1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2021, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*$FreeBSD$*/ 32 33 #include "ice_common.h" 34 #include "ice_flex_pipe.h" 35 #include "ice_protocol_type.h" 36 #include "ice_flow.h" 37 38 /* To support tunneling entries by PF, the package will append the PF number to 39 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc. 40 */ 41 #define ICE_TNL_PRE "TNL_" 42 static const struct ice_tunnel_type_scan tnls[] = { 43 { TNL_VXLAN, "TNL_VXLAN_PF" }, 44 { TNL_GENEVE, "TNL_GENEVE_PF" }, 45 { TNL_LAST, "" } 46 }; 47 48 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = { 49 /* SWITCH */ 50 { 51 ICE_SID_XLT0_SW, 52 ICE_SID_XLT_KEY_BUILDER_SW, 53 ICE_SID_XLT1_SW, 54 ICE_SID_XLT2_SW, 55 ICE_SID_PROFID_TCAM_SW, 56 ICE_SID_PROFID_REDIR_SW, 57 ICE_SID_FLD_VEC_SW, 58 ICE_SID_CDID_KEY_BUILDER_SW, 59 ICE_SID_CDID_REDIR_SW 60 }, 61 62 /* ACL */ 63 { 64 ICE_SID_XLT0_ACL, 65 ICE_SID_XLT_KEY_BUILDER_ACL, 66 ICE_SID_XLT1_ACL, 67 ICE_SID_XLT2_ACL, 68 ICE_SID_PROFID_TCAM_ACL, 69 ICE_SID_PROFID_REDIR_ACL, 70 ICE_SID_FLD_VEC_ACL, 71 ICE_SID_CDID_KEY_BUILDER_ACL, 72 ICE_SID_CDID_REDIR_ACL 73 }, 74 75 /* FD */ 76 { 77 ICE_SID_XLT0_FD, 78 ICE_SID_XLT_KEY_BUILDER_FD, 79 ICE_SID_XLT1_FD, 80 ICE_SID_XLT2_FD, 81 ICE_SID_PROFID_TCAM_FD, 82 ICE_SID_PROFID_REDIR_FD, 83 ICE_SID_FLD_VEC_FD, 84 ICE_SID_CDID_KEY_BUILDER_FD, 85 ICE_SID_CDID_REDIR_FD 86 }, 87 88 /* RSS */ 89 { 90 ICE_SID_XLT0_RSS, 91 ICE_SID_XLT_KEY_BUILDER_RSS, 92 ICE_SID_XLT1_RSS, 93 ICE_SID_XLT2_RSS, 94 ICE_SID_PROFID_TCAM_RSS, 95 ICE_SID_PROFID_REDIR_RSS, 96 ICE_SID_FLD_VEC_RSS, 97 ICE_SID_CDID_KEY_BUILDER_RSS, 98 ICE_SID_CDID_REDIR_RSS 99 }, 100 101 /* PE */ 102 { 103 ICE_SID_XLT0_PE, 104 ICE_SID_XLT_KEY_BUILDER_PE, 105 ICE_SID_XLT1_PE, 106 ICE_SID_XLT2_PE, 107 ICE_SID_PROFID_TCAM_PE, 108 ICE_SID_PROFID_REDIR_PE, 109 ICE_SID_FLD_VEC_PE, 110 ICE_SID_CDID_KEY_BUILDER_PE, 111 ICE_SID_CDID_REDIR_PE 112 } 113 }; 114 115 /** 116 * ice_sect_id - returns section ID 117 * @blk: block type 118 * @sect: section type 119 * 120 * This helper function returns the proper section ID given a block type and a 121 * section type. 122 */ 123 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect) 124 { 125 return ice_sect_lkup[blk][sect]; 126 } 127 128 /** 129 * ice_pkg_val_buf 130 * @buf: pointer to the ice buffer 131 * 132 * This helper function validates a buffer's header. 133 */ 134 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf) 135 { 136 struct ice_buf_hdr *hdr; 137 u16 section_count; 138 u16 data_end; 139 140 hdr = (struct ice_buf_hdr *)buf->buf; 141 /* verify data */ 142 section_count = LE16_TO_CPU(hdr->section_count); 143 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT) 144 return NULL; 145 146 data_end = LE16_TO_CPU(hdr->data_end); 147 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END) 148 return NULL; 149 150 return hdr; 151 } 152 153 /** 154 * ice_find_buf_table 155 * @ice_seg: pointer to the ice segment 156 * 157 * Returns the address of the buffer table within the ice segment. 158 */ 159 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg) 160 { 161 struct ice_nvm_table *nvms; 162 163 nvms = (struct ice_nvm_table *) 164 (ice_seg->device_table + 165 LE32_TO_CPU(ice_seg->device_table_count)); 166 167 return (_FORCE_ struct ice_buf_table *) 168 (nvms->vers + LE32_TO_CPU(nvms->table_count)); 169 } 170 171 /** 172 * ice_pkg_enum_buf 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 174 * @state: pointer to the enum state 175 * 176 * This function will enumerate all the buffers in the ice segment. The first 177 * call is made with the ice_seg parameter non-NULL; on subsequent calls, 178 * ice_seg is set to NULL which continues the enumeration. When the function 179 * returns a NULL pointer, then the end of the buffers has been reached, or an 180 * unexpected value has been detected (for example an invalid section count or 181 * an invalid buffer end value). 182 */ 183 static struct ice_buf_hdr * 184 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 185 { 186 if (ice_seg) { 187 state->buf_table = ice_find_buf_table(ice_seg); 188 if (!state->buf_table) 189 return NULL; 190 191 state->buf_idx = 0; 192 return ice_pkg_val_buf(state->buf_table->buf_array); 193 } 194 195 if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count)) 196 return ice_pkg_val_buf(state->buf_table->buf_array + 197 state->buf_idx); 198 else 199 return NULL; 200 } 201 202 /** 203 * ice_pkg_advance_sect 204 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 205 * @state: pointer to the enum state 206 * 207 * This helper function will advance the section within the ice segment, 208 * also advancing the buffer if needed. 209 */ 210 static bool 211 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state) 212 { 213 if (!ice_seg && !state->buf) 214 return false; 215 216 if (!ice_seg && state->buf) 217 if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count)) 218 return true; 219 220 state->buf = ice_pkg_enum_buf(ice_seg, state); 221 if (!state->buf) 222 return false; 223 224 /* start of new buffer, reset section index */ 225 state->sect_idx = 0; 226 return true; 227 } 228 229 /** 230 * ice_pkg_enum_section 231 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 232 * @state: pointer to the enum state 233 * @sect_type: section type to enumerate 234 * 235 * This function will enumerate all the sections of a particular type in the 236 * ice segment. The first call is made with the ice_seg parameter non-NULL; 237 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 238 * When the function returns a NULL pointer, then the end of the matching 239 * sections has been reached. 240 */ 241 static void * 242 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 243 u32 sect_type) 244 { 245 u16 offset, size; 246 247 if (ice_seg) 248 state->type = sect_type; 249 250 if (!ice_pkg_advance_sect(ice_seg, state)) 251 return NULL; 252 253 /* scan for next matching section */ 254 while (state->buf->section_entry[state->sect_idx].type != 255 CPU_TO_LE32(state->type)) 256 if (!ice_pkg_advance_sect(NULL, state)) 257 return NULL; 258 259 /* validate section */ 260 offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); 261 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF) 262 return NULL; 263 264 size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size); 265 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ) 266 return NULL; 267 268 /* make sure the section fits in the buffer */ 269 if (offset + size > ICE_PKG_BUF_SIZE) 270 return NULL; 271 272 state->sect_type = 273 LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type); 274 275 /* calc pointer to this section */ 276 state->sect = ((u8 *)state->buf) + 277 LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset); 278 279 return state->sect; 280 } 281 282 /** 283 * ice_pkg_enum_entry 284 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls) 285 * @state: pointer to the enum state 286 * @sect_type: section type to enumerate 287 * @offset: pointer to variable that receives the offset in the table (optional) 288 * @handler: function that handles access to the entries into the section type 289 * 290 * This function will enumerate all the entries in particular section type in 291 * the ice segment. The first call is made with the ice_seg parameter non-NULL; 292 * on subsequent calls, ice_seg is set to NULL which continues the enumeration. 293 * When the function returns a NULL pointer, then the end of the entries has 294 * been reached. 295 * 296 * Since each section may have a different header and entry size, the handler 297 * function is needed to determine the number and location entries in each 298 * section. 299 * 300 * The offset parameter is optional, but should be used for sections that 301 * contain an offset for each section table. For such cases, the section handler 302 * function must return the appropriate offset + index to give the absolution 303 * offset for each entry. For example, if the base for a section's header 304 * indicates a base offset of 10, and the index for the entry is 2, then 305 * section handler function should set the offset to 10 + 2 = 12. 306 */ 307 static void * 308 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state, 309 u32 sect_type, u32 *offset, 310 void *(*handler)(u32 sect_type, void *section, 311 u32 index, u32 *offset)) 312 { 313 void *entry; 314 315 if (ice_seg) { 316 if (!handler) 317 return NULL; 318 319 if (!ice_pkg_enum_section(ice_seg, state, sect_type)) 320 return NULL; 321 322 state->entry_idx = 0; 323 state->handler = handler; 324 } else { 325 state->entry_idx++; 326 } 327 328 if (!state->handler) 329 return NULL; 330 331 /* get entry */ 332 entry = state->handler(state->sect_type, state->sect, state->entry_idx, 333 offset); 334 if (!entry) { 335 /* end of a section, look for another section of this type */ 336 if (!ice_pkg_enum_section(NULL, state, 0)) 337 return NULL; 338 339 state->entry_idx = 0; 340 entry = state->handler(state->sect_type, state->sect, 341 state->entry_idx, offset); 342 } 343 344 return entry; 345 } 346 347 /** 348 * ice_boost_tcam_handler 349 * @sect_type: section type 350 * @section: pointer to section 351 * @index: index of the boost TCAM entry to be returned 352 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections 353 * 354 * This is a callback function that can be passed to ice_pkg_enum_entry. 355 * Handles enumeration of individual boost TCAM entries. 356 */ 357 static void * 358 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset) 359 { 360 struct ice_boost_tcam_section *boost; 361 362 if (!section) 363 return NULL; 364 365 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM) 366 return NULL; 367 368 if (index > ICE_MAX_BST_TCAMS_IN_BUF) 369 return NULL; 370 371 if (offset) 372 *offset = 0; 373 374 boost = (struct ice_boost_tcam_section *)section; 375 if (index >= LE16_TO_CPU(boost->count)) 376 return NULL; 377 378 return boost->tcam + index; 379 } 380 381 /** 382 * ice_find_boost_entry 383 * @ice_seg: pointer to the ice segment (non-NULL) 384 * @addr: Boost TCAM address of entry to search for 385 * @entry: returns pointer to the entry 386 * 387 * Finds a particular Boost TCAM entry and returns a pointer to that entry 388 * if it is found. The ice_seg parameter must not be NULL since the first call 389 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure. 390 */ 391 static enum ice_status 392 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr, 393 struct ice_boost_tcam_entry **entry) 394 { 395 struct ice_boost_tcam_entry *tcam; 396 struct ice_pkg_enum state; 397 398 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 399 400 if (!ice_seg) 401 return ICE_ERR_PARAM; 402 403 do { 404 tcam = (struct ice_boost_tcam_entry *) 405 ice_pkg_enum_entry(ice_seg, &state, 406 ICE_SID_RXPARSER_BOOST_TCAM, NULL, 407 ice_boost_tcam_handler); 408 if (tcam && LE16_TO_CPU(tcam->addr) == addr) { 409 *entry = tcam; 410 return ICE_SUCCESS; 411 } 412 413 ice_seg = NULL; 414 } while (tcam); 415 416 *entry = NULL; 417 return ICE_ERR_CFG; 418 } 419 420 /** 421 * ice_label_enum_handler 422 * @sect_type: section type 423 * @section: pointer to section 424 * @index: index of the label entry to be returned 425 * @offset: pointer to receive absolute offset, always zero for label sections 426 * 427 * This is a callback function that can be passed to ice_pkg_enum_entry. 428 * Handles enumeration of individual label entries. 429 */ 430 static void * 431 ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index, 432 u32 *offset) 433 { 434 struct ice_label_section *labels; 435 436 if (!section) 437 return NULL; 438 439 if (index > ICE_MAX_LABELS_IN_BUF) 440 return NULL; 441 442 if (offset) 443 *offset = 0; 444 445 labels = (struct ice_label_section *)section; 446 if (index >= LE16_TO_CPU(labels->count)) 447 return NULL; 448 449 return labels->label + index; 450 } 451 452 /** 453 * ice_enum_labels 454 * @ice_seg: pointer to the ice segment (NULL on subsequent calls) 455 * @type: the section type that will contain the label (0 on subsequent calls) 456 * @state: ice_pkg_enum structure that will hold the state of the enumeration 457 * @value: pointer to a value that will return the label's value if found 458 * 459 * Enumerates a list of labels in the package. The caller will call 460 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call 461 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL 462 * the end of the list has been reached. 463 */ 464 static char * 465 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state, 466 u16 *value) 467 { 468 struct ice_label *label; 469 470 /* Check for valid label section on first call */ 471 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST)) 472 return NULL; 473 474 label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type, 475 NULL, 476 ice_label_enum_handler); 477 if (!label) 478 return NULL; 479 480 *value = LE16_TO_CPU(label->value); 481 return label->name; 482 } 483 484 /** 485 * ice_add_tunnel_hint 486 * @hw: pointer to the HW structure 487 * @label_name: label text 488 * @val: value of the tunnel port boost entry 489 */ 490 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val) 491 { 492 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) { 493 u16 i; 494 495 for (i = 0; tnls[i].type != TNL_LAST; i++) { 496 size_t len = strlen(tnls[i].label_prefix); 497 498 /* Look for matching label start, before continuing */ 499 if (strncmp(label_name, tnls[i].label_prefix, len)) 500 continue; 501 502 /* Make sure this label matches our PF. Note that the PF 503 * character ('0' - '7') will be located where our 504 * prefix string's null terminator is located. 505 */ 506 if ((label_name[len] - '0') == hw->pf_id) { 507 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type; 508 hw->tnl.tbl[hw->tnl.count].valid = false; 509 hw->tnl.tbl[hw->tnl.count].in_use = false; 510 hw->tnl.tbl[hw->tnl.count].marked = false; 511 hw->tnl.tbl[hw->tnl.count].boost_addr = val; 512 hw->tnl.tbl[hw->tnl.count].port = 0; 513 hw->tnl.count++; 514 break; 515 } 516 } 517 } 518 } 519 520 /** 521 * ice_init_pkg_hints 522 * @hw: pointer to the HW structure 523 * @ice_seg: pointer to the segment of the package scan (non-NULL) 524 * 525 * This function will scan the package and save off relevant information 526 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL 527 * since the first call to ice_enum_labels requires a pointer to an actual 528 * ice_seg structure. 529 */ 530 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg) 531 { 532 struct ice_pkg_enum state; 533 char *label_name; 534 u16 val; 535 int i; 536 537 ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM); 538 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 539 540 if (!ice_seg) 541 return; 542 543 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state, 544 &val); 545 546 while (label_name) { 547 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE))) 548 /* check for a tunnel entry */ 549 ice_add_tunnel_hint(hw, label_name, val); 550 551 label_name = ice_enum_labels(NULL, 0, &state, &val); 552 } 553 554 /* Cache the appropriate boost TCAM entry pointers for tunnels */ 555 for (i = 0; i < hw->tnl.count; i++) { 556 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr, 557 &hw->tnl.tbl[i].boost_entry); 558 if (hw->tnl.tbl[i].boost_entry) 559 hw->tnl.tbl[i].valid = true; 560 } 561 } 562 563 /* Key creation */ 564 565 #define ICE_DC_KEY 0x1 /* don't care */ 566 #define ICE_DC_KEYINV 0x1 567 #define ICE_NM_KEY 0x0 /* never match */ 568 #define ICE_NM_KEYINV 0x0 569 #define ICE_0_KEY 0x1 /* match 0 */ 570 #define ICE_0_KEYINV 0x0 571 #define ICE_1_KEY 0x0 /* match 1 */ 572 #define ICE_1_KEYINV 0x1 573 574 /** 575 * ice_gen_key_word - generate 16-bits of a key/mask word 576 * @val: the value 577 * @valid: valid bits mask (change only the valid bits) 578 * @dont_care: don't care mask 579 * @nvr_mtch: never match mask 580 * @key: pointer to an array of where the resulting key portion 581 * @key_inv: pointer to an array of where the resulting key invert portion 582 * 583 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask 584 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits 585 * of key and 8 bits of key invert. 586 * 587 * '0' = b01, always match a 0 bit 588 * '1' = b10, always match a 1 bit 589 * '?' = b11, don't care bit (always matches) 590 * '~' = b00, never match bit 591 * 592 * Input: 593 * val: b0 1 0 1 0 1 594 * dont_care: b0 0 1 1 0 0 595 * never_mtch: b0 0 0 0 1 1 596 * ------------------------------ 597 * Result: key: b01 10 11 11 00 00 598 */ 599 static enum ice_status 600 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key, 601 u8 *key_inv) 602 { 603 u8 in_key = *key, in_key_inv = *key_inv; 604 u8 i; 605 606 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */ 607 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch)) 608 return ICE_ERR_CFG; 609 610 *key = 0; 611 *key_inv = 0; 612 613 /* encode the 8 bits into 8-bit key and 8-bit key invert */ 614 for (i = 0; i < 8; i++) { 615 *key >>= 1; 616 *key_inv >>= 1; 617 618 if (!(valid & 0x1)) { /* change only valid bits */ 619 *key |= (in_key & 0x1) << 7; 620 *key_inv |= (in_key_inv & 0x1) << 7; 621 } else if (dont_care & 0x1) { /* don't care bit */ 622 *key |= ICE_DC_KEY << 7; 623 *key_inv |= ICE_DC_KEYINV << 7; 624 } else if (nvr_mtch & 0x1) { /* never match bit */ 625 *key |= ICE_NM_KEY << 7; 626 *key_inv |= ICE_NM_KEYINV << 7; 627 } else if (val & 0x01) { /* exact 1 match */ 628 *key |= ICE_1_KEY << 7; 629 *key_inv |= ICE_1_KEYINV << 7; 630 } else { /* exact 0 match */ 631 *key |= ICE_0_KEY << 7; 632 *key_inv |= ICE_0_KEYINV << 7; 633 } 634 635 dont_care >>= 1; 636 nvr_mtch >>= 1; 637 valid >>= 1; 638 val >>= 1; 639 in_key >>= 1; 640 in_key_inv >>= 1; 641 } 642 643 return ICE_SUCCESS; 644 } 645 646 /** 647 * ice_bits_max_set - determine if the number of bits set is within a maximum 648 * @mask: pointer to the byte array which is the mask 649 * @size: the number of bytes in the mask 650 * @max: the max number of set bits 651 * 652 * This function determines if there are at most 'max' number of bits set in an 653 * array. Returns true if the number for bits set is <= max or will return false 654 * otherwise. 655 */ 656 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max) 657 { 658 u16 count = 0; 659 u16 i; 660 661 /* check each byte */ 662 for (i = 0; i < size; i++) { 663 /* if 0, go to next byte */ 664 if (!mask[i]) 665 continue; 666 667 /* We know there is at least one set bit in this byte because of 668 * the above check; if we already have found 'max' number of 669 * bits set, then we can return failure now. 670 */ 671 if (count == max) 672 return false; 673 674 /* count the bits in this byte, checking threshold */ 675 count += ice_hweight8(mask[i]); 676 if (count > max) 677 return false; 678 } 679 680 return true; 681 } 682 683 /** 684 * ice_set_key - generate a variable sized key with multiples of 16-bits 685 * @key: pointer to where the key will be stored 686 * @size: the size of the complete key in bytes (must be even) 687 * @val: array of 8-bit values that makes up the value portion of the key 688 * @upd: array of 8-bit masks that determine what key portion to update 689 * @dc: array of 8-bit masks that make up the don't care mask 690 * @nm: array of 8-bit masks that make up the never match mask 691 * @off: the offset of the first byte in the key to update 692 * @len: the number of bytes in the key update 693 * 694 * This function generates a key from a value, a don't care mask and a never 695 * match mask. 696 * upd, dc, and nm are optional parameters, and can be NULL: 697 * upd == NULL --> upd mask is all 1's (update all bits) 698 * dc == NULL --> dc mask is all 0's (no don't care bits) 699 * nm == NULL --> nm mask is all 0's (no never match bits) 700 */ 701 static enum ice_status 702 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off, 703 u16 len) 704 { 705 u16 half_size; 706 u16 i; 707 708 /* size must be a multiple of 2 bytes. */ 709 if (size % 2) 710 return ICE_ERR_CFG; 711 half_size = size / 2; 712 713 if (off + len > half_size) 714 return ICE_ERR_CFG; 715 716 /* Make sure at most one bit is set in the never match mask. Having more 717 * than one never match mask bit set will cause HW to consume excessive 718 * power otherwise; this is a power management efficiency check. 719 */ 720 #define ICE_NVR_MTCH_BITS_MAX 1 721 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX)) 722 return ICE_ERR_CFG; 723 724 for (i = 0; i < len; i++) 725 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff, 726 dc ? dc[i] : 0, nm ? nm[i] : 0, 727 key + off + i, key + half_size + off + i)) 728 return ICE_ERR_CFG; 729 730 return ICE_SUCCESS; 731 } 732 733 /** 734 * ice_acquire_global_cfg_lock 735 * @hw: pointer to the HW structure 736 * @access: access type (read or write) 737 * 738 * This function will request ownership of the global config lock for reading 739 * or writing of the package. When attempting to obtain write access, the 740 * caller must check for the following two return values: 741 * 742 * ICE_SUCCESS - Means the caller has acquired the global config lock 743 * and can perform writing of the package. 744 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the 745 * package or has found that no update was necessary; in 746 * this case, the caller can just skip performing any 747 * update of the package. 748 */ 749 static enum ice_status 750 ice_acquire_global_cfg_lock(struct ice_hw *hw, 751 enum ice_aq_res_access_type access) 752 { 753 enum ice_status status; 754 755 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 756 757 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access, 758 ICE_GLOBAL_CFG_LOCK_TIMEOUT); 759 760 if (status == ICE_ERR_AQ_NO_WORK) 761 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n"); 762 763 return status; 764 } 765 766 /** 767 * ice_release_global_cfg_lock 768 * @hw: pointer to the HW structure 769 * 770 * This function will release the global config lock. 771 */ 772 static void ice_release_global_cfg_lock(struct ice_hw *hw) 773 { 774 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID); 775 } 776 777 /** 778 * ice_acquire_change_lock 779 * @hw: pointer to the HW structure 780 * @access: access type (read or write) 781 * 782 * This function will request ownership of the change lock. 783 */ 784 static enum ice_status 785 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access) 786 { 787 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 788 789 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access, 790 ICE_CHANGE_LOCK_TIMEOUT); 791 } 792 793 /** 794 * ice_release_change_lock 795 * @hw: pointer to the HW structure 796 * 797 * This function will release the change lock using the proper Admin Command. 798 */ 799 static void ice_release_change_lock(struct ice_hw *hw) 800 { 801 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 802 803 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID); 804 } 805 806 /** 807 * ice_aq_download_pkg 808 * @hw: pointer to the hardware structure 809 * @pkg_buf: the package buffer to transfer 810 * @buf_size: the size of the package buffer 811 * @last_buf: last buffer indicator 812 * @error_offset: returns error offset 813 * @error_info: returns error information 814 * @cd: pointer to command details structure or NULL 815 * 816 * Download Package (0x0C40) 817 */ 818 static enum ice_status 819 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 820 u16 buf_size, bool last_buf, u32 *error_offset, 821 u32 *error_info, struct ice_sq_cd *cd) 822 { 823 struct ice_aqc_download_pkg *cmd; 824 struct ice_aq_desc desc; 825 enum ice_status status; 826 827 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 828 829 if (error_offset) 830 *error_offset = 0; 831 if (error_info) 832 *error_info = 0; 833 834 cmd = &desc.params.download_pkg; 835 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg); 836 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 837 838 if (last_buf) 839 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 840 841 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 842 if (status == ICE_ERR_AQ_ERROR) { 843 /* Read error from buffer only when the FW returned an error */ 844 struct ice_aqc_download_pkg_resp *resp; 845 846 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 847 if (error_offset) 848 *error_offset = LE32_TO_CPU(resp->error_offset); 849 if (error_info) 850 *error_info = LE32_TO_CPU(resp->error_info); 851 } 852 853 return status; 854 } 855 856 /** 857 * ice_aq_upload_section 858 * @hw: pointer to the hardware structure 859 * @pkg_buf: the package buffer which will receive the section 860 * @buf_size: the size of the package buffer 861 * @cd: pointer to command details structure or NULL 862 * 863 * Upload Section (0x0C41) 864 */ 865 enum ice_status 866 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, 867 u16 buf_size, struct ice_sq_cd *cd) 868 { 869 struct ice_aq_desc desc; 870 871 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 872 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section); 873 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 874 875 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 876 } 877 878 /** 879 * ice_aq_update_pkg 880 * @hw: pointer to the hardware structure 881 * @pkg_buf: the package cmd buffer 882 * @buf_size: the size of the package cmd buffer 883 * @last_buf: last buffer indicator 884 * @error_offset: returns error offset 885 * @error_info: returns error information 886 * @cd: pointer to command details structure or NULL 887 * 888 * Update Package (0x0C42) 889 */ 890 static enum ice_status 891 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, 892 bool last_buf, u32 *error_offset, u32 *error_info, 893 struct ice_sq_cd *cd) 894 { 895 struct ice_aqc_download_pkg *cmd; 896 struct ice_aq_desc desc; 897 enum ice_status status; 898 899 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 900 901 if (error_offset) 902 *error_offset = 0; 903 if (error_info) 904 *error_info = 0; 905 906 cmd = &desc.params.download_pkg; 907 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg); 908 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); 909 910 if (last_buf) 911 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF; 912 913 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd); 914 if (status == ICE_ERR_AQ_ERROR) { 915 /* Read error from buffer only when the FW returned an error */ 916 struct ice_aqc_download_pkg_resp *resp; 917 918 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf; 919 if (error_offset) 920 *error_offset = LE32_TO_CPU(resp->error_offset); 921 if (error_info) 922 *error_info = LE32_TO_CPU(resp->error_info); 923 } 924 925 return status; 926 } 927 928 /** 929 * ice_find_seg_in_pkg 930 * @hw: pointer to the hardware structure 931 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK) 932 * @pkg_hdr: pointer to the package header to be searched 933 * 934 * This function searches a package file for a particular segment type. On 935 * success it returns a pointer to the segment header, otherwise it will 936 * return NULL. 937 */ 938 static struct ice_generic_seg_hdr * 939 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type, 940 struct ice_pkg_hdr *pkg_hdr) 941 { 942 u32 i; 943 944 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 945 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n", 946 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor, 947 pkg_hdr->pkg_format_ver.update, 948 pkg_hdr->pkg_format_ver.draft); 949 950 /* Search all package segments for the requested segment type */ 951 for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) { 952 struct ice_generic_seg_hdr *seg; 953 954 seg = (struct ice_generic_seg_hdr *) 955 ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i])); 956 957 if (LE32_TO_CPU(seg->seg_type) == seg_type) 958 return seg; 959 } 960 961 return NULL; 962 } 963 964 /** 965 * ice_update_pkg_no_lock 966 * @hw: pointer to the hardware structure 967 * @bufs: pointer to an array of buffers 968 * @count: the number of buffers in the array 969 */ 970 static enum ice_status 971 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 972 { 973 enum ice_status status = ICE_SUCCESS; 974 u32 i; 975 976 for (i = 0; i < count; i++) { 977 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i); 978 bool last = ((i + 1) == count); 979 u32 offset, info; 980 981 status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end), 982 last, &offset, &info, NULL); 983 984 if (status) { 985 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n", 986 status, offset, info); 987 break; 988 } 989 } 990 991 return status; 992 } 993 994 /** 995 * ice_update_pkg 996 * @hw: pointer to the hardware structure 997 * @bufs: pointer to an array of buffers 998 * @count: the number of buffers in the array 999 * 1000 * Obtains change lock and updates package. 1001 */ 1002 enum ice_status 1003 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1004 { 1005 enum ice_status status; 1006 1007 status = ice_acquire_change_lock(hw, ICE_RES_WRITE); 1008 if (status) 1009 return status; 1010 1011 status = ice_update_pkg_no_lock(hw, bufs, count); 1012 1013 ice_release_change_lock(hw); 1014 1015 return status; 1016 } 1017 1018 /** 1019 * ice_dwnld_cfg_bufs 1020 * @hw: pointer to the hardware structure 1021 * @bufs: pointer to an array of buffers 1022 * @count: the number of buffers in the array 1023 * 1024 * Obtains global config lock and downloads the package configuration buffers 1025 * to the firmware. Metadata buffers are skipped, and the first metadata buffer 1026 * found indicates that the rest of the buffers are all metadata buffers. 1027 */ 1028 static enum ice_status 1029 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count) 1030 { 1031 enum ice_status status; 1032 struct ice_buf_hdr *bh; 1033 u32 offset, info, i; 1034 1035 if (!bufs || !count) 1036 return ICE_ERR_PARAM; 1037 1038 /* If the first buffer's first section has its metadata bit set 1039 * then there are no buffers to be downloaded, and the operation is 1040 * considered a success. 1041 */ 1042 bh = (struct ice_buf_hdr *)bufs; 1043 if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF) 1044 return ICE_SUCCESS; 1045 1046 /* reset pkg_dwnld_status in case this function is called in the 1047 * reset/rebuild flow 1048 */ 1049 hw->pkg_dwnld_status = ICE_AQ_RC_OK; 1050 1051 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE); 1052 if (status) { 1053 if (status == ICE_ERR_AQ_NO_WORK) 1054 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST; 1055 else 1056 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 1057 return status; 1058 } 1059 1060 for (i = 0; i < count; i++) { 1061 bool last = ((i + 1) == count); 1062 1063 if (!last) { 1064 /* check next buffer for metadata flag */ 1065 bh = (struct ice_buf_hdr *)(bufs + i + 1); 1066 1067 /* A set metadata flag in the next buffer will signal 1068 * that the current buffer will be the last buffer 1069 * downloaded 1070 */ 1071 if (LE16_TO_CPU(bh->section_count)) 1072 if (LE32_TO_CPU(bh->section_entry[0].type) & 1073 ICE_METADATA_BUF) 1074 last = true; 1075 } 1076 1077 bh = (struct ice_buf_hdr *)(bufs + i); 1078 1079 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last, 1080 &offset, &info, NULL); 1081 1082 /* Save AQ status from download package */ 1083 hw->pkg_dwnld_status = hw->adminq.sq_last_status; 1084 if (status) { 1085 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n", 1086 status, offset, info); 1087 1088 break; 1089 } 1090 1091 if (last) 1092 break; 1093 } 1094 1095 if (!status) { 1096 status = ice_set_vlan_mode(hw); 1097 if (status) 1098 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n", 1099 status); 1100 } 1101 1102 ice_release_global_cfg_lock(hw); 1103 1104 return status; 1105 } 1106 1107 /** 1108 * ice_aq_get_pkg_info_list 1109 * @hw: pointer to the hardware structure 1110 * @pkg_info: the buffer which will receive the information list 1111 * @buf_size: the size of the pkg_info information buffer 1112 * @cd: pointer to command details structure or NULL 1113 * 1114 * Get Package Info List (0x0C43) 1115 */ 1116 static enum ice_status 1117 ice_aq_get_pkg_info_list(struct ice_hw *hw, 1118 struct ice_aqc_get_pkg_info_resp *pkg_info, 1119 u16 buf_size, struct ice_sq_cd *cd) 1120 { 1121 struct ice_aq_desc desc; 1122 1123 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list); 1125 1126 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd); 1127 } 1128 1129 /** 1130 * ice_download_pkg 1131 * @hw: pointer to the hardware structure 1132 * @ice_seg: pointer to the segment of the package to be downloaded 1133 * 1134 * Handles the download of a complete package. 1135 */ 1136 static enum ice_status 1137 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg) 1138 { 1139 struct ice_buf_table *ice_buf_tbl; 1140 enum ice_status status; 1141 1142 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1143 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n", 1144 ice_seg->hdr.seg_format_ver.major, 1145 ice_seg->hdr.seg_format_ver.minor, 1146 ice_seg->hdr.seg_format_ver.update, 1147 ice_seg->hdr.seg_format_ver.draft); 1148 1149 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n", 1150 LE32_TO_CPU(ice_seg->hdr.seg_type), 1151 LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id); 1152 1153 ice_buf_tbl = ice_find_buf_table(ice_seg); 1154 1155 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n", 1156 LE32_TO_CPU(ice_buf_tbl->buf_count)); 1157 1158 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array, 1159 LE32_TO_CPU(ice_buf_tbl->buf_count)); 1160 1161 ice_post_pkg_dwnld_vlan_mode_cfg(hw); 1162 1163 return status; 1164 } 1165 1166 /** 1167 * ice_init_pkg_info 1168 * @hw: pointer to the hardware structure 1169 * @pkg_hdr: pointer to the driver's package hdr 1170 * 1171 * Saves off the package details into the HW structure. 1172 */ 1173 static enum ice_status 1174 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr) 1175 { 1176 struct ice_generic_seg_hdr *seg_hdr; 1177 1178 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1179 if (!pkg_hdr) 1180 return ICE_ERR_PARAM; 1181 1182 hw->pkg_seg_id = SEGMENT_TYPE_ICE_E810; 1183 1184 ice_debug(hw, ICE_DBG_INIT, "Pkg using segment id: 0x%08X\n", 1185 hw->pkg_seg_id); 1186 1187 seg_hdr = (struct ice_generic_seg_hdr *) 1188 ice_find_seg_in_pkg(hw, hw->pkg_seg_id, pkg_hdr); 1189 if (seg_hdr) { 1190 struct ice_meta_sect *meta; 1191 struct ice_pkg_enum state; 1192 1193 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1194 1195 /* Get package information from the Metadata Section */ 1196 meta = (struct ice_meta_sect *) 1197 ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state, 1198 ICE_SID_METADATA); 1199 if (!meta) { 1200 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n"); 1201 return ICE_ERR_CFG; 1202 } 1203 1204 hw->pkg_ver = meta->ver; 1205 ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name), 1206 ICE_NONDMA_TO_NONDMA); 1207 1208 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n", 1209 meta->ver.major, meta->ver.minor, meta->ver.update, 1210 meta->ver.draft, meta->name); 1211 1212 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver; 1213 ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id, 1214 sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA); 1215 1216 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n", 1217 seg_hdr->seg_format_ver.major, 1218 seg_hdr->seg_format_ver.minor, 1219 seg_hdr->seg_format_ver.update, 1220 seg_hdr->seg_format_ver.draft, 1221 seg_hdr->seg_id); 1222 } else { 1223 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n"); 1224 return ICE_ERR_CFG; 1225 } 1226 1227 return ICE_SUCCESS; 1228 } 1229 1230 /** 1231 * ice_get_pkg_info 1232 * @hw: pointer to the hardware structure 1233 * 1234 * Store details of the package currently loaded in HW into the HW structure. 1235 */ 1236 static enum ice_status ice_get_pkg_info(struct ice_hw *hw) 1237 { 1238 struct ice_aqc_get_pkg_info_resp *pkg_info; 1239 enum ice_status status; 1240 u16 size; 1241 u32 i; 1242 1243 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1244 1245 size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT); 1246 pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); 1247 if (!pkg_info) 1248 return ICE_ERR_NO_MEMORY; 1249 1250 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL); 1251 if (status) 1252 goto init_pkg_free_alloc; 1253 1254 for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) { 1255 #define ICE_PKG_FLAG_COUNT 4 1256 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 }; 1257 u8 place = 0; 1258 1259 if (pkg_info->pkg_info[i].is_active) { 1260 flags[place++] = 'A'; 1261 hw->active_pkg_ver = pkg_info->pkg_info[i].ver; 1262 hw->active_track_id = 1263 LE32_TO_CPU(pkg_info->pkg_info[i].track_id); 1264 ice_memcpy(hw->active_pkg_name, 1265 pkg_info->pkg_info[i].name, 1266 sizeof(pkg_info->pkg_info[i].name), 1267 ICE_NONDMA_TO_NONDMA); 1268 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm; 1269 } 1270 if (pkg_info->pkg_info[i].is_active_at_boot) 1271 flags[place++] = 'B'; 1272 if (pkg_info->pkg_info[i].is_modified) 1273 flags[place++] = 'M'; 1274 if (pkg_info->pkg_info[i].is_in_nvm) 1275 flags[place++] = 'N'; 1276 1277 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n", 1278 i, pkg_info->pkg_info[i].ver.major, 1279 pkg_info->pkg_info[i].ver.minor, 1280 pkg_info->pkg_info[i].ver.update, 1281 pkg_info->pkg_info[i].ver.draft, 1282 pkg_info->pkg_info[i].name, flags); 1283 } 1284 1285 init_pkg_free_alloc: 1286 ice_free(hw, pkg_info); 1287 1288 return status; 1289 } 1290 1291 /** 1292 * ice_find_label_value 1293 * @ice_seg: pointer to the ice segment (non-NULL) 1294 * @name: name of the label to search for 1295 * @type: the section type that will contain the label 1296 * @value: pointer to a value that will return the label's value if found 1297 * 1298 * Finds a label's value given the label name and the section type to search. 1299 * The ice_seg parameter must not be NULL since the first call to 1300 * ice_enum_labels requires a pointer to an actual ice_seg structure. 1301 */ 1302 enum ice_status 1303 ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type, 1304 u16 *value) 1305 { 1306 struct ice_pkg_enum state; 1307 char *label_name; 1308 u16 val; 1309 1310 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1311 1312 if (!ice_seg) 1313 return ICE_ERR_PARAM; 1314 1315 do { 1316 label_name = ice_enum_labels(ice_seg, type, &state, &val); 1317 if (label_name && !strcmp(label_name, name)) { 1318 *value = val; 1319 return ICE_SUCCESS; 1320 } 1321 1322 ice_seg = NULL; 1323 } while (label_name); 1324 1325 return ICE_ERR_CFG; 1326 } 1327 1328 /** 1329 * ice_verify_pkg - verify package 1330 * @pkg: pointer to the package buffer 1331 * @len: size of the package buffer 1332 * 1333 * Verifies various attributes of the package file, including length, format 1334 * version, and the requirement of at least one segment. 1335 */ 1336 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len) 1337 { 1338 u32 seg_count; 1339 u32 i; 1340 1341 if (len < ice_struct_size(pkg, seg_offset, 1)) 1342 return ICE_ERR_BUF_TOO_SHORT; 1343 1344 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ || 1345 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR || 1346 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD || 1347 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT) 1348 return ICE_ERR_CFG; 1349 1350 /* pkg must have at least one segment */ 1351 seg_count = LE32_TO_CPU(pkg->seg_count); 1352 if (seg_count < 1) 1353 return ICE_ERR_CFG; 1354 1355 /* make sure segment array fits in package length */ 1356 if (len < ice_struct_size(pkg, seg_offset, seg_count)) 1357 return ICE_ERR_BUF_TOO_SHORT; 1358 1359 /* all segments must fit within length */ 1360 for (i = 0; i < seg_count; i++) { 1361 u32 off = LE32_TO_CPU(pkg->seg_offset[i]); 1362 struct ice_generic_seg_hdr *seg; 1363 1364 /* segment header must fit */ 1365 if (len < off + sizeof(*seg)) 1366 return ICE_ERR_BUF_TOO_SHORT; 1367 1368 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off); 1369 1370 /* segment body must fit */ 1371 if (len < off + LE32_TO_CPU(seg->seg_size)) 1372 return ICE_ERR_BUF_TOO_SHORT; 1373 } 1374 1375 return ICE_SUCCESS; 1376 } 1377 1378 /** 1379 * ice_free_seg - free package segment pointer 1380 * @hw: pointer to the hardware structure 1381 * 1382 * Frees the package segment pointer in the proper manner, depending on if the 1383 * segment was allocated or just the passed in pointer was stored. 1384 */ 1385 void ice_free_seg(struct ice_hw *hw) 1386 { 1387 if (hw->pkg_copy) { 1388 ice_free(hw, hw->pkg_copy); 1389 hw->pkg_copy = NULL; 1390 hw->pkg_size = 0; 1391 } 1392 hw->seg = NULL; 1393 } 1394 1395 /** 1396 * ice_init_pkg_regs - initialize additional package registers 1397 * @hw: pointer to the hardware structure 1398 */ 1399 static void ice_init_pkg_regs(struct ice_hw *hw) 1400 { 1401 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF 1402 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF 1403 #define ICE_SW_BLK_IDX 0 1404 1405 /* setup Switch block input mask, which is 48-bits in two parts */ 1406 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L); 1407 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H); 1408 } 1409 1410 /** 1411 * ice_chk_pkg_version - check package version for compatibility with driver 1412 * @pkg_ver: pointer to a version structure to check 1413 * 1414 * Check to make sure that the package about to be downloaded is compatible with 1415 * the driver. To be compatible, the major and minor components of the package 1416 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR 1417 * definitions. 1418 */ 1419 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver) 1420 { 1421 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ || 1422 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR) 1423 return ICE_ERR_NOT_SUPPORTED; 1424 1425 return ICE_SUCCESS; 1426 } 1427 1428 /** 1429 * ice_chk_pkg_compat 1430 * @hw: pointer to the hardware structure 1431 * @ospkg: pointer to the package hdr 1432 * @seg: pointer to the package segment hdr 1433 * 1434 * This function checks the package version compatibility with driver and NVM 1435 */ 1436 static enum ice_status 1437 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg, 1438 struct ice_seg **seg) 1439 { 1440 struct ice_aqc_get_pkg_info_resp *pkg; 1441 enum ice_status status; 1442 u16 size; 1443 u32 i; 1444 1445 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 1446 1447 /* Check package version compatibility */ 1448 status = ice_chk_pkg_version(&hw->pkg_ver); 1449 if (status) { 1450 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n"); 1451 return status; 1452 } 1453 1454 /* find ICE segment in given package */ 1455 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, hw->pkg_seg_id, 1456 ospkg); 1457 if (!*seg) { 1458 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n"); 1459 return ICE_ERR_CFG; 1460 } 1461 1462 /* Check if FW is compatible with the OS package */ 1463 size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT); 1464 pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size); 1465 if (!pkg) 1466 return ICE_ERR_NO_MEMORY; 1467 1468 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL); 1469 if (status) 1470 goto fw_ddp_compat_free_alloc; 1471 1472 for (i = 0; i < LE32_TO_CPU(pkg->count); i++) { 1473 /* loop till we find the NVM package */ 1474 if (!pkg->pkg_info[i].is_in_nvm) 1475 continue; 1476 if ((*seg)->hdr.seg_format_ver.major != 1477 pkg->pkg_info[i].ver.major || 1478 (*seg)->hdr.seg_format_ver.minor > 1479 pkg->pkg_info[i].ver.minor) { 1480 status = ICE_ERR_FW_DDP_MISMATCH; 1481 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n"); 1482 } 1483 /* done processing NVM package so break */ 1484 break; 1485 } 1486 fw_ddp_compat_free_alloc: 1487 ice_free(hw, pkg); 1488 return status; 1489 } 1490 1491 /** 1492 * ice_sw_fv_handler 1493 * @sect_type: section type 1494 * @section: pointer to section 1495 * @index: index of the field vector entry to be returned 1496 * @offset: ptr to variable that receives the offset in the field vector table 1497 * 1498 * This is a callback function that can be passed to ice_pkg_enum_entry. 1499 * This function treats the given section as of type ice_sw_fv_section and 1500 * enumerates offset field. "offset" is an index into the field vector table. 1501 */ 1502 static void * 1503 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset) 1504 { 1505 struct ice_sw_fv_section *fv_section = 1506 (struct ice_sw_fv_section *)section; 1507 1508 if (!section || sect_type != ICE_SID_FLD_VEC_SW) 1509 return NULL; 1510 if (index >= LE16_TO_CPU(fv_section->count)) 1511 return NULL; 1512 if (offset) 1513 /* "index" passed in to this function is relative to a given 1514 * 4k block. To get to the true index into the field vector 1515 * table need to add the relative index to the base_offset 1516 * field of this section 1517 */ 1518 *offset = LE16_TO_CPU(fv_section->base_offset) + index; 1519 return fv_section->fv + index; 1520 } 1521 1522 /** 1523 * ice_get_prof_index_max - get the max profile index for used profile 1524 * @hw: pointer to the HW struct 1525 * 1526 * Calling this function will get the max profile index for used profile 1527 * and store the index number in struct ice_switch_info *switch_info 1528 * in hw for following use. 1529 */ 1530 static int ice_get_prof_index_max(struct ice_hw *hw) 1531 { 1532 u16 prof_index = 0, j, max_prof_index = 0; 1533 struct ice_pkg_enum state; 1534 struct ice_seg *ice_seg; 1535 bool flag = false; 1536 struct ice_fv *fv; 1537 u32 offset; 1538 1539 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1540 1541 if (!hw->seg) 1542 return ICE_ERR_PARAM; 1543 1544 ice_seg = hw->seg; 1545 1546 do { 1547 fv = (struct ice_fv *) 1548 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1549 &offset, ice_sw_fv_handler); 1550 if (!fv) 1551 break; 1552 ice_seg = NULL; 1553 1554 /* in the profile that not be used, the prot_id is set to 0xff 1555 * and the off is set to 0x1ff for all the field vectors. 1556 */ 1557 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1558 if (fv->ew[j].prot_id != ICE_PROT_INVALID || 1559 fv->ew[j].off != ICE_FV_OFFSET_INVAL) 1560 flag = true; 1561 if (flag && prof_index > max_prof_index) 1562 max_prof_index = prof_index; 1563 1564 prof_index++; 1565 flag = false; 1566 } while (fv); 1567 1568 hw->switch_info->max_used_prof_index = max_prof_index; 1569 1570 return ICE_SUCCESS; 1571 } 1572 1573 /** 1574 * ice_init_pkg - initialize/download package 1575 * @hw: pointer to the hardware structure 1576 * @buf: pointer to the package buffer 1577 * @len: size of the package buffer 1578 * 1579 * This function initializes a package. The package contains HW tables 1580 * required to do packet processing. First, the function extracts package 1581 * information such as version. Then it finds the ice configuration segment 1582 * within the package; this function then saves a copy of the segment pointer 1583 * within the supplied package buffer. Next, the function will cache any hints 1584 * from the package, followed by downloading the package itself. Note, that if 1585 * a previous PF driver has already downloaded the package successfully, then 1586 * the current driver will not have to download the package again. 1587 * 1588 * The local package contents will be used to query default behavior and to 1589 * update specific sections of the HW's version of the package (e.g. to update 1590 * the parse graph to understand new protocols). 1591 * 1592 * This function stores a pointer to the package buffer memory, and it is 1593 * expected that the supplied buffer will not be freed immediately. If the 1594 * package buffer needs to be freed, such as when read from a file, use 1595 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this 1596 * case. 1597 */ 1598 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len) 1599 { 1600 struct ice_pkg_hdr *pkg; 1601 enum ice_status status; 1602 struct ice_seg *seg; 1603 1604 if (!buf || !len) 1605 return ICE_ERR_PARAM; 1606 1607 pkg = (struct ice_pkg_hdr *)buf; 1608 status = ice_verify_pkg(pkg, len); 1609 if (status) { 1610 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n", 1611 status); 1612 return status; 1613 } 1614 1615 /* initialize package info */ 1616 status = ice_init_pkg_info(hw, pkg); 1617 if (status) 1618 return status; 1619 1620 /* before downloading the package, check package version for 1621 * compatibility with driver 1622 */ 1623 status = ice_chk_pkg_compat(hw, pkg, &seg); 1624 if (status) 1625 return status; 1626 1627 /* initialize package hints and then download package */ 1628 ice_init_pkg_hints(hw, seg); 1629 status = ice_download_pkg(hw, seg); 1630 if (status == ICE_ERR_AQ_NO_WORK) { 1631 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n"); 1632 status = ICE_SUCCESS; 1633 } 1634 1635 /* Get information on the package currently loaded in HW, then make sure 1636 * the driver is compatible with this version. 1637 */ 1638 if (!status) { 1639 status = ice_get_pkg_info(hw); 1640 if (!status) 1641 status = ice_chk_pkg_version(&hw->active_pkg_ver); 1642 } 1643 1644 if (!status) { 1645 hw->seg = seg; 1646 /* on successful package download update other required 1647 * registers to support the package and fill HW tables 1648 * with package content. 1649 */ 1650 ice_init_pkg_regs(hw); 1651 ice_fill_blk_tbls(hw); 1652 ice_get_prof_index_max(hw); 1653 } else { 1654 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n", 1655 status); 1656 } 1657 1658 return status; 1659 } 1660 1661 /** 1662 * ice_copy_and_init_pkg - initialize/download a copy of the package 1663 * @hw: pointer to the hardware structure 1664 * @buf: pointer to the package buffer 1665 * @len: size of the package buffer 1666 * 1667 * This function copies the package buffer, and then calls ice_init_pkg() to 1668 * initialize the copied package contents. 1669 * 1670 * The copying is necessary if the package buffer supplied is constant, or if 1671 * the memory may disappear shortly after calling this function. 1672 * 1673 * If the package buffer resides in the data segment and can be modified, the 1674 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg(). 1675 * 1676 * However, if the package buffer needs to be copied first, such as when being 1677 * read from a file, the caller should use ice_copy_and_init_pkg(). 1678 * 1679 * This function will first copy the package buffer, before calling 1680 * ice_init_pkg(). The caller is free to immediately destroy the original 1681 * package buffer, as the new copy will be managed by this function and 1682 * related routines. 1683 */ 1684 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len) 1685 { 1686 enum ice_status status; 1687 u8 *buf_copy; 1688 1689 if (!buf || !len) 1690 return ICE_ERR_PARAM; 1691 1692 buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA); 1693 1694 status = ice_init_pkg(hw, buf_copy, len); 1695 if (status) { 1696 /* Free the copy, since we failed to initialize the package */ 1697 ice_free(hw, buf_copy); 1698 } else { 1699 /* Track the copied pkg so we can free it later */ 1700 hw->pkg_copy = buf_copy; 1701 hw->pkg_size = len; 1702 } 1703 1704 return status; 1705 } 1706 1707 /** 1708 * ice_pkg_buf_alloc 1709 * @hw: pointer to the HW structure 1710 * 1711 * Allocates a package buffer and returns a pointer to the buffer header. 1712 * Note: all package contents must be in Little Endian form. 1713 */ 1714 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw) 1715 { 1716 struct ice_buf_build *bld; 1717 struct ice_buf_hdr *buf; 1718 1719 bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld)); 1720 if (!bld) 1721 return NULL; 1722 1723 buf = (struct ice_buf_hdr *)bld; 1724 buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr, 1725 section_entry)); 1726 return bld; 1727 } 1728 1729 /** 1730 * ice_get_sw_prof_type - determine switch profile type 1731 * @hw: pointer to the HW structure 1732 * @fv: pointer to the switch field vector 1733 */ 1734 static enum ice_prof_type 1735 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv) 1736 { 1737 u16 i; 1738 1739 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) { 1740 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */ 1741 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF && 1742 fv->ew[i].off == ICE_VNI_OFFSET) 1743 return ICE_PROF_TUN_UDP; 1744 1745 /* GRE tunnel will have GRE protocol */ 1746 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF) 1747 return ICE_PROF_TUN_GRE; 1748 } 1749 1750 return ICE_PROF_NON_TUN; 1751 } 1752 1753 /** 1754 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type 1755 * @hw: pointer to hardware structure 1756 * @req_profs: type of profiles requested 1757 * @bm: pointer to memory for returning the bitmap of field vectors 1758 */ 1759 void 1760 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs, 1761 ice_bitmap_t *bm) 1762 { 1763 struct ice_pkg_enum state; 1764 struct ice_seg *ice_seg; 1765 struct ice_fv *fv; 1766 1767 if (req_profs == ICE_PROF_ALL) { 1768 ice_bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES); 1769 return; 1770 } 1771 1772 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1773 ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES); 1774 ice_seg = hw->seg; 1775 do { 1776 enum ice_prof_type prof_type; 1777 u32 offset; 1778 1779 fv = (struct ice_fv *) 1780 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1781 &offset, ice_sw_fv_handler); 1782 ice_seg = NULL; 1783 1784 if (fv) { 1785 /* Determine field vector type */ 1786 prof_type = ice_get_sw_prof_type(hw, fv); 1787 1788 if (req_profs & prof_type) 1789 ice_set_bit((u16)offset, bm); 1790 } 1791 } while (fv); 1792 } 1793 1794 /** 1795 * ice_get_sw_fv_list 1796 * @hw: pointer to the HW structure 1797 * @prot_ids: field vector to search for with a given protocol ID 1798 * @ids_cnt: lookup/protocol count 1799 * @bm: bitmap of field vectors to consider 1800 * @fv_list: Head of a list 1801 * 1802 * Finds all the field vector entries from switch block that contain 1803 * a given protocol ID and returns a list of structures of type 1804 * "ice_sw_fv_list_entry". Every structure in the list has a field vector 1805 * definition and profile ID information 1806 * NOTE: The caller of the function is responsible for freeing the memory 1807 * allocated for every list entry. 1808 */ 1809 enum ice_status 1810 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt, 1811 ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list) 1812 { 1813 struct ice_sw_fv_list_entry *fvl; 1814 struct ice_sw_fv_list_entry *tmp; 1815 struct ice_pkg_enum state; 1816 struct ice_seg *ice_seg; 1817 struct ice_fv *fv; 1818 u32 offset; 1819 1820 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1821 1822 if (!ids_cnt || !hw->seg) 1823 return ICE_ERR_PARAM; 1824 1825 ice_seg = hw->seg; 1826 do { 1827 u16 i; 1828 1829 fv = (struct ice_fv *) 1830 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1831 &offset, ice_sw_fv_handler); 1832 if (!fv) 1833 break; 1834 ice_seg = NULL; 1835 1836 /* If field vector is not in the bitmap list, then skip this 1837 * profile. 1838 */ 1839 if (!ice_is_bit_set(bm, (u16)offset)) 1840 continue; 1841 1842 for (i = 0; i < ids_cnt; i++) { 1843 int j; 1844 1845 /* This code assumes that if a switch field vector line 1846 * has a matching protocol, then this line will contain 1847 * the entries necessary to represent every field in 1848 * that protocol header. 1849 */ 1850 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) 1851 if (fv->ew[j].prot_id == prot_ids[i]) 1852 break; 1853 if (j >= hw->blk[ICE_BLK_SW].es.fvw) 1854 break; 1855 if (i + 1 == ids_cnt) { 1856 fvl = (struct ice_sw_fv_list_entry *) 1857 ice_malloc(hw, sizeof(*fvl)); 1858 if (!fvl) 1859 goto err; 1860 fvl->fv_ptr = fv; 1861 fvl->profile_id = offset; 1862 LIST_ADD(&fvl->list_entry, fv_list); 1863 break; 1864 } 1865 } 1866 } while (fv); 1867 if (LIST_EMPTY(fv_list)) 1868 return ICE_ERR_CFG; 1869 return ICE_SUCCESS; 1870 1871 err: 1872 LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry, 1873 list_entry) { 1874 LIST_DEL(&fvl->list_entry); 1875 ice_free(hw, fvl); 1876 } 1877 1878 return ICE_ERR_NO_MEMORY; 1879 } 1880 1881 /** 1882 * ice_init_prof_result_bm - Initialize the profile result index bitmap 1883 * @hw: pointer to hardware structure 1884 */ 1885 void ice_init_prof_result_bm(struct ice_hw *hw) 1886 { 1887 struct ice_pkg_enum state; 1888 struct ice_seg *ice_seg; 1889 struct ice_fv *fv; 1890 1891 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 1892 1893 if (!hw->seg) 1894 return; 1895 1896 ice_seg = hw->seg; 1897 do { 1898 u32 off; 1899 u16 i; 1900 1901 fv = (struct ice_fv *) 1902 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW, 1903 &off, ice_sw_fv_handler); 1904 ice_seg = NULL; 1905 if (!fv) 1906 break; 1907 1908 ice_zero_bitmap(hw->switch_info->prof_res_bm[off], 1909 ICE_MAX_FV_WORDS); 1910 1911 /* Determine empty field vector indices, these can be 1912 * used for recipe results. Skip index 0, since it is 1913 * always used for Switch ID. 1914 */ 1915 for (i = 1; i < ICE_MAX_FV_WORDS; i++) 1916 if (fv->ew[i].prot_id == ICE_PROT_INVALID && 1917 fv->ew[i].off == ICE_FV_OFFSET_INVAL) 1918 ice_set_bit(i, 1919 hw->switch_info->prof_res_bm[off]); 1920 } while (fv); 1921 } 1922 1923 /** 1924 * ice_pkg_buf_free 1925 * @hw: pointer to the HW structure 1926 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1927 * 1928 * Frees a package buffer 1929 */ 1930 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld) 1931 { 1932 ice_free(hw, bld); 1933 } 1934 1935 /** 1936 * ice_pkg_buf_reserve_section 1937 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1938 * @count: the number of sections to reserve 1939 * 1940 * Reserves one or more section table entries in a package buffer. This routine 1941 * can be called multiple times as long as they are made before calling 1942 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 1943 * is called once, the number of sections that can be allocated will not be able 1944 * to be increased; not using all reserved sections is fine, but this will 1945 * result in some wasted space in the buffer. 1946 * Note: all package contents must be in Little Endian form. 1947 */ 1948 static enum ice_status 1949 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count) 1950 { 1951 struct ice_buf_hdr *buf; 1952 u16 section_count; 1953 u16 data_end; 1954 1955 if (!bld) 1956 return ICE_ERR_PARAM; 1957 1958 buf = (struct ice_buf_hdr *)&bld->buf; 1959 1960 /* already an active section, can't increase table size */ 1961 section_count = LE16_TO_CPU(buf->section_count); 1962 if (section_count > 0) 1963 return ICE_ERR_CFG; 1964 1965 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT) 1966 return ICE_ERR_CFG; 1967 bld->reserved_section_table_entries += count; 1968 1969 data_end = LE16_TO_CPU(buf->data_end) + 1970 FLEX_ARRAY_SIZE(buf, section_entry, count); 1971 buf->data_end = CPU_TO_LE16(data_end); 1972 1973 return ICE_SUCCESS; 1974 } 1975 1976 /** 1977 * ice_pkg_buf_alloc_section 1978 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 1979 * @type: the section type value 1980 * @size: the size of the section to reserve (in bytes) 1981 * 1982 * Reserves memory in the buffer for a section's content and updates the 1983 * buffers' status accordingly. This routine returns a pointer to the first 1984 * byte of the section start within the buffer, which is used to fill in the 1985 * section contents. 1986 * Note: all package contents must be in Little Endian form. 1987 */ 1988 static void * 1989 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size) 1990 { 1991 struct ice_buf_hdr *buf; 1992 u16 sect_count; 1993 u16 data_end; 1994 1995 if (!bld || !type || !size) 1996 return NULL; 1997 1998 buf = (struct ice_buf_hdr *)&bld->buf; 1999 2000 /* check for enough space left in buffer */ 2001 data_end = LE16_TO_CPU(buf->data_end); 2002 2003 /* section start must align on 4 byte boundary */ 2004 data_end = ICE_ALIGN(data_end, 4); 2005 2006 if ((data_end + size) > ICE_MAX_S_DATA_END) 2007 return NULL; 2008 2009 /* check for more available section table entries */ 2010 sect_count = LE16_TO_CPU(buf->section_count); 2011 if (sect_count < bld->reserved_section_table_entries) { 2012 void *section_ptr = ((u8 *)buf) + data_end; 2013 2014 buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end); 2015 buf->section_entry[sect_count].size = CPU_TO_LE16(size); 2016 buf->section_entry[sect_count].type = CPU_TO_LE32(type); 2017 2018 data_end += size; 2019 buf->data_end = CPU_TO_LE16(data_end); 2020 2021 buf->section_count = CPU_TO_LE16(sect_count + 1); 2022 return section_ptr; 2023 } 2024 2025 /* no free section table entries */ 2026 return NULL; 2027 } 2028 2029 /** 2030 * ice_pkg_buf_alloc_single_section 2031 * @hw: pointer to the HW structure 2032 * @type: the section type value 2033 * @size: the size of the section to reserve (in bytes) 2034 * @section: returns pointer to the section 2035 * 2036 * Allocates a package buffer with a single section. 2037 * Note: all package contents must be in Little Endian form. 2038 */ 2039 struct ice_buf_build * 2040 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, 2041 void **section) 2042 { 2043 struct ice_buf_build *buf; 2044 2045 if (!section) 2046 return NULL; 2047 2048 buf = ice_pkg_buf_alloc(hw); 2049 if (!buf) 2050 return NULL; 2051 2052 if (ice_pkg_buf_reserve_section(buf, 1)) 2053 goto ice_pkg_buf_alloc_single_section_err; 2054 2055 *section = ice_pkg_buf_alloc_section(buf, type, size); 2056 if (!*section) 2057 goto ice_pkg_buf_alloc_single_section_err; 2058 2059 return buf; 2060 2061 ice_pkg_buf_alloc_single_section_err: 2062 ice_pkg_buf_free(hw, buf); 2063 return NULL; 2064 } 2065 2066 /** 2067 * ice_pkg_buf_unreserve_section 2068 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2069 * @count: the number of sections to unreserve 2070 * 2071 * Unreserves one or more section table entries in a package buffer, releasing 2072 * space that can be used for section data. This routine can be called 2073 * multiple times as long as they are made before calling 2074 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section() 2075 * is called once, the number of sections that can be allocated will not be able 2076 * to be increased; not using all reserved sections is fine, but this will 2077 * result in some wasted space in the buffer. 2078 * Note: all package contents must be in Little Endian form. 2079 */ 2080 enum ice_status 2081 ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count) 2082 { 2083 struct ice_buf_hdr *buf; 2084 u16 section_count; 2085 u16 data_end; 2086 2087 if (!bld) 2088 return ICE_ERR_PARAM; 2089 2090 buf = (struct ice_buf_hdr *)&bld->buf; 2091 2092 /* already an active section, can't decrease table size */ 2093 section_count = LE16_TO_CPU(buf->section_count); 2094 if (section_count > 0) 2095 return ICE_ERR_CFG; 2096 2097 if (count > bld->reserved_section_table_entries) 2098 return ICE_ERR_CFG; 2099 bld->reserved_section_table_entries -= count; 2100 2101 data_end = LE16_TO_CPU(buf->data_end) - 2102 FLEX_ARRAY_SIZE(buf, section_entry, count); 2103 buf->data_end = CPU_TO_LE16(data_end); 2104 2105 return ICE_SUCCESS; 2106 } 2107 2108 /** 2109 * ice_pkg_buf_get_free_space 2110 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2111 * 2112 * Returns the number of free bytes remaining in the buffer. 2113 * Note: all package contents must be in Little Endian form. 2114 */ 2115 u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld) 2116 { 2117 struct ice_buf_hdr *buf; 2118 2119 if (!bld) 2120 return 0; 2121 2122 buf = (struct ice_buf_hdr *)&bld->buf; 2123 return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end); 2124 } 2125 2126 /** 2127 * ice_pkg_buf_get_active_sections 2128 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2129 * 2130 * Returns the number of active sections. Before using the package buffer 2131 * in an update package command, the caller should make sure that there is at 2132 * least one active section - otherwise, the buffer is not legal and should 2133 * not be used. 2134 * Note: all package contents must be in Little Endian form. 2135 */ 2136 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld) 2137 { 2138 struct ice_buf_hdr *buf; 2139 2140 if (!bld) 2141 return 0; 2142 2143 buf = (struct ice_buf_hdr *)&bld->buf; 2144 return LE16_TO_CPU(buf->section_count); 2145 } 2146 2147 /** 2148 * ice_pkg_buf 2149 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc()) 2150 * 2151 * Return a pointer to the buffer's header 2152 */ 2153 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld) 2154 { 2155 if (!bld) 2156 return NULL; 2157 2158 return &bld->buf; 2159 } 2160 2161 /** 2162 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage 2163 * @hw: pointer to the HW structure 2164 * @port: port to search for 2165 * @index: optionally returns index 2166 * 2167 * Returns whether a port is already in use as a tunnel, and optionally its 2168 * index 2169 */ 2170 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index) 2171 { 2172 u16 i; 2173 2174 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2175 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 2176 if (index) 2177 *index = i; 2178 return true; 2179 } 2180 2181 return false; 2182 } 2183 2184 /** 2185 * ice_tunnel_port_in_use 2186 * @hw: pointer to the HW structure 2187 * @port: port to search for 2188 * @index: optionally returns index 2189 * 2190 * Returns whether a port is already in use as a tunnel, and optionally its 2191 * index 2192 */ 2193 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index) 2194 { 2195 bool res; 2196 2197 ice_acquire_lock(&hw->tnl_lock); 2198 res = ice_tunnel_port_in_use_hlpr(hw, port, index); 2199 ice_release_lock(&hw->tnl_lock); 2200 2201 return res; 2202 } 2203 2204 /** 2205 * ice_tunnel_get_type 2206 * @hw: pointer to the HW structure 2207 * @port: port to search for 2208 * @type: returns tunnel index 2209 * 2210 * For a given port number, will return the type of tunnel. 2211 */ 2212 bool 2213 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type) 2214 { 2215 bool res = false; 2216 u16 i; 2217 2218 ice_acquire_lock(&hw->tnl_lock); 2219 2220 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2221 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) { 2222 *type = hw->tnl.tbl[i].type; 2223 res = true; 2224 break; 2225 } 2226 2227 ice_release_lock(&hw->tnl_lock); 2228 2229 return res; 2230 } 2231 2232 /** 2233 * ice_find_free_tunnel_entry 2234 * @hw: pointer to the HW structure 2235 * @type: tunnel type 2236 * @index: optionally returns index 2237 * 2238 * Returns whether there is a free tunnel entry, and optionally its index 2239 */ 2240 static bool 2241 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type, 2242 u16 *index) 2243 { 2244 u16 i; 2245 2246 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2247 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use && 2248 hw->tnl.tbl[i].type == type) { 2249 if (index) 2250 *index = i; 2251 return true; 2252 } 2253 2254 return false; 2255 } 2256 2257 /** 2258 * ice_get_open_tunnel_port - retrieve an open tunnel port 2259 * @hw: pointer to the HW structure 2260 * @type: tunnel type (TNL_ALL will return any open port) 2261 * @port: returns open port 2262 */ 2263 bool 2264 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type, 2265 u16 *port) 2266 { 2267 bool res = false; 2268 u16 i; 2269 2270 ice_acquire_lock(&hw->tnl_lock); 2271 2272 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2273 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2274 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) { 2275 *port = hw->tnl.tbl[i].port; 2276 res = true; 2277 break; 2278 } 2279 2280 ice_release_lock(&hw->tnl_lock); 2281 2282 return res; 2283 } 2284 2285 /** 2286 * ice_create_tunnel 2287 * @hw: pointer to the HW structure 2288 * @type: type of tunnel 2289 * @port: port of tunnel to create 2290 * 2291 * Create a tunnel by updating the parse graph in the parser. We do that by 2292 * creating a package buffer with the tunnel info and issuing an update package 2293 * command. 2294 */ 2295 enum ice_status 2296 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port) 2297 { 2298 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2299 enum ice_status status = ICE_ERR_MAX_LIMIT; 2300 struct ice_buf_build *bld; 2301 u16 index; 2302 2303 ice_acquire_lock(&hw->tnl_lock); 2304 2305 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) { 2306 hw->tnl.tbl[index].ref++; 2307 status = ICE_SUCCESS; 2308 goto ice_create_tunnel_end; 2309 } 2310 2311 if (!ice_find_free_tunnel_entry(hw, type, &index)) { 2312 status = ICE_ERR_OUT_OF_RANGE; 2313 goto ice_create_tunnel_end; 2314 } 2315 2316 bld = ice_pkg_buf_alloc(hw); 2317 if (!bld) { 2318 status = ICE_ERR_NO_MEMORY; 2319 goto ice_create_tunnel_end; 2320 } 2321 2322 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2323 if (ice_pkg_buf_reserve_section(bld, 2)) 2324 goto ice_create_tunnel_err; 2325 2326 sect_rx = (struct ice_boost_tcam_section *) 2327 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2328 ice_struct_size(sect_rx, tcam, 1)); 2329 if (!sect_rx) 2330 goto ice_create_tunnel_err; 2331 sect_rx->count = CPU_TO_LE16(1); 2332 2333 sect_tx = (struct ice_boost_tcam_section *) 2334 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2335 ice_struct_size(sect_tx, tcam, 1)); 2336 if (!sect_tx) 2337 goto ice_create_tunnel_err; 2338 sect_tx->count = CPU_TO_LE16(1); 2339 2340 /* copy original boost entry to update package buffer */ 2341 ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry, 2342 sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA); 2343 2344 /* over-write the never-match dest port key bits with the encoded port 2345 * bits 2346 */ 2347 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key), 2348 (u8 *)&port, NULL, NULL, NULL, 2349 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key), 2350 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key)); 2351 2352 /* exact copy of entry to Tx section entry */ 2353 ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam), 2354 ICE_NONDMA_TO_NONDMA); 2355 2356 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2357 if (!status) { 2358 hw->tnl.tbl[index].port = port; 2359 hw->tnl.tbl[index].in_use = true; 2360 hw->tnl.tbl[index].ref = 1; 2361 } 2362 2363 ice_create_tunnel_err: 2364 ice_pkg_buf_free(hw, bld); 2365 2366 ice_create_tunnel_end: 2367 ice_release_lock(&hw->tnl_lock); 2368 2369 return status; 2370 } 2371 2372 /** 2373 * ice_destroy_tunnel 2374 * @hw: pointer to the HW structure 2375 * @port: port of tunnel to destroy (ignored if the all parameter is true) 2376 * @all: flag that states to destroy all tunnels 2377 * 2378 * Destroys a tunnel or all tunnels by creating an update package buffer 2379 * targeting the specific updates requested and then performing an update 2380 * package. 2381 */ 2382 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all) 2383 { 2384 struct ice_boost_tcam_section *sect_rx, *sect_tx; 2385 enum ice_status status = ICE_ERR_MAX_LIMIT; 2386 struct ice_buf_build *bld; 2387 u16 count = 0; 2388 u16 index; 2389 u16 size; 2390 u16 i, j; 2391 2392 ice_acquire_lock(&hw->tnl_lock); 2393 2394 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index)) 2395 if (hw->tnl.tbl[index].ref > 1) { 2396 hw->tnl.tbl[index].ref--; 2397 status = ICE_SUCCESS; 2398 goto ice_destroy_tunnel_end; 2399 } 2400 2401 /* determine count */ 2402 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2403 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2404 (all || hw->tnl.tbl[i].port == port)) 2405 count++; 2406 2407 if (!count) { 2408 status = ICE_ERR_PARAM; 2409 goto ice_destroy_tunnel_end; 2410 } 2411 2412 /* size of section - there is at least one entry */ 2413 size = ice_struct_size(sect_rx, tcam, count); 2414 2415 bld = ice_pkg_buf_alloc(hw); 2416 if (!bld) { 2417 status = ICE_ERR_NO_MEMORY; 2418 goto ice_destroy_tunnel_end; 2419 } 2420 2421 /* allocate 2 sections, one for Rx parser, one for Tx parser */ 2422 if (ice_pkg_buf_reserve_section(bld, 2)) 2423 goto ice_destroy_tunnel_err; 2424 2425 sect_rx = (struct ice_boost_tcam_section *) 2426 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM, 2427 size); 2428 if (!sect_rx) 2429 goto ice_destroy_tunnel_err; 2430 sect_rx->count = CPU_TO_LE16(count); 2431 2432 sect_tx = (struct ice_boost_tcam_section *) 2433 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM, 2434 size); 2435 if (!sect_tx) 2436 goto ice_destroy_tunnel_err; 2437 sect_tx->count = CPU_TO_LE16(count); 2438 2439 /* copy original boost entry to update package buffer, one copy to Rx 2440 * section, another copy to the Tx section 2441 */ 2442 for (i = 0, j = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) 2443 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use && 2444 (all || hw->tnl.tbl[i].port == port)) { 2445 ice_memcpy(sect_rx->tcam + j, 2446 hw->tnl.tbl[i].boost_entry, 2447 sizeof(*sect_rx->tcam), 2448 ICE_NONDMA_TO_NONDMA); 2449 ice_memcpy(sect_tx->tcam + j, 2450 hw->tnl.tbl[i].boost_entry, 2451 sizeof(*sect_tx->tcam), 2452 ICE_NONDMA_TO_NONDMA); 2453 hw->tnl.tbl[i].marked = true; 2454 j++; 2455 } 2456 2457 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2458 if (!status) 2459 for (i = 0; i < hw->tnl.count && 2460 i < ICE_TUNNEL_MAX_ENTRIES; i++) 2461 if (hw->tnl.tbl[i].marked) { 2462 hw->tnl.tbl[i].ref = 0; 2463 hw->tnl.tbl[i].port = 0; 2464 hw->tnl.tbl[i].in_use = false; 2465 hw->tnl.tbl[i].marked = false; 2466 } 2467 2468 ice_destroy_tunnel_err: 2469 ice_pkg_buf_free(hw, bld); 2470 2471 ice_destroy_tunnel_end: 2472 ice_release_lock(&hw->tnl_lock); 2473 2474 return status; 2475 } 2476 2477 /** 2478 * ice_replay_tunnels 2479 * @hw: pointer to the HW structure 2480 * 2481 * Replays all tunnels 2482 */ 2483 enum ice_status ice_replay_tunnels(struct ice_hw *hw) 2484 { 2485 enum ice_status status = ICE_SUCCESS; 2486 u16 i; 2487 2488 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); 2489 2490 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) { 2491 enum ice_tunnel_type type = hw->tnl.tbl[i].type; 2492 u16 refs = hw->tnl.tbl[i].ref; 2493 u16 port = hw->tnl.tbl[i].port; 2494 2495 if (!hw->tnl.tbl[i].in_use) 2496 continue; 2497 2498 /* Replay tunnels one at a time by destroying them, then 2499 * recreating them 2500 */ 2501 hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */ 2502 status = ice_destroy_tunnel(hw, port, false); 2503 if (status) { 2504 ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - destroy tunnel port 0x%x\n", 2505 status, port); 2506 break; 2507 } 2508 2509 status = ice_create_tunnel(hw, type, port); 2510 if (status) { 2511 ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - create tunnel port 0x%x\n", 2512 status, port); 2513 break; 2514 } 2515 2516 /* reset to original ref count */ 2517 hw->tnl.tbl[i].ref = refs; 2518 } 2519 2520 return status; 2521 } 2522 2523 /** 2524 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index 2525 * @hw: pointer to the hardware structure 2526 * @blk: hardware block 2527 * @prof: profile ID 2528 * @fv_idx: field vector word index 2529 * @prot: variable to receive the protocol ID 2530 * @off: variable to receive the protocol offset 2531 */ 2532 enum ice_status 2533 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, 2534 u8 *prot, u16 *off) 2535 { 2536 struct ice_fv_word *fv_ext; 2537 2538 if (prof >= hw->blk[blk].es.count) 2539 return ICE_ERR_PARAM; 2540 2541 if (fv_idx >= hw->blk[blk].es.fvw) 2542 return ICE_ERR_PARAM; 2543 2544 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw); 2545 2546 *prot = fv_ext[fv_idx].prot_id; 2547 *off = fv_ext[fv_idx].off; 2548 2549 return ICE_SUCCESS; 2550 } 2551 2552 /* PTG Management */ 2553 2554 /** 2555 * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table 2556 * @hw: pointer to the hardware structure 2557 * @blk: HW block 2558 * 2559 * This function will update the XLT1 hardware table to reflect the new 2560 * packet type group configuration. 2561 */ 2562 enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk) 2563 { 2564 struct ice_xlt1_section *sect; 2565 struct ice_buf_build *bld; 2566 enum ice_status status; 2567 u16 index; 2568 2569 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1), 2570 ice_struct_size(sect, value, 2571 ICE_XLT1_CNT), 2572 (void **)§); 2573 if (!bld) 2574 return ICE_ERR_NO_MEMORY; 2575 2576 sect->count = CPU_TO_LE16(ICE_XLT1_CNT); 2577 sect->offset = CPU_TO_LE16(0); 2578 for (index = 0; index < ICE_XLT1_CNT; index++) 2579 sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg; 2580 2581 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2582 2583 ice_pkg_buf_free(hw, bld); 2584 2585 return status; 2586 } 2587 2588 /** 2589 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype) 2590 * @hw: pointer to the hardware structure 2591 * @blk: HW block 2592 * @ptype: the ptype to search for 2593 * @ptg: pointer to variable that receives the PTG 2594 * 2595 * This function will search the PTGs for a particular ptype, returning the 2596 * PTG ID that contains it through the PTG parameter, with the value of 2597 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG. 2598 */ 2599 static enum ice_status 2600 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg) 2601 { 2602 if (ptype >= ICE_XLT1_CNT || !ptg) 2603 return ICE_ERR_PARAM; 2604 2605 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg; 2606 return ICE_SUCCESS; 2607 } 2608 2609 /** 2610 * ice_ptg_alloc_val - Allocates a new packet type group ID by value 2611 * @hw: pointer to the hardware structure 2612 * @blk: HW block 2613 * @ptg: the PTG to allocate 2614 * 2615 * This function allocates a given packet type group ID specified by the PTG 2616 * parameter. 2617 */ 2618 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2619 { 2620 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true; 2621 } 2622 2623 /** 2624 * ice_ptg_free - Frees a packet type group 2625 * @hw: pointer to the hardware structure 2626 * @blk: HW block 2627 * @ptg: the PTG ID to free 2628 * 2629 * This function frees a packet type group, and returns all the current ptypes 2630 * within it to the default PTG. 2631 */ 2632 void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg) 2633 { 2634 struct ice_ptg_ptype *p, *temp; 2635 2636 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false; 2637 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2638 while (p) { 2639 p->ptg = ICE_DEFAULT_PTG; 2640 temp = p->next_ptype; 2641 p->next_ptype = NULL; 2642 p = temp; 2643 } 2644 2645 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL; 2646 } 2647 2648 /** 2649 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group 2650 * @hw: pointer to the hardware structure 2651 * @blk: HW block 2652 * @ptype: the ptype to remove 2653 * @ptg: the PTG to remove the ptype from 2654 * 2655 * This function will remove the ptype from the specific PTG, and move it to 2656 * the default PTG (ICE_DEFAULT_PTG). 2657 */ 2658 static enum ice_status 2659 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2660 { 2661 struct ice_ptg_ptype **ch; 2662 struct ice_ptg_ptype *p; 2663 2664 if (ptype > ICE_XLT1_CNT - 1) 2665 return ICE_ERR_PARAM; 2666 2667 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use) 2668 return ICE_ERR_DOES_NOT_EXIST; 2669 2670 /* Should not happen if .in_use is set, bad config */ 2671 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype) 2672 return ICE_ERR_CFG; 2673 2674 /* find the ptype within this PTG, and bypass the link over it */ 2675 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2676 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2677 while (p) { 2678 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) { 2679 *ch = p->next_ptype; 2680 break; 2681 } 2682 2683 ch = &p->next_ptype; 2684 p = p->next_ptype; 2685 } 2686 2687 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG; 2688 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL; 2689 2690 return ICE_SUCCESS; 2691 } 2692 2693 /** 2694 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group 2695 * @hw: pointer to the hardware structure 2696 * @blk: HW block 2697 * @ptype: the ptype to add or move 2698 * @ptg: the PTG to add or move the ptype to 2699 * 2700 * This function will either add or move a ptype to a particular PTG depending 2701 * on if the ptype is already part of another group. Note that using a 2702 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the 2703 * default PTG. 2704 */ 2705 static enum ice_status 2706 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg) 2707 { 2708 enum ice_status status; 2709 u8 original_ptg; 2710 2711 if (ptype > ICE_XLT1_CNT - 1) 2712 return ICE_ERR_PARAM; 2713 2714 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG) 2715 return ICE_ERR_DOES_NOT_EXIST; 2716 2717 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg); 2718 if (status) 2719 return status; 2720 2721 /* Is ptype already in the correct PTG? */ 2722 if (original_ptg == ptg) 2723 return ICE_SUCCESS; 2724 2725 /* Remove from original PTG and move back to the default PTG */ 2726 if (original_ptg != ICE_DEFAULT_PTG) 2727 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg); 2728 2729 /* Moving to default PTG? Then we're done with this request */ 2730 if (ptg == ICE_DEFAULT_PTG) 2731 return ICE_SUCCESS; 2732 2733 /* Add ptype to PTG at beginning of list */ 2734 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = 2735 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype; 2736 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = 2737 &hw->blk[blk].xlt1.ptypes[ptype]; 2738 2739 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg; 2740 hw->blk[blk].xlt1.t[ptype] = ptg; 2741 2742 return ICE_SUCCESS; 2743 } 2744 2745 /* Block / table size info */ 2746 struct ice_blk_size_details { 2747 u16 xlt1; /* # XLT1 entries */ 2748 u16 xlt2; /* # XLT2 entries */ 2749 u16 prof_tcam; /* # profile ID TCAM entries */ 2750 u16 prof_id; /* # profile IDs */ 2751 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */ 2752 u16 prof_redir; /* # profile redirection entries */ 2753 u16 es; /* # extraction sequence entries */ 2754 u16 fvw; /* # field vector words */ 2755 u8 overwrite; /* overwrite existing entries allowed */ 2756 u8 reverse; /* reverse FV order */ 2757 }; 2758 2759 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = { 2760 /** 2761 * Table Definitions 2762 * XLT1 - Number of entries in XLT1 table 2763 * XLT2 - Number of entries in XLT2 table 2764 * TCAM - Number of entries Profile ID TCAM table 2765 * CDID - Control Domain ID of the hardware block 2766 * PRED - Number of entries in the Profile Redirection Table 2767 * FV - Number of entries in the Field Vector 2768 * FVW - Width (in WORDs) of the Field Vector 2769 * OVR - Overwrite existing table entries 2770 * REV - Reverse FV 2771 */ 2772 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */ 2773 /* Overwrite , Reverse FV */ 2774 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48, 2775 false, false }, 2776 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32, 2777 false, false }, 2778 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2779 false, true }, 2780 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24, 2781 true, true }, 2782 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24, 2783 false, false }, 2784 }; 2785 2786 enum ice_sid_all { 2787 ICE_SID_XLT1_OFF = 0, 2788 ICE_SID_XLT2_OFF, 2789 ICE_SID_PR_OFF, 2790 ICE_SID_PR_REDIR_OFF, 2791 ICE_SID_ES_OFF, 2792 ICE_SID_OFF_COUNT, 2793 }; 2794 2795 /* Characteristic handling */ 2796 2797 /** 2798 * ice_match_prop_lst - determine if properties of two lists match 2799 * @list1: first properties list 2800 * @list2: second properties list 2801 * 2802 * Count, cookies and the order must match in order to be considered equivalent. 2803 */ 2804 static bool 2805 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2) 2806 { 2807 struct ice_vsig_prof *tmp1; 2808 struct ice_vsig_prof *tmp2; 2809 u16 chk_count = 0; 2810 u16 count = 0; 2811 2812 /* compare counts */ 2813 LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list) 2814 count++; 2815 LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list) 2816 chk_count++; 2817 if (!count || count != chk_count) 2818 return false; 2819 2820 tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list); 2821 tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list); 2822 2823 /* profile cookies must compare, and in the exact same order to take 2824 * into account priority 2825 */ 2826 while (count--) { 2827 if (tmp2->profile_cookie != tmp1->profile_cookie) 2828 return false; 2829 2830 tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list); 2831 tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list); 2832 } 2833 2834 return true; 2835 } 2836 2837 /* VSIG Management */ 2838 2839 /** 2840 * ice_vsig_update_xlt2_sect - update one section of XLT2 table 2841 * @hw: pointer to the hardware structure 2842 * @blk: HW block 2843 * @vsi: HW VSI number to program 2844 * @vsig: VSIG for the VSI 2845 * 2846 * This function will update the XLT2 hardware table with the input VSI 2847 * group configuration. 2848 */ 2849 static enum ice_status 2850 ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi, 2851 u16 vsig) 2852 { 2853 struct ice_xlt2_section *sect; 2854 struct ice_buf_build *bld; 2855 enum ice_status status; 2856 2857 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2), 2858 ice_struct_size(sect, value, 1), 2859 (void **)§); 2860 if (!bld) 2861 return ICE_ERR_NO_MEMORY; 2862 2863 sect->count = CPU_TO_LE16(1); 2864 sect->offset = CPU_TO_LE16(vsi); 2865 sect->value[0] = CPU_TO_LE16(vsig); 2866 2867 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1); 2868 2869 ice_pkg_buf_free(hw, bld); 2870 2871 return status; 2872 } 2873 2874 /** 2875 * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration 2876 * @hw: pointer to the hardware structure 2877 * @blk: HW block 2878 * 2879 * This function will update the XLT2 hardware table with the input VSI 2880 * group configuration of used vsis. 2881 */ 2882 enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk) 2883 { 2884 u16 vsi; 2885 2886 for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) { 2887 /* update only vsis that have been changed */ 2888 if (hw->blk[blk].xlt2.vsis[vsi].changed) { 2889 enum ice_status status; 2890 u16 vsig; 2891 2892 vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2893 status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig); 2894 if (status) 2895 return status; 2896 2897 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 2898 } 2899 } 2900 2901 return ICE_SUCCESS; 2902 } 2903 2904 /** 2905 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI 2906 * @hw: pointer to the hardware structure 2907 * @blk: HW block 2908 * @vsi: VSI of interest 2909 * @vsig: pointer to receive the VSI group 2910 * 2911 * This function will lookup the VSI entry in the XLT2 list and return 2912 * the VSI group its associated with. 2913 */ 2914 enum ice_status 2915 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig) 2916 { 2917 if (!vsig || vsi >= ICE_MAX_VSI) 2918 return ICE_ERR_PARAM; 2919 2920 /* As long as there's a default or valid VSIG associated with the input 2921 * VSI, the functions returns a success. Any handling of VSIG will be 2922 * done by the following add, update or remove functions. 2923 */ 2924 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig; 2925 2926 return ICE_SUCCESS; 2927 } 2928 2929 /** 2930 * ice_vsig_alloc_val - allocate a new VSIG by value 2931 * @hw: pointer to the hardware structure 2932 * @blk: HW block 2933 * @vsig: the VSIG to allocate 2934 * 2935 * This function will allocate a given VSIG specified by the VSIG parameter. 2936 */ 2937 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig) 2938 { 2939 u16 idx = vsig & ICE_VSIG_IDX_M; 2940 2941 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) { 2942 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 2943 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true; 2944 } 2945 2946 return ICE_VSIG_VALUE(idx, hw->pf_id); 2947 } 2948 2949 /** 2950 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG 2951 * @hw: pointer to the hardware structure 2952 * @blk: HW block 2953 * 2954 * This function will iterate through the VSIG list and mark the first 2955 * unused entry for the new VSIG entry as used and return that value. 2956 */ 2957 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk) 2958 { 2959 u16 i; 2960 2961 for (i = 1; i < ICE_MAX_VSIGS; i++) 2962 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use) 2963 return ice_vsig_alloc_val(hw, blk, i); 2964 2965 return ICE_DEFAULT_VSIG; 2966 } 2967 2968 /** 2969 * ice_find_dup_props_vsig - find VSI group with a specified set of properties 2970 * @hw: pointer to the hardware structure 2971 * @blk: HW block 2972 * @chs: characteristic list 2973 * @vsig: returns the VSIG with the matching profiles, if found 2974 * 2975 * Each VSIG is associated with a characteristic set; i.e. all VSIs under 2976 * a group have the same characteristic set. To check if there exists a VSIG 2977 * which has the same characteristics as the input characteristics; this 2978 * function will iterate through the XLT2 list and return the VSIG that has a 2979 * matching configuration. In order to make sure that priorities are accounted 2980 * for, the list must match exactly, including the order in which the 2981 * characteristics are listed. 2982 */ 2983 static enum ice_status 2984 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk, 2985 struct LIST_HEAD_TYPE *chs, u16 *vsig) 2986 { 2987 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2; 2988 u16 i; 2989 2990 for (i = 0; i < xlt2->count; i++) 2991 if (xlt2->vsig_tbl[i].in_use && 2992 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) { 2993 *vsig = ICE_VSIG_VALUE(i, hw->pf_id); 2994 return ICE_SUCCESS; 2995 } 2996 2997 return ICE_ERR_DOES_NOT_EXIST; 2998 } 2999 3000 /** 3001 * ice_vsig_free - free VSI group 3002 * @hw: pointer to the hardware structure 3003 * @blk: HW block 3004 * @vsig: VSIG to remove 3005 * 3006 * The function will remove all VSIs associated with the input VSIG and move 3007 * them to the DEFAULT_VSIG and mark the VSIG available. 3008 */ 3009 static enum ice_status 3010 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig) 3011 { 3012 struct ice_vsig_prof *dtmp, *del; 3013 struct ice_vsig_vsi *vsi_cur; 3014 u16 idx; 3015 3016 idx = vsig & ICE_VSIG_IDX_M; 3017 if (idx >= ICE_MAX_VSIGS) 3018 return ICE_ERR_PARAM; 3019 3020 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3021 return ICE_ERR_DOES_NOT_EXIST; 3022 3023 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false; 3024 3025 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3026 /* If the VSIG has at least 1 VSI then iterate through the 3027 * list and remove the VSIs before deleting the group. 3028 */ 3029 if (vsi_cur) { 3030 /* remove all vsis associated with this VSIG XLT2 entry */ 3031 do { 3032 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 3033 3034 vsi_cur->vsig = ICE_DEFAULT_VSIG; 3035 vsi_cur->changed = 1; 3036 vsi_cur->next_vsi = NULL; 3037 vsi_cur = tmp; 3038 } while (vsi_cur); 3039 3040 /* NULL terminate head of VSI list */ 3041 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL; 3042 } 3043 3044 /* free characteristic list */ 3045 LIST_FOR_EACH_ENTRY_SAFE(del, dtmp, 3046 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 3047 ice_vsig_prof, list) { 3048 LIST_DEL(&del->list); 3049 ice_free(hw, del); 3050 } 3051 3052 /* if VSIG characteristic list was cleared for reset 3053 * re-initialize the list head 3054 */ 3055 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst); 3056 3057 return ICE_SUCCESS; 3058 } 3059 3060 /** 3061 * ice_vsig_remove_vsi - remove VSI from VSIG 3062 * @hw: pointer to the hardware structure 3063 * @blk: HW block 3064 * @vsi: VSI to remove 3065 * @vsig: VSI group to remove from 3066 * 3067 * The function will remove the input VSI from its VSI group and move it 3068 * to the DEFAULT_VSIG. 3069 */ 3070 static enum ice_status 3071 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 3072 { 3073 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt; 3074 u16 idx; 3075 3076 idx = vsig & ICE_VSIG_IDX_M; 3077 3078 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 3079 return ICE_ERR_PARAM; 3080 3081 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 3082 return ICE_ERR_DOES_NOT_EXIST; 3083 3084 /* entry already in default VSIG, don't have to remove */ 3085 if (idx == ICE_DEFAULT_VSIG) 3086 return ICE_SUCCESS; 3087 3088 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3089 if (!(*vsi_head)) 3090 return ICE_ERR_CFG; 3091 3092 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi]; 3093 vsi_cur = (*vsi_head); 3094 3095 /* iterate the VSI list, skip over the entry to be removed */ 3096 while (vsi_cur) { 3097 if (vsi_tgt == vsi_cur) { 3098 (*vsi_head) = vsi_cur->next_vsi; 3099 break; 3100 } 3101 vsi_head = &vsi_cur->next_vsi; 3102 vsi_cur = vsi_cur->next_vsi; 3103 } 3104 3105 /* verify if VSI was removed from group list */ 3106 if (!vsi_cur) 3107 return ICE_ERR_DOES_NOT_EXIST; 3108 3109 vsi_cur->vsig = ICE_DEFAULT_VSIG; 3110 vsi_cur->changed = 1; 3111 vsi_cur->next_vsi = NULL; 3112 3113 return ICE_SUCCESS; 3114 } 3115 3116 /** 3117 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group 3118 * @hw: pointer to the hardware structure 3119 * @blk: HW block 3120 * @vsi: VSI to move 3121 * @vsig: destination VSI group 3122 * 3123 * This function will move or add the input VSI to the target VSIG. 3124 * The function will find the original VSIG the VSI belongs to and 3125 * move the entry to the DEFAULT_VSIG, update the original VSIG and 3126 * then move entry to the new VSIG. 3127 */ 3128 static enum ice_status 3129 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 3130 { 3131 struct ice_vsig_vsi *tmp; 3132 enum ice_status status; 3133 u16 orig_vsig, idx; 3134 3135 idx = vsig & ICE_VSIG_IDX_M; 3136 3137 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS) 3138 return ICE_ERR_PARAM; 3139 3140 /* if VSIG not in use and VSIG is not default type this VSIG 3141 * doesn't exist. 3142 */ 3143 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use && 3144 vsig != ICE_DEFAULT_VSIG) 3145 return ICE_ERR_DOES_NOT_EXIST; 3146 3147 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 3148 if (status) 3149 return status; 3150 3151 /* no update required if vsigs match */ 3152 if (orig_vsig == vsig) 3153 return ICE_SUCCESS; 3154 3155 if (orig_vsig != ICE_DEFAULT_VSIG) { 3156 /* remove entry from orig_vsig and add to default VSIG */ 3157 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig); 3158 if (status) 3159 return status; 3160 } 3161 3162 if (idx == ICE_DEFAULT_VSIG) 3163 return ICE_SUCCESS; 3164 3165 /* Create VSI entry and add VSIG and prop_mask values */ 3166 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig; 3167 hw->blk[blk].xlt2.vsis[vsi].changed = 1; 3168 3169 /* Add new entry to the head of the VSIG list */ 3170 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 3171 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = 3172 &hw->blk[blk].xlt2.vsis[vsi]; 3173 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp; 3174 hw->blk[blk].xlt2.t[vsi] = vsig; 3175 3176 return ICE_SUCCESS; 3177 } 3178 3179 /** 3180 * ice_find_prof_id - find profile ID for a given field vector 3181 * @hw: pointer to the hardware structure 3182 * @blk: HW block 3183 * @fv: field vector to search for 3184 * @prof_id: receives the profile ID 3185 */ 3186 static enum ice_status 3187 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk, 3188 struct ice_fv_word *fv, u8 *prof_id) 3189 { 3190 struct ice_es *es = &hw->blk[blk].es; 3191 u16 off; 3192 u8 i; 3193 3194 for (i = 0; i < (u8)es->count; i++) { 3195 off = i * es->fvw; 3196 3197 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv))) 3198 continue; 3199 3200 *prof_id = i; 3201 return ICE_SUCCESS; 3202 } 3203 3204 return ICE_ERR_DOES_NOT_EXIST; 3205 } 3206 3207 /** 3208 * ice_prof_id_rsrc_type - get profile ID resource type for a block type 3209 * @blk: the block type 3210 * @rsrc_type: pointer to variable to receive the resource type 3211 */ 3212 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3213 { 3214 switch (blk) { 3215 case ICE_BLK_RSS: 3216 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID; 3217 break; 3218 case ICE_BLK_PE: 3219 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID; 3220 break; 3221 default: 3222 return false; 3223 } 3224 return true; 3225 } 3226 3227 /** 3228 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type 3229 * @blk: the block type 3230 * @rsrc_type: pointer to variable to receive the resource type 3231 */ 3232 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type) 3233 { 3234 switch (blk) { 3235 case ICE_BLK_RSS: 3236 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM; 3237 break; 3238 case ICE_BLK_PE: 3239 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM; 3240 break; 3241 default: 3242 return false; 3243 } 3244 return true; 3245 } 3246 3247 /** 3248 * ice_alloc_tcam_ent - allocate hardware TCAM entry 3249 * @hw: pointer to the HW struct 3250 * @blk: the block to allocate the TCAM for 3251 * @btm: true to allocate from bottom of table, false to allocate from top 3252 * @tcam_idx: pointer to variable to receive the TCAM entry 3253 * 3254 * This function allocates a new entry in a Profile ID TCAM for a specific 3255 * block. 3256 */ 3257 static enum ice_status 3258 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm, 3259 u16 *tcam_idx) 3260 { 3261 u16 res_type; 3262 3263 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3264 return ICE_ERR_PARAM; 3265 3266 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx); 3267 } 3268 3269 /** 3270 * ice_free_tcam_ent - free hardware TCAM entry 3271 * @hw: pointer to the HW struct 3272 * @blk: the block from which to free the TCAM entry 3273 * @tcam_idx: the TCAM entry to free 3274 * 3275 * This function frees an entry in a Profile ID TCAM for a specific block. 3276 */ 3277 static enum ice_status 3278 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx) 3279 { 3280 u16 res_type; 3281 3282 if (!ice_tcam_ent_rsrc_type(blk, &res_type)) 3283 return ICE_ERR_PARAM; 3284 3285 return ice_free_hw_res(hw, res_type, 1, &tcam_idx); 3286 } 3287 3288 /** 3289 * ice_alloc_prof_id - allocate profile ID 3290 * @hw: pointer to the HW struct 3291 * @blk: the block to allocate the profile ID for 3292 * @prof_id: pointer to variable to receive the profile ID 3293 * 3294 * This function allocates a new profile ID, which also corresponds to a Field 3295 * Vector (Extraction Sequence) entry. 3296 */ 3297 static enum ice_status 3298 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id) 3299 { 3300 enum ice_status status; 3301 u16 res_type; 3302 u16 get_prof; 3303 3304 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3305 return ICE_ERR_PARAM; 3306 3307 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof); 3308 if (!status) 3309 *prof_id = (u8)get_prof; 3310 3311 return status; 3312 } 3313 3314 /** 3315 * ice_free_prof_id - free profile ID 3316 * @hw: pointer to the HW struct 3317 * @blk: the block from which to free the profile ID 3318 * @prof_id: the profile ID to free 3319 * 3320 * This function frees a profile ID, which also corresponds to a Field Vector. 3321 */ 3322 static enum ice_status 3323 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3324 { 3325 u16 tmp_prof_id = (u16)prof_id; 3326 u16 res_type; 3327 3328 if (!ice_prof_id_rsrc_type(blk, &res_type)) 3329 return ICE_ERR_PARAM; 3330 3331 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id); 3332 } 3333 3334 /** 3335 * ice_prof_inc_ref - increment reference count for profile 3336 * @hw: pointer to the HW struct 3337 * @blk: the block from which to free the profile ID 3338 * @prof_id: the profile ID for which to increment the reference count 3339 */ 3340 static enum ice_status 3341 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3342 { 3343 if (prof_id > hw->blk[blk].es.count) 3344 return ICE_ERR_PARAM; 3345 3346 hw->blk[blk].es.ref_count[prof_id]++; 3347 3348 return ICE_SUCCESS; 3349 } 3350 3351 /** 3352 * ice_write_es - write an extraction sequence to hardware 3353 * @hw: pointer to the HW struct 3354 * @blk: the block in which to write the extraction sequence 3355 * @prof_id: the profile ID to write 3356 * @fv: pointer to the extraction sequence to write - NULL to clear extraction 3357 */ 3358 static void 3359 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id, 3360 struct ice_fv_word *fv) 3361 { 3362 u16 off; 3363 3364 off = prof_id * hw->blk[blk].es.fvw; 3365 if (!fv) { 3366 ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw * 3367 sizeof(*fv), ICE_NONDMA_MEM); 3368 hw->blk[blk].es.written[prof_id] = false; 3369 } else { 3370 ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw * 3371 sizeof(*fv), ICE_NONDMA_TO_NONDMA); 3372 } 3373 } 3374 3375 /** 3376 * ice_prof_dec_ref - decrement reference count for profile 3377 * @hw: pointer to the HW struct 3378 * @blk: the block from which to free the profile ID 3379 * @prof_id: the profile ID for which to decrement the reference count 3380 */ 3381 static enum ice_status 3382 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id) 3383 { 3384 if (prof_id > hw->blk[blk].es.count) 3385 return ICE_ERR_PARAM; 3386 3387 if (hw->blk[blk].es.ref_count[prof_id] > 0) { 3388 if (!--hw->blk[blk].es.ref_count[prof_id]) { 3389 ice_write_es(hw, blk, prof_id, NULL); 3390 return ice_free_prof_id(hw, blk, prof_id); 3391 } 3392 } 3393 3394 return ICE_SUCCESS; 3395 } 3396 3397 /* Block / table section IDs */ 3398 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = { 3399 /* SWITCH */ 3400 { ICE_SID_XLT1_SW, 3401 ICE_SID_XLT2_SW, 3402 ICE_SID_PROFID_TCAM_SW, 3403 ICE_SID_PROFID_REDIR_SW, 3404 ICE_SID_FLD_VEC_SW 3405 }, 3406 3407 /* ACL */ 3408 { ICE_SID_XLT1_ACL, 3409 ICE_SID_XLT2_ACL, 3410 ICE_SID_PROFID_TCAM_ACL, 3411 ICE_SID_PROFID_REDIR_ACL, 3412 ICE_SID_FLD_VEC_ACL 3413 }, 3414 3415 /* FD */ 3416 { ICE_SID_XLT1_FD, 3417 ICE_SID_XLT2_FD, 3418 ICE_SID_PROFID_TCAM_FD, 3419 ICE_SID_PROFID_REDIR_FD, 3420 ICE_SID_FLD_VEC_FD 3421 }, 3422 3423 /* RSS */ 3424 { ICE_SID_XLT1_RSS, 3425 ICE_SID_XLT2_RSS, 3426 ICE_SID_PROFID_TCAM_RSS, 3427 ICE_SID_PROFID_REDIR_RSS, 3428 ICE_SID_FLD_VEC_RSS 3429 }, 3430 3431 /* PE */ 3432 { ICE_SID_XLT1_PE, 3433 ICE_SID_XLT2_PE, 3434 ICE_SID_PROFID_TCAM_PE, 3435 ICE_SID_PROFID_REDIR_PE, 3436 ICE_SID_FLD_VEC_PE 3437 } 3438 }; 3439 3440 /** 3441 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables 3442 * @hw: pointer to the hardware structure 3443 * @blk: the HW block to initialize 3444 */ 3445 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk) 3446 { 3447 u16 pt; 3448 3449 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) { 3450 u8 ptg; 3451 3452 ptg = hw->blk[blk].xlt1.t[pt]; 3453 if (ptg != ICE_DEFAULT_PTG) { 3454 ice_ptg_alloc_val(hw, blk, ptg); 3455 ice_ptg_add_mv_ptype(hw, blk, pt, ptg); 3456 } 3457 } 3458 } 3459 3460 /** 3461 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables 3462 * @hw: pointer to the hardware structure 3463 * @blk: the HW block to initialize 3464 */ 3465 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk) 3466 { 3467 u16 vsi; 3468 3469 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) { 3470 u16 vsig; 3471 3472 vsig = hw->blk[blk].xlt2.t[vsi]; 3473 if (vsig) { 3474 ice_vsig_alloc_val(hw, blk, vsig); 3475 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 3476 /* no changes at this time, since this has been 3477 * initialized from the original package 3478 */ 3479 hw->blk[blk].xlt2.vsis[vsi].changed = 0; 3480 } 3481 } 3482 } 3483 3484 /** 3485 * ice_init_sw_db - init software database from HW tables 3486 * @hw: pointer to the hardware structure 3487 */ 3488 static void ice_init_sw_db(struct ice_hw *hw) 3489 { 3490 u16 i; 3491 3492 for (i = 0; i < ICE_BLK_COUNT; i++) { 3493 ice_init_sw_xlt1_db(hw, (enum ice_block)i); 3494 ice_init_sw_xlt2_db(hw, (enum ice_block)i); 3495 } 3496 } 3497 3498 /** 3499 * ice_fill_tbl - Reads content of a single table type into database 3500 * @hw: pointer to the hardware structure 3501 * @block_id: Block ID of the table to copy 3502 * @sid: Section ID of the table to copy 3503 * 3504 * Will attempt to read the entire content of a given table of a single block 3505 * into the driver database. We assume that the buffer will always 3506 * be as large or larger than the data contained in the package. If 3507 * this condition is not met, there is most likely an error in the package 3508 * contents. 3509 */ 3510 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid) 3511 { 3512 u32 dst_len, sect_len, offset = 0; 3513 struct ice_prof_redir_section *pr; 3514 struct ice_prof_id_section *pid; 3515 struct ice_xlt1_section *xlt1; 3516 struct ice_xlt2_section *xlt2; 3517 struct ice_sw_fv_section *es; 3518 struct ice_pkg_enum state; 3519 u8 *src, *dst; 3520 void *sect; 3521 3522 /* if the HW segment pointer is null then the first iteration of 3523 * ice_pkg_enum_section() will fail. In this case the HW tables will 3524 * not be filled and return success. 3525 */ 3526 if (!hw->seg) { 3527 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n"); 3528 return; 3529 } 3530 3531 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM); 3532 3533 sect = ice_pkg_enum_section(hw->seg, &state, sid); 3534 3535 while (sect) { 3536 switch (sid) { 3537 case ICE_SID_XLT1_SW: 3538 case ICE_SID_XLT1_FD: 3539 case ICE_SID_XLT1_RSS: 3540 case ICE_SID_XLT1_ACL: 3541 case ICE_SID_XLT1_PE: 3542 xlt1 = (struct ice_xlt1_section *)sect; 3543 src = xlt1->value; 3544 sect_len = LE16_TO_CPU(xlt1->count) * 3545 sizeof(*hw->blk[block_id].xlt1.t); 3546 dst = hw->blk[block_id].xlt1.t; 3547 dst_len = hw->blk[block_id].xlt1.count * 3548 sizeof(*hw->blk[block_id].xlt1.t); 3549 break; 3550 case ICE_SID_XLT2_SW: 3551 case ICE_SID_XLT2_FD: 3552 case ICE_SID_XLT2_RSS: 3553 case ICE_SID_XLT2_ACL: 3554 case ICE_SID_XLT2_PE: 3555 xlt2 = (struct ice_xlt2_section *)sect; 3556 src = (_FORCE_ u8 *)xlt2->value; 3557 sect_len = LE16_TO_CPU(xlt2->count) * 3558 sizeof(*hw->blk[block_id].xlt2.t); 3559 dst = (u8 *)hw->blk[block_id].xlt2.t; 3560 dst_len = hw->blk[block_id].xlt2.count * 3561 sizeof(*hw->blk[block_id].xlt2.t); 3562 break; 3563 case ICE_SID_PROFID_TCAM_SW: 3564 case ICE_SID_PROFID_TCAM_FD: 3565 case ICE_SID_PROFID_TCAM_RSS: 3566 case ICE_SID_PROFID_TCAM_ACL: 3567 case ICE_SID_PROFID_TCAM_PE: 3568 pid = (struct ice_prof_id_section *)sect; 3569 src = (u8 *)pid->entry; 3570 sect_len = LE16_TO_CPU(pid->count) * 3571 sizeof(*hw->blk[block_id].prof.t); 3572 dst = (u8 *)hw->blk[block_id].prof.t; 3573 dst_len = hw->blk[block_id].prof.count * 3574 sizeof(*hw->blk[block_id].prof.t); 3575 break; 3576 case ICE_SID_PROFID_REDIR_SW: 3577 case ICE_SID_PROFID_REDIR_FD: 3578 case ICE_SID_PROFID_REDIR_RSS: 3579 case ICE_SID_PROFID_REDIR_ACL: 3580 case ICE_SID_PROFID_REDIR_PE: 3581 pr = (struct ice_prof_redir_section *)sect; 3582 src = pr->redir_value; 3583 sect_len = LE16_TO_CPU(pr->count) * 3584 sizeof(*hw->blk[block_id].prof_redir.t); 3585 dst = hw->blk[block_id].prof_redir.t; 3586 dst_len = hw->blk[block_id].prof_redir.count * 3587 sizeof(*hw->blk[block_id].prof_redir.t); 3588 break; 3589 case ICE_SID_FLD_VEC_SW: 3590 case ICE_SID_FLD_VEC_FD: 3591 case ICE_SID_FLD_VEC_RSS: 3592 case ICE_SID_FLD_VEC_ACL: 3593 case ICE_SID_FLD_VEC_PE: 3594 es = (struct ice_sw_fv_section *)sect; 3595 src = (u8 *)es->fv; 3596 sect_len = (u32)(LE16_TO_CPU(es->count) * 3597 hw->blk[block_id].es.fvw) * 3598 sizeof(*hw->blk[block_id].es.t); 3599 dst = (u8 *)hw->blk[block_id].es.t; 3600 dst_len = (u32)(hw->blk[block_id].es.count * 3601 hw->blk[block_id].es.fvw) * 3602 sizeof(*hw->blk[block_id].es.t); 3603 break; 3604 default: 3605 return; 3606 } 3607 3608 /* if the section offset exceeds destination length, terminate 3609 * table fill. 3610 */ 3611 if (offset > dst_len) 3612 return; 3613 3614 /* if the sum of section size and offset exceed destination size 3615 * then we are out of bounds of the HW table size for that PF. 3616 * Changing section length to fill the remaining table space 3617 * of that PF. 3618 */ 3619 if ((offset + sect_len) > dst_len) 3620 sect_len = dst_len - offset; 3621 3622 ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA); 3623 offset += sect_len; 3624 sect = ice_pkg_enum_section(NULL, &state, sid); 3625 } 3626 } 3627 3628 /** 3629 * ice_fill_blk_tbls - Read package context for tables 3630 * @hw: pointer to the hardware structure 3631 * 3632 * Reads the current package contents and populates the driver 3633 * database with the data iteratively for all advanced feature 3634 * blocks. Assume that the HW tables have been allocated. 3635 */ 3636 void ice_fill_blk_tbls(struct ice_hw *hw) 3637 { 3638 u8 i; 3639 3640 for (i = 0; i < ICE_BLK_COUNT; i++) { 3641 enum ice_block blk_id = (enum ice_block)i; 3642 3643 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid); 3644 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid); 3645 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid); 3646 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid); 3647 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid); 3648 } 3649 3650 ice_init_sw_db(hw); 3651 } 3652 3653 /** 3654 * ice_free_prof_map - free profile map 3655 * @hw: pointer to the hardware structure 3656 * @blk_idx: HW block index 3657 */ 3658 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx) 3659 { 3660 struct ice_es *es = &hw->blk[blk_idx].es; 3661 struct ice_prof_map *del, *tmp; 3662 3663 ice_acquire_lock(&es->prof_map_lock); 3664 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map, 3665 ice_prof_map, list) { 3666 LIST_DEL(&del->list); 3667 ice_free(hw, del); 3668 } 3669 INIT_LIST_HEAD(&es->prof_map); 3670 ice_release_lock(&es->prof_map_lock); 3671 } 3672 3673 /** 3674 * ice_free_flow_profs - free flow profile entries 3675 * @hw: pointer to the hardware structure 3676 * @blk_idx: HW block index 3677 */ 3678 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx) 3679 { 3680 struct ice_flow_prof *p, *tmp; 3681 3682 ice_acquire_lock(&hw->fl_profs_locks[blk_idx]); 3683 LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx], 3684 ice_flow_prof, l_entry) { 3685 LIST_DEL(&p->l_entry); 3686 3687 ice_free(hw, p); 3688 } 3689 ice_release_lock(&hw->fl_profs_locks[blk_idx]); 3690 3691 /* if driver is in reset and tables are being cleared 3692 * re-initialize the flow profile list heads 3693 */ 3694 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3695 } 3696 3697 /** 3698 * ice_free_vsig_tbl - free complete VSIG table entries 3699 * @hw: pointer to the hardware structure 3700 * @blk: the HW block on which to free the VSIG table entries 3701 */ 3702 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk) 3703 { 3704 u16 i; 3705 3706 if (!hw->blk[blk].xlt2.vsig_tbl) 3707 return; 3708 3709 for (i = 1; i < ICE_MAX_VSIGS; i++) 3710 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) 3711 ice_vsig_free(hw, blk, i); 3712 } 3713 3714 /** 3715 * ice_free_hw_tbls - free hardware table memory 3716 * @hw: pointer to the hardware structure 3717 */ 3718 void ice_free_hw_tbls(struct ice_hw *hw) 3719 { 3720 struct ice_rss_cfg *r, *rt; 3721 u8 i; 3722 3723 for (i = 0; i < ICE_BLK_COUNT; i++) { 3724 if (hw->blk[i].is_list_init) { 3725 struct ice_es *es = &hw->blk[i].es; 3726 3727 ice_free_prof_map(hw, i); 3728 ice_destroy_lock(&es->prof_map_lock); 3729 3730 ice_free_flow_profs(hw, i); 3731 ice_destroy_lock(&hw->fl_profs_locks[i]); 3732 3733 hw->blk[i].is_list_init = false; 3734 } 3735 ice_free_vsig_tbl(hw, (enum ice_block)i); 3736 ice_free(hw, hw->blk[i].xlt1.ptypes); 3737 ice_free(hw, hw->blk[i].xlt1.ptg_tbl); 3738 ice_free(hw, hw->blk[i].xlt1.t); 3739 ice_free(hw, hw->blk[i].xlt2.t); 3740 ice_free(hw, hw->blk[i].xlt2.vsig_tbl); 3741 ice_free(hw, hw->blk[i].xlt2.vsis); 3742 ice_free(hw, hw->blk[i].prof.t); 3743 ice_free(hw, hw->blk[i].prof_redir.t); 3744 ice_free(hw, hw->blk[i].es.t); 3745 ice_free(hw, hw->blk[i].es.ref_count); 3746 ice_free(hw, hw->blk[i].es.written); 3747 } 3748 3749 LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head, 3750 ice_rss_cfg, l_entry) { 3751 LIST_DEL(&r->l_entry); 3752 ice_free(hw, r); 3753 } 3754 ice_destroy_lock(&hw->rss_locks); 3755 ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM); 3756 } 3757 3758 /** 3759 * ice_init_flow_profs - init flow profile locks and list heads 3760 * @hw: pointer to the hardware structure 3761 * @blk_idx: HW block index 3762 */ 3763 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx) 3764 { 3765 ice_init_lock(&hw->fl_profs_locks[blk_idx]); 3766 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]); 3767 } 3768 3769 /** 3770 * ice_clear_hw_tbls - clear HW tables and flow profiles 3771 * @hw: pointer to the hardware structure 3772 */ 3773 void ice_clear_hw_tbls(struct ice_hw *hw) 3774 { 3775 u8 i; 3776 3777 for (i = 0; i < ICE_BLK_COUNT; i++) { 3778 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3779 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3780 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3781 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3782 struct ice_es *es = &hw->blk[i].es; 3783 3784 if (hw->blk[i].is_list_init) { 3785 ice_free_prof_map(hw, i); 3786 ice_free_flow_profs(hw, i); 3787 } 3788 3789 ice_free_vsig_tbl(hw, (enum ice_block)i); 3790 3791 ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes), 3792 ICE_NONDMA_MEM); 3793 ice_memset(xlt1->ptg_tbl, 0, 3794 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl), 3795 ICE_NONDMA_MEM); 3796 ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t), 3797 ICE_NONDMA_MEM); 3798 3799 ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis), 3800 ICE_NONDMA_MEM); 3801 ice_memset(xlt2->vsig_tbl, 0, 3802 xlt2->count * sizeof(*xlt2->vsig_tbl), 3803 ICE_NONDMA_MEM); 3804 ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t), 3805 ICE_NONDMA_MEM); 3806 3807 ice_memset(prof->t, 0, prof->count * sizeof(*prof->t), 3808 ICE_NONDMA_MEM); 3809 ice_memset(prof_redir->t, 0, 3810 prof_redir->count * sizeof(*prof_redir->t), 3811 ICE_NONDMA_MEM); 3812 3813 ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw, 3814 ICE_NONDMA_MEM); 3815 ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count), 3816 ICE_NONDMA_MEM); 3817 ice_memset(es->written, 0, es->count * sizeof(*es->written), 3818 ICE_NONDMA_MEM); 3819 } 3820 } 3821 3822 /** 3823 * ice_init_hw_tbls - init hardware table memory 3824 * @hw: pointer to the hardware structure 3825 */ 3826 enum ice_status ice_init_hw_tbls(struct ice_hw *hw) 3827 { 3828 u8 i; 3829 3830 ice_init_lock(&hw->rss_locks); 3831 INIT_LIST_HEAD(&hw->rss_list_head); 3832 for (i = 0; i < ICE_BLK_COUNT; i++) { 3833 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir; 3834 struct ice_prof_tcam *prof = &hw->blk[i].prof; 3835 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1; 3836 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2; 3837 struct ice_es *es = &hw->blk[i].es; 3838 u16 j; 3839 3840 if (hw->blk[i].is_list_init) 3841 continue; 3842 3843 ice_init_flow_profs(hw, i); 3844 ice_init_lock(&es->prof_map_lock); 3845 INIT_LIST_HEAD(&es->prof_map); 3846 hw->blk[i].is_list_init = true; 3847 3848 hw->blk[i].overwrite = blk_sizes[i].overwrite; 3849 es->reverse = blk_sizes[i].reverse; 3850 3851 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF]; 3852 xlt1->count = blk_sizes[i].xlt1; 3853 3854 xlt1->ptypes = (struct ice_ptg_ptype *) 3855 ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes)); 3856 3857 if (!xlt1->ptypes) 3858 goto err; 3859 3860 xlt1->ptg_tbl = (struct ice_ptg_entry *) 3861 ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl)); 3862 3863 if (!xlt1->ptg_tbl) 3864 goto err; 3865 3866 xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t)); 3867 if (!xlt1->t) 3868 goto err; 3869 3870 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF]; 3871 xlt2->count = blk_sizes[i].xlt2; 3872 3873 xlt2->vsis = (struct ice_vsig_vsi *) 3874 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis)); 3875 3876 if (!xlt2->vsis) 3877 goto err; 3878 3879 xlt2->vsig_tbl = (struct ice_vsig_entry *) 3880 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl)); 3881 if (!xlt2->vsig_tbl) 3882 goto err; 3883 3884 for (j = 0; j < xlt2->count; j++) 3885 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst); 3886 3887 xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t)); 3888 if (!xlt2->t) 3889 goto err; 3890 3891 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF]; 3892 prof->count = blk_sizes[i].prof_tcam; 3893 prof->max_prof_id = blk_sizes[i].prof_id; 3894 prof->cdid_bits = blk_sizes[i].prof_cdid_bits; 3895 prof->t = (struct ice_prof_tcam_entry *) 3896 ice_calloc(hw, prof->count, sizeof(*prof->t)); 3897 3898 if (!prof->t) 3899 goto err; 3900 3901 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF]; 3902 prof_redir->count = blk_sizes[i].prof_redir; 3903 prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count, 3904 sizeof(*prof_redir->t)); 3905 3906 if (!prof_redir->t) 3907 goto err; 3908 3909 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF]; 3910 es->count = blk_sizes[i].es; 3911 es->fvw = blk_sizes[i].fvw; 3912 es->t = (struct ice_fv_word *) 3913 ice_calloc(hw, (u32)(es->count * es->fvw), 3914 sizeof(*es->t)); 3915 if (!es->t) 3916 goto err; 3917 3918 es->ref_count = (u16 *) 3919 ice_calloc(hw, es->count, sizeof(*es->ref_count)); 3920 3921 if (!es->ref_count) 3922 goto err; 3923 3924 es->written = (u8 *) 3925 ice_calloc(hw, es->count, sizeof(*es->written)); 3926 3927 if (!es->written) 3928 goto err; 3929 3930 } 3931 return ICE_SUCCESS; 3932 3933 err: 3934 ice_free_hw_tbls(hw); 3935 return ICE_ERR_NO_MEMORY; 3936 } 3937 3938 /** 3939 * ice_prof_gen_key - generate profile ID key 3940 * @hw: pointer to the HW struct 3941 * @blk: the block in which to write profile ID to 3942 * @ptg: packet type group (PTG) portion of key 3943 * @vsig: VSIG portion of key 3944 * @cdid: CDID portion of key 3945 * @flags: flag portion of key 3946 * @vl_msk: valid mask 3947 * @dc_msk: don't care mask 3948 * @nm_msk: never match mask 3949 * @key: output of profile ID key 3950 */ 3951 static enum ice_status 3952 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig, 3953 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 3954 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ], 3955 u8 key[ICE_TCAM_KEY_SZ]) 3956 { 3957 struct ice_prof_id_key inkey; 3958 3959 inkey.xlt1 = ptg; 3960 inkey.xlt2_cdid = CPU_TO_LE16(vsig); 3961 inkey.flags = CPU_TO_LE16(flags); 3962 3963 switch (hw->blk[blk].prof.cdid_bits) { 3964 case 0: 3965 break; 3966 case 2: 3967 #define ICE_CD_2_M 0xC000U 3968 #define ICE_CD_2_S 14 3969 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M); 3970 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S); 3971 break; 3972 case 4: 3973 #define ICE_CD_4_M 0xF000U 3974 #define ICE_CD_4_S 12 3975 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M); 3976 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S); 3977 break; 3978 case 8: 3979 #define ICE_CD_8_M 0xFF00U 3980 #define ICE_CD_8_S 16 3981 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M); 3982 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S); 3983 break; 3984 default: 3985 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n"); 3986 break; 3987 } 3988 3989 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk, 3990 nm_msk, 0, ICE_TCAM_KEY_SZ / 2); 3991 } 3992 3993 /** 3994 * ice_tcam_write_entry - write TCAM entry 3995 * @hw: pointer to the HW struct 3996 * @blk: the block in which to write profile ID to 3997 * @idx: the entry index to write to 3998 * @prof_id: profile ID 3999 * @ptg: packet type group (PTG) portion of key 4000 * @vsig: VSIG portion of key 4001 * @cdid: CDID portion of key 4002 * @flags: flag portion of key 4003 * @vl_msk: valid mask 4004 * @dc_msk: don't care mask 4005 * @nm_msk: never match mask 4006 */ 4007 static enum ice_status 4008 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx, 4009 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags, 4010 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ], 4011 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], 4012 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ]) 4013 { 4014 struct ice_prof_tcam_entry; 4015 enum ice_status status; 4016 4017 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk, 4018 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key); 4019 if (!status) { 4020 hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx); 4021 hw->blk[blk].prof.t[idx].prof_id = prof_id; 4022 } 4023 4024 return status; 4025 } 4026 4027 /** 4028 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG 4029 * @hw: pointer to the hardware structure 4030 * @blk: HW block 4031 * @vsig: VSIG to query 4032 * @refs: pointer to variable to receive the reference count 4033 */ 4034 static enum ice_status 4035 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs) 4036 { 4037 u16 idx = vsig & ICE_VSIG_IDX_M; 4038 struct ice_vsig_vsi *ptr; 4039 4040 *refs = 0; 4041 4042 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) 4043 return ICE_ERR_DOES_NOT_EXIST; 4044 4045 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4046 while (ptr) { 4047 (*refs)++; 4048 ptr = ptr->next_vsi; 4049 } 4050 4051 return ICE_SUCCESS; 4052 } 4053 4054 /** 4055 * ice_has_prof_vsig - check to see if VSIG has a specific profile 4056 * @hw: pointer to the hardware structure 4057 * @blk: HW block 4058 * @vsig: VSIG to check against 4059 * @hdl: profile handle 4060 */ 4061 static bool 4062 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl) 4063 { 4064 u16 idx = vsig & ICE_VSIG_IDX_M; 4065 struct ice_vsig_prof *ent; 4066 4067 LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4068 ice_vsig_prof, list) 4069 if (ent->profile_cookie == hdl) 4070 return true; 4071 4072 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n", 4073 vsig); 4074 return false; 4075 } 4076 4077 /** 4078 * ice_prof_bld_es - build profile ID extraction sequence changes 4079 * @hw: pointer to the HW struct 4080 * @blk: hardware block 4081 * @bld: the update package buffer build to add to 4082 * @chgs: the list of changes to make in hardware 4083 */ 4084 static enum ice_status 4085 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk, 4086 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs) 4087 { 4088 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word); 4089 struct ice_chs_chg *tmp; 4090 4091 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) 4092 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) { 4093 u16 off = tmp->prof_id * hw->blk[blk].es.fvw; 4094 struct ice_pkg_es *p; 4095 u32 id; 4096 4097 id = ice_sect_id(blk, ICE_VEC_TBL); 4098 p = (struct ice_pkg_es *) 4099 ice_pkg_buf_alloc_section(bld, id, 4100 ice_struct_size(p, es, 4101 1) + 4102 vec_size - 4103 sizeof(p->es[0])); 4104 4105 if (!p) 4106 return ICE_ERR_MAX_LIMIT; 4107 4108 p->count = CPU_TO_LE16(1); 4109 p->offset = CPU_TO_LE16(tmp->prof_id); 4110 4111 ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size, 4112 ICE_NONDMA_TO_NONDMA); 4113 } 4114 4115 return ICE_SUCCESS; 4116 } 4117 4118 /** 4119 * ice_prof_bld_tcam - build profile ID TCAM changes 4120 * @hw: pointer to the HW struct 4121 * @blk: hardware block 4122 * @bld: the update package buffer build to add to 4123 * @chgs: the list of changes to make in hardware 4124 */ 4125 static enum ice_status 4126 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk, 4127 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs) 4128 { 4129 struct ice_chs_chg *tmp; 4130 4131 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) 4132 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) { 4133 struct ice_prof_id_section *p; 4134 u32 id; 4135 4136 id = ice_sect_id(blk, ICE_PROF_TCAM); 4137 p = (struct ice_prof_id_section *) 4138 ice_pkg_buf_alloc_section(bld, id, 4139 ice_struct_size(p, 4140 entry, 4141 1)); 4142 4143 if (!p) 4144 return ICE_ERR_MAX_LIMIT; 4145 4146 p->count = CPU_TO_LE16(1); 4147 p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx); 4148 p->entry[0].prof_id = tmp->prof_id; 4149 4150 ice_memcpy(p->entry[0].key, 4151 &hw->blk[blk].prof.t[tmp->tcam_idx].key, 4152 sizeof(hw->blk[blk].prof.t->key), 4153 ICE_NONDMA_TO_NONDMA); 4154 } 4155 4156 return ICE_SUCCESS; 4157 } 4158 4159 /** 4160 * ice_prof_bld_xlt1 - build XLT1 changes 4161 * @blk: hardware block 4162 * @bld: the update package buffer build to add to 4163 * @chgs: the list of changes to make in hardware 4164 */ 4165 static enum ice_status 4166 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld, 4167 struct LIST_HEAD_TYPE *chgs) 4168 { 4169 struct ice_chs_chg *tmp; 4170 4171 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) 4172 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) { 4173 struct ice_xlt1_section *p; 4174 u32 id; 4175 4176 id = ice_sect_id(blk, ICE_XLT1); 4177 p = (struct ice_xlt1_section *) 4178 ice_pkg_buf_alloc_section(bld, id, 4179 ice_struct_size(p, 4180 value, 4181 1)); 4182 4183 if (!p) 4184 return ICE_ERR_MAX_LIMIT; 4185 4186 p->count = CPU_TO_LE16(1); 4187 p->offset = CPU_TO_LE16(tmp->ptype); 4188 p->value[0] = tmp->ptg; 4189 } 4190 4191 return ICE_SUCCESS; 4192 } 4193 4194 /** 4195 * ice_prof_bld_xlt2 - build XLT2 changes 4196 * @blk: hardware block 4197 * @bld: the update package buffer build to add to 4198 * @chgs: the list of changes to make in hardware 4199 */ 4200 static enum ice_status 4201 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld, 4202 struct LIST_HEAD_TYPE *chgs) 4203 { 4204 struct ice_chs_chg *tmp; 4205 4206 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4207 struct ice_xlt2_section *p; 4208 u32 id; 4209 4210 switch (tmp->type) { 4211 case ICE_VSIG_ADD: 4212 case ICE_VSI_MOVE: 4213 case ICE_VSIG_REM: 4214 id = ice_sect_id(blk, ICE_XLT2); 4215 p = (struct ice_xlt2_section *) 4216 ice_pkg_buf_alloc_section(bld, id, 4217 ice_struct_size(p, 4218 value, 4219 1)); 4220 4221 if (!p) 4222 return ICE_ERR_MAX_LIMIT; 4223 4224 p->count = CPU_TO_LE16(1); 4225 p->offset = CPU_TO_LE16(tmp->vsi); 4226 p->value[0] = CPU_TO_LE16(tmp->vsig); 4227 break; 4228 default: 4229 break; 4230 } 4231 } 4232 4233 return ICE_SUCCESS; 4234 } 4235 4236 /** 4237 * ice_upd_prof_hw - update hardware using the change list 4238 * @hw: pointer to the HW struct 4239 * @blk: hardware block 4240 * @chgs: the list of changes to make in hardware 4241 */ 4242 static enum ice_status 4243 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk, 4244 struct LIST_HEAD_TYPE *chgs) 4245 { 4246 struct ice_buf_build *b; 4247 struct ice_chs_chg *tmp; 4248 enum ice_status status; 4249 u16 pkg_sects; 4250 u16 xlt1 = 0; 4251 u16 xlt2 = 0; 4252 u16 tcam = 0; 4253 u16 es = 0; 4254 u16 sects; 4255 4256 /* count number of sections we need */ 4257 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) { 4258 switch (tmp->type) { 4259 case ICE_PTG_ES_ADD: 4260 if (tmp->add_ptg) 4261 xlt1++; 4262 if (tmp->add_prof) 4263 es++; 4264 break; 4265 case ICE_TCAM_ADD: 4266 tcam++; 4267 break; 4268 case ICE_VSIG_ADD: 4269 case ICE_VSI_MOVE: 4270 case ICE_VSIG_REM: 4271 xlt2++; 4272 break; 4273 default: 4274 break; 4275 } 4276 } 4277 sects = xlt1 + xlt2 + tcam + es; 4278 4279 if (!sects) 4280 return ICE_SUCCESS; 4281 4282 /* Build update package buffer */ 4283 b = ice_pkg_buf_alloc(hw); 4284 if (!b) 4285 return ICE_ERR_NO_MEMORY; 4286 4287 status = ice_pkg_buf_reserve_section(b, sects); 4288 if (status) 4289 goto error_tmp; 4290 4291 /* Preserve order of table update: ES, TCAM, PTG, VSIG */ 4292 if (es) { 4293 status = ice_prof_bld_es(hw, blk, b, chgs); 4294 if (status) 4295 goto error_tmp; 4296 } 4297 4298 if (tcam) { 4299 status = ice_prof_bld_tcam(hw, blk, b, chgs); 4300 if (status) 4301 goto error_tmp; 4302 } 4303 4304 if (xlt1) { 4305 status = ice_prof_bld_xlt1(blk, b, chgs); 4306 if (status) 4307 goto error_tmp; 4308 } 4309 4310 if (xlt2) { 4311 status = ice_prof_bld_xlt2(blk, b, chgs); 4312 if (status) 4313 goto error_tmp; 4314 } 4315 4316 /* After package buffer build check if the section count in buffer is 4317 * non-zero and matches the number of sections detected for package 4318 * update. 4319 */ 4320 pkg_sects = ice_pkg_buf_get_active_sections(b); 4321 if (!pkg_sects || pkg_sects != sects) { 4322 status = ICE_ERR_INVAL_SIZE; 4323 goto error_tmp; 4324 } 4325 4326 /* update package */ 4327 status = ice_update_pkg(hw, ice_pkg_buf(b), 1); 4328 if (status == ICE_ERR_AQ_ERROR) 4329 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n"); 4330 4331 error_tmp: 4332 ice_pkg_buf_free(hw, b); 4333 return status; 4334 } 4335 4336 /** 4337 * ice_add_prof - add profile 4338 * @hw: pointer to the HW struct 4339 * @blk: hardware block 4340 * @id: profile tracking ID 4341 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits) 4342 * @es: extraction sequence (length of array is determined by the block) 4343 * 4344 * This function registers a profile, which matches a set of PTGs with a 4345 * particular extraction sequence. While the hardware profile is allocated 4346 * it will not be written until the first call to ice_add_flow that specifies 4347 * the ID value used here. 4348 */ 4349 enum ice_status 4350 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], 4351 struct ice_fv_word *es) 4352 { 4353 u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE); 4354 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT); 4355 struct ice_prof_map *prof; 4356 enum ice_status status; 4357 u8 byte = 0; 4358 u8 prof_id; 4359 4360 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT); 4361 4362 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4363 4364 /* search for existing profile */ 4365 status = ice_find_prof_id(hw, blk, es, &prof_id); 4366 if (status) { 4367 /* allocate profile ID */ 4368 status = ice_alloc_prof_id(hw, blk, &prof_id); 4369 if (status) 4370 goto err_ice_add_prof; 4371 4372 /* and write new es */ 4373 ice_write_es(hw, blk, prof_id, es); 4374 } 4375 4376 ice_prof_inc_ref(hw, blk, prof_id); 4377 4378 /* add profile info */ 4379 4380 prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof)); 4381 if (!prof) 4382 goto err_ice_add_prof; 4383 4384 prof->profile_cookie = id; 4385 prof->prof_id = prof_id; 4386 prof->ptg_cnt = 0; 4387 prof->context = 0; 4388 4389 /* build list of ptgs */ 4390 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) { 4391 u8 bit; 4392 4393 if (!ptypes[byte]) { 4394 bytes--; 4395 byte++; 4396 continue; 4397 } 4398 4399 /* Examine 8 bits per byte */ 4400 ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte], 4401 BITS_PER_BYTE) { 4402 u16 ptype; 4403 u8 ptg; 4404 4405 ptype = byte * BITS_PER_BYTE + bit; 4406 4407 /* The package should place all ptypes in a non-zero 4408 * PTG, so the following call should never fail. 4409 */ 4410 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg)) 4411 continue; 4412 4413 /* If PTG is already added, skip and continue */ 4414 if (ice_is_bit_set(ptgs_used, ptg)) 4415 continue; 4416 4417 ice_set_bit(ptg, ptgs_used); 4418 prof->ptg[prof->ptg_cnt] = ptg; 4419 4420 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE) 4421 break; 4422 } 4423 4424 bytes--; 4425 byte++; 4426 } 4427 4428 LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map); 4429 status = ICE_SUCCESS; 4430 4431 err_ice_add_prof: 4432 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4433 return status; 4434 } 4435 4436 /** 4437 * ice_search_prof_id - Search for a profile tracking ID 4438 * @hw: pointer to the HW struct 4439 * @blk: hardware block 4440 * @id: profile tracking ID 4441 * 4442 * This will search for a profile tracking ID which was previously added. 4443 * The profile map lock should be held before calling this function. 4444 */ 4445 struct ice_prof_map * 4446 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id) 4447 { 4448 struct ice_prof_map *entry = NULL; 4449 struct ice_prof_map *map; 4450 4451 LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list) 4452 if (map->profile_cookie == id) { 4453 entry = map; 4454 break; 4455 } 4456 4457 return entry; 4458 } 4459 4460 /** 4461 * ice_set_prof_context - Set context for a given profile 4462 * @hw: pointer to the HW struct 4463 * @blk: hardware block 4464 * @id: profile tracking ID 4465 * @cntxt: context 4466 */ 4467 enum ice_status 4468 ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt) 4469 { 4470 enum ice_status status = ICE_ERR_DOES_NOT_EXIST; 4471 struct ice_prof_map *entry; 4472 4473 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4474 entry = ice_search_prof_id(hw, blk, id); 4475 if (entry) { 4476 entry->context = cntxt; 4477 status = ICE_SUCCESS; 4478 } 4479 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4480 return status; 4481 } 4482 4483 /** 4484 * ice_get_prof_context - Get context for a given profile 4485 * @hw: pointer to the HW struct 4486 * @blk: hardware block 4487 * @id: profile tracking ID 4488 * @cntxt: pointer to variable to receive the context 4489 */ 4490 enum ice_status 4491 ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt) 4492 { 4493 enum ice_status status = ICE_ERR_DOES_NOT_EXIST; 4494 struct ice_prof_map *entry; 4495 4496 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4497 entry = ice_search_prof_id(hw, blk, id); 4498 if (entry) { 4499 *cntxt = entry->context; 4500 status = ICE_SUCCESS; 4501 } 4502 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4503 return status; 4504 } 4505 4506 /** 4507 * ice_vsig_prof_id_count - count profiles in a VSIG 4508 * @hw: pointer to the HW struct 4509 * @blk: hardware block 4510 * @vsig: VSIG to remove the profile from 4511 */ 4512 static u16 4513 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig) 4514 { 4515 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0; 4516 struct ice_vsig_prof *p; 4517 4518 LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4519 ice_vsig_prof, list) 4520 count++; 4521 4522 return count; 4523 } 4524 4525 /** 4526 * ice_rel_tcam_idx - release a TCAM index 4527 * @hw: pointer to the HW struct 4528 * @blk: hardware block 4529 * @idx: the index to release 4530 */ 4531 static enum ice_status 4532 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx) 4533 { 4534 /* Masks to invoke a never match entry */ 4535 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4536 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF }; 4537 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 }; 4538 enum ice_status status; 4539 4540 /* write the TCAM entry */ 4541 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk, 4542 dc_msk, nm_msk); 4543 if (status) 4544 return status; 4545 4546 /* release the TCAM entry */ 4547 status = ice_free_tcam_ent(hw, blk, idx); 4548 4549 return status; 4550 } 4551 4552 /** 4553 * ice_rem_prof_id - remove one profile from a VSIG 4554 * @hw: pointer to the HW struct 4555 * @blk: hardware block 4556 * @prof: pointer to profile structure to remove 4557 */ 4558 static enum ice_status 4559 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk, 4560 struct ice_vsig_prof *prof) 4561 { 4562 enum ice_status status; 4563 u16 i; 4564 4565 for (i = 0; i < prof->tcam_count; i++) 4566 if (prof->tcam[i].in_use) { 4567 prof->tcam[i].in_use = false; 4568 status = ice_rel_tcam_idx(hw, blk, 4569 prof->tcam[i].tcam_idx); 4570 if (status) 4571 return ICE_ERR_HW_TABLE; 4572 } 4573 4574 return ICE_SUCCESS; 4575 } 4576 4577 /** 4578 * ice_rem_vsig - remove VSIG 4579 * @hw: pointer to the HW struct 4580 * @blk: hardware block 4581 * @vsig: the VSIG to remove 4582 * @chg: the change list 4583 */ 4584 static enum ice_status 4585 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4586 struct LIST_HEAD_TYPE *chg) 4587 { 4588 u16 idx = vsig & ICE_VSIG_IDX_M; 4589 struct ice_vsig_vsi *vsi_cur; 4590 struct ice_vsig_prof *d, *t; 4591 enum ice_status status; 4592 4593 /* remove TCAM entries */ 4594 LIST_FOR_EACH_ENTRY_SAFE(d, t, 4595 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4596 ice_vsig_prof, list) { 4597 status = ice_rem_prof_id(hw, blk, d); 4598 if (status) 4599 return status; 4600 4601 LIST_DEL(&d->list); 4602 ice_free(hw, d); 4603 } 4604 4605 /* Move all VSIS associated with this VSIG to the default VSIG */ 4606 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi; 4607 /* If the VSIG has at least 1 VSI then iterate through the list 4608 * and remove the VSIs before deleting the group. 4609 */ 4610 if (vsi_cur) 4611 do { 4612 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi; 4613 struct ice_chs_chg *p; 4614 4615 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4616 if (!p) 4617 return ICE_ERR_NO_MEMORY; 4618 4619 p->type = ICE_VSIG_REM; 4620 p->orig_vsig = vsig; 4621 p->vsig = ICE_DEFAULT_VSIG; 4622 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis; 4623 4624 LIST_ADD(&p->list_entry, chg); 4625 4626 vsi_cur = tmp; 4627 } while (vsi_cur); 4628 4629 return ice_vsig_free(hw, blk, vsig); 4630 } 4631 4632 /** 4633 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG 4634 * @hw: pointer to the HW struct 4635 * @blk: hardware block 4636 * @vsig: VSIG to remove the profile from 4637 * @hdl: profile handle indicating which profile to remove 4638 * @chg: list to receive a record of changes 4639 */ 4640 static enum ice_status 4641 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 4642 struct LIST_HEAD_TYPE *chg) 4643 { 4644 u16 idx = vsig & ICE_VSIG_IDX_M; 4645 struct ice_vsig_prof *p, *t; 4646 enum ice_status status; 4647 4648 LIST_FOR_EACH_ENTRY_SAFE(p, t, 4649 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4650 ice_vsig_prof, list) 4651 if (p->profile_cookie == hdl) { 4652 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1) 4653 /* this is the last profile, remove the VSIG */ 4654 return ice_rem_vsig(hw, blk, vsig, chg); 4655 4656 status = ice_rem_prof_id(hw, blk, p); 4657 if (!status) { 4658 LIST_DEL(&p->list); 4659 ice_free(hw, p); 4660 } 4661 return status; 4662 } 4663 4664 return ICE_ERR_DOES_NOT_EXIST; 4665 } 4666 4667 /** 4668 * ice_rem_flow_all - remove all flows with a particular profile 4669 * @hw: pointer to the HW struct 4670 * @blk: hardware block 4671 * @id: profile tracking ID 4672 */ 4673 static enum ice_status 4674 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id) 4675 { 4676 struct ice_chs_chg *del, *tmp; 4677 enum ice_status status; 4678 struct LIST_HEAD_TYPE chg; 4679 u16 i; 4680 4681 INIT_LIST_HEAD(&chg); 4682 4683 for (i = 1; i < ICE_MAX_VSIGS; i++) 4684 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) { 4685 if (ice_has_prof_vsig(hw, blk, i, id)) { 4686 status = ice_rem_prof_id_vsig(hw, blk, i, id, 4687 &chg); 4688 if (status) 4689 goto err_ice_rem_flow_all; 4690 } 4691 } 4692 4693 status = ice_upd_prof_hw(hw, blk, &chg); 4694 4695 err_ice_rem_flow_all: 4696 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 4697 LIST_DEL(&del->list_entry); 4698 ice_free(hw, del); 4699 } 4700 4701 return status; 4702 } 4703 4704 /** 4705 * ice_rem_prof - remove profile 4706 * @hw: pointer to the HW struct 4707 * @blk: hardware block 4708 * @id: profile tracking ID 4709 * 4710 * This will remove the profile specified by the ID parameter, which was 4711 * previously created through ice_add_prof. If any existing entries 4712 * are associated with this profile, they will be removed as well. 4713 */ 4714 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id) 4715 { 4716 struct ice_prof_map *pmap; 4717 enum ice_status status; 4718 4719 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4720 4721 pmap = ice_search_prof_id(hw, blk, id); 4722 if (!pmap) { 4723 status = ICE_ERR_DOES_NOT_EXIST; 4724 goto err_ice_rem_prof; 4725 } 4726 4727 /* remove all flows with this profile */ 4728 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie); 4729 if (status) 4730 goto err_ice_rem_prof; 4731 4732 /* dereference profile, and possibly remove */ 4733 ice_prof_dec_ref(hw, blk, pmap->prof_id); 4734 4735 LIST_DEL(&pmap->list); 4736 ice_free(hw, pmap); 4737 4738 err_ice_rem_prof: 4739 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4740 return status; 4741 } 4742 4743 /** 4744 * ice_get_prof - get profile 4745 * @hw: pointer to the HW struct 4746 * @blk: hardware block 4747 * @hdl: profile handle 4748 * @chg: change list 4749 */ 4750 static enum ice_status 4751 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl, 4752 struct LIST_HEAD_TYPE *chg) 4753 { 4754 enum ice_status status = ICE_SUCCESS; 4755 struct ice_prof_map *map; 4756 struct ice_chs_chg *p; 4757 u16 i; 4758 4759 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4760 /* Get the details on the profile specified by the handle ID */ 4761 map = ice_search_prof_id(hw, blk, hdl); 4762 if (!map) { 4763 status = ICE_ERR_DOES_NOT_EXIST; 4764 goto err_ice_get_prof; 4765 } 4766 4767 for (i = 0; i < map->ptg_cnt; i++) 4768 if (!hw->blk[blk].es.written[map->prof_id]) { 4769 /* add ES to change list */ 4770 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4771 if (!p) { 4772 status = ICE_ERR_NO_MEMORY; 4773 goto err_ice_get_prof; 4774 } 4775 4776 p->type = ICE_PTG_ES_ADD; 4777 p->ptype = 0; 4778 p->ptg = map->ptg[i]; 4779 p->add_ptg = 0; 4780 4781 p->add_prof = 1; 4782 p->prof_id = map->prof_id; 4783 4784 hw->blk[blk].es.written[map->prof_id] = true; 4785 4786 LIST_ADD(&p->list_entry, chg); 4787 } 4788 4789 err_ice_get_prof: 4790 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4791 /* let caller clean up the change list */ 4792 return status; 4793 } 4794 4795 /** 4796 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG 4797 * @hw: pointer to the HW struct 4798 * @blk: hardware block 4799 * @vsig: VSIG from which to copy the list 4800 * @lst: output list 4801 * 4802 * This routine makes a copy of the list of profiles in the specified VSIG. 4803 */ 4804 static enum ice_status 4805 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, 4806 struct LIST_HEAD_TYPE *lst) 4807 { 4808 struct ice_vsig_prof *ent1, *ent2; 4809 u16 idx = vsig & ICE_VSIG_IDX_M; 4810 4811 LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 4812 ice_vsig_prof, list) { 4813 struct ice_vsig_prof *p; 4814 4815 /* copy to the input list */ 4816 p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p), 4817 ICE_NONDMA_TO_NONDMA); 4818 if (!p) 4819 goto err_ice_get_profs_vsig; 4820 4821 LIST_ADD_TAIL(&p->list, lst); 4822 } 4823 4824 return ICE_SUCCESS; 4825 4826 err_ice_get_profs_vsig: 4827 LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) { 4828 LIST_DEL(&ent1->list); 4829 ice_free(hw, ent1); 4830 } 4831 4832 return ICE_ERR_NO_MEMORY; 4833 } 4834 4835 /** 4836 * ice_add_prof_to_lst - add profile entry to a list 4837 * @hw: pointer to the HW struct 4838 * @blk: hardware block 4839 * @lst: the list to be added to 4840 * @hdl: profile handle of entry to add 4841 */ 4842 static enum ice_status 4843 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk, 4844 struct LIST_HEAD_TYPE *lst, u64 hdl) 4845 { 4846 enum ice_status status = ICE_SUCCESS; 4847 struct ice_prof_map *map; 4848 struct ice_vsig_prof *p; 4849 u16 i; 4850 4851 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 4852 map = ice_search_prof_id(hw, blk, hdl); 4853 if (!map) { 4854 status = ICE_ERR_DOES_NOT_EXIST; 4855 goto err_ice_add_prof_to_lst; 4856 } 4857 4858 p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p)); 4859 if (!p) { 4860 status = ICE_ERR_NO_MEMORY; 4861 goto err_ice_add_prof_to_lst; 4862 } 4863 4864 p->profile_cookie = map->profile_cookie; 4865 p->prof_id = map->prof_id; 4866 p->tcam_count = map->ptg_cnt; 4867 4868 for (i = 0; i < map->ptg_cnt; i++) { 4869 p->tcam[i].prof_id = map->prof_id; 4870 p->tcam[i].tcam_idx = ICE_INVALID_TCAM; 4871 p->tcam[i].ptg = map->ptg[i]; 4872 } 4873 4874 LIST_ADD(&p->list, lst); 4875 4876 err_ice_add_prof_to_lst: 4877 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 4878 return status; 4879 } 4880 4881 /** 4882 * ice_move_vsi - move VSI to another VSIG 4883 * @hw: pointer to the HW struct 4884 * @blk: hardware block 4885 * @vsi: the VSI to move 4886 * @vsig: the VSIG to move the VSI to 4887 * @chg: the change list 4888 */ 4889 static enum ice_status 4890 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig, 4891 struct LIST_HEAD_TYPE *chg) 4892 { 4893 enum ice_status status; 4894 struct ice_chs_chg *p; 4895 u16 orig_vsig; 4896 4897 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4898 if (!p) 4899 return ICE_ERR_NO_MEMORY; 4900 4901 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig); 4902 if (!status) 4903 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig); 4904 4905 if (status) { 4906 ice_free(hw, p); 4907 return status; 4908 } 4909 4910 p->type = ICE_VSI_MOVE; 4911 p->vsi = vsi; 4912 p->orig_vsig = orig_vsig; 4913 p->vsig = vsig; 4914 4915 LIST_ADD(&p->list_entry, chg); 4916 4917 return ICE_SUCCESS; 4918 } 4919 4920 /** 4921 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list 4922 * @hw: pointer to the HW struct 4923 * @idx: the index of the TCAM entry to remove 4924 * @chg: the list of change structures to search 4925 */ 4926 static void 4927 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg) 4928 { 4929 struct ice_chs_chg *pos, *tmp; 4930 4931 LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry) 4932 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) { 4933 LIST_DEL(&tmp->list_entry); 4934 ice_free(hw, tmp); 4935 } 4936 } 4937 4938 /** 4939 * ice_prof_tcam_ena_dis - add enable or disable TCAM change 4940 * @hw: pointer to the HW struct 4941 * @blk: hardware block 4942 * @enable: true to enable, false to disable 4943 * @vsig: the VSIG of the TCAM entry 4944 * @tcam: pointer the TCAM info structure of the TCAM to disable 4945 * @chg: the change list 4946 * 4947 * This function appends an enable or disable TCAM entry in the change log 4948 */ 4949 static enum ice_status 4950 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable, 4951 u16 vsig, struct ice_tcam_inf *tcam, 4952 struct LIST_HEAD_TYPE *chg) 4953 { 4954 enum ice_status status; 4955 struct ice_chs_chg *p; 4956 4957 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 4958 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 4959 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 4960 4961 /* if disabling, free the TCAM */ 4962 if (!enable) { 4963 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx); 4964 4965 /* if we have already created a change for this TCAM entry, then 4966 * we need to remove that entry, in order to prevent writing to 4967 * a TCAM entry we no longer will have ownership of. 4968 */ 4969 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg); 4970 tcam->tcam_idx = 0; 4971 tcam->in_use = 0; 4972 return status; 4973 } 4974 4975 /* for re-enabling, reallocate a TCAM */ 4976 status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx); 4977 if (status) 4978 return status; 4979 4980 /* add TCAM to change list */ 4981 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 4982 if (!p) 4983 return ICE_ERR_NO_MEMORY; 4984 4985 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id, 4986 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk, 4987 nm_msk); 4988 if (status) 4989 goto err_ice_prof_tcam_ena_dis; 4990 4991 tcam->in_use = 1; 4992 4993 p->type = ICE_TCAM_ADD; 4994 p->add_tcam_idx = true; 4995 p->prof_id = tcam->prof_id; 4996 p->ptg = tcam->ptg; 4997 p->vsig = 0; 4998 p->tcam_idx = tcam->tcam_idx; 4999 5000 /* log change */ 5001 LIST_ADD(&p->list_entry, chg); 5002 5003 return ICE_SUCCESS; 5004 5005 err_ice_prof_tcam_ena_dis: 5006 ice_free(hw, p); 5007 return status; 5008 } 5009 5010 /** 5011 * ice_adj_prof_priorities - adjust profile based on priorities 5012 * @hw: pointer to the HW struct 5013 * @blk: hardware block 5014 * @vsig: the VSIG for which to adjust profile priorities 5015 * @chg: the change list 5016 */ 5017 static enum ice_status 5018 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig, 5019 struct LIST_HEAD_TYPE *chg) 5020 { 5021 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT); 5022 enum ice_status status = ICE_SUCCESS; 5023 struct ice_vsig_prof *t; 5024 u16 idx; 5025 5026 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT); 5027 idx = vsig & ICE_VSIG_IDX_M; 5028 5029 /* Priority is based on the order in which the profiles are added. The 5030 * newest added profile has highest priority and the oldest added 5031 * profile has the lowest priority. Since the profile property list for 5032 * a VSIG is sorted from newest to oldest, this code traverses the list 5033 * in order and enables the first of each PTG that it finds (that is not 5034 * already enabled); it also disables any duplicate PTGs that it finds 5035 * in the older profiles (that are currently enabled). 5036 */ 5037 5038 LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst, 5039 ice_vsig_prof, list) { 5040 u16 i; 5041 5042 for (i = 0; i < t->tcam_count; i++) { 5043 bool used; 5044 5045 /* Scan the priorities from newest to oldest. 5046 * Make sure that the newest profiles take priority. 5047 */ 5048 used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg); 5049 5050 if (used && t->tcam[i].in_use) { 5051 /* need to mark this PTG as never match, as it 5052 * was already in use and therefore duplicate 5053 * (and lower priority) 5054 */ 5055 status = ice_prof_tcam_ena_dis(hw, blk, false, 5056 vsig, 5057 &t->tcam[i], 5058 chg); 5059 if (status) 5060 return status; 5061 } else if (!used && !t->tcam[i].in_use) { 5062 /* need to enable this PTG, as it in not in use 5063 * and not enabled (highest priority) 5064 */ 5065 status = ice_prof_tcam_ena_dis(hw, blk, true, 5066 vsig, 5067 &t->tcam[i], 5068 chg); 5069 if (status) 5070 return status; 5071 } 5072 5073 /* keep track of used ptgs */ 5074 ice_set_bit(t->tcam[i].ptg, ptgs_used); 5075 } 5076 } 5077 5078 return status; 5079 } 5080 5081 /** 5082 * ice_add_prof_id_vsig - add profile to VSIG 5083 * @hw: pointer to the HW struct 5084 * @blk: hardware block 5085 * @vsig: the VSIG to which this profile is to be added 5086 * @hdl: the profile handle indicating the profile to add 5087 * @rev: true to add entries to the end of the list 5088 * @chg: the change list 5089 */ 5090 static enum ice_status 5091 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl, 5092 bool rev, struct LIST_HEAD_TYPE *chg) 5093 { 5094 /* Masks that ignore flags */ 5095 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 5096 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 }; 5097 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 }; 5098 enum ice_status status = ICE_SUCCESS; 5099 struct ice_prof_map *map; 5100 struct ice_vsig_prof *t; 5101 struct ice_chs_chg *p; 5102 u16 vsig_idx, i; 5103 5104 /* Error, if this VSIG already has this profile */ 5105 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) 5106 return ICE_ERR_ALREADY_EXISTS; 5107 5108 /* new VSIG profile structure */ 5109 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t)); 5110 if (!t) 5111 return ICE_ERR_NO_MEMORY; 5112 5113 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock); 5114 /* Get the details on the profile specified by the handle ID */ 5115 map = ice_search_prof_id(hw, blk, hdl); 5116 if (!map) { 5117 status = ICE_ERR_DOES_NOT_EXIST; 5118 goto err_ice_add_prof_id_vsig; 5119 } 5120 5121 t->profile_cookie = map->profile_cookie; 5122 t->prof_id = map->prof_id; 5123 t->tcam_count = map->ptg_cnt; 5124 5125 /* create TCAM entries */ 5126 for (i = 0; i < map->ptg_cnt; i++) { 5127 u16 tcam_idx; 5128 5129 /* add TCAM to change list */ 5130 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 5131 if (!p) { 5132 status = ICE_ERR_NO_MEMORY; 5133 goto err_ice_add_prof_id_vsig; 5134 } 5135 5136 /* allocate the TCAM entry index */ 5137 status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx); 5138 if (status) { 5139 ice_free(hw, p); 5140 goto err_ice_add_prof_id_vsig; 5141 } 5142 5143 t->tcam[i].ptg = map->ptg[i]; 5144 t->tcam[i].prof_id = map->prof_id; 5145 t->tcam[i].tcam_idx = tcam_idx; 5146 t->tcam[i].in_use = true; 5147 5148 p->type = ICE_TCAM_ADD; 5149 p->add_tcam_idx = true; 5150 p->prof_id = t->tcam[i].prof_id; 5151 p->ptg = t->tcam[i].ptg; 5152 p->vsig = vsig; 5153 p->tcam_idx = t->tcam[i].tcam_idx; 5154 5155 /* write the TCAM entry */ 5156 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx, 5157 t->tcam[i].prof_id, 5158 t->tcam[i].ptg, vsig, 0, 0, 5159 vl_msk, dc_msk, nm_msk); 5160 if (status) { 5161 ice_free(hw, p); 5162 goto err_ice_add_prof_id_vsig; 5163 } 5164 5165 /* log change */ 5166 LIST_ADD(&p->list_entry, chg); 5167 } 5168 5169 /* add profile to VSIG */ 5170 vsig_idx = vsig & ICE_VSIG_IDX_M; 5171 if (rev) 5172 LIST_ADD_TAIL(&t->list, 5173 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5174 else 5175 LIST_ADD(&t->list, 5176 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst); 5177 5178 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 5179 return status; 5180 5181 err_ice_add_prof_id_vsig: 5182 ice_release_lock(&hw->blk[blk].es.prof_map_lock); 5183 /* let caller clean up the change list */ 5184 ice_free(hw, t); 5185 return status; 5186 } 5187 5188 /** 5189 * ice_create_prof_id_vsig - add a new VSIG with a single profile 5190 * @hw: pointer to the HW struct 5191 * @blk: hardware block 5192 * @vsi: the initial VSI that will be in VSIG 5193 * @hdl: the profile handle of the profile that will be added to the VSIG 5194 * @chg: the change list 5195 */ 5196 static enum ice_status 5197 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl, 5198 struct LIST_HEAD_TYPE *chg) 5199 { 5200 enum ice_status status; 5201 struct ice_chs_chg *p; 5202 u16 new_vsig; 5203 5204 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p)); 5205 if (!p) 5206 return ICE_ERR_NO_MEMORY; 5207 5208 new_vsig = ice_vsig_alloc(hw, blk); 5209 if (!new_vsig) { 5210 status = ICE_ERR_HW_TABLE; 5211 goto err_ice_create_prof_id_vsig; 5212 } 5213 5214 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg); 5215 if (status) 5216 goto err_ice_create_prof_id_vsig; 5217 5218 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg); 5219 if (status) 5220 goto err_ice_create_prof_id_vsig; 5221 5222 p->type = ICE_VSIG_ADD; 5223 p->vsi = vsi; 5224 p->orig_vsig = ICE_DEFAULT_VSIG; 5225 p->vsig = new_vsig; 5226 5227 LIST_ADD(&p->list_entry, chg); 5228 5229 return ICE_SUCCESS; 5230 5231 err_ice_create_prof_id_vsig: 5232 /* let caller clean up the change list */ 5233 ice_free(hw, p); 5234 return status; 5235 } 5236 5237 /** 5238 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles 5239 * @hw: pointer to the HW struct 5240 * @blk: hardware block 5241 * @vsi: the initial VSI that will be in VSIG 5242 * @lst: the list of profile that will be added to the VSIG 5243 * @new_vsig: return of new VSIG 5244 * @chg: the change list 5245 */ 5246 static enum ice_status 5247 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi, 5248 struct LIST_HEAD_TYPE *lst, u16 *new_vsig, 5249 struct LIST_HEAD_TYPE *chg) 5250 { 5251 struct ice_vsig_prof *t; 5252 enum ice_status status; 5253 u16 vsig; 5254 5255 vsig = ice_vsig_alloc(hw, blk); 5256 if (!vsig) 5257 return ICE_ERR_HW_TABLE; 5258 5259 status = ice_move_vsi(hw, blk, vsi, vsig, chg); 5260 if (status) 5261 return status; 5262 5263 LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) { 5264 /* Reverse the order here since we are copying the list */ 5265 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie, 5266 true, chg); 5267 if (status) 5268 return status; 5269 } 5270 5271 *new_vsig = vsig; 5272 5273 return ICE_SUCCESS; 5274 } 5275 5276 /** 5277 * ice_find_prof_vsig - find a VSIG with a specific profile handle 5278 * @hw: pointer to the HW struct 5279 * @blk: hardware block 5280 * @hdl: the profile handle of the profile to search for 5281 * @vsig: returns the VSIG with the matching profile 5282 */ 5283 static bool 5284 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig) 5285 { 5286 struct ice_vsig_prof *t; 5287 enum ice_status status; 5288 struct LIST_HEAD_TYPE lst; 5289 5290 INIT_LIST_HEAD(&lst); 5291 5292 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t)); 5293 if (!t) 5294 return false; 5295 5296 t->profile_cookie = hdl; 5297 LIST_ADD(&t->list, &lst); 5298 5299 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig); 5300 5301 LIST_DEL(&t->list); 5302 ice_free(hw, t); 5303 5304 return status == ICE_SUCCESS; 5305 } 5306 5307 /** 5308 * ice_add_vsi_flow - add VSI flow 5309 * @hw: pointer to the HW struct 5310 * @blk: hardware block 5311 * @vsi: input VSI 5312 * @vsig: target VSIG to include the input VSI 5313 * 5314 * Calling this function will add the VSI to a given VSIG and 5315 * update the HW tables accordingly. This call can be used to 5316 * add multiple VSIs to a VSIG if we know beforehand that those 5317 * VSIs have the same characteristics of the VSIG. This will 5318 * save time in generating a new VSIG and TCAMs till a match is 5319 * found and subsequent rollback when a matching VSIG is found. 5320 */ 5321 enum ice_status 5322 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig) 5323 { 5324 struct ice_chs_chg *tmp, *del; 5325 struct LIST_HEAD_TYPE chg; 5326 enum ice_status status; 5327 5328 /* if target VSIG is default the move is invalid */ 5329 if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG) 5330 return ICE_ERR_PARAM; 5331 5332 INIT_LIST_HEAD(&chg); 5333 5334 /* move VSI to the VSIG that matches */ 5335 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5336 /* update hardware if success */ 5337 if (!status) 5338 status = ice_upd_prof_hw(hw, blk, &chg); 5339 5340 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5341 LIST_DEL(&del->list_entry); 5342 ice_free(hw, del); 5343 } 5344 5345 return status; 5346 } 5347 5348 /** 5349 * ice_add_prof_id_flow - add profile flow 5350 * @hw: pointer to the HW struct 5351 * @blk: hardware block 5352 * @vsi: the VSI to enable with the profile specified by ID 5353 * @hdl: profile handle 5354 * 5355 * Calling this function will update the hardware tables to enable the 5356 * profile indicated by the ID parameter for the VSIs specified in the VSI 5357 * array. Once successfully called, the flow will be enabled. 5358 */ 5359 enum ice_status 5360 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5361 { 5362 struct ice_vsig_prof *tmp1, *del1; 5363 struct ice_chs_chg *tmp, *del; 5364 struct LIST_HEAD_TYPE union_lst; 5365 enum ice_status status; 5366 struct LIST_HEAD_TYPE chg; 5367 u16 vsig; 5368 5369 INIT_LIST_HEAD(&union_lst); 5370 INIT_LIST_HEAD(&chg); 5371 5372 /* Get profile */ 5373 status = ice_get_prof(hw, blk, hdl, &chg); 5374 if (status) 5375 return status; 5376 5377 /* determine if VSI is already part of a VSIG */ 5378 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5379 if (!status && vsig) { 5380 bool only_vsi; 5381 u16 or_vsig; 5382 u16 ref; 5383 5384 /* found in VSIG */ 5385 or_vsig = vsig; 5386 5387 /* make sure that there is no overlap/conflict between the new 5388 * characteristics and the existing ones; we don't support that 5389 * scenario 5390 */ 5391 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) { 5392 status = ICE_ERR_ALREADY_EXISTS; 5393 goto err_ice_add_prof_id_flow; 5394 } 5395 5396 /* last VSI in the VSIG? */ 5397 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5398 if (status) 5399 goto err_ice_add_prof_id_flow; 5400 only_vsi = (ref == 1); 5401 5402 /* create a union of the current profiles and the one being 5403 * added 5404 */ 5405 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst); 5406 if (status) 5407 goto err_ice_add_prof_id_flow; 5408 5409 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl); 5410 if (status) 5411 goto err_ice_add_prof_id_flow; 5412 5413 /* search for an existing VSIG with an exact charc match */ 5414 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig); 5415 if (!status) { 5416 /* move VSI to the VSIG that matches */ 5417 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5418 if (status) 5419 goto err_ice_add_prof_id_flow; 5420 5421 /* VSI has been moved out of or_vsig. If the or_vsig had 5422 * only that VSI it is now empty and can be removed. 5423 */ 5424 if (only_vsi) { 5425 status = ice_rem_vsig(hw, blk, or_vsig, &chg); 5426 if (status) 5427 goto err_ice_add_prof_id_flow; 5428 } 5429 } else if (only_vsi) { 5430 /* If the original VSIG only contains one VSI, then it 5431 * will be the requesting VSI. In this case the VSI is 5432 * not sharing entries and we can simply add the new 5433 * profile to the VSIG. 5434 */ 5435 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false, 5436 &chg); 5437 if (status) 5438 goto err_ice_add_prof_id_flow; 5439 5440 /* Adjust priorities */ 5441 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5442 if (status) 5443 goto err_ice_add_prof_id_flow; 5444 } else { 5445 /* No match, so we need a new VSIG */ 5446 status = ice_create_vsig_from_lst(hw, blk, vsi, 5447 &union_lst, &vsig, 5448 &chg); 5449 if (status) 5450 goto err_ice_add_prof_id_flow; 5451 5452 /* Adjust priorities */ 5453 status = ice_adj_prof_priorities(hw, blk, vsig, &chg); 5454 if (status) 5455 goto err_ice_add_prof_id_flow; 5456 } 5457 } else { 5458 /* need to find or add a VSIG */ 5459 /* search for an existing VSIG with an exact charc match */ 5460 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) { 5461 /* found an exact match */ 5462 /* add or move VSI to the VSIG that matches */ 5463 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5464 if (status) 5465 goto err_ice_add_prof_id_flow; 5466 } else { 5467 /* we did not find an exact match */ 5468 /* we need to add a VSIG */ 5469 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl, 5470 &chg); 5471 if (status) 5472 goto err_ice_add_prof_id_flow; 5473 } 5474 } 5475 5476 /* update hardware */ 5477 if (!status) 5478 status = ice_upd_prof_hw(hw, blk, &chg); 5479 5480 err_ice_add_prof_id_flow: 5481 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5482 LIST_DEL(&del->list_entry); 5483 ice_free(hw, del); 5484 } 5485 5486 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) { 5487 LIST_DEL(&del1->list); 5488 ice_free(hw, del1); 5489 } 5490 5491 return status; 5492 } 5493 5494 /** 5495 * ice_add_flow - add flow 5496 * @hw: pointer to the HW struct 5497 * @blk: hardware block 5498 * @vsi: array of VSIs to enable with the profile specified by ID 5499 * @count: number of elements in the VSI array 5500 * @id: profile tracking ID 5501 * 5502 * Calling this function will update the hardware tables to enable the 5503 * profile indicated by the ID parameter for the VSIs specified in the VSI 5504 * array. Once successfully called, the flow will be enabled. 5505 */ 5506 enum ice_status 5507 ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count, 5508 u64 id) 5509 { 5510 enum ice_status status; 5511 u16 i; 5512 5513 for (i = 0; i < count; i++) { 5514 status = ice_add_prof_id_flow(hw, blk, vsi[i], id); 5515 if (status) 5516 return status; 5517 } 5518 5519 return ICE_SUCCESS; 5520 } 5521 5522 /** 5523 * ice_rem_prof_from_list - remove a profile from list 5524 * @hw: pointer to the HW struct 5525 * @lst: list to remove the profile from 5526 * @hdl: the profile handle indicating the profile to remove 5527 */ 5528 static enum ice_status 5529 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl) 5530 { 5531 struct ice_vsig_prof *ent, *tmp; 5532 5533 LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list) 5534 if (ent->profile_cookie == hdl) { 5535 LIST_DEL(&ent->list); 5536 ice_free(hw, ent); 5537 return ICE_SUCCESS; 5538 } 5539 5540 return ICE_ERR_DOES_NOT_EXIST; 5541 } 5542 5543 /** 5544 * ice_rem_prof_id_flow - remove flow 5545 * @hw: pointer to the HW struct 5546 * @blk: hardware block 5547 * @vsi: the VSI from which to remove the profile specified by ID 5548 * @hdl: profile tracking handle 5549 * 5550 * Calling this function will update the hardware tables to remove the 5551 * profile indicated by the ID parameter for the VSIs specified in the VSI 5552 * array. Once successfully called, the flow will be disabled. 5553 */ 5554 enum ice_status 5555 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl) 5556 { 5557 struct ice_vsig_prof *tmp1, *del1; 5558 struct ice_chs_chg *tmp, *del; 5559 struct LIST_HEAD_TYPE chg, copy; 5560 enum ice_status status; 5561 u16 vsig; 5562 5563 INIT_LIST_HEAD(©); 5564 INIT_LIST_HEAD(&chg); 5565 5566 /* determine if VSI is already part of a VSIG */ 5567 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig); 5568 if (!status && vsig) { 5569 bool last_profile; 5570 bool only_vsi; 5571 u16 ref; 5572 5573 /* found in VSIG */ 5574 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1; 5575 status = ice_vsig_get_ref(hw, blk, vsig, &ref); 5576 if (status) 5577 goto err_ice_rem_prof_id_flow; 5578 only_vsi = (ref == 1); 5579 5580 if (only_vsi) { 5581 /* If the original VSIG only contains one reference, 5582 * which will be the requesting VSI, then the VSI is not 5583 * sharing entries and we can simply remove the specific 5584 * characteristics from the VSIG. 5585 */ 5586 5587 if (last_profile) { 5588 /* If there are no profiles left for this VSIG, 5589 * then simply remove the VSIG. 5590 */ 5591 status = ice_rem_vsig(hw, blk, vsig, &chg); 5592 if (status) 5593 goto err_ice_rem_prof_id_flow; 5594 } else { 5595 status = ice_rem_prof_id_vsig(hw, blk, vsig, 5596 hdl, &chg); 5597 if (status) 5598 goto err_ice_rem_prof_id_flow; 5599 5600 /* Adjust priorities */ 5601 status = ice_adj_prof_priorities(hw, blk, vsig, 5602 &chg); 5603 if (status) 5604 goto err_ice_rem_prof_id_flow; 5605 } 5606 5607 } else { 5608 /* Make a copy of the VSIG's list of Profiles */ 5609 status = ice_get_profs_vsig(hw, blk, vsig, ©); 5610 if (status) 5611 goto err_ice_rem_prof_id_flow; 5612 5613 /* Remove specified profile entry from the list */ 5614 status = ice_rem_prof_from_list(hw, ©, hdl); 5615 if (status) 5616 goto err_ice_rem_prof_id_flow; 5617 5618 if (LIST_EMPTY(©)) { 5619 status = ice_move_vsi(hw, blk, vsi, 5620 ICE_DEFAULT_VSIG, &chg); 5621 if (status) 5622 goto err_ice_rem_prof_id_flow; 5623 5624 } else if (!ice_find_dup_props_vsig(hw, blk, ©, 5625 &vsig)) { 5626 /* found an exact match */ 5627 /* add or move VSI to the VSIG that matches */ 5628 /* Search for a VSIG with a matching profile 5629 * list 5630 */ 5631 5632 /* Found match, move VSI to the matching VSIG */ 5633 status = ice_move_vsi(hw, blk, vsi, vsig, &chg); 5634 if (status) 5635 goto err_ice_rem_prof_id_flow; 5636 } else { 5637 /* since no existing VSIG supports this 5638 * characteristic pattern, we need to create a 5639 * new VSIG and TCAM entries 5640 */ 5641 status = ice_create_vsig_from_lst(hw, blk, vsi, 5642 ©, &vsig, 5643 &chg); 5644 if (status) 5645 goto err_ice_rem_prof_id_flow; 5646 5647 /* Adjust priorities */ 5648 status = ice_adj_prof_priorities(hw, blk, vsig, 5649 &chg); 5650 if (status) 5651 goto err_ice_rem_prof_id_flow; 5652 } 5653 } 5654 } else { 5655 status = ICE_ERR_DOES_NOT_EXIST; 5656 } 5657 5658 /* update hardware tables */ 5659 if (!status) 5660 status = ice_upd_prof_hw(hw, blk, &chg); 5661 5662 err_ice_rem_prof_id_flow: 5663 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) { 5664 LIST_DEL(&del->list_entry); 5665 ice_free(hw, del); 5666 } 5667 5668 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, ©, ice_vsig_prof, list) { 5669 LIST_DEL(&del1->list); 5670 ice_free(hw, del1); 5671 } 5672 5673 return status; 5674 } 5675 5676 /** 5677 * ice_rem_flow - remove flow 5678 * @hw: pointer to the HW struct 5679 * @blk: hardware block 5680 * @vsi: array of VSIs from which to remove the profile specified by ID 5681 * @count: number of elements in the VSI array 5682 * @id: profile tracking ID 5683 * 5684 * The function will remove flows from the specified VSIs that were enabled 5685 * using ice_add_flow. The ID value will indicated which profile will be 5686 * removed. Once successfully called, the flow will be disabled. 5687 */ 5688 enum ice_status 5689 ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count, 5690 u64 id) 5691 { 5692 enum ice_status status; 5693 u16 i; 5694 5695 for (i = 0; i < count; i++) { 5696 status = ice_rem_prof_id_flow(hw, blk, vsi[i], id); 5697 if (status) 5698 return status; 5699 } 5700 5701 return ICE_SUCCESS; 5702 } 5703