ic_opmode = IEEE80211_M_STA; 360 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 361 362 /* set device capabilities */ 363 ic->ic_caps = 364 IEEE80211_C_STA /* station mode supported */ 365 | IEEE80211_C_IBSS /* IBSS mode supported */ 366 | IEEE80211_C_MONITOR /* monitor mode supported */ 367 | IEEE80211_C_PMGT /* power save supported */ 368 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 369 | IEEE80211_C_WPA /* 802.11i */ 370 | IEEE80211_C_WME /* 802.11e */ 371 #if 0 372 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 373 #endif 374 ; 375 376 /* read MAC address from EEPROM */ 377 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 378 ic->ic_macaddr[0] = val & 0xff; 379 ic->ic_macaddr[1] = val >> 8; 380 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 381 ic->ic_macaddr[2] = val & 0xff; 382 ic->ic_macaddr[3] = val >> 8; 383 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 384 ic->ic_macaddr[4] = val & 0xff; 385 ic->ic_macaddr[5] = val >> 8; 386 387 iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 388 ic->ic_channels); 389 390 ieee80211_ifattach(ic); 391 /* override default methods */ 392 ic->ic_node_alloc = iwi_node_alloc; 393 sc->sc_node_free = ic->ic_node_free; 394 ic->ic_node_free = iwi_node_free; 395 ic->ic_raw_xmit = iwi_raw_xmit; 396 ic->ic_scan_start = iwi_scan_start; 397 ic->ic_scan_end = iwi_scan_end; 398 ic->ic_set_channel = iwi_set_channel; 399 ic->ic_scan_curchan = iwi_scan_curchan; 400 ic->ic_scan_mindwell = iwi_scan_mindwell; 401 ic->ic_wme.wme_update = iwi_wme_update; 402 403 ic->ic_vap_create = iwi_vap_create; 404 ic->ic_vap_delete = iwi_vap_delete; 405 ic->ic_ioctl = iwi_ioctl; 406 ic->ic_transmit = iwi_transmit; 407 ic->ic_parent = iwi_parent; 408 ic->ic_getradiocaps = iwi_getradiocaps; 409 410 ieee80211_radiotap_attach(ic, 411 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 412 IWI_TX_RADIOTAP_PRESENT, 413 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 414 IWI_RX_RADIOTAP_PRESENT); 415 416 iwi_sysctlattach(sc); 417 iwi_ledattach(sc); 418 419 /* 420 * Hook our interrupt after all initialization is complete. 421 */ 422 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 423 NULL, iwi_intr, sc, &sc->sc_ih); 424 if (error != 0) { 425 device_printf(dev, "could not set up interrupt\n"); 426 goto fail; 427 } 428 429 if (bootverbose) 430 ieee80211_announce(ic); 431 432 return 0; 433 fail: 434 /* XXX fix */ 435 iwi_detach(dev); 436 return ENXIO; 437 } 438 439 static int 440 iwi_detach(device_t dev) 441 { 442 struct iwi_softc *sc = device_get_softc(dev); 443 struct ieee80211com *ic = &sc->sc_ic; 444 445 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 446 447 /* NB: do early to drain any pending tasks */ 448 ieee80211_draintask(ic, &sc->sc_radiontask); 449 ieee80211_draintask(ic, &sc->sc_radiofftask); 450 ieee80211_draintask(ic, &sc->sc_restarttask); 451 ieee80211_draintask(ic, &sc->sc_disassoctask); 452 ieee80211_draintask(ic, &sc->sc_monitortask); 453 454 iwi_stop(sc); 455 456 ieee80211_ifdetach(ic); 457 458 iwi_put_firmware(sc); 459 iwi_release_fw_dma(sc); 460 461 iwi_free_cmd_ring(sc, &sc->cmdq); 462 iwi_free_tx_ring(sc, &sc->txq[0]); 463 iwi_free_tx_ring(sc, &sc->txq[1]); 464 iwi_free_tx_ring(sc, &sc->txq[2]); 465 iwi_free_tx_ring(sc, &sc->txq[3]); 466 iwi_free_rx_ring(sc, &sc->rxq); 467 468 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 469 470 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 471 sc->mem); 472 473 delete_unrhdr(sc->sc_unr); 474 mbufq_drain(&sc->sc_snd); 475 476 IWI_LOCK_DESTROY(sc); 477 478 return 0; 479 } 480 481 static struct ieee80211vap * 482 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 483 enum ieee80211_opmode opmode, int flags, 484 const uint8_t bssid[IEEE80211_ADDR_LEN], 485 const uint8_t mac[IEEE80211_ADDR_LEN]) 486 { 487 struct iwi_softc *sc = ic->ic_softc; 488 struct iwi_vap *ivp; 489 struct ieee80211vap *vap; 490 int i; 491 492 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 493 return NULL; 494 /* 495 * Get firmware image (and possibly dma memory) on mode change. 496 */ 497 if (iwi_get_firmware(sc, opmode)) 498 return NULL; 499 /* allocate DMA memory for mapping firmware image */ 500 i = sc->fw_fw.size; 501 if (sc->fw_boot.size > i) 502 i = sc->fw_boot.size; 503 /* XXX do we dma the ucode as well ? */ 504 if (sc->fw_uc.size > i) 505 i = sc->fw_uc.size; 506 if (iwi_init_fw_dma(sc, i)) 507 return NULL; 508 509 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 510 vap = &ivp->iwi_vap; 511 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 512 /* override the default, the setting comes from the linux driver */ 513 vap->iv_bmissthreshold = 24; 514 /* override with driver methods */ 515 ivp->iwi_newstate = vap->iv_newstate; 516 vap->iv_newstate = iwi_newstate; 517 518 /* complete setup */ 519 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 520 mac); 521 ic->ic_opmode = opmode; 522 return vap; 523 } 524 525 static void 526 iwi_vap_delete(struct ieee80211vap *vap) 527 { 528 struct iwi_vap *ivp = IWI_VAP(vap); 529 530 ieee80211_vap_detach(vap); 531 free(ivp, M_80211_VAP); 532 } 533 534 static void 535 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 536 { 537 if (error != 0) 538 return; 539 540 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 541 542 *(bus_addr_t *)arg = segs[0].ds_addr; 543 } 544 545 static int 546 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 547 { 548 int error; 549 550 ring->count = count; 551 ring->queued = 0; 552 ring->cur = ring->next = 0; 553 554 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 555 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 556 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 557 NULL, NULL, &ring->desc_dmat); 558 if (error != 0) { 559 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 560 goto fail; 561 } 562 563 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 564 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 565 if (error != 0) { 566 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 567 goto fail; 568 } 569 570 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 571 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 572 if (error != 0) { 573 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 574 goto fail; 575 } 576 577 return 0; 578 579 fail: iwi_free_cmd_ring(sc, ring); 580 return error; 581 } 582 583 static void 584 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 585 { 586 ring->queued = 0; 587 ring->cur = ring->next = 0; 588 } 589 590 static void 591 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 592 { 593 if (ring->desc != NULL) { 594 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 595 BUS_DMASYNC_POSTWRITE); 596 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 597 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 598 } 599 600 if (ring->desc_dmat != NULL) 601 bus_dma_tag_destroy(ring->desc_dmat); 602 } 603 604 static int 605 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 606 bus_addr_t csr_ridx, bus_addr_t csr_widx) 607 { 608 int i, error; 609 610 ring->count = count; 611 ring->queued = 0; 612 ring->cur = ring->next = 0; 613 ring->csr_ridx = csr_ridx; 614 ring->csr_widx = csr_widx; 615 616 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 617 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 618 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 619 NULL, &ring->desc_dmat); 620 if (error != 0) { 621 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 622 goto fail; 623 } 624 625 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 626 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 627 if (error != 0) { 628 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 629 goto fail; 630 } 631 632 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 633 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 634 if (error != 0) { 635 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 636 goto fail; 637 } 638 639 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 640 M_NOWAIT | M_ZERO); 641 if (ring->data == NULL) { 642 device_printf(sc->sc_dev, "could not allocate soft data\n"); 643 error = ENOMEM; 644 goto fail; 645 } 646 647 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 648 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 649 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 650 if (error != 0) { 651 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 652 goto fail; 653 } 654 655 for (i = 0; i < count; i++) { 656 error = bus_dmamap_create(ring->data_dmat, 0, 657 &ring->data[i].map); 658 if (error != 0) { 659 device_printf(sc->sc_dev, "could not create DMA map\n"); 660 goto fail; 661 } 662 } 663 664 return 0; 665 666 fail: iwi_free_tx_ring(sc, ring); 667 return error; 668 } 669 670 static void 671 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 672 { 673 struct iwi_tx_data *data; 674 int i; 675 676 for (i = 0; i < ring->count; i++) { 677 data = &ring->data[i]; 678 679 if (data->m != NULL) { 680 bus_dmamap_sync(ring->data_dmat, data->map, 681 BUS_DMASYNC_POSTWRITE); 682 bus_dmamap_unload(ring->data_dmat, data->map); 683 m_freem(data->m); 684 data->m = NULL; 685 } 686 687 if (data->ni != NULL) { 688 ieee80211_free_node(data->ni); 689 data->ni = NULL; 690 } 691 } 692 693 ring->queued = 0; 694 ring->cur = ring->next = 0; 695 } 696 697 static void 698 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 699 { 700 struct iwi_tx_data *data; 701 int i; 702 703 if (ring->desc != NULL) { 704 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 705 BUS_DMASYNC_POSTWRITE); 706 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 707 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 708 } 709 710 if (ring->desc_dmat != NULL) 711 bus_dma_tag_destroy(ring->desc_dmat); 712 713 if (ring->data != NULL) { 714 for (i = 0; i < ring->count; i++) { 715 data = &ring->data[i]; 716 717 if (data->m != NULL) { 718 bus_dmamap_sync(ring->data_dmat, data->map, 719 BUS_DMASYNC_POSTWRITE); 720 bus_dmamap_unload(ring->data_dmat, data->map); 721 m_freem(data->m); 722 } 723 724 if (data->ni != NULL) 725 ieee80211_free_node(data->ni); 726 727 if (data->map != NULL) 728 bus_dmamap_destroy(ring->data_dmat, data->map); 729 } 730 731 free(ring->data, M_DEVBUF); 732 } 733 734 if (ring->data_dmat != NULL) 735 bus_dma_tag_destroy(ring->data_dmat); 736 } 737 738 static int 739 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 740 { 741 struct iwi_rx_data *data; 742 int i, error; 743 744 ring->count = count; 745 ring->cur = 0; 746 747 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 748 M_NOWAIT | M_ZERO); 749 if (ring->data == NULL) { 750 device_printf(sc->sc_dev, "could not allocate soft data\n"); 751 error = ENOMEM; 752 goto fail; 753 } 754 755 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 756 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 757 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 758 if (error != 0) { 759 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 760 goto fail; 761 } 762 763 for (i = 0; i < count; i++) { 764 data = &ring->data[i]; 765 766 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 767 if (error != 0) { 768 device_printf(sc->sc_dev, "could not create DMA map\n"); 769 goto fail; 770 } 771 772 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 773 if (data->m == NULL) { 774 device_printf(sc->sc_dev, 775 "could not allocate rx mbuf\n"); 776 error = ENOMEM; 777 goto fail; 778 } 779 780 error = bus_dmamap_load(ring->data_dmat, data->map, 781 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 782 &data->physaddr, 0); 783 if (error != 0) { 784 device_printf(sc->sc_dev, 785 "could not load rx buf DMA map"); 786 goto fail; 787 } 788 789 data->reg = IWI_CSR_RX_BASE + i * 4; 790 } 791 792 return 0; 793 794 fail: iwi_free_rx_ring(sc, ring); 795 return error; 796 } 797 798 static void 799 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 800 { 801 ring->cur = 0; 802 } 803 804 static void 805 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 806 { 807 struct iwi_rx_data *data; 808 int i; 809 810 if (ring->data != NULL) { 811 for (i = 0; i < ring->count; i++) { 812 data = &ring->data[i]; 813 814 if (data->m != NULL) { 815 bus_dmamap_sync(ring->data_dmat, data->map, 816 BUS_DMASYNC_POSTREAD); 817 bus_dmamap_unload(ring->data_dmat, data->map); 818 m_freem(data->m); 819 } 820 821 if (data->map != NULL) 822 bus_dmamap_destroy(ring->data_dmat, data->map); 823 } 824 825 free(ring->data, M_DEVBUF); 826 } 827 828 if (ring->data_dmat != NULL) 829 bus_dma_tag_destroy(ring->data_dmat); 830 } 831 832 static int 833 iwi_shutdown(device_t dev) 834 { 835 struct iwi_softc *sc = device_get_softc(dev); 836 837 iwi_stop(sc); 838 iwi_put_firmware(sc); /* ??? XXX */ 839 840 return 0; 841 } 842 843 static int 844 iwi_suspend(device_t dev) 845 { 846 struct iwi_softc *sc = device_get_softc(dev); 847 struct ieee80211com *ic = &sc->sc_ic; 848 849 ieee80211_suspend_all(ic); 850 return 0; 851 } 852 853 static int 854 iwi_resume(device_t dev) 855 { 856 struct iwi_softc *sc = device_get_softc(dev); 857 struct ieee80211com *ic = &sc->sc_ic; 858 859 pci_write_config(dev, 0x41, 0, 1); 860 861 ieee80211_resume_all(ic); 862 return 0; 863 } 864 865 static struct ieee80211_node * 866 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 867 { 868 struct iwi_node *in; 869 870 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 871 if (in == NULL) 872 return NULL; 873 /* XXX assign sta table entry for adhoc */ 874 in->in_station = -1; 875 876 return &in->in_node; 877 } 878 879 static void 880 iwi_node_free(struct ieee80211_node *ni) 881 { 882 struct ieee80211com *ic = ni->ni_ic; 883 struct iwi_softc *sc = ic->ic_softc; 884 struct iwi_node *in = (struct iwi_node *)ni; 885 886 if (in->in_station != -1) { 887 DPRINTF(("%s mac %6D station %u\n", __func__, 888 ni->ni_macaddr, ":", in->in_station)); 889 free_unr(sc->sc_unr, in->in_station); 890 } 891 892 sc->sc_node_free(ni); 893 } 894 895 /* 896 * Convert h/w rate code to IEEE rate code. 897 */ 898 static int 899 iwi_cvtrate(int iwirate) 900 { 901 switch (iwirate) { 902 case IWI_RATE_DS1: return 2; 903 case IWI_RATE_DS2: return 4; 904 case IWI_RATE_DS5: return 11; 905 case IWI_RATE_DS11: return 22; 906 case IWI_RATE_OFDM6: return 12; 907 case IWI_RATE_OFDM9: return 18; 908 case IWI_RATE_OFDM12: return 24; 909 case IWI_RATE_OFDM18: return 36; 910 case IWI_RATE_OFDM24: return 48; 911 case IWI_RATE_OFDM36: return 72; 912 case IWI_RATE_OFDM48: return 96; 913 case IWI_RATE_OFDM54: return 108; 914 } 915 return 0; 916 } 917 918 /* 919 * The firmware automatically adapts the transmit speed. We report its current 920 * value here. 921 */ 922 static void 923 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 924 { 925 struct ieee80211vap *vap = ifp->if_softc; 926 struct ieee80211com *ic = vap->iv_ic; 927 struct iwi_softc *sc = ic->ic_softc; 928 struct ieee80211_node *ni; 929 930 /* read current transmission rate from adapter */ 931 ni = ieee80211_ref_node(vap->iv_bss); 932 ni->ni_txrate = 933 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 934 ieee80211_free_node(ni); 935 ieee80211_media_status(ifp, imr); 936 } 937 938 static int 939 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 940 { 941 struct iwi_vap *ivp = IWI_VAP(vap); 942 struct ieee80211com *ic = vap->iv_ic; 943 struct iwi_softc *sc = ic->ic_softc; 944 IWI_LOCK_DECL; 945 946 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 947 ieee80211_state_name[vap->iv_state], 948 ieee80211_state_name[nstate], sc->flags)); 949 950 IEEE80211_UNLOCK(ic); 951 IWI_LOCK(sc); 952 switch (nstate) { 953 case IEEE80211_S_INIT: 954 /* 955 * NB: don't try to do this if iwi_stop_master has 956 * shutdown the firmware and disabled interrupts. 957 */ 958 if (vap->iv_state == IEEE80211_S_RUN && 959 (sc->flags & IWI_FLAG_FW_INITED)) 960 iwi_disassociate(sc, 0); 961 break; 962 case IEEE80211_S_AUTH: 963 iwi_auth_and_assoc(sc, vap); 964 break; 965 case IEEE80211_S_RUN: 966 if (vap->iv_opmode == IEEE80211_M_IBSS && 967 vap->iv_state == IEEE80211_S_SCAN) { 968 /* 969 * XXX when joining an ibss network we are called 970 * with a SCAN -> RUN transition on scan complete. 971 * Use that to call iwi_auth_and_assoc. On completing 972 * the join we are then called again with an 973 * AUTH -> RUN transition and we want to do nothing. 974 * This is all totally bogus and needs to be redone. 975 */ 976 iwi_auth_and_assoc(sc, vap); 977 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 978 ieee80211_runtask(ic, &sc->sc_monitortask); 979 break; 980 case IEEE80211_S_ASSOC: 981 /* 982 * If we are transitioning from AUTH then just wait 983 * for the ASSOC status to come back from the firmware. 984 * Otherwise we need to issue the association request. 985 */ 986 if (vap->iv_state == IEEE80211_S_AUTH) 987 break; 988 iwi_auth_and_assoc(sc, vap); 989 break; 990 default: 991 break; 992 } 993 IWI_UNLOCK(sc); 994 IEEE80211_LOCK(ic); 995 return ivp->iwi_newstate(vap, nstate, arg); 996 } 997 998 /* 999 * WME parameters coming from IEEE 802.11e specification. These values are 1000 * already declared in ieee80211_proto.c, but they are static so they can't 1001 * be reused here. 1002 */ 1003 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1004 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1005 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1006 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1007 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1008 }; 1009 1010 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1011 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1012 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1013 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1014 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1015 }; 1016 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1017 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1018 1019 static void 1020 iwi_wme_init(struct iwi_softc *sc) 1021 { 1022 const struct wmeParams *wmep; 1023 int ac; 1024 1025 memset(sc->wme, 0, sizeof sc->wme); 1026 for (ac = 0; ac < WME_NUM_AC; ac++) { 1027 /* set WME values for CCK modulation */ 1028 wmep = &iwi_wme_cck_params[ac]; 1029 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1030 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1031 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1032 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1033 sc->wme[1].acm[ac] = wmep->wmep_acm; 1034 1035 /* set WME values for OFDM modulation */ 1036 wmep = &iwi_wme_ofdm_params[ac]; 1037 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1038 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1039 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1040 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1041 sc->wme[2].acm[ac] = wmep->wmep_acm; 1042 } 1043 } 1044 1045 static int 1046 iwi_wme_setparams(struct iwi_softc *sc) 1047 { 1048 struct ieee80211com *ic = &sc->sc_ic; 1049 struct chanAccParams chp; 1050 const struct wmeParams *wmep; 1051 int ac; 1052 1053 ieee80211_wme_ic_getparams(ic, &chp); 1054 1055 for (ac = 0; ac < WME_NUM_AC; ac++) { 1056 /* set WME values for current operating mode */ 1057 wmep = &chp.cap_wmeParams[ac]; 1058 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1059 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1060 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1061 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1062 sc->wme[0].acm[ac] = wmep->wmep_acm; 1063 } 1064 1065 DPRINTF(("Setting WME parameters\n")); 1066 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1067 } 1068 #undef IWI_USEC 1069 #undef IWI_EXP2 1070 1071 static int 1072 iwi_wme_update(struct ieee80211com *ic) 1073 { 1074 struct iwi_softc *sc = ic->ic_softc; 1075 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1076 IWI_LOCK_DECL; 1077 1078 /* 1079 * We may be called to update the WME parameters in 1080 * the adapter at various places. If we're already 1081 * associated then initiate the request immediately; 1082 * otherwise we assume the params will get sent down 1083 * to the adapter as part of the work iwi_auth_and_assoc 1084 * does. 1085 */ 1086 if (vap->iv_state == IEEE80211_S_RUN) { 1087 IWI_LOCK(sc); 1088 iwi_wme_setparams(sc); 1089 IWI_UNLOCK(sc); 1090 } 1091 return (0); 1092 } 1093 1094 static int 1095 iwi_wme_setie(struct iwi_softc *sc) 1096 { 1097 struct ieee80211_wme_info wme; 1098 1099 memset(&wme, 0, sizeof wme); 1100 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1101 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1102 wme.wme_oui[0] = 0x00; 1103 wme.wme_oui[1] = 0x50; 1104 wme.wme_oui[2] = 0xf2; 1105 wme.wme_type = WME_OUI_TYPE; 1106 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1107 wme.wme_version = WME_VERSION; 1108 wme.wme_info = 0; 1109 1110 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1111 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1112 } 1113 1114 /* 1115 * Read 16 bits at address 'addr' from the serial EEPROM. 1116 */ 1117 static uint16_t 1118 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1119 { 1120 uint32_t tmp; 1121 uint16_t val; 1122 int n; 1123 1124 /* clock C once before the first command */ 1125 IWI_EEPROM_CTL(sc, 0); 1126 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1127 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1128 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1129 1130 /* write start bit (1) */ 1131 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1132 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1133 1134 /* write READ opcode (10) */ 1135 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1136 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1137 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1138 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1139 1140 /* write address A7-A0 */ 1141 for (n = 7; n >= 0; n--) { 1142 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1143 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1144 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1145 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1146 } 1147 1148 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1149 1150 /* read data Q15-Q0 */ 1151 val = 0; 1152 for (n = 15; n >= 0; n--) { 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1155 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1156 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1157 } 1158 1159 IWI_EEPROM_CTL(sc, 0); 1160 1161 /* clear Chip Select and clock C */ 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1163 IWI_EEPROM_CTL(sc, 0); 1164 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1165 1166 return val; 1167 } 1168 1169 static void 1170 iwi_setcurchan(struct iwi_softc *sc, int chan) 1171 { 1172 struct ieee80211com *ic = &sc->sc_ic; 1173 1174 sc->curchan = chan; 1175 ieee80211_radiotap_chan_change(ic); 1176 } 1177 1178 static void 1179 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1180 struct iwi_frame *frame) 1181 { 1182 struct epoch_tracker et; 1183 struct ieee80211com *ic = &sc->sc_ic; 1184 struct mbuf *mnew, *m; 1185 struct ieee80211_node *ni; 1186 int type, error, framelen; 1187 int8_t rssi, nf; 1188 IWI_LOCK_DECL; 1189 1190 framelen = le16toh(frame->len); 1191 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1192 /* 1193 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1194 * out of bounds; need to figure out how to limit 1195 * frame size in the firmware 1196 */ 1197 /* XXX stat */ 1198 DPRINTFN(1, 1199 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1200 le16toh(frame->len), frame->chan, frame->rssi, 1201 frame->rssi_dbm)); 1202 return; 1203 } 1204 1205 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1206 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1207 1208 if (frame->chan != sc->curchan) 1209 iwi_setcurchan(sc, frame->chan); 1210 1211 /* 1212 * Try to allocate a new mbuf for this ring element and load it before 1213 * processing the current mbuf. If the ring element cannot be loaded, 1214 * drop the received packet and reuse the old mbuf. In the unlikely 1215 * case that the old mbuf can't be reloaded either, explicitly panic. 1216 */ 1217 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1218 if (mnew == NULL) { 1219 counter_u64_add(ic->ic_ierrors, 1); 1220 return; 1221 } 1222 1223 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1224 1225 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1226 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1227 0); 1228 if (error != 0) { 1229 m_freem(mnew); 1230 1231 /* try to reload the old mbuf */ 1232 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1233 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1234 &data->physaddr, 0); 1235 if (error != 0) { 1236 /* very unlikely that it will fail... */ 1237 panic("%s: could not load old rx mbuf", 1238 device_get_name(sc->sc_dev)); 1239 } 1240 counter_u64_add(ic->ic_ierrors, 1); 1241 return; 1242 } 1243 1244 /* 1245 * New mbuf successfully loaded, update Rx ring and continue 1246 * processing. 1247 */ 1248 m = data->m; 1249 data->m = mnew; 1250 CSR_WRITE_4(sc, data->reg, data->physaddr); 1251 1252 /* finalize mbuf */ 1253 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1254 sizeof (struct iwi_frame) + framelen; 1255 1256 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1257 1258 rssi = frame->rssi_dbm; 1259 nf = -95; 1260 if (ieee80211_radiotap_active(ic)) { 1261 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1262 1263 tap->wr_flags = 0; 1264 tap->wr_antsignal = rssi; 1265 tap->wr_antnoise = nf; 1266 tap->wr_rate = iwi_cvtrate(frame->rate); 1267 tap->wr_antenna = frame->antenna; 1268 } 1269 IWI_UNLOCK(sc); 1270 1271 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1272 NET_EPOCH_ENTER(et); 1273 if (ni != NULL) { 1274 type = ieee80211_input(ni, m, rssi, nf); 1275 ieee80211_free_node(ni); 1276 } else 1277 type = ieee80211_input_all(ic, m, rssi, nf); 1278 NET_EPOCH_EXIT(et); 1279 1280 IWI_LOCK(sc); 1281 if (sc->sc_softled) { 1282 /* 1283 * Blink for any data frame. Otherwise do a 1284 * heartbeat-style blink when idle. The latter 1285 * is mainly for station mode where we depend on 1286 * periodic beacon frames to trigger the poll event. 1287 */ 1288 if (type == IEEE80211_FC0_TYPE_DATA) { 1289 sc->sc_rxrate = frame->rate; 1290 iwi_led_event(sc, IWI_LED_RX); 1291 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1292 iwi_led_event(sc, IWI_LED_POLL); 1293 } 1294 } 1295 1296 /* 1297 * Check for an association response frame to see if QoS 1298 * has been negotiated. We parse just enough to figure 1299 * out if we're supposed to use QoS. The proper solution 1300 * is to pass the frame up so ieee80211_input can do the 1301 * work but that's made hard by how things currently are 1302 * done in the driver. 1303 */ 1304 static void 1305 iwi_checkforqos(struct ieee80211vap *vap, 1306 const struct ieee80211_frame *wh, int len) 1307 { 1308 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1309 const uint8_t *frm, *efrm, *wme; 1310 struct ieee80211_node *ni; 1311 uint16_t capinfo, associd; 1312 1313 /* NB: +8 for capinfo, status, associd, and first ie */ 1314 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1315 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1316 return; 1317 /* 1318 * asresp frame format 1319 * [2] capability information 1320 * [2] status 1321 * [2] association ID 1322 * [tlv] supported rates 1323 * [tlv] extended supported rates 1324 * [tlv] WME 1325 */ 1326 frm = (const uint8_t *)&wh[1]; 1327 efrm = ((const uint8_t *) wh) + len; 1328 1329 capinfo = le16toh(*(const uint16_t *)frm); 1330 frm += 2; 1331 /* status */ 1332 frm += 2; 1333 associd = le16toh(*(const uint16_t *)frm); 1334 frm += 2; 1335 1336 wme = NULL; 1337 while (efrm - frm > 1) { 1338 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1339 switch (*frm) { 1340 case IEEE80211_ELEMID_VENDOR: 1341 if (iswmeoui(frm)) 1342 wme = frm; 1343 break; 1344 } 1345 frm += frm[1] + 2; 1346 } 1347 1348 ni = ieee80211_ref_node(vap->iv_bss); 1349 ni->ni_capinfo = capinfo; 1350 ni->ni_associd = associd & 0x3fff; 1351 if (wme != NULL) 1352 ni->ni_flags |= IEEE80211_NODE_QOS; 1353 else 1354 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1355 ieee80211_free_node(ni); 1356 #undef SUBTYPE 1357 } 1358 1359 static void 1360 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1361 { 1362 struct iwi_notif_link_quality *lq; 1363 int len; 1364 1365 len = le16toh(notif->len); 1366 1367 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1368 notif->type, 1369 len, 1370 sizeof(struct iwi_notif_link_quality) 1371 )); 1372 1373 /* enforce length */ 1374 if (len != sizeof(struct iwi_notif_link_quality)) { 1375 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1376 notif->type, 1377 len)); 1378 return; 1379 } 1380 1381 lq = (struct iwi_notif_link_quality *)(notif + 1); 1382 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1383 sc->sc_linkqual_valid = 1; 1384 } 1385 1386 /* 1387 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1388 */ 1389 1390 static void 1391 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1392 { 1393 struct ieee80211com *ic = &sc->sc_ic; 1394 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1395 struct iwi_notif_scan_channel *chan; 1396 struct iwi_notif_scan_complete *scan; 1397 struct iwi_notif_authentication *auth; 1398 struct iwi_notif_association *assoc; 1399 struct iwi_notif_beacon_state *beacon; 1400 1401 switch (notif->type) { 1402 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1403 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1404 1405 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1406 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1407 1408 /* Reset the timer, the scan is still going */ 1409 sc->sc_state_timer = 3; 1410 break; 1411 1412 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1413 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1414 1415 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1416 scan->status)); 1417 1418 IWI_STATE_END(sc, IWI_FW_SCANNING); 1419 1420 /* 1421 * Monitor mode works by doing a passive scan to set 1422 * the channel and enable rx. Because we don't want 1423 * to abort a scan lest the firmware crash we scan 1424 * for a short period of time and automatically restart 1425 * the scan when notified the sweep has completed. 1426 */ 1427 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1428 ieee80211_runtask(ic, &sc->sc_monitortask); 1429 break; 1430 } 1431 1432 if (scan->status == IWI_SCAN_COMPLETED) { 1433 /* NB: don't need to defer, net80211 does it for us */ 1434 ieee80211_scan_next(vap); 1435 } 1436 break; 1437 1438 case IWI_NOTIF_TYPE_AUTHENTICATION: 1439 auth = (struct iwi_notif_authentication *)(notif + 1); 1440 switch (auth->state) { 1441 case IWI_AUTH_SUCCESS: 1442 DPRINTFN(2, ("Authentication succeeeded\n")); 1443 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1444 break; 1445 case IWI_AUTH_FAIL: 1446 /* 1447 * These are delivered as an unsolicited deauth 1448 * (e.g. due to inactivity) or in response to an 1449 * associate request. 1450 */ 1451 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1452 if (vap->iv_state != IEEE80211_S_RUN) { 1453 DPRINTFN(2, ("Authentication failed\n")); 1454 vap->iv_stats.is_rx_auth_fail++; 1455 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1456 } else { 1457 DPRINTFN(2, ("Deauthenticated\n")); 1458 vap->iv_stats.is_rx_deauth++; 1459 } 1460 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1461 break; 1462 case IWI_AUTH_SENT_1: 1463 case IWI_AUTH_RECV_2: 1464 case IWI_AUTH_SEQ1_PASS: 1465 break; 1466 case IWI_AUTH_SEQ1_FAIL: 1467 DPRINTFN(2, ("Initial authentication handshake failed; " 1468 "you probably need shared key\n")); 1469 vap->iv_stats.is_rx_auth_fail++; 1470 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1471 /* XXX retry shared key when in auto */ 1472 break; 1473 default: 1474 device_printf(sc->sc_dev, 1475 "unknown authentication state %u\n", auth->state); 1476 break; 1477 } 1478 break; 1479 1480 case IWI_NOTIF_TYPE_ASSOCIATION: 1481 assoc = (struct iwi_notif_association *)(notif + 1); 1482 switch (assoc->state) { 1483 case IWI_AUTH_SUCCESS: 1484 /* re-association, do nothing */ 1485 break; 1486 case IWI_ASSOC_SUCCESS: 1487 DPRINTFN(2, ("Association succeeded\n")); 1488 sc->flags |= IWI_FLAG_ASSOCIATED; 1489 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1490 iwi_checkforqos(vap, 1491 (const struct ieee80211_frame *)(assoc+1), 1492 le16toh(notif->len) - sizeof(*assoc) - 1); 1493 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1494 break; 1495 case IWI_ASSOC_INIT: 1496 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1497 switch (sc->fw_state) { 1498 case IWI_FW_ASSOCIATING: 1499 DPRINTFN(2, ("Association failed\n")); 1500 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1501 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1502 break; 1503 1504 case IWI_FW_DISASSOCIATING: 1505 DPRINTFN(2, ("Dissassociated\n")); 1506 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1507 vap->iv_stats.is_rx_disassoc++; 1508 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1509 break; 1510 } 1511 break; 1512 default: 1513 device_printf(sc->sc_dev, 1514 "unknown association state %u\n", assoc->state); 1515 break; 1516 } 1517 break; 1518 1519 case IWI_NOTIF_TYPE_BEACON: 1520 /* XXX check struct length */ 1521 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1522 1523 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1524 beacon->state, le32toh(beacon->number))); 1525 1526 if (beacon->state == IWI_BEACON_MISS) { 1527 /* 1528 * The firmware notifies us of every beacon miss 1529 * so we need to track the count against the 1530 * configured threshold before notifying the 1531 * 802.11 layer. 1532 * XXX try to roam, drop assoc only on much higher count 1533 */ 1534 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1535 DPRINTF(("Beacon miss: %u >= %u\n", 1536 le32toh(beacon->number), 1537 vap->iv_bmissthreshold)); 1538 vap->iv_stats.is_beacon_miss++; 1539 /* 1540 * It's pointless to notify the 802.11 layer 1541 * as it'll try to send a probe request (which 1542 * we'll discard) and then timeout and drop us 1543 * into scan state. Instead tell the firmware 1544 * to disassociate and then on completion we'll 1545 * kick the state machine to scan. 1546 */ 1547 ieee80211_runtask(ic, &sc->sc_disassoctask); 1548 } 1549 } 1550 break; 1551 1552 case IWI_NOTIF_TYPE_CALIBRATION: 1553 case IWI_NOTIF_TYPE_NOISE: 1554 /* XXX handle? */ 1555 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1556 break; 1557 case IWI_NOTIF_TYPE_LINK_QUALITY: 1558 iwi_notif_link_quality(sc, notif); 1559 break; 1560 1561 default: 1562 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1563 notif->type, notif->flags, le16toh(notif->len))); 1564 break; 1565 } 1566 } 1567 1568 static void 1569 iwi_rx_intr(struct iwi_softc *sc) 1570 { 1571 struct iwi_rx_data *data; 1572 struct iwi_hdr *hdr; 1573 uint32_t hw; 1574 1575 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1576 1577 for (; sc->rxq.cur != hw;) { 1578 data = &sc->rxq.data[sc->rxq.cur]; 1579 1580 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1581 BUS_DMASYNC_POSTREAD); 1582 1583 hdr = mtod(data->m, struct iwi_hdr *); 1584 1585 switch (hdr->type) { 1586 case IWI_HDR_TYPE_FRAME: 1587 iwi_frame_intr(sc, data, sc->rxq.cur, 1588 (struct iwi_frame *)(hdr + 1)); 1589 break; 1590 1591 case IWI_HDR_TYPE_NOTIF: 1592 iwi_notification_intr(sc, 1593 (struct iwi_notif *)(hdr + 1)); 1594 break; 1595 1596 default: 1597 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1598 hdr->type); 1599 } 1600 1601 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1602 1603 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1604 } 1605 1606 /* tell the firmware what we have processed */ 1607 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1608 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1609 } 1610 1611 static void 1612 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1613 { 1614 struct iwi_tx_data *data; 1615 uint32_t hw; 1616 1617 hw = CSR_READ_4(sc, txq->csr_ridx); 1618 1619 while (txq->next != hw) { 1620 data = &txq->data[txq->next]; 1621 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1622 bus_dmamap_sync(txq->data_dmat, data->map, 1623 BUS_DMASYNC_POSTWRITE); 1624 bus_dmamap_unload(txq->data_dmat, data->map); 1625 ieee80211_tx_complete(data->ni, data->m, 0); 1626 data->ni = NULL; 1627 data->m = NULL; 1628 txq->queued--; 1629 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1630 } 1631 sc->sc_tx_timer = 0; 1632 if (sc->sc_softled) 1633 iwi_led_event(sc, IWI_LED_TX); 1634 iwi_start(sc); 1635 } 1636 1637 static void 1638 iwi_fatal_error_intr(struct iwi_softc *sc) 1639 { 1640 struct ieee80211com *ic = &sc->sc_ic; 1641 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1642 1643 device_printf(sc->sc_dev, "firmware error\n"); 1644 if (vap != NULL) 1645 ieee80211_cancel_scan(vap); 1646 ieee80211_runtask(ic, &sc->sc_restarttask); 1647 1648 sc->flags &= ~IWI_FLAG_BUSY; 1649 sc->sc_busy_timer = 0; 1650 wakeup(sc); 1651 } 1652 1653 static void 1654 iwi_radio_off_intr(struct iwi_softc *sc) 1655 { 1656 1657 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1658 } 1659 1660 static void 1661 iwi_intr(void *arg) 1662 { 1663 struct iwi_softc *sc = arg; 1664 uint32_t r; 1665 IWI_LOCK_DECL; 1666 1667 IWI_LOCK(sc); 1668 1669 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1670 IWI_UNLOCK(sc); 1671 return; 1672 } 1673 1674 /* acknowledge interrupts */ 1675 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1676 1677 if (r & IWI_INTR_FATAL_ERROR) { 1678 iwi_fatal_error_intr(sc); 1679 goto done; 1680 } 1681 1682 if (r & IWI_INTR_FW_INITED) { 1683 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1684 wakeup(sc); 1685 } 1686 1687 if (r & IWI_INTR_RADIO_OFF) 1688 iwi_radio_off_intr(sc); 1689 1690 if (r & IWI_INTR_CMD_DONE) { 1691 sc->flags &= ~IWI_FLAG_BUSY; 1692 sc->sc_busy_timer = 0; 1693 wakeup(sc); 1694 } 1695 1696 if (r & IWI_INTR_TX1_DONE) 1697 iwi_tx_intr(sc, &sc->txq[0]); 1698 1699 if (r & IWI_INTR_TX2_DONE) 1700 iwi_tx_intr(sc, &sc->txq[1]); 1701 1702 if (r & IWI_INTR_TX3_DONE) 1703 iwi_tx_intr(sc, &sc->txq[2]); 1704 1705 if (r & IWI_INTR_TX4_DONE) 1706 iwi_tx_intr(sc, &sc->txq[3]); 1707 1708 if (r & IWI_INTR_RX_DONE) 1709 iwi_rx_intr(sc); 1710 1711 if (r & IWI_INTR_PARITY_ERROR) { 1712 /* XXX rate-limit */ 1713 device_printf(sc->sc_dev, "parity error\n"); 1714 } 1715 done: 1716 IWI_UNLOCK(sc); 1717 } 1718 1719 static int 1720 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1721 { 1722 struct iwi_cmd_desc *desc; 1723 1724 IWI_LOCK_ASSERT(sc); 1725 1726 if (sc->flags & IWI_FLAG_BUSY) { 1727 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1728 __func__, type); 1729 return EAGAIN; 1730 } 1731 sc->flags |= IWI_FLAG_BUSY; 1732 sc->sc_busy_timer = 2; 1733 1734 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1735 1736 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1737 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1738 desc->type = type; 1739 desc->len = len; 1740 memcpy(desc->data, data, len); 1741 1742 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1743 BUS_DMASYNC_PREWRITE); 1744 1745 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1746 type, len)); 1747 1748 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1749 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1750 1751 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1752 } 1753 1754 static void 1755 iwi_write_ibssnode(struct iwi_softc *sc, 1756 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1757 { 1758 struct iwi_ibssnode node; 1759 1760 /* write node information into NIC memory */ 1761 memset(&node, 0, sizeof node); 1762 IEEE80211_ADDR_COPY(node.bssid, addr); 1763 1764 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1765 1766 CSR_WRITE_REGION_1(sc, 1767 IWI_CSR_NODE_BASE + entry * sizeof node, 1768 (uint8_t *)&node, sizeof node); 1769 } 1770 1771 static int 1772 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1773 int ac) 1774 { 1775 struct ieee80211vap *vap = ni->ni_vap; 1776 struct iwi_node *in = (struct iwi_node *)ni; 1777 const struct ieee80211_frame *wh; 1778 struct ieee80211_key *k; 1779 struct iwi_tx_ring *txq = &sc->txq[ac]; 1780 struct iwi_tx_data *data; 1781 struct iwi_tx_desc *desc; 1782 struct mbuf *mnew; 1783 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1784 int error, nsegs, hdrlen, i; 1785 int ismcast, flags, xflags, staid; 1786 1787 IWI_LOCK_ASSERT(sc); 1788 wh = mtod(m0, const struct ieee80211_frame *); 1789 /* NB: only data frames use this path */ 1790 hdrlen = ieee80211_hdrsize(wh); 1791 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1792 flags = xflags = 0; 1793 1794 if (!ismcast) 1795 flags |= IWI_DATA_FLAG_NEED_ACK; 1796 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1797 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1798 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1799 xflags |= IWI_DATA_XFLAG_QOS; 1800 if (ieee80211_wme_vap_ac_is_noack(vap, ac)) 1801 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1802 } 1803 1804 /* 1805 * This is only used in IBSS mode where the firmware expect an index 1806 * in a h/w table instead of a destination address. 1807 */ 1808 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1809 if (!ismcast) { 1810 if (in->in_station == -1) { 1811 in->in_station = alloc_unr(sc->sc_unr); 1812 if (in->in_station == -1) { 1813 /* h/w table is full */ 1814 if_inc_counter(ni->ni_vap->iv_ifp, 1815 IFCOUNTER_OERRORS, 1); 1816 m_freem(m0); 1817 ieee80211_free_node(ni); 1818 return 0; 1819 } 1820 iwi_write_ibssnode(sc, 1821 ni->ni_macaddr, in->in_station); 1822 } 1823 staid = in->in_station; 1824 } else { 1825 /* 1826 * Multicast addresses have no associated node 1827 * so there will be no station entry. We reserve 1828 * entry 0 for one mcast address and use that. 1829 * If there are many being used this will be 1830 * expensive and we'll need to do a better job 1831 * but for now this handles the broadcast case. 1832 */ 1833 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1834 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1835 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1836 } 1837 staid = 0; 1838 } 1839 } else 1840 staid = 0; 1841 1842 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1843 k = ieee80211_crypto_encap(ni, m0); 1844 if (k == NULL) { 1845 m_freem(m0); 1846 return ENOBUFS; 1847 } 1848 1849 /* packet header may have moved, reset our local pointer */ 1850 wh = mtod(m0, struct ieee80211_frame *); 1851 } 1852 1853 if (ieee80211_radiotap_active_vap(vap)) { 1854 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1855 1856 tap->wt_flags = 0; 1857 1858 ieee80211_radiotap_tx(vap, m0); 1859 } 1860 1861 data = &txq->data[txq->cur]; 1862 desc = &txq->desc[txq->cur]; 1863 1864 /* save and trim IEEE802.11 header */ 1865 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1866 m_adj(m0, hdrlen); 1867 1868 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1869 &nsegs, 0); 1870 if (error != 0 && error != EFBIG) { 1871 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1872 error); 1873 m_freem(m0); 1874 return error; 1875 } 1876 if (error != 0) { 1877 mnew = m_defrag(m0, M_NOWAIT); 1878 if (mnew == NULL) { 1879 device_printf(sc->sc_dev, 1880 "could not defragment mbuf\n"); 1881 m_freem(m0); 1882 return ENOBUFS; 1883 } 1884 m0 = mnew; 1885 1886 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1887 m0, segs, &nsegs, 0); 1888 if (error != 0) { 1889 device_printf(sc->sc_dev, 1890 "could not map mbuf (error %d)\n", error); 1891 m_freem(m0); 1892 return error; 1893 } 1894 } 1895 1896 data->m = m0; 1897 data->ni = ni; 1898 1899 desc->hdr.type = IWI_HDR_TYPE_DATA; 1900 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1901 desc->station = staid; 1902 desc->cmd = IWI_DATA_CMD_TX; 1903 desc->len = htole16(m0->m_pkthdr.len); 1904 desc->flags = flags; 1905 desc->xflags = xflags; 1906 1907 #if 0 1908 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1909 desc->wep_txkey = vap->iv_def_txkey; 1910 else 1911 #endif 1912 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1913 1914 desc->nseg = htole32(nsegs); 1915 for (i = 0; i < nsegs; i++) { 1916 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1917 desc->seg_len[i] = htole16(segs[i].ds_len); 1918 } 1919 1920 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1921 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1922 1923 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1924 ac, txq->cur, le16toh(desc->len), nsegs)); 1925 1926 txq->queued++; 1927 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1928 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1929 1930 return 0; 1931 } 1932 1933 static int 1934 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1935 const struct ieee80211_bpf_params *params) 1936 { 1937 /* no support; just discard */ 1938 m_freem(m); 1939 ieee80211_free_node(ni); 1940 return 0; 1941 } 1942 1943 static int 1944 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1945 { 1946 struct iwi_softc *sc = ic->ic_softc; 1947 int error; 1948 IWI_LOCK_DECL; 1949 1950 IWI_LOCK(sc); 1951 if (!sc->sc_running) { 1952 IWI_UNLOCK(sc); 1953 return (ENXIO); 1954 } 1955 error = mbufq_enqueue(&sc->sc_snd, m); 1956 if (error) { 1957 IWI_UNLOCK(sc); 1958 return (error); 1959 } 1960 iwi_start(sc); 1961 IWI_UNLOCK(sc); 1962 return (0); 1963 } 1964 1965 static void 1966 iwi_start(struct iwi_softc *sc) 1967 { 1968 struct mbuf *m; 1969 struct ieee80211_node *ni; 1970 int ac; 1971 1972 IWI_LOCK_ASSERT(sc); 1973 1974 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1975 ac = M_WME_GETAC(m); 1976 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1977 /* there is no place left in this ring; tail drop */ 1978 /* XXX tail drop */ 1979 mbufq_prepend(&sc->sc_snd, m); 1980 break; 1981 } 1982 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1983 if (iwi_tx_start(sc, m, ni, ac) != 0) { 1984 if_inc_counter(ni->ni_vap->iv_ifp, 1985 IFCOUNTER_OERRORS, 1); 1986 ieee80211_free_node(ni); 1987 break; 1988 } 1989 sc->sc_tx_timer = 5; 1990 } 1991 } 1992 1993 static void 1994 iwi_watchdog(void *arg) 1995 { 1996 struct iwi_softc *sc = arg; 1997 struct ieee80211com *ic = &sc->sc_ic; 1998 1999 IWI_LOCK_ASSERT(sc); 2000 2001 if (sc->sc_tx_timer > 0) { 2002 if (--sc->sc_tx_timer == 0) { 2003 device_printf(sc->sc_dev, "device timeout\n"); 2004 counter_u64_add(ic->ic_oerrors, 1); 2005 ieee80211_runtask(ic, &sc->sc_restarttask); 2006 } 2007 } 2008 if (sc->sc_state_timer > 0) { 2009 if (--sc->sc_state_timer == 0) { 2010 device_printf(sc->sc_dev, 2011 "firmware stuck in state %d, resetting\n", 2012 sc->fw_state); 2013 if (sc->fw_state == IWI_FW_SCANNING) 2014 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2015 ieee80211_runtask(ic, &sc->sc_restarttask); 2016 sc->sc_state_timer = 3; 2017 } 2018 } 2019 if (sc->sc_busy_timer > 0) { 2020 if (--sc->sc_busy_timer == 0) { 2021 device_printf(sc->sc_dev, 2022 "firmware command timeout, resetting\n"); 2023 ieee80211_runtask(ic, &sc->sc_restarttask); 2024 } 2025 } 2026 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2027 } 2028 2029 static void 2030 iwi_parent(struct ieee80211com *ic) 2031 { 2032 struct iwi_softc *sc = ic->ic_softc; 2033 int startall = 0; 2034 IWI_LOCK_DECL; 2035 2036 IWI_LOCK(sc); 2037 if (ic->ic_nrunning > 0) { 2038 if (!sc->sc_running) { 2039 iwi_init_locked(sc); 2040 startall = 1; 2041 } 2042 } else if (sc->sc_running) 2043 iwi_stop_locked(sc); 2044 IWI_UNLOCK(sc); 2045 if (startall) 2046 ieee80211_start_all(ic); 2047 } 2048 2049 static int 2050 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 2051 { 2052 struct ifreq *ifr = data; 2053 struct iwi_softc *sc = ic->ic_softc; 2054 int error; 2055 IWI_LOCK_DECL; 2056 2057 IWI_LOCK(sc); 2058 switch (cmd) { 2059 case SIOCGIWISTATS: 2060 /* XXX validate permissions/memory/etc? */ 2061 error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr), 2062 sizeof(struct iwi_notif_link_quality)); 2063 break; 2064 case SIOCZIWISTATS: 2065 memset(&sc->sc_linkqual, 0, 2066 sizeof(struct iwi_notif_link_quality)); 2067 error = 0; 2068 break; 2069 default: 2070 error = ENOTTY; 2071 break; 2072 } 2073 IWI_UNLOCK(sc); 2074 2075 return (error); 2076 } 2077 2078 static void 2079 iwi_stop_master(struct iwi_softc *sc) 2080 { 2081 uint32_t tmp; 2082 int ntries; 2083 2084 /* disable interrupts */ 2085 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2086 2087 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2088 for (ntries = 0; ntries < 5; ntries++) { 2089 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2090 break; 2091 DELAY(10); 2092 } 2093 if (ntries == 5) 2094 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2095 2096 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2097 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2098 2099 sc->flags &= ~IWI_FLAG_FW_INITED; 2100 } 2101 2102 static int 2103 iwi_reset(struct iwi_softc *sc) 2104 { 2105 uint32_t tmp; 2106 int i, ntries; 2107 2108 iwi_stop_master(sc); 2109 2110 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2111 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2112 2113 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2114 2115 /* wait for clock stabilization */ 2116 for (ntries = 0; ntries < 1000; ntries++) { 2117 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2118 break; 2119 DELAY(200); 2120 } 2121 if (ntries == 1000) { 2122 device_printf(sc->sc_dev, 2123 "timeout waiting for clock stabilization\n"); 2124 return EIO; 2125 } 2126 2127 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2128 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2129 2130 DELAY(10); 2131 2132 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2133 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2134 2135 /* clear NIC memory */ 2136 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2137 for (i = 0; i < 0xc000; i++) 2138 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2139 2140 return 0; 2141 } 2142 2143 static const struct iwi_firmware_ohdr * 2144 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2145 { 2146 const struct firmware *fp = fw->fp; 2147 const struct iwi_firmware_ohdr *hdr; 2148 2149 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2150 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2151 return NULL; 2152 } 2153 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2154 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2155 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2156 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2157 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2158 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2159 IWI_FW_REQ_MINOR); 2160 return NULL; 2161 } 2162 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2163 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2164 fw->name = fp->name; 2165 return hdr; 2166 } 2167 2168 static const struct iwi_firmware_ohdr * 2169 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2170 { 2171 const struct iwi_firmware_ohdr *hdr; 2172 2173 hdr = iwi_setup_ofw(sc, fw); 2174 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2175 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2176 fw->name); 2177 hdr = NULL; 2178 } 2179 return hdr; 2180 } 2181 2182 static void 2183 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2184 struct iwi_fw *uc, const char *ucname) 2185 { 2186 if (fw->fp == NULL) 2187 fw->fp = firmware_get(fwname); 2188 /* NB: pre-3.0 ucode is packaged separately */ 2189 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2190 uc->fp = firmware_get(ucname); 2191 } 2192 2193 /* 2194 * Get the required firmware images if not already loaded. 2195 * Note that we hold firmware images so long as the device 2196 * is marked up in case we need to reload them on device init. 2197 * This is necessary because we re-init the device sometimes 2198 * from a context where we cannot read from the filesystem 2199 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2200 * XXX return 0 on success, 1 on error. 2201 * 2202 * NB: the order of get'ing and put'ing images here is 2203 * intentional to support handling firmware images bundled 2204 * by operating mode and/or all together in one file with 2205 * the boot firmware as "master". 2206 */ 2207 static int 2208 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2209 { 2210 const struct iwi_firmware_hdr *hdr; 2211 const struct firmware *fp; 2212 2213 /* invalidate cached firmware on mode change */ 2214 if (sc->fw_mode != opmode) 2215 iwi_put_firmware(sc); 2216 2217 switch (opmode) { 2218 case IEEE80211_M_STA: 2219 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2220 break; 2221 case IEEE80211_M_IBSS: 2222 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2223 break; 2224 case IEEE80211_M_MONITOR: 2225 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2226 &sc->fw_uc, "iwi_ucode_monitor"); 2227 break; 2228 default: 2229 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2230 return EINVAL; 2231 } 2232 fp = sc->fw_fw.fp; 2233 if (fp == NULL) { 2234 device_printf(sc->sc_dev, "could not load firmware\n"); 2235 goto bad; 2236 } 2237 if (fp->version < 300) { 2238 /* 2239 * Firmware prior to 3.0 was packaged as separate 2240 * boot, firmware, and ucode images. Verify the 2241 * ucode image was read in, retrieve the boot image 2242 * if needed, and check version stamps for consistency. 2243 * The version stamps in the data are also checked 2244 * above; this is a bit paranoid but is a cheap 2245 * safeguard against mis-packaging. 2246 */ 2247 if (sc->fw_uc.fp == NULL) { 2248 device_printf(sc->sc_dev, "could not load ucode\n"); 2249 goto bad; 2250 } 2251 if (sc->fw_boot.fp == NULL) { 2252 sc->fw_boot.fp = firmware_get("iwi_boot"); 2253 if (sc->fw_boot.fp == NULL) { 2254 device_printf(sc->sc_dev, 2255 "could not load boot firmware\n"); 2256 goto bad; 2257 } 2258 } 2259 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2260 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2261 device_printf(sc->sc_dev, 2262 "firmware version mismatch: " 2263 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2264 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2265 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2266 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2267 ); 2268 goto bad; 2269 } 2270 /* 2271 * Check and setup each image. 2272 */ 2273 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2274 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2275 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2276 goto bad; 2277 } else { 2278 /* 2279 * Check and setup combined image. 2280 */ 2281 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2282 device_printf(sc->sc_dev, "image '%s' too small\n", 2283 fp->name); 2284 goto bad; 2285 } 2286 hdr = (const struct iwi_firmware_hdr *)fp->data; 2287 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2288 + le32toh(hdr->fsize)) { 2289 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2290 fp->name); 2291 goto bad; 2292 } 2293 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2294 sc->fw_boot.size = le32toh(hdr->bsize); 2295 sc->fw_boot.name = fp->name; 2296 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2297 sc->fw_uc.size = le32toh(hdr->usize); 2298 sc->fw_uc.name = fp->name; 2299 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2300 sc->fw_fw.size = le32toh(hdr->fsize); 2301 sc->fw_fw.name = fp->name; 2302 } 2303 #if 0 2304 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2305 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2306 #endif 2307 2308 sc->fw_mode = opmode; 2309 return 0; 2310 bad: 2311 iwi_put_firmware(sc); 2312 return 1; 2313 } 2314 2315 static void 2316 iwi_put_fw(struct iwi_fw *fw) 2317 { 2318 if (fw->fp != NULL) { 2319 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2320 fw->fp = NULL; 2321 } 2322 fw->data = NULL; 2323 fw->size = 0; 2324 fw->name = NULL; 2325 } 2326 2327 /* 2328 * Release any cached firmware images. 2329 */ 2330 static void 2331 iwi_put_firmware(struct iwi_softc *sc) 2332 { 2333 iwi_put_fw(&sc->fw_uc); 2334 iwi_put_fw(&sc->fw_fw); 2335 iwi_put_fw(&sc->fw_boot); 2336 } 2337 2338 static int 2339 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2340 { 2341 uint32_t tmp; 2342 const uint16_t *w; 2343 const char *uc = fw->data; 2344 size_t size = fw->size; 2345 int i, ntries, error; 2346 2347 IWI_LOCK_ASSERT(sc); 2348 error = 0; 2349 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2350 IWI_RST_STOP_MASTER); 2351 for (ntries = 0; ntries < 5; ntries++) { 2352 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2353 break; 2354 DELAY(10); 2355 } 2356 if (ntries == 5) { 2357 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2358 error = EIO; 2359 goto fail; 2360 } 2361 2362 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2363 DELAY(5000); 2364 2365 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2366 tmp &= ~IWI_RST_PRINCETON_RESET; 2367 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2368 2369 DELAY(5000); 2370 MEM_WRITE_4(sc, 0x3000e0, 0); 2371 DELAY(1000); 2372 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2373 DELAY(1000); 2374 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2375 DELAY(1000); 2376 MEM_WRITE_1(sc, 0x200000, 0x00); 2377 MEM_WRITE_1(sc, 0x200000, 0x40); 2378 DELAY(1000); 2379 2380 /* write microcode into adapter memory */ 2381 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2382 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2383 2384 MEM_WRITE_1(sc, 0x200000, 0x00); 2385 MEM_WRITE_1(sc, 0x200000, 0x80); 2386 2387 /* wait until we get an answer */ 2388 for (ntries = 0; ntries < 100; ntries++) { 2389 if (MEM_READ_1(sc, 0x200000) & 1) 2390 break; 2391 DELAY(100); 2392 } 2393 if (ntries == 100) { 2394 device_printf(sc->sc_dev, 2395 "timeout waiting for ucode to initialize\n"); 2396 error = EIO; 2397 goto fail; 2398 } 2399 2400 /* read the answer or the firmware will not initialize properly */ 2401 for (i = 0; i < 7; i++) 2402 MEM_READ_4(sc, 0x200004); 2403 2404 MEM_WRITE_1(sc, 0x200000, 0x00); 2405 2406 fail: 2407 return error; 2408 } 2409 2410 /* macro to handle unaligned little endian data in firmware image */ 2411 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2412 2413 static int 2414 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2415 { 2416 u_char *p, *end; 2417 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2418 int ntries, error; 2419 2420 IWI_LOCK_ASSERT(sc); 2421 2422 /* copy firmware image to DMA memory */ 2423 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2424 2425 /* make sure the adapter will get up-to-date values */ 2426 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2427 2428 /* tell the adapter where the command blocks are stored */ 2429 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2430 2431 /* 2432 * Store command blocks into adapter's internal memory using register 2433 * indirections. The adapter will read the firmware image through DMA 2434 * using information stored in command blocks. 2435 */ 2436 src = sc->fw_physaddr; 2437 p = sc->fw_virtaddr; 2438 end = p + fw->size; 2439 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2440 2441 while (p < end) { 2442 dst = GETLE32(p); p += 4; src += 4; 2443 len = GETLE32(p); p += 4; src += 4; 2444 p += len; 2445 2446 while (len > 0) { 2447 mlen = min(len, IWI_CB_MAXDATALEN); 2448 2449 ctl = IWI_CB_DEFAULT_CTL | mlen; 2450 sum = ctl ^ src ^ dst; 2451 2452 /* write a command block */ 2453 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2456 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2457 2458 src += mlen; 2459 dst += mlen; 2460 len -= mlen; 2461 } 2462 } 2463 2464 /* write a fictive final command block (sentinel) */ 2465 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2466 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2467 2468 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2469 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2470 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2471 2472 /* tell the adapter to start processing command blocks */ 2473 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2474 2475 /* wait until the adapter reaches the sentinel */ 2476 for (ntries = 0; ntries < 400; ntries++) { 2477 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2478 break; 2479 DELAY(100); 2480 } 2481 /* sync dma, just in case */ 2482 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2483 if (ntries == 400) { 2484 device_printf(sc->sc_dev, 2485 "timeout processing command blocks for %s firmware\n", 2486 fw->name); 2487 return EIO; 2488 } 2489 2490 /* we're done with command blocks processing */ 2491 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2492 2493 /* allow interrupts so we know when the firmware is ready */ 2494 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2495 2496 /* tell the adapter to initialize the firmware */ 2497 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2498 2499 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2500 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2501 2502 /* wait at most one second for firmware initialization to complete */ 2503 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2504 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2505 "initialization to complete\n", fw->name); 2506 } 2507 2508 return error; 2509 } 2510 2511 static int 2512 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2513 { 2514 uint32_t data; 2515 2516 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2517 /* XXX set more fine-grained operation */ 2518 data = htole32(IWI_POWER_MODE_MAX); 2519 } else 2520 data = htole32(IWI_POWER_MODE_CAM); 2521 2522 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2523 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2524 } 2525 2526 static int 2527 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2528 { 2529 struct iwi_wep_key wepkey; 2530 struct ieee80211_key *wk; 2531 int error, i; 2532 2533 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2534 wk = &vap->iv_nw_keys[i]; 2535 2536 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2537 wepkey.idx = i; 2538 wepkey.len = wk->wk_keylen; 2539 memset(wepkey.key, 0, sizeof wepkey.key); 2540 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2541 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2542 wepkey.len)); 2543 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2544 sizeof wepkey); 2545 if (error != 0) 2546 return error; 2547 } 2548 return 0; 2549 } 2550 2551 static int 2552 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs, 2553 int mode, int type) 2554 { 2555 struct iwi_rateset rs; 2556 2557 memset(&rs, 0, sizeof(rs)); 2558 rs.mode = mode; 2559 rs.type = type; 2560 rs.nrates = net_rs->rs_nrates; 2561 if (rs.nrates > nitems(rs.rates)) { 2562 DPRINTF(("Truncating negotiated rate set from %u\n", 2563 rs.nrates)); 2564 rs.nrates = nitems(rs.rates); 2565 } 2566 memcpy(rs.rates, net_rs->rs_rates, rs.nrates); 2567 DPRINTF(("Setting .11%c%s %s rates (%u)\n", 2568 mode == IWI_MODE_11A ? 'a' : 'b', 2569 mode == IWI_MODE_11G ? "g" : "", 2570 type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated", 2571 rs.nrates)); 2572 2573 return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs))); 2574 } 2575 2576 static int 2577 iwi_config(struct iwi_softc *sc) 2578 { 2579 struct ieee80211com *ic = &sc->sc_ic; 2580 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2581 struct iwi_configuration config; 2582 struct iwi_txpower power; 2583 uint8_t *macaddr; 2584 uint32_t data; 2585 int error, i; 2586 2587 IWI_LOCK_ASSERT(sc); 2588 2589 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 2590 DPRINTF(("Setting MAC address to %6D\n", macaddr, ":")); 2591 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr, 2592 IEEE80211_ADDR_LEN); 2593 if (error != 0) 2594 return error; 2595 2596 memset(&config, 0, sizeof config); 2597 config.bluetooth_coexistence = sc->bluetooth; 2598 config.silence_threshold = 0x1e; 2599 config.antenna = sc->antenna; 2600 config.multicast_enabled = 1; 2601 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2602 config.disable_unicast_decryption = 1; 2603 config.disable_multicast_decryption = 1; 2604 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2605 config.allow_invalid_frames = 1; 2606 config.allow_beacon_and_probe_resp = 1; 2607 config.allow_mgt = 1; 2608 } 2609 DPRINTF(("Configuring adapter\n")); 2610 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2611 if (error != 0) 2612 return error; 2613 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2614 power.mode = IWI_MODE_11B; 2615 power.nchan = 11; 2616 for (i = 0; i < 11; i++) { 2617 power.chan[i].chan = i + 1; 2618 power.chan[i].power = IWI_TXPOWER_MAX; 2619 } 2620 DPRINTF(("Setting .11b channels tx power\n")); 2621 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2622 if (error != 0) 2623 return error; 2624 2625 power.mode = IWI_MODE_11G; 2626 DPRINTF(("Setting .11g channels tx power\n")); 2627 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2628 if (error != 0) 2629 return error; 2630 } 2631 2632 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G], 2633 IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED); 2634 if (error != 0) 2635 return error; 2636 2637 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A], 2638 IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED); 2639 if (error != 0) 2640 return error; 2641 2642 data = htole32(arc4random()); 2643 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2644 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2645 if (error != 0) 2646 return error; 2647 2648 /* enable adapter */ 2649 DPRINTF(("Enabling adapter\n")); 2650 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2651 } 2652 2653 static __inline void 2654 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2655 { 2656 uint8_t *st = &scan->scan_type[ix / 2]; 2657 if (ix % 2) 2658 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2659 else 2660 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2661 } 2662 2663 static int 2664 scan_type(const struct ieee80211_scan_state *ss, 2665 const struct ieee80211_channel *chan) 2666 { 2667 /* We can only set one essid for a directed scan */ 2668 if (ss->ss_nssid != 0) 2669 return IWI_SCAN_TYPE_BDIRECTED; 2670 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2671 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2672 return IWI_SCAN_TYPE_BROADCAST; 2673 return IWI_SCAN_TYPE_PASSIVE; 2674 } 2675 2676 static __inline int 2677 scan_band(const struct ieee80211_channel *c) 2678 { 2679 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2680 } 2681 2682 static void 2683 iwi_monitor_scan(void *arg, int npending) 2684 { 2685 struct iwi_softc *sc = arg; 2686 IWI_LOCK_DECL; 2687 2688 IWI_LOCK(sc); 2689 (void) iwi_scanchan(sc, 2000, 0); 2690 IWI_UNLOCK(sc); 2691 } 2692 2693 /* 2694 * Start a scan on the current channel or all channels. 2695 */ 2696 static int 2697 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2698 { 2699 struct ieee80211com *ic = &sc->sc_ic; 2700 struct ieee80211_channel *chan; 2701 struct ieee80211_scan_state *ss; 2702 struct iwi_scan_ext scan; 2703 int error = 0; 2704 2705 IWI_LOCK_ASSERT(sc); 2706 if (sc->fw_state == IWI_FW_SCANNING) { 2707 /* 2708 * This should not happen as we only trigger scan_next after 2709 * completion 2710 */ 2711 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2712 return (EBUSY); 2713 } 2714 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2715 2716 ss = ic->ic_scan; 2717 2718 memset(&scan, 0, sizeof scan); 2719 scan.full_scan_index = htole32(++sc->sc_scangen); 2720 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2721 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2722 /* 2723 * Use very short dwell times for when we send probe request 2724 * frames. Without this bg scans hang. Ideally this should 2725 * be handled with early-termination as done by net80211 but 2726 * that's not feasible (aborting a scan is problematic). 2727 */ 2728 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2729 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2730 } else { 2731 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2732 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2733 } 2734 2735 /* We can only set one essid for a directed scan */ 2736 if (ss->ss_nssid != 0) { 2737 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2738 ss->ss_ssid[0].len); 2739 if (error) 2740 return (error); 2741 } 2742 2743 if (allchan) { 2744 int i, next, band, b, bstart; 2745 /* 2746 * Convert scan list to run-length encoded channel list 2747 * the firmware requires (preserving the order setup by 2748 * net80211). The first entry in each run specifies the 2749 * band and the count of items in the run. 2750 */ 2751 next = 0; /* next open slot */ 2752 bstart = 0; /* NB: not needed, silence compiler */ 2753 band = -1; /* NB: impossible value */ 2754 KASSERT(ss->ss_last > 0, ("no channels")); 2755 for (i = 0; i < ss->ss_last; i++) { 2756 chan = ss->ss_chans[i]; 2757 b = scan_band(chan); 2758 if (b != band) { 2759 if (band != -1) 2760 scan.channels[bstart] = 2761 (next - bstart) | band; 2762 /* NB: this allocates a slot for the run-len */ 2763 band = b, bstart = next++; 2764 } 2765 if (next >= IWI_SCAN_CHANNELS) { 2766 DPRINTF(("truncating scan list\n")); 2767 break; 2768 } 2769 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2770 set_scan_type(&scan, next, scan_type(ss, chan)); 2771 next++; 2772 } 2773 scan.channels[bstart] = (next - bstart) | band; 2774 } else { 2775 /* Scan the current channel only */ 2776 chan = ic->ic_curchan; 2777 scan.channels[0] = 1 | scan_band(chan); 2778 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2779 set_scan_type(&scan, 1, scan_type(ss, chan)); 2780 } 2781 #ifdef IWI_DEBUG 2782 if (iwi_debug > 0) { 2783 static const char *scantype[8] = 2784 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2785 int i; 2786 printf("Scan request: index %u dwell %d/%d/%d\n" 2787 , le32toh(scan.full_scan_index) 2788 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2789 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2790 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2791 ); 2792 i = 0; 2793 do { 2794 int run = scan.channels[i]; 2795 if (run == 0) 2796 break; 2797 printf("Scan %d %s channels:", run & 0x3f, 2798 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2799 for (run &= 0x3f, i++; run > 0; run--, i++) { 2800 uint8_t type = scan.scan_type[i/2]; 2801 printf(" %u/%s", scan.channels[i], 2802 scantype[(i & 1 ? type : type>>4) & 7]); 2803 } 2804 printf("\n"); 2805 } while (i < IWI_SCAN_CHANNELS); 2806 } 2807 #endif 2808 2809 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2810 } 2811 2812 static int 2813 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2814 { 2815 struct iwi_sensitivity sens; 2816 2817 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2818 2819 memset(&sens, 0, sizeof sens); 2820 sens.rssi = htole16(rssi_dbm); 2821 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2822 } 2823 2824 static int 2825 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2826 { 2827 struct ieee80211com *ic = vap->iv_ic; 2828 struct ifnet *ifp = vap->iv_ifp; 2829 struct ieee80211_node *ni; 2830 struct iwi_configuration config; 2831 struct iwi_associate *assoc = &sc->assoc; 2832 uint16_t capinfo; 2833 uint32_t data; 2834 int error, mode; 2835 2836 IWI_LOCK_ASSERT(sc); 2837 2838 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2839 DPRINTF(("Already associated\n")); 2840 return (-1); 2841 } 2842 2843 ni = ieee80211_ref_node(vap->iv_bss); 2844 2845 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2846 error = 0; 2847 mode = 0; 2848 2849 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2850 mode = IWI_MODE_11A; 2851 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2852 mode = IWI_MODE_11G; 2853 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2854 mode = IWI_MODE_11B; 2855 2856 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2857 memset(&config, 0, sizeof config); 2858 config.bluetooth_coexistence = sc->bluetooth; 2859 config.antenna = sc->antenna; 2860 config.multicast_enabled = 1; 2861 if (mode == IWI_MODE_11G) 2862 config.use_protection = 1; 2863 config.answer_pbreq = 2864 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2865 config.disable_unicast_decryption = 1; 2866 config.disable_multicast_decryption = 1; 2867 DPRINTF(("Configuring adapter\n")); 2868 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2869 if (error != 0) 2870 goto done; 2871 } 2872 2873 #ifdef IWI_DEBUG 2874 if (iwi_debug > 0) { 2875 printf("Setting ESSID to "); 2876 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2877 printf("\n"); 2878 } 2879 #endif 2880 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2881 if (error != 0) 2882 goto done; 2883 2884 error = iwi_setpowermode(sc, vap); 2885 if (error != 0) 2886 goto done; 2887 2888 data = htole32(vap->iv_rtsthreshold); 2889 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2890 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2891 if (error != 0) 2892 goto done; 2893 2894 data = htole32(vap->iv_fragthreshold); 2895 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2896 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2897 if (error != 0) 2898 goto done; 2899 2900 /* the rate set has already been "negotiated" */ 2901 error = iwi_set_rateset(sc, &ni->ni_rates, mode, 2902 IWI_RATESET_TYPE_NEGOTIATED); 2903 if (error != 0) 2904 goto done; 2905 2906 memset(assoc, 0, sizeof *assoc); 2907 2908 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2909 /* NB: don't treat WME setup as failure */ 2910 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2911 assoc->policy |= htole16(IWI_POLICY_WME); 2912 /* XXX complain on failure? */ 2913 } 2914 2915 if (vap->iv_appie_wpa != NULL) { 2916 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2917 2918 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2919 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2920 if (error != 0) 2921 goto done; 2922 } 2923 2924 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2925 if (error != 0) 2926 goto done; 2927 2928 assoc->mode = mode; 2929 assoc->chan = ic->ic_curchan->ic_ieee; 2930 /* 2931 * NB: do not arrange for shared key auth w/o privacy 2932 * (i.e. a wep key); it causes a firmware error. 2933 */ 2934 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2935 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2936 assoc->auth = IWI_AUTH_SHARED; 2937 /* 2938 * It's possible to have privacy marked but no default 2939 * key setup. This typically is due to a user app bug 2940 * but if we blindly grab the key the firmware will 2941 * barf so avoid it for now. 2942 */ 2943 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2944 assoc->auth |= vap->iv_def_txkey << 4; 2945 2946 error = iwi_setwepkeys(sc, vap); 2947 if (error != 0) 2948 goto done; 2949 } 2950 if (vap->iv_flags & IEEE80211_F_WPA) 2951 assoc->policy |= htole16(IWI_POLICY_WPA); 2952 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2953 assoc->type = IWI_HC_IBSS_START; 2954 else 2955 assoc->type = IWI_HC_ASSOC; 2956 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2957 2958 if (vap->iv_opmode == IEEE80211_M_IBSS) 2959 capinfo = IEEE80211_CAPINFO_IBSS; 2960 else 2961 capinfo = IEEE80211_CAPINFO_ESS; 2962 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2963 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2964 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2965 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2966 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2967 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2968 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2969 assoc->capinfo = htole16(capinfo); 2970 2971 assoc->lintval = htole16(ic->ic_lintval); 2972 assoc->intval = htole16(ni->ni_intval); 2973 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2974 if (vap->iv_opmode == IEEE80211_M_IBSS) 2975 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2976 else 2977 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2978 2979 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2980 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2981 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2982 assoc->bssid, ":", assoc->dst, ":", 2983 assoc->chan, le16toh(assoc->policy), assoc->auth, 2984 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2985 le16toh(assoc->intval))); 2986 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2987 done: 2988 ieee80211_free_node(ni); 2989 if (error) 2990 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2991 2992 return (error); 2993 } 2994 2995 static void 2996 iwi_disassoc(void *arg, int pending) 2997 { 2998 struct iwi_softc *sc = arg; 2999 IWI_LOCK_DECL; 3000 3001 IWI_LOCK(sc); 3002 iwi_disassociate(sc, 0); 3003 IWI_UNLOCK(sc); 3004 } 3005 3006 static int 3007 iwi_disassociate(struct iwi_softc *sc, int quiet) 3008 { 3009 struct iwi_associate *assoc = &sc->assoc; 3010 3011 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3012 DPRINTF(("Not associated\n")); 3013 return (-1); 3014 } 3015 3016 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3017 3018 if (quiet) 3019 assoc->type = IWI_HC_DISASSOC_QUIET; 3020 else 3021 assoc->type = IWI_HC_DISASSOC; 3022 3023 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3024 assoc->bssid, ":", assoc->chan)); 3025 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3026 } 3027 3028 /* 3029 * release dma resources for the firmware 3030 */ 3031 static void 3032 iwi_release_fw_dma(struct iwi_softc *sc) 3033 { 3034 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3035 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3036 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3037 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3038 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3039 bus_dma_tag_destroy(sc->fw_dmat); 3040 3041 sc->fw_flags = 0; 3042 sc->fw_dma_size = 0; 3043 sc->fw_dmat = NULL; 3044 sc->fw_map = NULL; 3045 sc->fw_physaddr = 0; 3046 sc->fw_virtaddr = NULL; 3047 } 3048 3049 /* 3050 * allocate the dma descriptor for the firmware. 3051 * Return 0 on success, 1 on error. 3052 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3053 */ 3054 static int 3055 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3056 { 3057 if (sc->fw_dma_size >= size) 3058 return 0; 3059 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3060 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3061 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3062 device_printf(sc->sc_dev, 3063 "could not create firmware DMA tag\n"); 3064 goto error; 3065 } 3066 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3067 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3068 &sc->fw_map) != 0) { 3069 device_printf(sc->sc_dev, 3070 "could not allocate firmware DMA memory\n"); 3071 goto error; 3072 } 3073 sc->fw_flags |= IWI_FW_HAVE_MAP; 3074 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3075 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3076 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3077 goto error; 3078 } 3079 sc->fw_flags |= IWI_FW_HAVE_PHY; 3080 sc->fw_dma_size = size; 3081 return 0; 3082 3083 error: 3084 iwi_release_fw_dma(sc); 3085 return 1; 3086 } 3087 3088 static void 3089 iwi_init_locked(struct iwi_softc *sc) 3090 { 3091 struct iwi_rx_data *data; 3092 int i; 3093 3094 IWI_LOCK_ASSERT(sc); 3095 3096 if (sc->fw_state == IWI_FW_LOADING) { 3097 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3098 return; /* XXX: condvar? */ 3099 } 3100 3101 iwi_stop_locked(sc); 3102 3103 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3104 3105 if (iwi_reset(sc) != 0) { 3106 device_printf(sc->sc_dev, "could not reset adapter\n"); 3107 goto fail; 3108 } 3109 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3110 device_printf(sc->sc_dev, 3111 "could not load boot firmware %s\n", sc->fw_boot.name); 3112 goto fail; 3113 } 3114 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3115 device_printf(sc->sc_dev, 3116 "could not load microcode %s\n", sc->fw_uc.name); 3117 goto fail; 3118 } 3119 3120 iwi_stop_master(sc); 3121 3122 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3123 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3124 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3125 3126 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3127 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3128 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3129 3130 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3131 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3132 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3133 3134 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3135 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3136 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3137 3138 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3139 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3140 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3141 3142 for (i = 0; i < sc->rxq.count; i++) { 3143 data = &sc->rxq.data[i]; 3144 CSR_WRITE_4(sc, data->reg, data->physaddr); 3145 } 3146 3147 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3148 3149 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3150 device_printf(sc->sc_dev, 3151 "could not load main firmware %s\n", sc->fw_fw.name); 3152 goto fail; 3153 } 3154 sc->flags |= IWI_FLAG_FW_INITED; 3155 3156 IWI_STATE_END(sc, IWI_FW_LOADING); 3157 3158 if (iwi_config(sc) != 0) { 3159 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3160 goto fail2; 3161 } 3162 3163 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3164 sc->sc_running = 1; 3165 return; 3166 fail: 3167 IWI_STATE_END(sc, IWI_FW_LOADING); 3168 fail2: 3169 iwi_stop_locked(sc); 3170 } 3171 3172 static void 3173 iwi_init(void *priv) 3174 { 3175 struct iwi_softc *sc = priv; 3176 struct ieee80211com *ic = &sc->sc_ic; 3177 IWI_LOCK_DECL; 3178 3179 IWI_LOCK(sc); 3180 iwi_init_locked(sc); 3181 IWI_UNLOCK(sc); 3182 3183 if (sc->sc_running) 3184 ieee80211_start_all(ic); 3185 } 3186 3187 static void 3188 iwi_stop_locked(void *priv) 3189 { 3190 struct iwi_softc *sc = priv; 3191 3192 IWI_LOCK_ASSERT(sc); 3193 3194 sc->sc_running = 0; 3195 3196 if (sc->sc_softled) { 3197 callout_stop(&sc->sc_ledtimer); 3198 sc->sc_blinking = 0; 3199 } 3200 callout_stop(&sc->sc_wdtimer); 3201 callout_stop(&sc->sc_rftimer); 3202 3203 iwi_stop_master(sc); 3204 3205 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3206 3207 /* reset rings */ 3208 iwi_reset_cmd_ring(sc, &sc->cmdq); 3209 iwi_reset_tx_ring(sc, &sc->txq[0]); 3210 iwi_reset_tx_ring(sc, &sc->txq[1]); 3211 iwi_reset_tx_ring(sc, &sc->txq[2]); 3212 iwi_reset_tx_ring(sc, &sc->txq[3]); 3213 iwi_reset_rx_ring(sc, &sc->rxq); 3214 3215 sc->sc_tx_timer = 0; 3216 sc->sc_state_timer = 0; 3217 sc->sc_busy_timer = 0; 3218 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3219 sc->fw_state = IWI_FW_IDLE; 3220 wakeup(sc); 3221 } 3222 3223 static void 3224 iwi_stop(struct iwi_softc *sc) 3225 { 3226 IWI_LOCK_DECL; 3227 3228 IWI_LOCK(sc); 3229 iwi_stop_locked(sc); 3230 IWI_UNLOCK(sc); 3231 } 3232 3233 static void 3234 iwi_restart(void *arg, int npending) 3235 { 3236 struct iwi_softc *sc = arg; 3237 3238 iwi_init(sc); 3239 } 3240 3241 /* 3242 * Return whether or not the radio is enabled in hardware 3243 * (i.e. the rfkill switch is "off"). 3244 */ 3245 static int 3246 iwi_getrfkill(struct iwi_softc *sc) 3247 { 3248 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3249 } 3250 3251 static void 3252 iwi_radio_on(void *arg, int pending) 3253 { 3254 struct iwi_softc *sc = arg; 3255 struct ieee80211com *ic = &sc->sc_ic; 3256 3257 device_printf(sc->sc_dev, "radio turned on\n"); 3258 3259 iwi_init(sc); 3260 ieee80211_notify_radio(ic, 1); 3261 } 3262 3263 static void 3264 iwi_rfkill_poll(void *arg) 3265 { 3266 struct iwi_softc *sc = arg; 3267 3268 IWI_LOCK_ASSERT(sc); 3269 3270 /* 3271 * Check for a change in rfkill state. We get an 3272 * interrupt when a radio is disabled but not when 3273 * it is enabled so we must poll for the latter. 3274 */ 3275 if (!iwi_getrfkill(sc)) { 3276 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3277 return; 3278 } 3279 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3280 } 3281 3282 static void 3283 iwi_radio_off(void *arg, int pending) 3284 { 3285 struct iwi_softc *sc = arg; 3286 struct ieee80211com *ic = &sc->sc_ic; 3287 IWI_LOCK_DECL; 3288 3289 device_printf(sc->sc_dev, "radio turned off\n"); 3290 3291 ieee80211_notify_radio(ic, 0); 3292 3293 IWI_LOCK(sc); 3294 iwi_stop_locked(sc); 3295 iwi_rfkill_poll(sc); 3296 IWI_UNLOCK(sc); 3297 } 3298 3299 static int 3300 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3301 { 3302 struct iwi_softc *sc = arg1; 3303 uint32_t size, buf[128]; 3304 3305 memset(buf, 0, sizeof buf); 3306 3307 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3308 return SYSCTL_OUT(req, buf, sizeof buf); 3309 3310 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3311 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3312 3313 return SYSCTL_OUT(req, buf, size); 3314 } 3315 3316 static int 3317 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3318 { 3319 struct iwi_softc *sc = arg1; 3320 int val = !iwi_getrfkill(sc); 3321 3322 return SYSCTL_OUT(req, &val, sizeof val); 3323 } 3324 3325 /* 3326 * Add sysctl knobs. 3327 */ 3328 static void 3329 iwi_sysctlattach(struct iwi_softc *sc) 3330 { 3331 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3332 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3333 3334 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3335 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3336 iwi_sysctl_radio, "I", 3337 "radio transmitter switch state (0=off, 1=on)"); 3338 3339 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3340 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3341 iwi_sysctl_stats, "S", "statistics"); 3342 3343 sc->bluetooth = 0; 3344 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3345 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3346 3347 sc->antenna = IWI_ANTENNA_AUTO; 3348 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3349 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3350 } 3351 3352 /* 3353 * LED support. 3354 * 3355 * Different cards have different capabilities. Some have three 3356 * led's while others have only one. The linux ipw driver defines 3357 * led's for link state (associated or not), band (11a, 11g, 11b), 3358 * and for link activity. We use one led and vary the blink rate 3359 * according to the tx/rx traffic a la the ath driver. 3360 */ 3361 3362 static __inline uint32_t 3363 iwi_toggle_event(uint32_t r) 3364 { 3365 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3366 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3367 } 3368 3369 static uint32_t 3370 iwi_read_event(struct iwi_softc *sc) 3371 { 3372 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3373 } 3374 3375 static void 3376 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3377 { 3378 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3379 } 3380 3381 static void 3382 iwi_led_done(void *arg) 3383 { 3384 struct iwi_softc *sc = arg; 3385 3386 sc->sc_blinking = 0; 3387 } 3388 3389 /* 3390 * Turn the activity LED off: flip the pin and then set a timer so no 3391 * update will happen for the specified duration. 3392 */ 3393 static void 3394 iwi_led_off(void *arg) 3395 { 3396 struct iwi_softc *sc = arg; 3397 uint32_t v; 3398 3399 v = iwi_read_event(sc); 3400 v &= ~sc->sc_ledpin; 3401 iwi_write_event(sc, iwi_toggle_event(v)); 3402 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3403 } 3404 3405 /* 3406 * Blink the LED according to the specified on/off times. 3407 */ 3408 static void 3409 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3410 { 3411 uint32_t v; 3412 3413 v = iwi_read_event(sc); 3414 v |= sc->sc_ledpin; 3415 iwi_write_event(sc, iwi_toggle_event(v)); 3416 sc->sc_blinking = 1; 3417 sc->sc_ledoff = off; 3418 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3419 } 3420 3421 static void 3422 iwi_led_event(struct iwi_softc *sc, int event) 3423 { 3424 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3425 static const struct { 3426 u_int rate; /* tx/rx iwi rate */ 3427 u_int16_t timeOn; /* LED on time (ms) */ 3428 u_int16_t timeOff; /* LED off time (ms) */ 3429 } blinkrates[] = { 3430 { IWI_RATE_OFDM54, 40, 10 }, 3431 { IWI_RATE_OFDM48, 44, 11 }, 3432 { IWI_RATE_OFDM36, 50, 13 }, 3433 { IWI_RATE_OFDM24, 57, 14 }, 3434 { IWI_RATE_OFDM18, 67, 16 }, 3435 { IWI_RATE_OFDM12, 80, 20 }, 3436 { IWI_RATE_DS11, 100, 25 }, 3437 { IWI_RATE_OFDM9, 133, 34 }, 3438 { IWI_RATE_OFDM6, 160, 40 }, 3439 { IWI_RATE_DS5, 200, 50 }, 3440 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3441 { IWI_RATE_DS2, 267, 66 }, 3442 { IWI_RATE_DS1, 400, 100 }, 3443 { 0, 500, 130 }, /* unknown rate/polling */ 3444 }; 3445 uint32_t txrate; 3446 int j = 0; /* XXX silence compiler */ 3447 3448 sc->sc_ledevent = ticks; /* time of last event */ 3449 if (sc->sc_blinking) /* don't interrupt active blink */ 3450 return; 3451 switch (event) { 3452 case IWI_LED_POLL: 3453 j = nitems(blinkrates)-1; 3454 break; 3455 case IWI_LED_TX: 3456 /* read current transmission rate from adapter */ 3457 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3458 if (blinkrates[sc->sc_txrix].rate != txrate) { 3459 for (j = 0; j < nitems(blinkrates)-1; j++) 3460 if (blinkrates[j].rate == txrate) 3461 break; 3462 sc->sc_txrix = j; 3463 } else 3464 j = sc->sc_txrix; 3465 break; 3466 case IWI_LED_RX: 3467 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3468 for (j = 0; j < nitems(blinkrates)-1; j++) 3469 if (blinkrates[j].rate == sc->sc_rxrate) 3470 break; 3471 sc->sc_rxrix = j; 3472 } else 3473 j = sc->sc_rxrix; 3474 break; 3475 } 3476 /* XXX beware of overflow */ 3477 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3478 (blinkrates[j].timeOff * hz) / 1000); 3479 } 3480 3481 static int 3482 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3483 { 3484 struct iwi_softc *sc = arg1; 3485 int softled = sc->sc_softled; 3486 int error; 3487 3488 error = sysctl_handle_int(oidp, &softled, 0, req); 3489 if (error || !req->newptr) 3490 return error; 3491 softled = (softled != 0); 3492 if (softled != sc->sc_softled) { 3493 if (softled) { 3494 uint32_t v = iwi_read_event(sc); 3495 v &= ~sc->sc_ledpin; 3496 iwi_write_event(sc, iwi_toggle_event(v)); 3497 } 3498 sc->sc_softled = softled; 3499 } 3500 return 0; 3501 } 3502 3503 static void 3504 iwi_ledattach(struct iwi_softc *sc) 3505 { 3506 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3507 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3508 3509 sc->sc_blinking = 0; 3510 sc->sc_ledstate = 1; 3511 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3512 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3513 3514 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3515 "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 3516 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3517 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3518 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3519 "pin setting to turn activity LED on"); 3520 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3521 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3522 "idle time for inactivity LED (ticks)"); 3523 /* XXX for debugging */ 3524 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3525 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3526 "NIC type from EEPROM"); 3527 3528 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3529 sc->sc_softled = 1; 3530 3531 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3532 if (sc->sc_nictype == 1) { 3533 /* 3534 * NB: led's are reversed. 3535 */ 3536 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3537 } 3538 } 3539 3540 static void 3541 iwi_scan_start(struct ieee80211com *ic) 3542 { 3543 /* ignore */ 3544 } 3545 3546 static void 3547 iwi_set_channel(struct ieee80211com *ic) 3548 { 3549 struct iwi_softc *sc = ic->ic_softc; 3550 3551 if (sc->fw_state == IWI_FW_IDLE) 3552 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3553 } 3554 3555 static void 3556 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3557 { 3558 struct ieee80211vap *vap = ss->ss_vap; 3559 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3560 IWI_LOCK_DECL; 3561 3562 IWI_LOCK(sc); 3563 if (iwi_scanchan(sc, maxdwell, 0)) 3564 ieee80211_cancel_scan(vap); 3565 IWI_UNLOCK(sc); 3566 } 3567 3568 static void 3569 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3570 { 3571 /* NB: don't try to abort scan; wait for firmware to finish */ 3572 } 3573 3574 static void 3575 iwi_scan_end(struct ieee80211com *ic) 3576 { 3577 struct iwi_softc *sc = ic->ic_softc; 3578 IWI_LOCK_DECL; 3579 3580 IWI_LOCK(sc); 3581 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3582 /* NB: make sure we're still scanning */ 3583 if (sc->fw_state == IWI_FW_SCANNING) 3584 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3585 IWI_UNLOCK(sc); 3586 } 3587 3588 static void 3589 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz) 3590 { 3591 struct iwi_softc *sc = ic->ic_softc; 3592 device_t dev = sc->sc_dev; 3593 3594 memset(bands, 0, bands_sz); 3595 setbit(bands, IEEE80211_MODE_11B); 3596 setbit(bands, IEEE80211_MODE_11G); 3597 if (pci_get_device(dev) >= 0x4223) 3598 setbit(bands, IEEE80211_MODE_11A); 3599 } 3600 3601 static void 3602 iwi_getradiocaps(struct ieee80211com *ic, 3603 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3604 { 3605 uint8_t bands[IEEE80211_MODE_BYTES]; 3606 3607 iwi_collect_bands(ic, bands, sizeof(bands)); 3608 *nchans = 0; 3609 if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G)) 3610 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, 3611 bands, 0); 3612 if (isset(bands, IEEE80211_MODE_11A)) { 3613 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3614 def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), 3615 bands, 0); 3616 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3617 def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), 3618 bands, 0); 3619 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3620 def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), 3621 bands, 0); 3622 } 3623 } 3624