xref: /freebsd/sys/dev/ice/virtchnl.h (revision 6137b5f7b8c183ee8806d79b3f1d8e5e3ddb3df3)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2023, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #ifndef _VIRTCHNL_H_
33 #define _VIRTCHNL_H_
34 
35 /* Description:
36  * This header file describes the Virtual Function (VF) - Physical Function
37  * (PF) communication protocol used by the drivers for all devices starting
38  * from our 40G product line
39  *
40  * Admin queue buffer usage:
41  * desc->opcode is always aqc_opc_send_msg_to_pf
42  * flags, retval, datalen, and data addr are all used normally.
43  * The Firmware copies the cookie fields when sending messages between the
44  * PF and VF, but uses all other fields internally. Due to this limitation,
45  * we must send all messages as "indirect", i.e. using an external buffer.
46  *
47  * All the VSI indexes are relative to the VF. Each VF can have maximum of
48  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
49  * have a maximum of sixteen queues for all of its VSIs.
50  *
51  * The PF is required to return a status code in v_retval for all messages
52  * except RESET_VF, which does not require any response. The returned value
53  * is of virtchnl_status_code type, defined here.
54  *
55  * In general, VF driver initialization should roughly follow the order of
56  * these opcodes. The VF driver must first validate the API version of the
57  * PF driver, then request a reset, then get resources, then configure
58  * queues and interrupts. After these operations are complete, the VF
59  * driver may start its queues, optionally add MAC and VLAN filters, and
60  * process traffic.
61  */
62 
63 /* START GENERIC DEFINES
64  * Need to ensure the following enums and defines hold the same meaning and
65  * value in current and future projects
66  */
67 
68 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS	6
69 
70 /* These macros are used to generate compilation errors if a structure/union
71  * is not exactly the correct length. It gives a divide by zero error if the
72  * structure/union is not of the correct size, otherwise it creates an enum
73  * that is never used.
74  */
75 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
76 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
77 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
78 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
79 
80 /* Error Codes
81  * Note that many older versions of various iAVF drivers convert the reported
82  * status code directly into an iavf_status enumeration. For this reason, it
83  * is important that the values of these enumerations line up.
84  */
85 enum virtchnl_status_code {
86 	VIRTCHNL_STATUS_SUCCESS				= 0,
87 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
88 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
89 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
90 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
91 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
92 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
93 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
94 };
95 
96 /* Backward compatibility */
97 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
98 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
99 
100 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
101 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
102 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
103 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
104 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
105 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
106 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
107 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
108 
109 enum virtchnl_link_speed {
110 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
111 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
112 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
113 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
114 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
115 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
116 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
117 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
118 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
119 };
120 
121 /* for hsplit_0 field of Rx HMC context */
122 /* deprecated with AVF 1.0 */
123 enum virtchnl_rx_hsplit {
124 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
125 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
126 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
127 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
128 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
129 };
130 
131 enum virtchnl_bw_limit_type {
132 	VIRTCHNL_BW_SHAPER = 0,
133 };
134 /* END GENERIC DEFINES */
135 
136 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
137  * of the virtchnl_msg structure.
138  */
139 enum virtchnl_ops {
140 /* The PF sends status change events to VFs using
141  * the VIRTCHNL_OP_EVENT opcode.
142  * VFs send requests to the PF using the other ops.
143  * Use of "advanced opcode" features must be negotiated as part of capabilities
144  * exchange and are not considered part of base mode feature set.
145  *
146  */
147 	VIRTCHNL_OP_UNKNOWN = 0,
148 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
149 	VIRTCHNL_OP_RESET_VF = 2,
150 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
151 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
152 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
153 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
154 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
155 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
156 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
157 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
158 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
159 	VIRTCHNL_OP_ADD_VLAN = 12,
160 	VIRTCHNL_OP_DEL_VLAN = 13,
161 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
162 	VIRTCHNL_OP_GET_STATS = 15,
163 	VIRTCHNL_OP_RSVD = 16,
164 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
165 	/* opcode 19 is reserved */
166 	/* opcodes 20, 21, and 22 are reserved */
167 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
168 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
169 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
170 	VIRTCHNL_OP_SET_RSS_HENA = 26,
171 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
172 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
173 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
174 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
175 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
176 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
177 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
178 	/* opcode 34 is reserved */
179 	/* opcodes 38, 39, 40, 41, 42 and 43 are reserved */
180 	/* opcode 44 is reserved */
181 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
182 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
183 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
184 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
185 	VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
186 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
187 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
188 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
189 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
190 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
191 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
192 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
193 	VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
194 	VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
195 	/* opcodes 60 through 65 are reserved */
196 	VIRTCHNL_OP_GET_QOS_CAPS = 66,
197 	VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67,
198 	/* opcode 68 through 70 are reserved */
199 	VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
200 	VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
201 	VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
202 	VIRTCHNL_OP_CONFIG_QUEUE_BW = 112,
203 	VIRTCHNL_OP_CONFIG_QUANTA = 113,
204 	VIRTCHNL_OP_FLOW_SUBSCRIBE = 114,
205 	VIRTCHNL_OP_FLOW_UNSUBSCRIBE = 115,
206 	/* opcode 116 through 130 are reserved */
207 	VIRTCHNL_OP_MAX,
208 };
209 
210 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
211 {
212 	switch (v_opcode) {
213 	case VIRTCHNL_OP_UNKNOWN:
214 		return "VIRTCHNL_OP_UNKNOWN";
215 	case VIRTCHNL_OP_VERSION:
216 		return "VIRTCHNL_OP_VERSION";
217 	case VIRTCHNL_OP_RESET_VF:
218 		return "VIRTCHNL_OP_RESET_VF";
219 	case VIRTCHNL_OP_GET_VF_RESOURCES:
220 		return "VIRTCHNL_OP_GET_VF_RESOURCES";
221 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
222 		return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
223 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
224 		return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
225 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
226 		return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
227 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
228 		return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
229 	case VIRTCHNL_OP_ENABLE_QUEUES:
230 		return "VIRTCHNL_OP_ENABLE_QUEUES";
231 	case VIRTCHNL_OP_DISABLE_QUEUES:
232 		return "VIRTCHNL_OP_DISABLE_QUEUES";
233 	case VIRTCHNL_OP_ADD_ETH_ADDR:
234 		return "VIRTCHNL_OP_ADD_ETH_ADDR";
235 	case VIRTCHNL_OP_DEL_ETH_ADDR:
236 		return "VIRTCHNL_OP_DEL_ETH_ADDR";
237 	case VIRTCHNL_OP_ADD_VLAN:
238 		return "VIRTCHNL_OP_ADD_VLAN";
239 	case VIRTCHNL_OP_DEL_VLAN:
240 		return "VIRTCHNL_OP_DEL_VLAN";
241 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
242 		return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
243 	case VIRTCHNL_OP_GET_STATS:
244 		return "VIRTCHNL_OP_GET_STATS";
245 	case VIRTCHNL_OP_RSVD:
246 		return "VIRTCHNL_OP_RSVD";
247 	case VIRTCHNL_OP_EVENT:
248 		return "VIRTCHNL_OP_EVENT";
249 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
250 		return "VIRTCHNL_OP_CONFIG_RSS_KEY";
251 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
252 		return "VIRTCHNL_OP_CONFIG_RSS_LUT";
253 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
254 		return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
255 	case VIRTCHNL_OP_SET_RSS_HENA:
256 		return "VIRTCHNL_OP_SET_RSS_HENA";
257 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
258 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
259 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
260 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
261 	case VIRTCHNL_OP_REQUEST_QUEUES:
262 		return "VIRTCHNL_OP_REQUEST_QUEUES";
263 	case VIRTCHNL_OP_ENABLE_CHANNELS:
264 		return "VIRTCHNL_OP_ENABLE_CHANNELS";
265 	case VIRTCHNL_OP_DISABLE_CHANNELS:
266 		return "VIRTCHNL_OP_DISABLE_CHANNELS";
267 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
268 		return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
269 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
270 		return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
271 	case VIRTCHNL_OP_ADD_RSS_CFG:
272 		return "VIRTCHNL_OP_ADD_RSS_CFG";
273 	case VIRTCHNL_OP_DEL_RSS_CFG:
274 		return "VIRTCHNL_OP_DEL_RSS_CFG";
275 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
276 		return "VIRTCHNL_OP_ADD_FDIR_FILTER";
277 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
278 		return "VIRTCHNL_OP_DEL_FDIR_FILTER";
279 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
280 		return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
281 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
282 		return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
283 	case VIRTCHNL_OP_ADD_VLAN_V2:
284 		return "VIRTCHNL_OP_ADD_VLAN_V2";
285 	case VIRTCHNL_OP_DEL_VLAN_V2:
286 		return "VIRTCHNL_OP_DEL_VLAN_V2";
287 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
288 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
289 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
290 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
291 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
292 		return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
293 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
294 		return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
295 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
296 		return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
297 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
298 		return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
299 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
300 		return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
301 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
302 		return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
303 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
304 		return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
305 	case VIRTCHNL_OP_FLOW_SUBSCRIBE:
306 		return "VIRTCHNL_OP_FLOW_SUBSCRIBE";
307 	case VIRTCHNL_OP_FLOW_UNSUBSCRIBE:
308 		return "VIRTCHNL_OP_FLOW_UNSUBSCRIBE";
309 	case VIRTCHNL_OP_MAX:
310 		return "VIRTCHNL_OP_MAX";
311 	default:
312 		return "Unsupported (update virtchnl.h)";
313 	}
314 }
315 
316 static inline const char *virtchnl_stat_str(enum virtchnl_status_code v_status)
317 {
318 	switch (v_status) {
319 	case VIRTCHNL_STATUS_SUCCESS:
320 		return "VIRTCHNL_STATUS_SUCCESS";
321 	case VIRTCHNL_STATUS_ERR_PARAM:
322 		return "VIRTCHNL_STATUS_ERR_PARAM";
323 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
324 		return "VIRTCHNL_STATUS_ERR_NO_MEMORY";
325 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
326 		return "VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH";
327 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
328 		return "VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR";
329 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
330 		return "VIRTCHNL_STATUS_ERR_INVALID_VF_ID";
331 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
332 		return "VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR";
333 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
334 		return "VIRTCHNL_STATUS_ERR_NOT_SUPPORTED";
335 	default:
336 		return "Unknown status code (update virtchnl.h)";
337 	}
338 }
339 
340 /* Virtual channel message descriptor. This overlays the admin queue
341  * descriptor. All other data is passed in external buffers.
342  */
343 
344 struct virtchnl_msg {
345 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
346 
347 	/* avoid confusion with desc->opcode */
348 	enum virtchnl_ops v_opcode;
349 
350 	/* ditto for desc->retval */
351 	enum virtchnl_status_code v_retval;
352 	u32 vfid;			 /* used by PF when sending to VF */
353 };
354 
355 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
356 
357 /* Message descriptions and data structures. */
358 
359 /* VIRTCHNL_OP_VERSION
360  * VF posts its version number to the PF. PF responds with its version number
361  * in the same format, along with a return code.
362  * Reply from PF has its major/minor versions also in param0 and param1.
363  * If there is a major version mismatch, then the VF cannot operate.
364  * If there is a minor version mismatch, then the VF can operate but should
365  * add a warning to the system log.
366  *
367  * This enum element MUST always be specified as == 1, regardless of other
368  * changes in the API. The PF must always respond to this message without
369  * error regardless of version mismatch.
370  */
371 #define VIRTCHNL_VERSION_MAJOR		1
372 #define VIRTCHNL_VERSION_MINOR		1
373 #define VIRTCHNL_VERSION_MAJOR_2	2
374 #define VIRTCHNL_VERSION_MINOR_0	0
375 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
376 
377 struct virtchnl_version_info {
378 	u32 major;
379 	u32 minor;
380 };
381 
382 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
383 
384 #define VF_IS_V10(_ver) (((_ver)->major == 1) && ((_ver)->minor == 0))
385 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
386 #define VF_IS_V20(_ver) (((_ver)->major == 2) && ((_ver)->minor == 0))
387 
388 /* VIRTCHNL_OP_RESET_VF
389  * VF sends this request to PF with no parameters
390  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
391  * until reset completion is indicated. The admin queue must be reinitialized
392  * after this operation.
393  *
394  * When reset is complete, PF must ensure that all queues in all VSIs associated
395  * with the VF are stopped, all queue configurations in the HMC are set to 0,
396  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
397  * are cleared.
398  */
399 
400 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
401  * vsi_type should always be 6 for backward compatibility. Add other fields
402  * as needed.
403  */
404 enum virtchnl_vsi_type {
405 	VIRTCHNL_VSI_TYPE_INVALID = 0,
406 	VIRTCHNL_VSI_SRIOV = 6,
407 };
408 
409 /* VIRTCHNL_OP_GET_VF_RESOURCES
410  * Version 1.0 VF sends this request to PF with no parameters
411  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
412  * PF responds with an indirect message containing
413  * virtchnl_vf_resource and one or more
414  * virtchnl_vsi_resource structures.
415  */
416 
417 struct virtchnl_vsi_resource {
418 	u16 vsi_id;
419 	u16 num_queue_pairs;
420 
421 	/* see enum virtchnl_vsi_type */
422 	s32 vsi_type;
423 	u16 qset_handle;
424 	u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
425 };
426 
427 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
428 
429 /* VF capability flags
430  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
431  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
432  */
433 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
434 #define VIRTCHNL_VF_OFFLOAD_IWARP		BIT(1)
435 #define VIRTCHNL_VF_CAP_RDMA			VIRTCHNL_VF_OFFLOAD_IWARP
436 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
437 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
438 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
439 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
440 /* used to negotiate communicating link speeds in Mbps */
441 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
442 	/* BIT(8) is reserved */
443 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS		BIT(9)
444 #define VIRTCHNL_VF_OFFLOAD_CRC			BIT(10)
445 #define VIRTCHNL_VF_OFFLOAD_FSUB_PF		BIT(14)
446 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
447 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
448 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
449 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
450 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
451 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
452 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
453 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
454 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
455 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2		BIT(24)
456 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
457 	/* BIT(26) is reserved */
458 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
459 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
460 #define VIRTCHNL_VF_OFFLOAD_QOS			BIT(29)
461 	/* BIT(30) is reserved */
462 	/* BIT(31) is reserved */
463 
464 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
465 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
466 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
467 
468 struct virtchnl_vf_resource {
469 	u16 num_vsis;
470 	u16 num_queue_pairs;
471 	u16 max_vectors;
472 	u16 max_mtu;
473 
474 	u32 vf_cap_flags;
475 	u32 rss_key_size;
476 	u32 rss_lut_size;
477 
478 	struct virtchnl_vsi_resource vsi_res[1];
479 };
480 
481 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
482 
483 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
484  * VF sends this message to set up parameters for one TX queue.
485  * External data buffer contains one instance of virtchnl_txq_info.
486  * PF configures requested queue and returns a status code.
487  */
488 
489 /* Tx queue config info */
490 struct virtchnl_txq_info {
491 	u16 vsi_id;
492 	u16 queue_id;
493 	u16 ring_len;		/* number of descriptors, multiple of 8 */
494 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
495 	u64 dma_ring_addr;
496 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
497 };
498 
499 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
500 
501 /* RX descriptor IDs (range from 0 to 63) */
502 enum virtchnl_rx_desc_ids {
503 	VIRTCHNL_RXDID_0_16B_BASE		= 0,
504 	VIRTCHNL_RXDID_1_32B_BASE		= 1,
505 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC		= 2,
506 	VIRTCHNL_RXDID_3_FLEX_SQ_SW		= 3,
507 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB	= 4,
508 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL	= 5,
509 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2		= 6,
510 	VIRTCHNL_RXDID_7_HW_RSVD		= 7,
511 	/* 8 through 15 are reserved */
512 	VIRTCHNL_RXDID_16_COMMS_GENERIC 	= 16,
513 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN 	= 17,
514 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4 	= 18,
515 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6 	= 19,
516 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW 	= 20,
517 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP 	= 21,
518 	/* 22 through 63 are reserved */
519 };
520 
521 /* RX descriptor ID bitmasks */
522 enum virtchnl_rx_desc_id_bitmasks {
523 	VIRTCHNL_RXDID_0_16B_BASE_M		= BIT(VIRTCHNL_RXDID_0_16B_BASE),
524 	VIRTCHNL_RXDID_1_32B_BASE_M		= BIT(VIRTCHNL_RXDID_1_32B_BASE),
525 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M		= BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
526 	VIRTCHNL_RXDID_3_FLEX_SQ_SW_M		= BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
527 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M	= BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
528 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M	= BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
529 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M	= BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
530 	VIRTCHNL_RXDID_7_HW_RSVD_M		= BIT(VIRTCHNL_RXDID_7_HW_RSVD),
531 	/* 9 through 15 are reserved */
532 	VIRTCHNL_RXDID_16_COMMS_GENERIC_M	= BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
533 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M	= BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
534 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M	= BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
535 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M	= BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
536 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M	= BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
537 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M	= BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
538 	/* 22 through 63 are reserved */
539 };
540 
541 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
542  * VF sends this message to set up parameters for one RX queue.
543  * External data buffer contains one instance of virtchnl_rxq_info.
544  * PF configures requested queue and returns a status code. The
545  * crc_disable flag disables CRC stripping on the VF. Setting
546  * the crc_disable flag to 1 will disable CRC stripping for each
547  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
548  * offload must have been set prior to sending this info or the PF
549  * will ignore the request. This flag should be set the same for
550  * all of the queues for a VF.
551  */
552 
553 /* Rx queue config info */
554 struct virtchnl_rxq_info {
555 	u16 vsi_id;
556 	u16 queue_id;
557 	u32 ring_len;		/* number of descriptors, multiple of 32 */
558 	u16 hdr_size;
559 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
560 	u32 databuffer_size;
561 	u32 max_pkt_size;
562 	u8 crc_disable;
563 	u8 pad1[3];
564 	u64 dma_ring_addr;
565 
566 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
567 	s32 rx_split_pos;
568 	u32 pad2;
569 };
570 
571 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
572 
573 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
574  * VF sends this message to set parameters for active TX and RX queues
575  * associated with the specified VSI.
576  * PF configures queues and returns status.
577  * If the number of queues specified is greater than the number of queues
578  * associated with the VSI, an error is returned and no queues are configured.
579  * NOTE: The VF is not required to configure all queues in a single request.
580  * It may send multiple messages. PF drivers must correctly handle all VF
581  * requests.
582  */
583 struct virtchnl_queue_pair_info {
584 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
585 	struct virtchnl_txq_info txq;
586 	struct virtchnl_rxq_info rxq;
587 };
588 
589 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
590 
591 struct virtchnl_vsi_queue_config_info {
592 	u16 vsi_id;
593 	u16 num_queue_pairs;
594 	u32 pad;
595 	struct virtchnl_queue_pair_info qpair[1];
596 };
597 
598 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
599 
600 /* VIRTCHNL_OP_REQUEST_QUEUES
601  * VF sends this message to request the PF to allocate additional queues to
602  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
603  * additional queues must be negotiated.  This is a best effort request as it
604  * is possible the PF does not have enough queues left to support the request.
605  * If the PF cannot support the number requested it will respond with the
606  * maximum number it is able to support.  If the request is successful, PF will
607  * then reset the VF to institute required changes.
608  */
609 
610 /* VF resource request */
611 struct virtchnl_vf_res_request {
612 	u16 num_queue_pairs;
613 };
614 
615 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
616  * VF uses this message to map vectors to queues.
617  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
618  * are to be associated with the specified vector.
619  * The "other" causes are always mapped to vector 0. The VF may not request
620  * that vector 0 be used for traffic.
621  * PF configures interrupt mapping and returns status.
622  * NOTE: due to hardware requirements, all active queues (both TX and RX)
623  * should be mapped to interrupts, even if the driver intends to operate
624  * only in polling mode. In this case the interrupt may be disabled, but
625  * the ITR timer will still run to trigger writebacks.
626  */
627 struct virtchnl_vector_map {
628 	u16 vsi_id;
629 	u16 vector_id;
630 	u16 rxq_map;
631 	u16 txq_map;
632 	u16 rxitr_idx;
633 	u16 txitr_idx;
634 };
635 
636 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
637 
638 struct virtchnl_irq_map_info {
639 	u16 num_vectors;
640 	struct virtchnl_vector_map vecmap[1];
641 };
642 
643 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
644 
645 /* VIRTCHNL_OP_ENABLE_QUEUES
646  * VIRTCHNL_OP_DISABLE_QUEUES
647  * VF sends these message to enable or disable TX/RX queue pairs.
648  * The queues fields are bitmaps indicating which queues to act upon.
649  * (Currently, we only support 16 queues per VF, but we make the field
650  * u32 to allow for expansion.)
651  * PF performs requested action and returns status.
652  * NOTE: The VF is not required to enable/disable all queues in a single
653  * request. It may send multiple messages.
654  * PF drivers must correctly handle all VF requests.
655  */
656 struct virtchnl_queue_select {
657 	u16 vsi_id;
658 	u16 pad;
659 	u32 rx_queues;
660 	u32 tx_queues;
661 };
662 
663 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
664 
665 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION
666  *
667  * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
668  * then this op must be supported.
669  *
670  * VF sends this message in order to query the max RSS queue region
671  * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
672  * This information should be used when configuring the RSS LUT and/or
673  * configuring queue region based filters.
674  *
675  * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
676  * of 6 would inform the VF that the PF supports a maximum RSS queue region
677  * of 64.
678  *
679  * A queue region represents a range of queues that can be used to configure
680  * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
681  * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
682  * to configure the RSS LUT with queue indices from 0 to 15. However, other
683  * filters can be used to direct packets to queues >15 via specifying a queue
684  * base/offset and queue region width.
685  */
686 struct virtchnl_max_rss_qregion {
687 	u16 vport_id;
688 	u16 qregion_width;
689 	u8 pad[4];
690 };
691 
692 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
693 
694 /* VIRTCHNL_OP_ADD_ETH_ADDR
695  * VF sends this message in order to add one or more unicast or multicast
696  * address filters for the specified VSI.
697  * PF adds the filters and returns status.
698  */
699 
700 /* VIRTCHNL_OP_DEL_ETH_ADDR
701  * VF sends this message in order to remove one or more unicast or multicast
702  * filters for the specified VSI.
703  * PF removes the filters and returns status.
704  */
705 
706 /* VIRTCHNL_ETHER_ADDR_LEGACY
707  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
708  * bytes. Moving forward all VF drivers should not set type to
709  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
710  * behavior. The control plane function (i.e. PF) can use a best effort method
711  * of tracking the primary/device unicast in this case, but there is no
712  * guarantee and functionality depends on the implementation of the PF.
713  */
714 
715 /* VIRTCHNL_ETHER_ADDR_PRIMARY
716  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
717  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
718  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
719  * function (i.e. PF) to accurately track and use this MAC address for
720  * displaying on the host and for VM/function reset.
721  */
722 
723 /* VIRTCHNL_ETHER_ADDR_EXTRA
724  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
725  * unicast and/or multicast filters that are being added/deleted via
726  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
727  */
728 struct virtchnl_ether_addr {
729 	u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
730 	u8 type;
731 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
732 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
733 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
734 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
735 	u8 pad;
736 };
737 
738 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
739 
740 struct virtchnl_ether_addr_list {
741 	u16 vsi_id;
742 	u16 num_elements;
743 	struct virtchnl_ether_addr list[1];
744 };
745 
746 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
747 
748 /* VIRTCHNL_OP_ADD_VLAN
749  * VF sends this message to add one or more VLAN tag filters for receives.
750  * PF adds the filters and returns status.
751  * If a port VLAN is configured by the PF, this operation will return an
752  * error to the VF.
753  */
754 
755 /* VIRTCHNL_OP_DEL_VLAN
756  * VF sends this message to remove one or more VLAN tag filters for receives.
757  * PF removes the filters and returns status.
758  * If a port VLAN is configured by the PF, this operation will return an
759  * error to the VF.
760  */
761 
762 struct virtchnl_vlan_filter_list {
763 	u16 vsi_id;
764 	u16 num_elements;
765 	u16 vlan_id[1];
766 };
767 
768 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
769 
770 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
771  * structures and opcodes.
772  *
773  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
774  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
775  *
776  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
777  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
778  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
779  *
780  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
781  * by the PF concurrently. For example, if the PF can support
782  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
783  * would OR the following bits:
784  *
785  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
786  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
787  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
788  *
789  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
790  * and 0x88A8 VLAN ethertypes.
791  *
792  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
793  * by the PF concurrently. For example if the PF can support
794  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
795  * offload it would OR the following bits:
796  *
797  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
798  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
799  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
800  *
801  * The VF would interpret this as VLAN stripping can be supported on either
802  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
803  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
804  * the previously set value.
805  *
806  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
807  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
808  *
809  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
810  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
811  *
812  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
813  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
814  *
815  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
816  * VLAN filtering if the underlying PF supports it.
817  *
818  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
819  * certain VLAN capability can be toggled. For example if the underlying PF/CP
820  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
821  * set this bit along with the supported ethertypes.
822  */
823 enum virtchnl_vlan_support {
824 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
825 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		0x00000001,
826 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		0x00000002,
827 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		0x00000004,
828 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	0x00000100,
829 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	0x00000200,
830 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	0x00000400,
831 	VIRTCHNL_VLAN_PRIO =			0x01000000,
832 	VIRTCHNL_VLAN_FILTER_MASK =		0x10000000,
833 	VIRTCHNL_VLAN_ETHERTYPE_AND =		0x20000000,
834 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		0x40000000,
835 	VIRTCHNL_VLAN_TOGGLE =			0x80000000
836 };
837 
838 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
839  * for filtering, insertion, and stripping capabilities.
840  *
841  * If only outer capabilities are supported (for filtering, insertion, and/or
842  * stripping) then this refers to the outer most or single VLAN from the VF's
843  * perspective.
844  *
845  * If only inner capabilities are supported (for filtering, insertion, and/or
846  * stripping) then this refers to the outer most or single VLAN from the VF's
847  * perspective. Functionally this is the same as if only outer capabilities are
848  * supported. The VF driver is just forced to use the inner fields when
849  * adding/deleting filters and enabling/disabling offloads (if supported).
850  *
851  * If both outer and inner capabilities are supported (for filtering, insertion,
852  * and/or stripping) then outer refers to the outer most or single VLAN and
853  * inner refers to the second VLAN, if it exists, in the packet.
854  *
855  * There is no support for tunneled VLAN offloads, so outer or inner are never
856  * referring to a tunneled packet from the VF's perspective.
857  */
858 struct virtchnl_vlan_supported_caps {
859 	u32 outer;
860 	u32 inner;
861 };
862 
863 /* The PF populates these fields based on the supported VLAN filtering. If a
864  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
865  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
866  * the unsupported fields.
867  *
868  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
869  * VIRTCHNL_VLAN_TOGGLE bit is set.
870  *
871  * The ethertype(s) specified in the ethertype_init field are the ethertypes
872  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
873  * most VLAN from the VF's perspective. If both inner and outer filtering are
874  * allowed then ethertype_init only refers to the outer most VLAN as only
875  * VLAN ethertype supported for inner VLAN filtering is
876  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
877  * when both inner and outer filtering are allowed.
878  *
879  * The max_filters field tells the VF how many VLAN filters it's allowed to have
880  * at any one time. If it exceeds this amount and tries to add another filter,
881  * then the request will be rejected by the PF. To prevent failures, the VF
882  * should keep track of how many VLAN filters it has added and not attempt to
883  * add more than max_filters.
884  */
885 struct virtchnl_vlan_filtering_caps {
886 	struct virtchnl_vlan_supported_caps filtering_support;
887 	u32 ethertype_init;
888 	u16 max_filters;
889 	u8 pad[2];
890 };
891 
892 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
893 
894 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
895  * if the PF supports a different ethertype for stripping and insertion.
896  *
897  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
898  * for stripping affect the ethertype(s) specified for insertion and visa versa
899  * as well. If the VF tries to configure VLAN stripping via
900  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
901  * that will be the ethertype for both stripping and insertion.
902  *
903  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
904  * stripping do not affect the ethertype(s) specified for insertion and visa
905  * versa.
906  */
907 enum virtchnl_vlan_ethertype_match {
908 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
909 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
910 };
911 
912 /* The PF populates these fields based on the supported VLAN offloads. If a
913  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
914  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
915  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
916  *
917  * Also, a VF is only allowed to toggle its VLAN offload setting if the
918  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
919  *
920  * The VF driver needs to be aware of how the tags are stripped by hardware and
921  * inserted by the VF driver based on the level of offload support. The PF will
922  * populate these fields based on where the VLAN tags are expected to be
923  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
924  * interpret these fields. See the definition of the
925  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
926  * enumeration.
927  */
928 struct virtchnl_vlan_offload_caps {
929 	struct virtchnl_vlan_supported_caps stripping_support;
930 	struct virtchnl_vlan_supported_caps insertion_support;
931 	u32 ethertype_init;
932 	u8 ethertype_match;
933 	u8 pad[3];
934 };
935 
936 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
937 
938 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
939  * VF sends this message to determine its VLAN capabilities.
940  *
941  * PF will mark which capabilities it supports based on hardware support and
942  * current configuration. For example, if a port VLAN is configured the PF will
943  * not allow outer VLAN filtering, stripping, or insertion to be configured so
944  * it will block these features from the VF.
945  *
946  * The VF will need to cross reference its capabilities with the PFs
947  * capabilities in the response message from the PF to determine the VLAN
948  * support.
949  */
950 struct virtchnl_vlan_caps {
951 	struct virtchnl_vlan_filtering_caps filtering;
952 	struct virtchnl_vlan_offload_caps offloads;
953 };
954 
955 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
956 
957 struct virtchnl_vlan {
958 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
959 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
960 			 * filtering caps
961 			 */
962 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
963 			 * filtering caps. Note that tpid here does not refer to
964 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
965 			 * actual 2-byte VLAN TPID
966 			 */
967 	u8 pad[2];
968 };
969 
970 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
971 
972 struct virtchnl_vlan_filter {
973 	struct virtchnl_vlan inner;
974 	struct virtchnl_vlan outer;
975 	u8 pad[16];
976 };
977 
978 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
979 
980 /* VIRTCHNL_OP_ADD_VLAN_V2
981  * VIRTCHNL_OP_DEL_VLAN_V2
982  *
983  * VF sends these messages to add/del one or more VLAN tag filters for Rx
984  * traffic.
985  *
986  * The PF attempts to add the filters and returns status.
987  *
988  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
989  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
990  */
991 struct virtchnl_vlan_filter_list_v2 {
992 	u16 vport_id;
993 	u16 num_elements;
994 	u8 pad[4];
995 	struct virtchnl_vlan_filter filters[1];
996 };
997 
998 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
999 
1000 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
1001  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
1002  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
1003  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
1004  *
1005  * VF sends this message to enable or disable VLAN stripping or insertion. It
1006  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
1007  * allowed and whether or not it's allowed to enable/disable the specific
1008  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1009  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
1010  * messages are allowed.
1011  *
1012  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
1013  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
1014  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
1015  * case means the outer most or single VLAN from the VF's perspective. This is
1016  * because no outer offloads are supported. See the comments above the
1017  * virtchnl_vlan_supported_caps structure for more details.
1018  *
1019  * virtchnl_vlan_caps.offloads.stripping_support.inner =
1020  *			VIRTCHNL_VLAN_TOGGLE |
1021  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1022  *
1023  * virtchnl_vlan_caps.offloads.insertion_support.inner =
1024  *			VIRTCHNL_VLAN_TOGGLE |
1025  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1026  *
1027  * In order to enable inner (again note that in this case inner is the outer
1028  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
1029  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
1030  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1031  *
1032  * virtchnl_vlan_setting.inner_ethertype_setting =
1033  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
1034  *
1035  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1036  * initialization.
1037  *
1038  * The reason that VLAN TPID(s) are not being used for the
1039  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
1040  * possible a device could support VLAN insertion and/or stripping offload on
1041  * multiple ethertypes concurrently, so this method allows a VF to request
1042  * multiple ethertypes in one message using the virtchnl_vlan_support
1043  * enumeration.
1044  *
1045  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
1046  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
1047  * VLAN insertion and stripping simultaneously. The
1048  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
1049  * populated based on what the PF can support.
1050  *
1051  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1052  *			VIRTCHNL_VLAN_TOGGLE |
1053  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1054  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1055  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1056  *
1057  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1058  *			VIRTCHNL_VLAN_TOGGLE |
1059  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1060  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1061  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1062  *
1063  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
1064  * would populate the virthcnl_vlan_offload_structure in the following manner
1065  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1066  *
1067  * virtchnl_vlan_setting.outer_ethertype_setting =
1068  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
1069  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
1070  *
1071  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1072  * initialization.
1073  *
1074  * There is also the case where a PF and the underlying hardware can support
1075  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
1076  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
1077  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
1078  * offloads. The ethertypes must match for stripping and insertion.
1079  *
1080  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1081  *			VIRTCHNL_VLAN_TOGGLE |
1082  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1083  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1084  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1085  *
1086  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1087  *			VIRTCHNL_VLAN_TOGGLE |
1088  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1089  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1090  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1091  *
1092  * virtchnl_vlan_caps.offloads.ethertype_match =
1093  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
1094  *
1095  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
1096  * populate the virtchnl_vlan_setting structure in the following manner and send
1097  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
1098  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
1099  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
1100  *
1101  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
1102  *
1103  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1104  * initialization.
1105  *
1106  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
1107  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
1108  *
1109  * VF sends this message to enable or disable VLAN filtering. It also needs to
1110  * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
1111  * whether or not it's allowed to enable/disable filtering via the
1112  * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1113  * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
1114  * filtering messages are allowed.
1115  *
1116  * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
1117  * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
1118  * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
1119  * means that all filtering ethertypes will to be enabled and disabled together
1120  * regardless of the request from the VF. This means that the underlying
1121  * hardware only supports VLAN filtering for all VLAN the specified ethertypes
1122  * or none of them.
1123  *
1124  * virtchnl_vlan_caps.filtering.filtering_support.outer =
1125  *			VIRTCHNL_VLAN_TOGGLE |
1126  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1127  *			VIRTHCNL_VLAN_ETHERTYPE_88A8 |
1128  *			VIRTCHNL_VLAN_ETHERTYPE_9100 |
1129  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1130  *
1131  * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
1132  * VLANs aren't supported by the VF driver), the VF would populate the
1133  * virtchnl_vlan_setting structure in the following manner and send the
1134  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
1135  * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
1136  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
1137  *
1138  * virtchnl_vlan_setting.outer_ethertype_setting =
1139  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1140  *			VIRTCHNL_VLAN_ETHERTYPE_88A8;
1141  *
1142  */
1143 struct virtchnl_vlan_setting {
1144 	u32 outer_ethertype_setting;
1145 	u32 inner_ethertype_setting;
1146 	u16 vport_id;
1147 	u8 pad[6];
1148 };
1149 
1150 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
1151 
1152 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
1153  * VF sends VSI id and flags.
1154  * PF returns status code in retval.
1155  * Note: we assume that broadcast accept mode is always enabled.
1156  */
1157 struct virtchnl_promisc_info {
1158 	u16 vsi_id;
1159 	u16 flags;
1160 };
1161 
1162 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
1163 
1164 #define FLAG_VF_UNICAST_PROMISC	0x00000001
1165 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
1166 
1167 /* VIRTCHNL_OP_GET_STATS
1168  * VF sends this message to request stats for the selected VSI. VF uses
1169  * the virtchnl_queue_select struct to specify the VSI. The queue_id
1170  * field is ignored by the PF.
1171  *
1172  * PF replies with struct virtchnl_eth_stats in an external buffer.
1173  */
1174 
1175 struct virtchnl_eth_stats {
1176 	u64 rx_bytes;			/* received bytes */
1177 	u64 rx_unicast;			/* received unicast pkts */
1178 	u64 rx_multicast;		/* received multicast pkts */
1179 	u64 rx_broadcast;		/* received broadcast pkts */
1180 	u64 rx_discards;
1181 	u64 rx_unknown_protocol;
1182 	u64 tx_bytes;			/* transmitted bytes */
1183 	u64 tx_unicast;			/* transmitted unicast pkts */
1184 	u64 tx_multicast;		/* transmitted multicast pkts */
1185 	u64 tx_broadcast;		/* transmitted broadcast pkts */
1186 	u64 tx_discards;
1187 	u64 tx_errors;
1188 };
1189 
1190 /* VIRTCHNL_OP_CONFIG_RSS_KEY
1191  * VIRTCHNL_OP_CONFIG_RSS_LUT
1192  * VF sends these messages to configure RSS. Only supported if both PF
1193  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1194  * configuration negotiation. If this is the case, then the RSS fields in
1195  * the VF resource struct are valid.
1196  * Both the key and LUT are initialized to 0 by the PF, meaning that
1197  * RSS is effectively disabled until set up by the VF.
1198  */
1199 struct virtchnl_rss_key {
1200 	u16 vsi_id;
1201 	u16 key_len;
1202 	u8 key[1];         /* RSS hash key, packed bytes */
1203 };
1204 
1205 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
1206 
1207 struct virtchnl_rss_lut {
1208 	u16 vsi_id;
1209 	u16 lut_entries;
1210 	u8 lut[1];        /* RSS lookup table */
1211 };
1212 
1213 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
1214 
1215 /* enum virthcnl_hash_filter
1216  *
1217  * Bits defining the hash filters in the hena field of the virtchnl_rss_hena
1218  * structure. Each bit indicates a specific hash filter for RSS.
1219  *
1220  * Note that not all bits are supported on all hardware. The VF should use
1221  * VIRTCHNL_OP_GET_RSS_HENA_CAPS to determine which bits the PF is capable of
1222  * before using VIRTCHNL_OP_SET_RSS_HENA to enable specific filters.
1223  */
1224 enum virtchnl_hash_filter {
1225 	/* Bits 0 through 28 are reserved for future use */
1226 	/* Bit 29, 30, and 32 are not supported on XL710 a X710 */
1227 	VIRTCHNL_HASH_FILTER_UNICAST_IPV4_UDP		= 29,
1228 	VIRTCHNL_HASH_FILTER_MULTICAST_IPV4_UDP		= 30,
1229 	VIRTCHNL_HASH_FILTER_IPV4_UDP			= 31,
1230 	VIRTCHNL_HASH_FILTER_IPV4_TCP_SYN_NO_ACK	= 32,
1231 	VIRTCHNL_HASH_FILTER_IPV4_TCP			= 33,
1232 	VIRTCHNL_HASH_FILTER_IPV4_SCTP			= 34,
1233 	VIRTCHNL_HASH_FILTER_IPV4_OTHER			= 35,
1234 	VIRTCHNL_HASH_FILTER_FRAG_IPV4			= 36,
1235 	/* Bits 37 and 38 are reserved for future use */
1236 	/* Bit 39, 40, and 42 are not supported on XL710 a X710 */
1237 	VIRTCHNL_HASH_FILTER_UNICAST_IPV6_UDP		= 39,
1238 	VIRTCHNL_HASH_FILTER_MULTICAST_IPV6_UDP		= 40,
1239 	VIRTCHNL_HASH_FILTER_IPV6_UDP			= 41,
1240 	VIRTCHNL_HASH_FILTER_IPV6_TCP_SYN_NO_ACK	= 42,
1241 	VIRTCHNL_HASH_FILTER_IPV6_TCP			= 43,
1242 	VIRTCHNL_HASH_FILTER_IPV6_SCTP			= 44,
1243 	VIRTCHNL_HASH_FILTER_IPV6_OTHER			= 45,
1244 	VIRTCHNL_HASH_FILTER_FRAG_IPV6			= 46,
1245 	/* Bit 37 is reserved for future use */
1246 	VIRTCHNL_HASH_FILTER_FCOE_OX			= 48,
1247 	VIRTCHNL_HASH_FILTER_FCOE_RX			= 49,
1248 	VIRTCHNL_HASH_FILTER_FCOE_OTHER			= 50,
1249 	/* Bits 51 through 62 are reserved for future use */
1250 	VIRTCHNL_HASH_FILTER_L2_PAYLOAD			= 63,
1251 };
1252 
1253 #define VIRTCHNL_HASH_FILTER_INVALID	(0)
1254 
1255 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
1256  * VIRTCHNL_OP_SET_RSS_HENA
1257  * VF sends these messages to get and set the hash filter enable bits for RSS.
1258  * By default, the PF sets these to all possible traffic types that the
1259  * hardware supports. The VF can query this value if it wants to change the
1260  * traffic types that are hashed by the hardware.
1261  */
1262 struct virtchnl_rss_hena {
1263 	/* see enum virtchnl_hash_filter */
1264 	u64 hena;
1265 };
1266 
1267 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
1268 
1269 /* Type of RSS algorithm */
1270 enum virtchnl_rss_algorithm {
1271 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1272 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
1273 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1274 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1275 };
1276 
1277 /* This is used by PF driver to enforce how many channels can be supported.
1278  * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
1279  * PF driver will allow only max 4 channels
1280  */
1281 #define VIRTCHNL_MAX_ADQ_CHANNELS 4
1282 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
1283 
1284 /* VIRTCHNL_OP_ENABLE_CHANNELS
1285  * VIRTCHNL_OP_DISABLE_CHANNELS
1286  * VF sends these messages to enable or disable channels based on
1287  * the user specified queue count and queue offset for each traffic class.
1288  * This struct encompasses all the information that the PF needs from
1289  * VF to create a channel.
1290  */
1291 struct virtchnl_channel_info {
1292 	u16 count; /* number of queues in a channel */
1293 	u16 offset; /* queues in a channel start from 'offset' */
1294 	u32 pad;
1295 	u64 max_tx_rate;
1296 };
1297 
1298 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1299 
1300 struct virtchnl_tc_info {
1301 	u32	num_tc;
1302 	u32	pad;
1303 	struct	virtchnl_channel_info list[1];
1304 };
1305 
1306 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
1307 
1308 /* VIRTCHNL_ADD_CLOUD_FILTER
1309  * VIRTCHNL_DEL_CLOUD_FILTER
1310  * VF sends these messages to add or delete a cloud filter based on the
1311  * user specified match and action filters. These structures encompass
1312  * all the information that the PF needs from the VF to add/delete a
1313  * cloud filter.
1314  */
1315 
1316 struct virtchnl_l4_spec {
1317 	u8	src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1318 	u8	dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1319 	/* vlan_prio is part of this 16 bit field even from OS perspective
1320 	 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
1321 	 * in future, when decided to offload vlan_prio, pass that information
1322 	 * as part of the "vlan_id" field, Bit14..12
1323 	 */
1324 	__be16	vlan_id;
1325 	__be16	pad; /* reserved for future use */
1326 	__be32	src_ip[4];
1327 	__be32	dst_ip[4];
1328 	__be16	src_port;
1329 	__be16	dst_port;
1330 };
1331 
1332 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1333 
1334 union virtchnl_flow_spec {
1335 	struct	virtchnl_l4_spec tcp_spec;
1336 	u8	buffer[128]; /* reserved for future use */
1337 };
1338 
1339 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1340 
1341 enum virtchnl_action {
1342 	/* action types */
1343 	VIRTCHNL_ACTION_DROP = 0,
1344 	VIRTCHNL_ACTION_TC_REDIRECT,
1345 	VIRTCHNL_ACTION_PASSTHRU,
1346 	VIRTCHNL_ACTION_QUEUE,
1347 	VIRTCHNL_ACTION_Q_REGION,
1348 	VIRTCHNL_ACTION_MARK,
1349 	VIRTCHNL_ACTION_COUNT,
1350 };
1351 
1352 enum virtchnl_flow_type {
1353 	/* flow types */
1354 	VIRTCHNL_TCP_V4_FLOW = 0,
1355 	VIRTCHNL_TCP_V6_FLOW,
1356 	VIRTCHNL_UDP_V4_FLOW,
1357 	VIRTCHNL_UDP_V6_FLOW,
1358 };
1359 
1360 struct virtchnl_filter {
1361 	union	virtchnl_flow_spec data;
1362 	union	virtchnl_flow_spec mask;
1363 
1364 	/* see enum virtchnl_flow_type */
1365 	s32 	flow_type;
1366 
1367 	/* see enum virtchnl_action */
1368 	s32	action;
1369 	u32	action_meta;
1370 	u8	field_flags;
1371 };
1372 
1373 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1374 
1375 struct virtchnl_shaper_bw {
1376 	/* Unit is Kbps */
1377 	u32 committed;
1378 	u32 peak;
1379 };
1380 
1381 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
1382 
1383 /* VIRTCHNL_OP_EVENT
1384  * PF sends this message to inform the VF driver of events that may affect it.
1385  * No direct response is expected from the VF, though it may generate other
1386  * messages in response to this one.
1387  */
1388 enum virtchnl_event_codes {
1389 	VIRTCHNL_EVENT_UNKNOWN = 0,
1390 	VIRTCHNL_EVENT_LINK_CHANGE,
1391 	VIRTCHNL_EVENT_RESET_IMPENDING,
1392 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1393 };
1394 
1395 #define PF_EVENT_SEVERITY_INFO		0
1396 #define PF_EVENT_SEVERITY_ATTENTION	1
1397 #define PF_EVENT_SEVERITY_ACTION_REQUIRED	2
1398 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1399 
1400 struct virtchnl_pf_event {
1401 	/* see enum virtchnl_event_codes */
1402 	s32 event;
1403 	union {
1404 		/* If the PF driver does not support the new speed reporting
1405 		 * capabilities then use link_event else use link_event_adv to
1406 		 * get the speed and link information. The ability to understand
1407 		 * new speeds is indicated by setting the capability flag
1408 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1409 		 * in virtchnl_vf_resource struct and can be used to determine
1410 		 * which link event struct to use below.
1411 		 */
1412 		struct {
1413 			enum virtchnl_link_speed link_speed;
1414 			bool link_status;
1415 			u8 pad[3];
1416 		} link_event;
1417 		struct {
1418 			/* link_speed provided in Mbps */
1419 			u32 link_speed;
1420 			u8 link_status;
1421 			u8 pad[3];
1422 		} link_event_adv;
1423 	} event_data;
1424 
1425 	s32 severity;
1426 };
1427 
1428 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1429 
1430 /* VF reset states - these are written into the RSTAT register:
1431  * VFGEN_RSTAT on the VF
1432  * When the PF initiates a reset, it writes 0
1433  * When the reset is complete, it writes 1
1434  * When the PF detects that the VF has recovered, it writes 2
1435  * VF checks this register periodically to determine if a reset has occurred,
1436  * then polls it to know when the reset is complete.
1437  * If either the PF or VF reads the register while the hardware
1438  * is in a reset state, it will return DEADBEEF, which, when masked
1439  * will result in 3.
1440  */
1441 enum virtchnl_vfr_states {
1442 	VIRTCHNL_VFR_INPROGRESS = 0,
1443 	VIRTCHNL_VFR_COMPLETED,
1444 	VIRTCHNL_VFR_VFACTIVE,
1445 };
1446 
1447 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1448 #define VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK	16
1449 #define VIRTCHNL_MAX_SIZE_RAW_PACKET	1024
1450 #define PROTO_HDR_SHIFT			5
1451 #define PROTO_HDR_FIELD_START(proto_hdr_type) \
1452 					(proto_hdr_type << PROTO_HDR_SHIFT)
1453 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1454 
1455 /* VF use these macros to configure each protocol header.
1456  * Specify which protocol headers and protocol header fields base on
1457  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1458  * @param hdr: a struct of virtchnl_proto_hdr
1459  * @param hdr_type: ETH/IPV4/TCP, etc
1460  * @param field: SRC/DST/TEID/SPI, etc
1461  */
1462 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1463 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1464 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1465 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1466 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1467 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1468 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1469 
1470 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1471 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1472 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1473 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1474 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1475 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1476 
1477 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1478 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1479 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1480 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1481 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1482 	((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1483 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1484 	(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
1485 	 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
1486 
1487 /* Protocol header type within a packet segment. A segment consists of one or
1488  * more protocol headers that make up a logical group of protocol headers. Each
1489  * logical group of protocol headers encapsulates or is encapsulated using/by
1490  * tunneling or encapsulation protocols for network virtualization.
1491  */
1492 enum virtchnl_proto_hdr_type {
1493 	VIRTCHNL_PROTO_HDR_NONE,
1494 	VIRTCHNL_PROTO_HDR_ETH,
1495 	VIRTCHNL_PROTO_HDR_S_VLAN,
1496 	VIRTCHNL_PROTO_HDR_C_VLAN,
1497 	VIRTCHNL_PROTO_HDR_IPV4,
1498 	VIRTCHNL_PROTO_HDR_IPV6,
1499 	VIRTCHNL_PROTO_HDR_TCP,
1500 	VIRTCHNL_PROTO_HDR_UDP,
1501 	VIRTCHNL_PROTO_HDR_SCTP,
1502 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1503 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1504 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1505 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1506 	VIRTCHNL_PROTO_HDR_PPPOE,
1507 	VIRTCHNL_PROTO_HDR_L2TPV3,
1508 	VIRTCHNL_PROTO_HDR_ESP,
1509 	VIRTCHNL_PROTO_HDR_AH,
1510 	VIRTCHNL_PROTO_HDR_PFCP,
1511 	VIRTCHNL_PROTO_HDR_GTPC,
1512 	VIRTCHNL_PROTO_HDR_ECPRI,
1513 	VIRTCHNL_PROTO_HDR_L2TPV2,
1514 	VIRTCHNL_PROTO_HDR_PPP,
1515 	/* IPv4 and IPv6 Fragment header types are only associated to
1516 	 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
1517 	 * cannot be used independently.
1518 	 */
1519 	VIRTCHNL_PROTO_HDR_IPV4_FRAG,
1520 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
1521 	VIRTCHNL_PROTO_HDR_GRE,
1522 };
1523 
1524 /* Protocol header field within a protocol header. */
1525 enum virtchnl_proto_hdr_field {
1526 	/* ETHER */
1527 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1528 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1529 	VIRTCHNL_PROTO_HDR_ETH_DST,
1530 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1531 	/* S-VLAN */
1532 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1533 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1534 	/* C-VLAN */
1535 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1536 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1537 	/* IPV4 */
1538 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1539 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1540 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1541 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1542 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1543 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1544 	VIRTCHNL_PROTO_HDR_IPV4_CHKSUM,
1545 	/* IPV6 */
1546 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1547 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1548 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1549 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1550 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1551 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1552 	/* IPV6 Prefix */
1553 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
1554 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
1555 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
1556 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
1557 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
1558 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
1559 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
1560 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
1561 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
1562 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
1563 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
1564 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
1565 	/* TCP */
1566 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1567 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1568 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1569 	VIRTCHNL_PROTO_HDR_TCP_CHKSUM,
1570 	/* UDP */
1571 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1572 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1573 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1574 	VIRTCHNL_PROTO_HDR_UDP_CHKSUM,
1575 	/* SCTP */
1576 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1577 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1578 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1579 	VIRTCHNL_PROTO_HDR_SCTP_CHKSUM,
1580 	/* GTPU_IP */
1581 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1582 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1583 	/* GTPU_EH */
1584 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1585 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1586 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1587 	/* PPPOE */
1588 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1589 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1590 	/* L2TPV3 */
1591 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1592 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1593 	/* ESP */
1594 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1595 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1596 	/* AH */
1597 	VIRTCHNL_PROTO_HDR_AH_SPI =
1598 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1599 	/* PFCP */
1600 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1601 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1602 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1603 	/* GTPC */
1604 	VIRTCHNL_PROTO_HDR_GTPC_TEID =
1605 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
1606 	/* ECPRI */
1607 	VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
1608 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
1609 	VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
1610 	/* IPv4 Dummy Fragment */
1611 	VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
1612 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
1613 	/* IPv6 Extension Fragment */
1614 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
1615 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
1616 	/* GTPU_DWN/UP */
1617 	VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI =
1618 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN),
1619 	VIRTCHNL_PROTO_HDR_GTPU_UP_QFI =
1620 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP),
1621 	/* L2TPv2 */
1622 	VIRTCHNL_PROTO_HDR_L2TPV2_SESS_ID =
1623 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV2),
1624 	VIRTCHNL_PROTO_HDR_L2TPV2_LEN_SESS_ID,
1625 };
1626 
1627 struct virtchnl_proto_hdr {
1628 	/* see enum virtchnl_proto_hdr_type */
1629 	s32 type;
1630 	u32 field_selector; /* a bit mask to select field for header type */
1631 	u8 buffer[64];
1632 	/**
1633 	 * binary buffer in network order for specific header type.
1634 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1635 	 * header is expected to be copied into the buffer.
1636 	 */
1637 };
1638 
1639 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1640 
1641 struct virtchnl_proto_hdr_w_msk {
1642 	/* see enum virtchnl_proto_hdr_type */
1643 	s32 type;
1644 	u32 pad;
1645 	/**
1646 	 * binary buffer in network order for specific header type.
1647 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1648 	 * header is expected to be copied into the buffer.
1649 	 */
1650 	u8 buffer_spec[64];
1651 	/* binary buffer for bit-mask applied to specific header type */
1652 	u8 buffer_mask[64];
1653 };
1654 
1655 VIRTCHNL_CHECK_STRUCT_LEN(136, virtchnl_proto_hdr_w_msk);
1656 
1657 struct virtchnl_proto_hdrs {
1658 	u8 tunnel_level;
1659 	/**
1660 	 * specify where protocol header start from.
1661 	 * must be 0 when sending a raw packet request.
1662 	 * 0 - from the outer layer
1663 	 * 1 - from the first inner layer
1664 	 * 2 - from the second inner layer
1665 	 * ....
1666 	 */
1667 	int count;
1668 	/**
1669 	 * count must <=
1670 	 * VIRTCHNL_MAX_NUM_PROTO_HDRS + VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK
1671 	 * count = 0 :					select raw
1672 	 * 1 < count <= VIRTCHNL_MAX_NUM_PROTO_HDRS :	select proto_hdr
1673 	 * count > VIRTCHNL_MAX_NUM_PROTO_HDRS :	select proto_hdr_w_msk
1674 	 * last valid index = count - VIRTCHNL_MAX_NUM_PROTO_HDRS
1675 	 */
1676 	union {
1677 		struct virtchnl_proto_hdr
1678 			proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1679 		struct virtchnl_proto_hdr_w_msk
1680 			proto_hdr_w_msk[VIRTCHNL_MAX_NUM_PROTO_HDRS_W_MSK];
1681 		struct {
1682 			u16 pkt_len;
1683 			u8 spec[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1684 			u8 mask[VIRTCHNL_MAX_SIZE_RAW_PACKET];
1685 		} raw;
1686 	};
1687 };
1688 
1689 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1690 
1691 struct virtchnl_rss_cfg {
1692 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1693 
1694 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1695 	s32 rss_algorithm;
1696 	u8 reserved[128];                          /* reserve for future */
1697 };
1698 
1699 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1700 
1701 /* action configuration for FDIR and FSUB */
1702 struct virtchnl_filter_action {
1703 	/* see enum virtchnl_action type */
1704 	s32 type;
1705 	union {
1706 		/* used for queue and qgroup action */
1707 		struct {
1708 			u16 index;
1709 			u8 region;
1710 		} queue;
1711 		/* used for count action */
1712 		struct {
1713 			/* share counter ID with other flow rules */
1714 			u8 shared;
1715 			u32 id; /* counter ID */
1716 		} count;
1717 		/* used for mark action */
1718 		u32 mark_id;
1719 		u8 reserve[32];
1720 	} act_conf;
1721 };
1722 
1723 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1724 
1725 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1726 
1727 struct virtchnl_filter_action_set {
1728 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1729 	int count;
1730 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1731 };
1732 
1733 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1734 
1735 /* pattern and action for FDIR rule */
1736 struct virtchnl_fdir_rule {
1737 	struct virtchnl_proto_hdrs proto_hdrs;
1738 	struct virtchnl_filter_action_set action_set;
1739 };
1740 
1741 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1742 
1743 /* Status returned to VF after VF requests FDIR commands
1744  * VIRTCHNL_FDIR_SUCCESS
1745  * VF FDIR related request is successfully done by PF
1746  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1747  *
1748  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1749  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1750  *
1751  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1752  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1753  *
1754  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1755  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1756  *
1757  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1758  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1759  *
1760  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1761  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1762  * or HW doesn't support.
1763  *
1764  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1765  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1766  * for programming.
1767  *
1768  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1769  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1770  * for example, VF query counter of a rule who has no counter action.
1771  */
1772 enum virtchnl_fdir_prgm_status {
1773 	VIRTCHNL_FDIR_SUCCESS = 0,
1774 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1775 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1776 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1777 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1778 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1779 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1780 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1781 };
1782 
1783 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1784  * VF sends this request to PF by filling out vsi_id,
1785  * validate_only and rule_cfg. PF will return flow_id
1786  * if the request is successfully done and return add_status to VF.
1787  */
1788 struct virtchnl_fdir_add {
1789 	u16 vsi_id;  /* INPUT */
1790 	/*
1791 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1792 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1793 	 */
1794 	u16 validate_only; /* INPUT */
1795 	u32 flow_id;       /* OUTPUT */
1796 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1797 
1798 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1799 	s32 status;
1800 };
1801 
1802 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1803 
1804 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1805  * VF sends this request to PF by filling out vsi_id
1806  * and flow_id. PF will return del_status to VF.
1807  */
1808 struct virtchnl_fdir_del {
1809 	u16 vsi_id;  /* INPUT */
1810 	u16 pad;
1811 	u32 flow_id; /* INPUT */
1812 
1813 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1814 	s32 status;
1815 };
1816 
1817 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1818 
1819 /* Status returned to VF after VF requests FSUB commands
1820  * VIRTCHNL_FSUB_SUCCESS
1821  * VF FLOW related request is successfully done by PF
1822  * The request can be OP_FLOW_SUBSCRIBE/UNSUBSCRIBE.
1823  *
1824  * VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE
1825  * OP_FLOW_SUBSCRIBE request is failed due to no Hardware resource.
1826  *
1827  * VIRTCHNL_FSUB_FAILURE_RULE_EXIST
1828  * OP_FLOW_SUBSCRIBE request is failed due to the rule is already existed.
1829  *
1830  * VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST
1831  * OP_FLOW_UNSUBSCRIBE request is failed due to this rule doesn't exist.
1832  *
1833  * VIRTCHNL_FSUB_FAILURE_RULE_INVALID
1834  * OP_FLOW_SUBSCRIBE request is failed due to parameters validation
1835  * or HW doesn't support.
1836  */
1837 enum virtchnl_fsub_prgm_status {
1838 	VIRTCHNL_FSUB_SUCCESS = 0,
1839 	VIRTCHNL_FSUB_FAILURE_RULE_NORESOURCE,
1840 	VIRTCHNL_FSUB_FAILURE_RULE_EXIST,
1841 	VIRTCHNL_FSUB_FAILURE_RULE_NONEXIST,
1842 	VIRTCHNL_FSUB_FAILURE_RULE_INVALID,
1843 };
1844 
1845 /* VIRTCHNL_OP_FLOW_SUBSCRIBE
1846  * VF sends this request to PF by filling out vsi_id,
1847  * validate_only, priority, proto_hdrs and actions.
1848  * PF will return flow_id
1849  * if the request is successfully done and return status to VF.
1850  */
1851 struct virtchnl_flow_sub {
1852 	u16 vsi_id; /* INPUT */
1853 	u8 validate_only; /* INPUT */
1854 	/* 0 is the highest priority; INPUT */
1855 	u8 priority;
1856 	u32 flow_id; /* OUTPUT */
1857 	struct virtchnl_proto_hdrs proto_hdrs; /* INPUT */
1858 	struct virtchnl_filter_action_set actions; /* INPUT */
1859 	/* see enum virtchnl_fsub_prgm_status; OUTPUT */
1860 	s32 status;
1861 };
1862 
1863 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_flow_sub);
1864 
1865 /* VIRTCHNL_OP_FLOW_UNSUBSCRIBE
1866  * VF sends this request to PF by filling out vsi_id
1867  * and flow_id. PF will return status to VF.
1868  */
1869 struct virtchnl_flow_unsub {
1870 	u16 vsi_id; /* INPUT */
1871 	u16 pad;
1872 	u32 flow_id; /* INPUT */
1873 	/* see enum virtchnl_fsub_prgm_status; OUTPUT */
1874 	s32 status;
1875 };
1876 
1877 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_flow_unsub);
1878 
1879 /* VIRTCHNL_OP_GET_QOS_CAPS
1880  * VF sends this message to get its QoS Caps, such as
1881  * TC number, Arbiter and Bandwidth.
1882  */
1883 struct virtchnl_qos_cap_elem {
1884 	u8 tc_num;
1885 	u8 tc_prio;
1886 #define VIRTCHNL_ABITER_STRICT      0
1887 #define VIRTCHNL_ABITER_ETS         2
1888 	u8 arbiter;
1889 #define VIRTCHNL_STRICT_WEIGHT      1
1890 	u8 weight;
1891 	enum virtchnl_bw_limit_type type;
1892 	union {
1893 		struct virtchnl_shaper_bw shaper;
1894 		u8 pad2[32];
1895 	};
1896 };
1897 
1898 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
1899 
1900 struct virtchnl_qos_cap_list {
1901 	u16 vsi_id;
1902 	u16 num_elem;
1903 	struct virtchnl_qos_cap_elem cap[1];
1904 };
1905 
1906 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list);
1907 
1908 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP
1909  * VF sends message virtchnl_queue_tc_mapping to set queue to tc
1910  * mapping for all the Tx and Rx queues with a specified VSI, and
1911  * would get response about bitmap of valid user priorities
1912  * associated with queues.
1913  */
1914 struct virtchnl_queue_tc_mapping {
1915 	u16 vsi_id;
1916 	u16 num_tc;
1917 	u16 num_queue_pairs;
1918 	u8 pad[2];
1919 	union {
1920 		struct {
1921 			u16 start_queue_id;
1922 			u16 queue_count;
1923 		} req;
1924 		struct {
1925 #define VIRTCHNL_USER_PRIO_TYPE_UP	0
1926 #define VIRTCHNL_USER_PRIO_TYPE_DSCP	1
1927 			u16 prio_type;
1928 			u16 valid_prio_bitmap;
1929 		} resp;
1930 	} tc[1];
1931 };
1932 
1933 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping);
1934 
1935 /* VIRTCHNL_OP_CONFIG_QUEUE_BW */
1936 struct virtchnl_queue_bw {
1937 	u16 queue_id;
1938 	u8 tc;
1939 	u8 pad;
1940 	struct virtchnl_shaper_bw shaper;
1941 };
1942 
1943 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_bw);
1944 
1945 struct virtchnl_queues_bw_cfg {
1946 	u16 vsi_id;
1947 	u16 num_queues;
1948 	struct virtchnl_queue_bw cfg[1];
1949 };
1950 
1951 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queues_bw_cfg);
1952 
1953 /* queue types */
1954 enum virtchnl_queue_type {
1955 	VIRTCHNL_QUEUE_TYPE_TX			= 0,
1956 	VIRTCHNL_QUEUE_TYPE_RX			= 1,
1957 };
1958 
1959 /* structure to specify a chunk of contiguous queues */
1960 struct virtchnl_queue_chunk {
1961 	/* see enum virtchnl_queue_type */
1962 	s32 type;
1963 	u16 start_queue_id;
1964 	u16 num_queues;
1965 };
1966 
1967 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1968 
1969 /* structure to specify several chunks of contiguous queues */
1970 struct virtchnl_queue_chunks {
1971 	u16 num_chunks;
1972 	u16 rsvd;
1973 	struct virtchnl_queue_chunk chunks[1];
1974 };
1975 
1976 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
1977 
1978 /* VIRTCHNL_OP_ENABLE_QUEUES_V2
1979  * VIRTCHNL_OP_DISABLE_QUEUES_V2
1980  *
1981  * These opcodes can be used if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in
1982  * VIRTCHNL_OP_GET_VF_RESOURCES
1983  *
1984  * VF sends virtchnl_ena_dis_queues struct to specify the queues to be
1985  * enabled/disabled in chunks. Also applicable to single queue RX or
1986  * TX. PF performs requested action and returns status.
1987  */
1988 struct virtchnl_del_ena_dis_queues {
1989 	u16 vport_id;
1990 	u16 pad;
1991 	struct virtchnl_queue_chunks chunks;
1992 };
1993 
1994 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
1995 
1996 /* Virtchannel interrupt throttling rate index */
1997 enum virtchnl_itr_idx {
1998 	VIRTCHNL_ITR_IDX_0	= 0,
1999 	VIRTCHNL_ITR_IDX_1	= 1,
2000 	VIRTCHNL_ITR_IDX_NO_ITR	= 3,
2001 };
2002 
2003 /* Queue to vector mapping */
2004 struct virtchnl_queue_vector {
2005 	u16 queue_id;
2006 	u16 vector_id;
2007 	u8 pad[4];
2008 
2009 	/* see enum virtchnl_itr_idx */
2010 	s32 itr_idx;
2011 
2012 	/* see enum virtchnl_queue_type */
2013 	s32 queue_type;
2014 };
2015 
2016 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
2017 
2018 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR
2019  *
2020  * This opcode can be used only if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated
2021  * in VIRTCHNL_OP_GET_VF_RESOURCES
2022  *
2023  * VF sends this message to map queues to vectors and ITR index registers.
2024  * External data buffer contains virtchnl_queue_vector_maps structure
2025  * that contains num_qv_maps of virtchnl_queue_vector structures.
2026  * PF maps the requested queue vector maps after validating the queue and vector
2027  * ids and returns a status code.
2028  */
2029 struct virtchnl_queue_vector_maps {
2030 	u16 vport_id;
2031 	u16 num_qv_maps;
2032 	u8 pad[4];
2033 	struct virtchnl_queue_vector qv_maps[1];
2034 };
2035 
2036 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
2037 
2038 struct virtchnl_quanta_cfg {
2039 	u16 quanta_size;
2040 	struct virtchnl_queue_chunk queue_select;
2041 };
2042 
2043 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_quanta_cfg);
2044 
2045 /* Since VF messages are limited by u16 size, precalculate the maximum possible
2046  * values of nested elements in virtchnl structures that virtual channel can
2047  * possibly handle in a single message.
2048  */
2049 enum virtchnl_vector_limits {
2050 	VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX	=
2051 		((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
2052 		sizeof(struct virtchnl_queue_pair_info),
2053 
2054 	VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX		=
2055 		((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
2056 		sizeof(struct virtchnl_vector_map),
2057 
2058 	VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX	=
2059 		((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
2060 		sizeof(struct virtchnl_ether_addr),
2061 
2062 	VIRTCHNL_OP_ADD_DEL_VLAN_MAX		=
2063 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
2064 		sizeof(u16),
2065 
2066 	VIRTCHNL_OP_ENABLE_CHANNELS_MAX		=
2067 		((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
2068 		sizeof(struct virtchnl_channel_info),
2069 
2070 	VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX	=
2071 		((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
2072 		sizeof(struct virtchnl_queue_chunk),
2073 
2074 	VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX	=
2075 		((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
2076 		sizeof(struct virtchnl_queue_vector),
2077 
2078 	VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX		=
2079 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
2080 		sizeof(struct virtchnl_vlan_filter),
2081 };
2082 
2083 /**
2084  * virtchnl_vc_validate_vf_msg
2085  * @ver: Virtchnl version info
2086  * @v_opcode: Opcode for the message
2087  * @msg: pointer to the msg buffer
2088  * @msglen: msg length
2089  *
2090  * validate msg format against struct for each opcode
2091  */
2092 static inline int
2093 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
2094 			    u8 *msg, u16 msglen)
2095 {
2096 	bool err_msg_format = false;
2097 	u32 valid_len = 0;
2098 
2099 	/* Validate message length. */
2100 	switch (v_opcode) {
2101 	case VIRTCHNL_OP_VERSION:
2102 		valid_len = sizeof(struct virtchnl_version_info);
2103 		break;
2104 	case VIRTCHNL_OP_RESET_VF:
2105 		break;
2106 	case VIRTCHNL_OP_GET_VF_RESOURCES:
2107 		if (VF_IS_V11(ver))
2108 			valid_len = sizeof(u32);
2109 		break;
2110 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
2111 		valid_len = sizeof(struct virtchnl_txq_info);
2112 		break;
2113 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
2114 		valid_len = sizeof(struct virtchnl_rxq_info);
2115 		break;
2116 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
2117 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
2118 		if (msglen >= valid_len) {
2119 			struct virtchnl_vsi_queue_config_info *vqc =
2120 			    (struct virtchnl_vsi_queue_config_info *)msg;
2121 
2122 			if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
2123 			    VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
2124 				err_msg_format = true;
2125 				break;
2126 			}
2127 
2128 			valid_len += (vqc->num_queue_pairs *
2129 				      sizeof(struct
2130 					     virtchnl_queue_pair_info));
2131 		}
2132 		break;
2133 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
2134 		valid_len = sizeof(struct virtchnl_irq_map_info);
2135 		if (msglen >= valid_len) {
2136 			struct virtchnl_irq_map_info *vimi =
2137 			    (struct virtchnl_irq_map_info *)msg;
2138 
2139 			if (vimi->num_vectors == 0 || vimi->num_vectors >
2140 			    VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
2141 				err_msg_format = true;
2142 				break;
2143 			}
2144 
2145 			valid_len += (vimi->num_vectors *
2146 				      sizeof(struct virtchnl_vector_map));
2147 		}
2148 		break;
2149 	case VIRTCHNL_OP_ENABLE_QUEUES:
2150 	case VIRTCHNL_OP_DISABLE_QUEUES:
2151 		valid_len = sizeof(struct virtchnl_queue_select);
2152 		break;
2153 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
2154 		break;
2155 	case VIRTCHNL_OP_ADD_ETH_ADDR:
2156 	case VIRTCHNL_OP_DEL_ETH_ADDR:
2157 		valid_len = sizeof(struct virtchnl_ether_addr_list);
2158 		if (msglen >= valid_len) {
2159 			struct virtchnl_ether_addr_list *veal =
2160 			    (struct virtchnl_ether_addr_list *)msg;
2161 
2162 			if (veal->num_elements == 0 || veal->num_elements >
2163 			    VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
2164 				err_msg_format = true;
2165 				break;
2166 			}
2167 
2168 			valid_len += veal->num_elements *
2169 			    sizeof(struct virtchnl_ether_addr);
2170 		}
2171 		break;
2172 	case VIRTCHNL_OP_ADD_VLAN:
2173 	case VIRTCHNL_OP_DEL_VLAN:
2174 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
2175 		if (msglen >= valid_len) {
2176 			struct virtchnl_vlan_filter_list *vfl =
2177 			    (struct virtchnl_vlan_filter_list *)msg;
2178 
2179 			if (vfl->num_elements == 0 || vfl->num_elements >
2180 			    VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
2181 				err_msg_format = true;
2182 				break;
2183 			}
2184 
2185 			valid_len += vfl->num_elements * sizeof(u16);
2186 		}
2187 		break;
2188 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
2189 		valid_len = sizeof(struct virtchnl_promisc_info);
2190 		break;
2191 	case VIRTCHNL_OP_GET_STATS:
2192 		valid_len = sizeof(struct virtchnl_queue_select);
2193 		break;
2194 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
2195 		valid_len = sizeof(struct virtchnl_rss_key);
2196 		if (msglen >= valid_len) {
2197 			struct virtchnl_rss_key *vrk =
2198 				(struct virtchnl_rss_key *)msg;
2199 
2200 			if (vrk->key_len == 0) {
2201 				/* zero length is allowed as input */
2202 				break;
2203 			}
2204 
2205 			valid_len += vrk->key_len - 1;
2206 		}
2207 		break;
2208 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
2209 		valid_len = sizeof(struct virtchnl_rss_lut);
2210 		if (msglen >= valid_len) {
2211 			struct virtchnl_rss_lut *vrl =
2212 				(struct virtchnl_rss_lut *)msg;
2213 
2214 			if (vrl->lut_entries == 0) {
2215 				/* zero entries is allowed as input */
2216 				break;
2217 			}
2218 
2219 			valid_len += vrl->lut_entries - 1;
2220 		}
2221 		break;
2222 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
2223 		break;
2224 	case VIRTCHNL_OP_SET_RSS_HENA:
2225 		valid_len = sizeof(struct virtchnl_rss_hena);
2226 		break;
2227 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
2228 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
2229 		break;
2230 	case VIRTCHNL_OP_REQUEST_QUEUES:
2231 		valid_len = sizeof(struct virtchnl_vf_res_request);
2232 		break;
2233 	case VIRTCHNL_OP_ENABLE_CHANNELS:
2234 		valid_len = sizeof(struct virtchnl_tc_info);
2235 		if (msglen >= valid_len) {
2236 			struct virtchnl_tc_info *vti =
2237 				(struct virtchnl_tc_info *)msg;
2238 
2239 			if (vti->num_tc == 0 || vti->num_tc >
2240 			    VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
2241 				err_msg_format = true;
2242 				break;
2243 			}
2244 
2245 			valid_len += (vti->num_tc - 1) *
2246 				     sizeof(struct virtchnl_channel_info);
2247 		}
2248 		break;
2249 	case VIRTCHNL_OP_DISABLE_CHANNELS:
2250 		break;
2251 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
2252 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
2253 		valid_len = sizeof(struct virtchnl_filter);
2254 		break;
2255 	case VIRTCHNL_OP_ADD_RSS_CFG:
2256 	case VIRTCHNL_OP_DEL_RSS_CFG:
2257 		valid_len = sizeof(struct virtchnl_rss_cfg);
2258 		break;
2259 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
2260 		valid_len = sizeof(struct virtchnl_fdir_add);
2261 		break;
2262 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
2263 		valid_len = sizeof(struct virtchnl_fdir_del);
2264 		break;
2265 	case VIRTCHNL_OP_FLOW_SUBSCRIBE:
2266 		valid_len = sizeof(struct virtchnl_flow_sub);
2267 		break;
2268 	case VIRTCHNL_OP_FLOW_UNSUBSCRIBE:
2269 		valid_len = sizeof(struct virtchnl_flow_unsub);
2270 		break;
2271 	case VIRTCHNL_OP_GET_QOS_CAPS:
2272 		break;
2273 	case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP:
2274 		valid_len = sizeof(struct virtchnl_queue_tc_mapping);
2275 		if (msglen >= valid_len) {
2276 			struct virtchnl_queue_tc_mapping *q_tc =
2277 				(struct virtchnl_queue_tc_mapping *)msg;
2278 			if (q_tc->num_tc == 0) {
2279 				err_msg_format = true;
2280 				break;
2281 			}
2282 			valid_len += (q_tc->num_tc - 1) *
2283 					 sizeof(q_tc->tc[0]);
2284 		}
2285 		break;
2286 	case VIRTCHNL_OP_CONFIG_QUEUE_BW:
2287 		valid_len = sizeof(struct virtchnl_queues_bw_cfg);
2288 		if (msglen >= valid_len) {
2289 			struct virtchnl_queues_bw_cfg *q_bw =
2290 				(struct virtchnl_queues_bw_cfg *)msg;
2291 			if (q_bw->num_queues == 0) {
2292 				err_msg_format = true;
2293 				break;
2294 			}
2295 			valid_len += (q_bw->num_queues - 1) *
2296 					 sizeof(q_bw->cfg[0]);
2297 		}
2298 		break;
2299 	case VIRTCHNL_OP_CONFIG_QUANTA:
2300 		valid_len = sizeof(struct virtchnl_quanta_cfg);
2301 		if (msglen >= valid_len) {
2302 			struct virtchnl_quanta_cfg *q_quanta =
2303 				(struct virtchnl_quanta_cfg *)msg;
2304 			if (q_quanta->quanta_size == 0 ||
2305 			    q_quanta->queue_select.num_queues == 0) {
2306 				err_msg_format = true;
2307 				break;
2308 			}
2309 		}
2310 		break;
2311 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
2312 		break;
2313 	case VIRTCHNL_OP_ADD_VLAN_V2:
2314 	case VIRTCHNL_OP_DEL_VLAN_V2:
2315 		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
2316 		if (msglen >= valid_len) {
2317 			struct virtchnl_vlan_filter_list_v2 *vfl =
2318 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
2319 
2320 			if (vfl->num_elements == 0 || vfl->num_elements >
2321 			    VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
2322 				err_msg_format = true;
2323 				break;
2324 			}
2325 
2326 			valid_len += (vfl->num_elements - 1) *
2327 				sizeof(struct virtchnl_vlan_filter);
2328 		}
2329 		break;
2330 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
2331 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
2332 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
2333 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
2334 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
2335 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
2336 		valid_len = sizeof(struct virtchnl_vlan_setting);
2337 		break;
2338 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
2339 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
2340 		valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
2341 		if (msglen >= valid_len) {
2342 			struct virtchnl_del_ena_dis_queues *qs =
2343 				(struct virtchnl_del_ena_dis_queues *)msg;
2344 			if (qs->chunks.num_chunks == 0 ||
2345 			    qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
2346 				err_msg_format = true;
2347 				break;
2348 			}
2349 			valid_len += (qs->chunks.num_chunks - 1) *
2350 				      sizeof(struct virtchnl_queue_chunk);
2351 		}
2352 		break;
2353 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
2354 		valid_len = sizeof(struct virtchnl_queue_vector_maps);
2355 		if (msglen >= valid_len) {
2356 			struct virtchnl_queue_vector_maps *v_qp =
2357 				(struct virtchnl_queue_vector_maps *)msg;
2358 			if (v_qp->num_qv_maps == 0 ||
2359 			    v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
2360 				err_msg_format = true;
2361 				break;
2362 			}
2363 			valid_len += (v_qp->num_qv_maps - 1) *
2364 				      sizeof(struct virtchnl_queue_vector);
2365 		}
2366 		break;
2367 	/* These are always errors coming from the VF. */
2368 	case VIRTCHNL_OP_EVENT:
2369 	case VIRTCHNL_OP_UNKNOWN:
2370 	default:
2371 		return VIRTCHNL_STATUS_ERR_PARAM;
2372 	}
2373 	/* few more checks */
2374 	if (err_msg_format || valid_len != msglen)
2375 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
2376 
2377 	return 0;
2378 }
2379 #endif /* _VIRTCHNL_H_ */
2380