xref: /freebsd/sys/dev/ice/ice_common.c (revision cab6a39d7b343596a5823e65c0f7b426551ec22d)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /*  Copyright (c) 2021, Intel Corporation
3  *  All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions are met:
7  *
8  *   1. Redistributions of source code must retain the above copyright notice,
9  *      this list of conditions and the following disclaimer.
10  *
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  *   3. Neither the name of the Intel Corporation nor the names of its
16  *      contributors may be used to endorse or promote products derived from
17  *      this software without specific prior written permission.
18  *
19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  *  POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*$FreeBSD$*/
32 
33 #include "ice_common.h"
34 #include "ice_sched.h"
35 #include "ice_adminq_cmd.h"
36 
37 #include "ice_flow.h"
38 #include "ice_switch.h"
39 
40 #define ICE_PF_RESET_WAIT_COUNT	300
41 
42 /**
43  * ice_set_mac_type - Sets MAC type
44  * @hw: pointer to the HW structure
45  *
46  * This function sets the MAC type of the adapter based on the
47  * vendor ID and device ID stored in the HW structure.
48  */
49 enum ice_status ice_set_mac_type(struct ice_hw *hw)
50 {
51 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
52 
53 	if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
54 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
55 
56 	switch (hw->device_id) {
57 	case ICE_DEV_ID_E810C_BACKPLANE:
58 	case ICE_DEV_ID_E810C_QSFP:
59 	case ICE_DEV_ID_E810C_SFP:
60 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
61 	case ICE_DEV_ID_E810_XXV_QSFP:
62 	case ICE_DEV_ID_E810_XXV_SFP:
63 		hw->mac_type = ICE_MAC_E810;
64 		break;
65 	case ICE_DEV_ID_E822C_10G_BASE_T:
66 	case ICE_DEV_ID_E822C_BACKPLANE:
67 	case ICE_DEV_ID_E822C_QSFP:
68 	case ICE_DEV_ID_E822C_SFP:
69 	case ICE_DEV_ID_E822C_SGMII:
70 	case ICE_DEV_ID_E822L_10G_BASE_T:
71 	case ICE_DEV_ID_E822L_BACKPLANE:
72 	case ICE_DEV_ID_E822L_SFP:
73 	case ICE_DEV_ID_E822L_SGMII:
74 	case ICE_DEV_ID_E823L_10G_BASE_T:
75 	case ICE_DEV_ID_E823L_1GBE:
76 	case ICE_DEV_ID_E823L_BACKPLANE:
77 	case ICE_DEV_ID_E823L_QSFP:
78 	case ICE_DEV_ID_E823L_SFP:
79 		hw->mac_type = ICE_MAC_GENERIC;
80 		break;
81 	default:
82 		hw->mac_type = ICE_MAC_UNKNOWN;
83 		break;
84 	}
85 
86 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
87 	return ICE_SUCCESS;
88 }
89 
90 /**
91  * ice_clear_pf_cfg - Clear PF configuration
92  * @hw: pointer to the hardware structure
93  *
94  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
95  * configuration, flow director filters, etc.).
96  */
97 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
98 {
99 	struct ice_aq_desc desc;
100 
101 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
102 
103 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
104 }
105 
106 /**
107  * ice_aq_manage_mac_read - manage MAC address read command
108  * @hw: pointer to the HW struct
109  * @buf: a virtual buffer to hold the manage MAC read response
110  * @buf_size: Size of the virtual buffer
111  * @cd: pointer to command details structure or NULL
112  *
113  * This function is used to return per PF station MAC address (0x0107).
114  * NOTE: Upon successful completion of this command, MAC address information
115  * is returned in user specified buffer. Please interpret user specified
116  * buffer as "manage_mac_read" response.
117  * Response such as various MAC addresses are stored in HW struct (port.mac)
118  * ice_discover_dev_caps is expected to be called before this function is
119  * called.
120  */
121 enum ice_status
122 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
123 		       struct ice_sq_cd *cd)
124 {
125 	struct ice_aqc_manage_mac_read_resp *resp;
126 	struct ice_aqc_manage_mac_read *cmd;
127 	struct ice_aq_desc desc;
128 	enum ice_status status;
129 	u16 flags;
130 	u8 i;
131 
132 	cmd = &desc.params.mac_read;
133 
134 	if (buf_size < sizeof(*resp))
135 		return ICE_ERR_BUF_TOO_SHORT;
136 
137 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
138 
139 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
140 	if (status)
141 		return status;
142 
143 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
144 	flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
145 
146 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
147 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
148 		return ICE_ERR_CFG;
149 	}
150 
151 	/* A single port can report up to two (LAN and WoL) addresses */
152 	for (i = 0; i < cmd->num_addr; i++)
153 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
154 			ice_memcpy(hw->port_info->mac.lan_addr,
155 				   resp[i].mac_addr, ETH_ALEN,
156 				   ICE_DMA_TO_NONDMA);
157 			ice_memcpy(hw->port_info->mac.perm_addr,
158 				   resp[i].mac_addr,
159 				   ETH_ALEN, ICE_DMA_TO_NONDMA);
160 			break;
161 		}
162 	return ICE_SUCCESS;
163 }
164 
165 /**
166  * ice_aq_get_phy_caps - returns PHY capabilities
167  * @pi: port information structure
168  * @qual_mods: report qualified modules
169  * @report_mode: report mode capabilities
170  * @pcaps: structure for PHY capabilities to be filled
171  * @cd: pointer to command details structure or NULL
172  *
173  * Returns the various PHY capabilities supported on the Port (0x0600)
174  */
175 enum ice_status
176 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
177 		    struct ice_aqc_get_phy_caps_data *pcaps,
178 		    struct ice_sq_cd *cd)
179 {
180 	struct ice_aqc_get_phy_caps *cmd;
181 	u16 pcaps_size = sizeof(*pcaps);
182 	struct ice_aq_desc desc;
183 	enum ice_status status;
184 	struct ice_hw *hw;
185 
186 	cmd = &desc.params.get_phy;
187 
188 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
189 		return ICE_ERR_PARAM;
190 	hw = pi->hw;
191 
192 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
193 
194 	if (qual_mods)
195 		cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
196 
197 	cmd->param0 |= CPU_TO_LE16(report_mode);
198 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
199 
200 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
201 		  report_mode);
202 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
203 		  (unsigned long long)LE64_TO_CPU(pcaps->phy_type_low));
204 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
205 		  (unsigned long long)LE64_TO_CPU(pcaps->phy_type_high));
206 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
207 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
208 		  pcaps->low_power_ctrl_an);
209 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
210 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
211 		  pcaps->eeer_value);
212 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
213 		  pcaps->link_fec_options);
214 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
215 		  pcaps->module_compliance_enforcement);
216 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
217 		  pcaps->extended_compliance_code);
218 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
219 		  pcaps->module_type[0]);
220 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
221 		  pcaps->module_type[1]);
222 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
223 		  pcaps->module_type[2]);
224 
225 	if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
226 		pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
227 		pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
228 		ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
229 			   sizeof(pi->phy.link_info.module_type),
230 			   ICE_NONDMA_TO_NONDMA);
231 	}
232 
233 	return status;
234 }
235 
236 /**
237  * ice_aq_get_link_topo_handle - get link topology node return status
238  * @pi: port information structure
239  * @node_type: requested node type
240  * @cd: pointer to command details structure or NULL
241  *
242  * Get link topology node return status for specified node type (0x06E0)
243  *
244  * Node type cage can be used to determine if cage is present. If AQC
245  * returns error (ENOENT), then no cage present. If no cage present, then
246  * connection type is backplane or BASE-T.
247  */
248 static enum ice_status
249 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
250 			    struct ice_sq_cd *cd)
251 {
252 	struct ice_aqc_get_link_topo *cmd;
253 	struct ice_aq_desc desc;
254 
255 	cmd = &desc.params.get_link_topo;
256 
257 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
258 
259 	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
260 				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
261 
262 	/* set node type */
263 	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
264 
265 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
266 }
267 
268 /**
269  * ice_is_media_cage_present
270  * @pi: port information structure
271  *
272  * Returns true if media cage is present, else false. If no cage, then
273  * media type is backplane or BASE-T.
274  */
275 static bool ice_is_media_cage_present(struct ice_port_info *pi)
276 {
277 	/* Node type cage can be used to determine if cage is present. If AQC
278 	 * returns error (ENOENT), then no cage present. If no cage present then
279 	 * connection type is backplane or BASE-T.
280 	 */
281 	return !ice_aq_get_link_topo_handle(pi,
282 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
283 					    NULL);
284 }
285 
286 /**
287  * ice_get_media_type - Gets media type
288  * @pi: port information structure
289  */
290 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
291 {
292 	struct ice_link_status *hw_link_info;
293 
294 	if (!pi)
295 		return ICE_MEDIA_UNKNOWN;
296 
297 	hw_link_info = &pi->phy.link_info;
298 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
299 		/* If more than one media type is selected, report unknown */
300 		return ICE_MEDIA_UNKNOWN;
301 
302 	if (hw_link_info->phy_type_low) {
303 		/* 1G SGMII is a special case where some DA cable PHYs
304 		 * may show this as an option when it really shouldn't
305 		 * be since SGMII is meant to be between a MAC and a PHY
306 		 * in a backplane. Try to detect this case and handle it
307 		 */
308 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
309 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
310 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
311 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
312 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
313 			return ICE_MEDIA_DA;
314 
315 		switch (hw_link_info->phy_type_low) {
316 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
317 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
318 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
319 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
320 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
321 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
322 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
323 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
324 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
325 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
326 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
327 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
328 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
329 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
330 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
331 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
332 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
333 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
334 			return ICE_MEDIA_FIBER;
335 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
336 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
337 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
338 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
339 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
340 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
341 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
342 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
343 			return ICE_MEDIA_FIBER;
344 		case ICE_PHY_TYPE_LOW_100BASE_TX:
345 		case ICE_PHY_TYPE_LOW_1000BASE_T:
346 		case ICE_PHY_TYPE_LOW_2500BASE_T:
347 		case ICE_PHY_TYPE_LOW_5GBASE_T:
348 		case ICE_PHY_TYPE_LOW_10GBASE_T:
349 		case ICE_PHY_TYPE_LOW_25GBASE_T:
350 			return ICE_MEDIA_BASET;
351 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
352 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
353 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
354 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
355 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
356 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
357 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
358 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
359 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
360 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
361 			return ICE_MEDIA_DA;
362 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
363 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
364 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
365 		case ICE_PHY_TYPE_LOW_50G_AUI2:
366 		case ICE_PHY_TYPE_LOW_50G_AUI1:
367 		case ICE_PHY_TYPE_LOW_100G_AUI4:
368 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
369 			if (ice_is_media_cage_present(pi))
370 				return ICE_MEDIA_AUI;
371 			/* fall-through */
372 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
373 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
374 		case ICE_PHY_TYPE_LOW_2500BASE_X:
375 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
376 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
377 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
378 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
379 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
380 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
381 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
382 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
383 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
384 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
385 			return ICE_MEDIA_BACKPLANE;
386 		}
387 	} else {
388 		switch (hw_link_info->phy_type_high) {
389 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
390 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
391 			if (ice_is_media_cage_present(pi))
392 				return ICE_MEDIA_AUI;
393 			/* fall-through */
394 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
395 			return ICE_MEDIA_BACKPLANE;
396 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
397 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
398 			return ICE_MEDIA_FIBER;
399 		}
400 	}
401 	return ICE_MEDIA_UNKNOWN;
402 }
403 
404 /**
405  * ice_aq_get_link_info
406  * @pi: port information structure
407  * @ena_lse: enable/disable LinkStatusEvent reporting
408  * @link: pointer to link status structure - optional
409  * @cd: pointer to command details structure or NULL
410  *
411  * Get Link Status (0x607). Returns the link status of the adapter.
412  */
413 enum ice_status
414 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
415 		     struct ice_link_status *link, struct ice_sq_cd *cd)
416 {
417 	struct ice_aqc_get_link_status_data link_data = { 0 };
418 	struct ice_aqc_get_link_status *resp;
419 	struct ice_link_status *li_old, *li;
420 	enum ice_media_type *hw_media_type;
421 	struct ice_fc_info *hw_fc_info;
422 	bool tx_pause, rx_pause;
423 	struct ice_aq_desc desc;
424 	enum ice_status status;
425 	struct ice_hw *hw;
426 	u16 cmd_flags;
427 
428 	if (!pi)
429 		return ICE_ERR_PARAM;
430 	hw = pi->hw;
431 
432 	li_old = &pi->phy.link_info_old;
433 	hw_media_type = &pi->phy.media_type;
434 	li = &pi->phy.link_info;
435 	hw_fc_info = &pi->fc;
436 
437 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
438 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
439 	resp = &desc.params.get_link_status;
440 	resp->cmd_flags = CPU_TO_LE16(cmd_flags);
441 	resp->lport_num = pi->lport;
442 
443 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
444 
445 	if (status != ICE_SUCCESS)
446 		return status;
447 
448 	/* save off old link status information */
449 	*li_old = *li;
450 
451 	/* update current link status information */
452 	li->link_speed = LE16_TO_CPU(link_data.link_speed);
453 	li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
454 	li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
455 	*hw_media_type = ice_get_media_type(pi);
456 	li->link_info = link_data.link_info;
457 	li->an_info = link_data.an_info;
458 	li->ext_info = link_data.ext_info;
459 	li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
460 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
461 	li->topo_media_conflict = link_data.topo_media_conflict;
462 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
463 				      ICE_AQ_CFG_PACING_TYPE_M);
464 
465 	/* update fc info */
466 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
467 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
468 	if (tx_pause && rx_pause)
469 		hw_fc_info->current_mode = ICE_FC_FULL;
470 	else if (tx_pause)
471 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
472 	else if (rx_pause)
473 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
474 	else
475 		hw_fc_info->current_mode = ICE_FC_NONE;
476 
477 	li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
478 
479 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
480 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
481 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
482 		  (unsigned long long)li->phy_type_low);
483 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
484 		  (unsigned long long)li->phy_type_high);
485 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
486 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
487 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
488 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
489 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
490 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
491 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
492 		  li->max_frame_size);
493 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
494 
495 	/* save link status information */
496 	if (link)
497 		*link = *li;
498 
499 	/* flag cleared so calling functions don't call AQ again */
500 	pi->phy.get_link_info = false;
501 
502 	return ICE_SUCCESS;
503 }
504 
505 /**
506  * ice_fill_tx_timer_and_fc_thresh
507  * @hw: pointer to the HW struct
508  * @cmd: pointer to MAC cfg structure
509  *
510  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
511  * descriptor
512  */
513 static void
514 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
515 				struct ice_aqc_set_mac_cfg *cmd)
516 {
517 	u16 fc_thres_val, tx_timer_val;
518 	u32 val;
519 
520 	/* We read back the transmit timer and fc threshold value of
521 	 * LFC. Thus, we will use index =
522 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
523 	 *
524 	 * Also, because we are opearating on transmit timer and fc
525 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
526 	 */
527 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
528 
529 	/* Retrieve the transmit timer */
530 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
531 	tx_timer_val = val &
532 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
533 	cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
534 
535 	/* Retrieve the fc threshold */
536 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
537 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
538 
539 	cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
540 }
541 
542 /**
543  * ice_aq_set_mac_cfg
544  * @hw: pointer to the HW struct
545  * @max_frame_size: Maximum Frame Size to be supported
546  * @cd: pointer to command details structure or NULL
547  *
548  * Set MAC configuration (0x0603)
549  */
550 enum ice_status
551 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
552 {
553 	struct ice_aqc_set_mac_cfg *cmd;
554 	struct ice_aq_desc desc;
555 
556 	cmd = &desc.params.set_mac_cfg;
557 
558 	if (max_frame_size == 0)
559 		return ICE_ERR_PARAM;
560 
561 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
562 
563 	cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
564 
565 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
566 
567 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
568 }
569 
570 /**
571  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
572  * @hw: pointer to the HW struct
573  */
574 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
575 {
576 	struct ice_switch_info *sw;
577 	enum ice_status status;
578 
579 	hw->switch_info = (struct ice_switch_info *)
580 			  ice_malloc(hw, sizeof(*hw->switch_info));
581 
582 	sw = hw->switch_info;
583 
584 	if (!sw)
585 		return ICE_ERR_NO_MEMORY;
586 
587 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
588 	sw->prof_res_bm_init = 0;
589 
590 	status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
591 	if (status) {
592 		ice_free(hw, hw->switch_info);
593 		return status;
594 	}
595 	return ICE_SUCCESS;
596 }
597 
598 /**
599  * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
600  * @hw: pointer to the HW struct
601  * @sw: pointer to switch info struct for which function clears filters
602  */
603 static void
604 ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
605 {
606 	struct ice_vsi_list_map_info *v_pos_map;
607 	struct ice_vsi_list_map_info *v_tmp_map;
608 	struct ice_sw_recipe *recps;
609 	u8 i;
610 
611 	if (!sw)
612 		return;
613 
614 	LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
615 				 ice_vsi_list_map_info, list_entry) {
616 		LIST_DEL(&v_pos_map->list_entry);
617 		ice_free(hw, v_pos_map);
618 	}
619 	recps = sw->recp_list;
620 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
621 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
622 
623 		recps[i].root_rid = i;
624 		LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
625 					 &recps[i].rg_list, ice_recp_grp_entry,
626 					 l_entry) {
627 			LIST_DEL(&rg_entry->l_entry);
628 			ice_free(hw, rg_entry);
629 		}
630 
631 		if (recps[i].adv_rule) {
632 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
633 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
634 
635 			ice_destroy_lock(&recps[i].filt_rule_lock);
636 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
637 						 &recps[i].filt_rules,
638 						 ice_adv_fltr_mgmt_list_entry,
639 						 list_entry) {
640 				LIST_DEL(&lst_itr->list_entry);
641 				ice_free(hw, lst_itr->lkups);
642 				ice_free(hw, lst_itr);
643 			}
644 		} else {
645 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
646 
647 			ice_destroy_lock(&recps[i].filt_rule_lock);
648 			LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
649 						 &recps[i].filt_rules,
650 						 ice_fltr_mgmt_list_entry,
651 						 list_entry) {
652 				LIST_DEL(&lst_itr->list_entry);
653 				ice_free(hw, lst_itr);
654 			}
655 		}
656 		if (recps[i].root_buf)
657 			ice_free(hw, recps[i].root_buf);
658 	}
659 	ice_rm_sw_replay_rule_info(hw, sw);
660 	ice_free(hw, sw->recp_list);
661 	ice_free(hw, sw);
662 }
663 
664 /**
665  * ice_cleanup_all_fltr_mgmt - cleanup filter management list and locks
666  * @hw: pointer to the HW struct
667  */
668 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
669 {
670 	ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
671 }
672 
673 /**
674  * ice_get_itr_intrl_gran
675  * @hw: pointer to the HW struct
676  *
677  * Determines the ITR/INTRL granularities based on the maximum aggregate
678  * bandwidth according to the device's configuration during power-on.
679  */
680 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
681 {
682 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
683 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
684 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
685 
686 	switch (max_agg_bw) {
687 	case ICE_MAX_AGG_BW_200G:
688 	case ICE_MAX_AGG_BW_100G:
689 	case ICE_MAX_AGG_BW_50G:
690 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
691 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
692 		break;
693 	case ICE_MAX_AGG_BW_25G:
694 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
695 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
696 		break;
697 	}
698 }
699 
700 /**
701  * ice_print_rollback_msg - print FW rollback message
702  * @hw: pointer to the hardware structure
703  */
704 void ice_print_rollback_msg(struct ice_hw *hw)
705 {
706 	char nvm_str[ICE_NVM_VER_LEN] = { 0 };
707 	struct ice_orom_info *orom;
708 	struct ice_nvm_info *nvm;
709 
710 	orom = &hw->flash.orom;
711 	nvm = &hw->flash.nvm;
712 
713 	SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
714 		 nvm->major, nvm->minor, nvm->eetrack, orom->major,
715 		 orom->build, orom->patch);
716 	ice_warn(hw,
717 		 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
718 		 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
719 }
720 
721 /**
722  * ice_init_hw - main hardware initialization routine
723  * @hw: pointer to the hardware structure
724  */
725 enum ice_status ice_init_hw(struct ice_hw *hw)
726 {
727 	struct ice_aqc_get_phy_caps_data *pcaps;
728 	enum ice_status status;
729 	u16 mac_buf_len;
730 	void *mac_buf;
731 
732 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
733 
734 	/* Set MAC type based on DeviceID */
735 	status = ice_set_mac_type(hw);
736 	if (status)
737 		return status;
738 
739 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
740 			 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
741 		PF_FUNC_RID_FUNCTION_NUMBER_S;
742 
743 	status = ice_reset(hw, ICE_RESET_PFR);
744 	if (status)
745 		return status;
746 	ice_get_itr_intrl_gran(hw);
747 
748 	status = ice_create_all_ctrlq(hw);
749 	if (status)
750 		goto err_unroll_cqinit;
751 
752 	status = ice_init_nvm(hw);
753 	if (status)
754 		goto err_unroll_cqinit;
755 
756 	if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
757 		ice_print_rollback_msg(hw);
758 
759 	status = ice_clear_pf_cfg(hw);
760 	if (status)
761 		goto err_unroll_cqinit;
762 
763 	ice_clear_pxe_mode(hw);
764 
765 	status = ice_get_caps(hw);
766 	if (status)
767 		goto err_unroll_cqinit;
768 
769 	hw->port_info = (struct ice_port_info *)
770 			ice_malloc(hw, sizeof(*hw->port_info));
771 	if (!hw->port_info) {
772 		status = ICE_ERR_NO_MEMORY;
773 		goto err_unroll_cqinit;
774 	}
775 
776 	/* set the back pointer to HW */
777 	hw->port_info->hw = hw;
778 
779 	/* Initialize port_info struct with switch configuration data */
780 	status = ice_get_initial_sw_cfg(hw);
781 	if (status)
782 		goto err_unroll_alloc;
783 
784 	hw->evb_veb = true;
785 	/* Query the allocated resources for Tx scheduler */
786 	status = ice_sched_query_res_alloc(hw);
787 	if (status) {
788 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
789 		goto err_unroll_alloc;
790 	}
791 	ice_sched_get_psm_clk_freq(hw);
792 
793 	/* Initialize port_info struct with scheduler data */
794 	status = ice_sched_init_port(hw->port_info);
795 	if (status)
796 		goto err_unroll_sched;
797 	pcaps = (struct ice_aqc_get_phy_caps_data *)
798 		ice_malloc(hw, sizeof(*pcaps));
799 	if (!pcaps) {
800 		status = ICE_ERR_NO_MEMORY;
801 		goto err_unroll_sched;
802 	}
803 
804 	/* Initialize port_info struct with PHY capabilities */
805 	status = ice_aq_get_phy_caps(hw->port_info, false,
806 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
807 	ice_free(hw, pcaps);
808 	if (status)
809 		ice_debug(hw, ICE_DBG_PHY, "Get PHY capabilities failed, continuing anyway\n");
810 
811 	/* Initialize port_info struct with link information */
812 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
813 	if (status)
814 		goto err_unroll_sched;
815 	/* need a valid SW entry point to build a Tx tree */
816 	if (!hw->sw_entry_point_layer) {
817 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
818 		status = ICE_ERR_CFG;
819 		goto err_unroll_sched;
820 	}
821 	INIT_LIST_HEAD(&hw->agg_list);
822 	/* Initialize max burst size */
823 	if (!hw->max_burst_size)
824 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
825 	status = ice_init_fltr_mgmt_struct(hw);
826 	if (status)
827 		goto err_unroll_sched;
828 
829 	/* Get MAC information */
830 	/* A single port can report up to two (LAN and WoL) addresses */
831 	mac_buf = ice_calloc(hw, 2,
832 			     sizeof(struct ice_aqc_manage_mac_read_resp));
833 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
834 
835 	if (!mac_buf) {
836 		status = ICE_ERR_NO_MEMORY;
837 		goto err_unroll_fltr_mgmt_struct;
838 	}
839 
840 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
841 	ice_free(hw, mac_buf);
842 
843 	if (status)
844 		goto err_unroll_fltr_mgmt_struct;
845 	/* enable jumbo frame support at MAC level */
846 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
847 	if (status)
848 		goto err_unroll_fltr_mgmt_struct;
849 	status = ice_init_hw_tbls(hw);
850 	if (status)
851 		goto err_unroll_fltr_mgmt_struct;
852 	ice_init_lock(&hw->tnl_lock);
853 
854 	ice_init_vlan_mode_ops(hw);
855 
856 	return ICE_SUCCESS;
857 
858 err_unroll_fltr_mgmt_struct:
859 	ice_cleanup_fltr_mgmt_struct(hw);
860 err_unroll_sched:
861 	ice_sched_cleanup_all(hw);
862 err_unroll_alloc:
863 	ice_free(hw, hw->port_info);
864 	hw->port_info = NULL;
865 err_unroll_cqinit:
866 	ice_destroy_all_ctrlq(hw);
867 	return status;
868 }
869 
870 /**
871  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
872  * @hw: pointer to the hardware structure
873  *
874  * This should be called only during nominal operation, not as a result of
875  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
876  * applicable initializations if it fails for any reason.
877  */
878 void ice_deinit_hw(struct ice_hw *hw)
879 {
880 	ice_cleanup_fltr_mgmt_struct(hw);
881 
882 	ice_sched_cleanup_all(hw);
883 	ice_sched_clear_agg(hw);
884 	ice_free_seg(hw);
885 	ice_free_hw_tbls(hw);
886 	ice_destroy_lock(&hw->tnl_lock);
887 
888 	if (hw->port_info) {
889 		ice_free(hw, hw->port_info);
890 		hw->port_info = NULL;
891 	}
892 
893 	ice_destroy_all_ctrlq(hw);
894 
895 	/* Clear VSI contexts if not already cleared */
896 	ice_clear_all_vsi_ctx(hw);
897 }
898 
899 /**
900  * ice_check_reset - Check to see if a global reset is complete
901  * @hw: pointer to the hardware structure
902  */
903 enum ice_status ice_check_reset(struct ice_hw *hw)
904 {
905 	u32 cnt, reg = 0, grst_timeout, uld_mask;
906 
907 	/* Poll for Device Active state in case a recent CORER, GLOBR,
908 	 * or EMPR has occurred. The grst delay value is in 100ms units.
909 	 * Add 1sec for outstanding AQ commands that can take a long time.
910 	 */
911 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
912 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
913 
914 	for (cnt = 0; cnt < grst_timeout; cnt++) {
915 		ice_msec_delay(100, true);
916 		reg = rd32(hw, GLGEN_RSTAT);
917 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
918 			break;
919 	}
920 
921 	if (cnt == grst_timeout) {
922 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
923 		return ICE_ERR_RESET_FAILED;
924 	}
925 
926 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
927 				 GLNVM_ULD_PCIER_DONE_1_M |\
928 				 GLNVM_ULD_CORER_DONE_M |\
929 				 GLNVM_ULD_GLOBR_DONE_M |\
930 				 GLNVM_ULD_POR_DONE_M |\
931 				 GLNVM_ULD_POR_DONE_1_M |\
932 				 GLNVM_ULD_PCIER_DONE_2_M)
933 
934 	uld_mask = ICE_RESET_DONE_MASK;
935 
936 	/* Device is Active; check Global Reset processes are done */
937 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
938 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
939 		if (reg == uld_mask) {
940 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
941 			break;
942 		}
943 		ice_msec_delay(10, true);
944 	}
945 
946 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
947 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
948 			  reg);
949 		return ICE_ERR_RESET_FAILED;
950 	}
951 
952 	return ICE_SUCCESS;
953 }
954 
955 /**
956  * ice_pf_reset - Reset the PF
957  * @hw: pointer to the hardware structure
958  *
959  * If a global reset has been triggered, this function checks
960  * for its completion and then issues the PF reset
961  */
962 static enum ice_status ice_pf_reset(struct ice_hw *hw)
963 {
964 	u32 cnt, reg;
965 
966 	/* If at function entry a global reset was already in progress, i.e.
967 	 * state is not 'device active' or any of the reset done bits are not
968 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
969 	 * global reset is done.
970 	 */
971 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
972 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
973 		/* poll on global reset currently in progress until done */
974 		if (ice_check_reset(hw))
975 			return ICE_ERR_RESET_FAILED;
976 
977 		return ICE_SUCCESS;
978 	}
979 
980 	/* Reset the PF */
981 	reg = rd32(hw, PFGEN_CTRL);
982 
983 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
984 
985 	/* Wait for the PFR to complete. The wait time is the global config lock
986 	 * timeout plus the PFR timeout which will account for a possible reset
987 	 * that is occurring during a download package operation.
988 	 */
989 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
990 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
991 		reg = rd32(hw, PFGEN_CTRL);
992 		if (!(reg & PFGEN_CTRL_PFSWR_M))
993 			break;
994 
995 		ice_msec_delay(1, true);
996 	}
997 
998 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
999 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1000 		return ICE_ERR_RESET_FAILED;
1001 	}
1002 
1003 	return ICE_SUCCESS;
1004 }
1005 
1006 /**
1007  * ice_reset - Perform different types of reset
1008  * @hw: pointer to the hardware structure
1009  * @req: reset request
1010  *
1011  * This function triggers a reset as specified by the req parameter.
1012  *
1013  * Note:
1014  * If anything other than a PF reset is triggered, PXE mode is restored.
1015  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1016  * interface has been restored in the rebuild flow.
1017  */
1018 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1019 {
1020 	u32 val = 0;
1021 
1022 	switch (req) {
1023 	case ICE_RESET_PFR:
1024 		return ice_pf_reset(hw);
1025 	case ICE_RESET_CORER:
1026 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1027 		val = GLGEN_RTRIG_CORER_M;
1028 		break;
1029 	case ICE_RESET_GLOBR:
1030 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1031 		val = GLGEN_RTRIG_GLOBR_M;
1032 		break;
1033 	default:
1034 		return ICE_ERR_PARAM;
1035 	}
1036 
1037 	val |= rd32(hw, GLGEN_RTRIG);
1038 	wr32(hw, GLGEN_RTRIG, val);
1039 	ice_flush(hw);
1040 
1041 	/* wait for the FW to be ready */
1042 	return ice_check_reset(hw);
1043 }
1044 
1045 /**
1046  * ice_copy_rxq_ctx_to_hw
1047  * @hw: pointer to the hardware structure
1048  * @ice_rxq_ctx: pointer to the rxq context
1049  * @rxq_index: the index of the Rx queue
1050  *
1051  * Copies rxq context from dense structure to HW register space
1052  */
1053 static enum ice_status
1054 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1055 {
1056 	u8 i;
1057 
1058 	if (!ice_rxq_ctx)
1059 		return ICE_ERR_BAD_PTR;
1060 
1061 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1062 		return ICE_ERR_PARAM;
1063 
1064 	/* Copy each dword separately to HW */
1065 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1066 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1067 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1068 
1069 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1070 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1071 	}
1072 
1073 	return ICE_SUCCESS;
1074 }
1075 
1076 /* LAN Rx Queue Context */
1077 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1078 	/* Field		Width	LSB */
1079 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1080 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1081 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1082 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1083 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1084 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1085 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1086 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1087 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1088 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1089 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1090 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1091 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1092 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1093 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1094 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1095 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1096 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1097 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1098 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1099 	{ 0 }
1100 };
1101 
1102 /**
1103  * ice_write_rxq_ctx
1104  * @hw: pointer to the hardware structure
1105  * @rlan_ctx: pointer to the rxq context
1106  * @rxq_index: the index of the Rx queue
1107  *
1108  * Converts rxq context from sparse to dense structure and then writes
1109  * it to HW register space and enables the hardware to prefetch descriptors
1110  * instead of only fetching them on demand
1111  */
1112 enum ice_status
1113 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1114 		  u32 rxq_index)
1115 {
1116 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1117 
1118 	if (!rlan_ctx)
1119 		return ICE_ERR_BAD_PTR;
1120 
1121 	rlan_ctx->prefena = 1;
1122 
1123 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1124 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1125 }
1126 
1127 /**
1128  * ice_clear_rxq_ctx
1129  * @hw: pointer to the hardware structure
1130  * @rxq_index: the index of the Rx queue to clear
1131  *
1132  * Clears rxq context in HW register space
1133  */
1134 enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1135 {
1136 	u8 i;
1137 
1138 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1139 		return ICE_ERR_PARAM;
1140 
1141 	/* Clear each dword register separately */
1142 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1143 		wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1144 
1145 	return ICE_SUCCESS;
1146 }
1147 
1148 /* LAN Tx Queue Context */
1149 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1150 				    /* Field			Width	LSB */
1151 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1152 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1153 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1154 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1155 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1156 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1157 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1158 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1159 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1160 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1161 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1162 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1163 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1164 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1165 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1166 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1167 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1168 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1169 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1170 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1171 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1172 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1173 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1174 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1175 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1176 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1177 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1178 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1179 	{ 0 }
1180 };
1181 
1182 /**
1183  * ice_copy_tx_cmpltnq_ctx_to_hw
1184  * @hw: pointer to the hardware structure
1185  * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1186  * @tx_cmpltnq_index: the index of the completion queue
1187  *
1188  * Copies Tx completion queue context from dense structure to HW register space
1189  */
1190 static enum ice_status
1191 ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1192 			      u32 tx_cmpltnq_index)
1193 {
1194 	u8 i;
1195 
1196 	if (!ice_tx_cmpltnq_ctx)
1197 		return ICE_ERR_BAD_PTR;
1198 
1199 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1200 		return ICE_ERR_PARAM;
1201 
1202 	/* Copy each dword separately to HW */
1203 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1204 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1205 		     *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1206 
1207 		ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1208 			  *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1209 	}
1210 
1211 	return ICE_SUCCESS;
1212 }
1213 
1214 /* LAN Tx Completion Queue Context */
1215 static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1216 				       /* Field			Width   LSB */
1217 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base,			57,	0),
1218 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len,		18,	64),
1219 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation,		1,	96),
1220 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr,		22,	97),
1221 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num,		3,	128),
1222 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num,		10,	131),
1223 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type,		2,	141),
1224 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr,		1,	160),
1225 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid,		8,	161),
1226 	ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache,		512,	192),
1227 	{ 0 }
1228 };
1229 
1230 /**
1231  * ice_write_tx_cmpltnq_ctx
1232  * @hw: pointer to the hardware structure
1233  * @tx_cmpltnq_ctx: pointer to the completion queue context
1234  * @tx_cmpltnq_index: the index of the completion queue
1235  *
1236  * Converts completion queue context from sparse to dense structure and then
1237  * writes it to HW register space
1238  */
1239 enum ice_status
1240 ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1241 			 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1242 			 u32 tx_cmpltnq_index)
1243 {
1244 	u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1245 
1246 	ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1247 	return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1248 }
1249 
1250 /**
1251  * ice_clear_tx_cmpltnq_ctx
1252  * @hw: pointer to the hardware structure
1253  * @tx_cmpltnq_index: the index of the completion queue to clear
1254  *
1255  * Clears Tx completion queue context in HW register space
1256  */
1257 enum ice_status
1258 ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1259 {
1260 	u8 i;
1261 
1262 	if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1263 		return ICE_ERR_PARAM;
1264 
1265 	/* Clear each dword register separately */
1266 	for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1267 		wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1268 
1269 	return ICE_SUCCESS;
1270 }
1271 
1272 /**
1273  * ice_copy_tx_drbell_q_ctx_to_hw
1274  * @hw: pointer to the hardware structure
1275  * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1276  * @tx_drbell_q_index: the index of the doorbell queue
1277  *
1278  * Copies doorbell queue context from dense structure to HW register space
1279  */
1280 static enum ice_status
1281 ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1282 			       u32 tx_drbell_q_index)
1283 {
1284 	u8 i;
1285 
1286 	if (!ice_tx_drbell_q_ctx)
1287 		return ICE_ERR_BAD_PTR;
1288 
1289 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1290 		return ICE_ERR_PARAM;
1291 
1292 	/* Copy each dword separately to HW */
1293 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1294 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1295 		     *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1296 
1297 		ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1298 			  *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1299 	}
1300 
1301 	return ICE_SUCCESS;
1302 }
1303 
1304 /* LAN Tx Doorbell Queue Context info */
1305 static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1306 					/* Field		Width   LSB */
1307 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, base,		57,	0),
1308 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len,		13,	64),
1309 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num,		3,	80),
1310 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num,		8,	84),
1311 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type,		2,	94),
1312 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid,		8,	96),
1313 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd,		1,	104),
1314 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr,		1,	108),
1315 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en,		1,	112),
1316 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head,		13,	128),
1317 	ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail,		13,	144),
1318 	{ 0 }
1319 };
1320 
1321 /**
1322  * ice_write_tx_drbell_q_ctx
1323  * @hw: pointer to the hardware structure
1324  * @tx_drbell_q_ctx: pointer to the doorbell queue context
1325  * @tx_drbell_q_index: the index of the doorbell queue
1326  *
1327  * Converts doorbell queue context from sparse to dense structure and then
1328  * writes it to HW register space
1329  */
1330 enum ice_status
1331 ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1332 			  struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1333 			  u32 tx_drbell_q_index)
1334 {
1335 	u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1336 
1337 	ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1338 		    ice_tx_drbell_q_ctx_info);
1339 	return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1340 }
1341 
1342 /**
1343  * ice_clear_tx_drbell_q_ctx
1344  * @hw: pointer to the hardware structure
1345  * @tx_drbell_q_index: the index of the doorbell queue to clear
1346  *
1347  * Clears doorbell queue context in HW register space
1348  */
1349 enum ice_status
1350 ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1351 {
1352 	u8 i;
1353 
1354 	if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1355 		return ICE_ERR_PARAM;
1356 
1357 	/* Clear each dword register separately */
1358 	for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1359 		wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1360 
1361 	return ICE_SUCCESS;
1362 }
1363 
1364 /* FW Admin Queue command wrappers */
1365 
1366 /**
1367  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1368  * @hw: pointer to the HW struct
1369  * @desc: descriptor describing the command
1370  * @buf: buffer to use for indirect commands (NULL for direct commands)
1371  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1372  * @cd: pointer to command details structure
1373  *
1374  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1375  */
1376 enum ice_status
1377 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1378 		u16 buf_size, struct ice_sq_cd *cd)
1379 {
1380 	return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1381 }
1382 
1383 /**
1384  * ice_aq_get_fw_ver
1385  * @hw: pointer to the HW struct
1386  * @cd: pointer to command details structure or NULL
1387  *
1388  * Get the firmware version (0x0001) from the admin queue commands
1389  */
1390 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1391 {
1392 	struct ice_aqc_get_ver *resp;
1393 	struct ice_aq_desc desc;
1394 	enum ice_status status;
1395 
1396 	resp = &desc.params.get_ver;
1397 
1398 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1399 
1400 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1401 
1402 	if (!status) {
1403 		hw->fw_branch = resp->fw_branch;
1404 		hw->fw_maj_ver = resp->fw_major;
1405 		hw->fw_min_ver = resp->fw_minor;
1406 		hw->fw_patch = resp->fw_patch;
1407 		hw->fw_build = LE32_TO_CPU(resp->fw_build);
1408 		hw->api_branch = resp->api_branch;
1409 		hw->api_maj_ver = resp->api_major;
1410 		hw->api_min_ver = resp->api_minor;
1411 		hw->api_patch = resp->api_patch;
1412 	}
1413 
1414 	return status;
1415 }
1416 
1417 /**
1418  * ice_aq_send_driver_ver
1419  * @hw: pointer to the HW struct
1420  * @dv: driver's major, minor version
1421  * @cd: pointer to command details structure or NULL
1422  *
1423  * Send the driver version (0x0002) to the firmware
1424  */
1425 enum ice_status
1426 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1427 		       struct ice_sq_cd *cd)
1428 {
1429 	struct ice_aqc_driver_ver *cmd;
1430 	struct ice_aq_desc desc;
1431 	u16 len;
1432 
1433 	cmd = &desc.params.driver_ver;
1434 
1435 	if (!dv)
1436 		return ICE_ERR_PARAM;
1437 
1438 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1439 
1440 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1441 	cmd->major_ver = dv->major_ver;
1442 	cmd->minor_ver = dv->minor_ver;
1443 	cmd->build_ver = dv->build_ver;
1444 	cmd->subbuild_ver = dv->subbuild_ver;
1445 
1446 	len = 0;
1447 	while (len < sizeof(dv->driver_string) &&
1448 	       IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
1449 		len++;
1450 
1451 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1452 }
1453 
1454 /**
1455  * ice_aq_q_shutdown
1456  * @hw: pointer to the HW struct
1457  * @unloading: is the driver unloading itself
1458  *
1459  * Tell the Firmware that we're shutting down the AdminQ and whether
1460  * or not the driver is unloading as well (0x0003).
1461  */
1462 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1463 {
1464 	struct ice_aqc_q_shutdown *cmd;
1465 	struct ice_aq_desc desc;
1466 
1467 	cmd = &desc.params.q_shutdown;
1468 
1469 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1470 
1471 	if (unloading)
1472 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1473 
1474 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1475 }
1476 
1477 /**
1478  * ice_aq_req_res
1479  * @hw: pointer to the HW struct
1480  * @res: resource ID
1481  * @access: access type
1482  * @sdp_number: resource number
1483  * @timeout: the maximum time in ms that the driver may hold the resource
1484  * @cd: pointer to command details structure or NULL
1485  *
1486  * Requests common resource using the admin queue commands (0x0008).
1487  * When attempting to acquire the Global Config Lock, the driver can
1488  * learn of three states:
1489  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1490  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1491  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1492  *                          successfully downloaded the package; the driver does
1493  *                          not have to download the package and can continue
1494  *                          loading
1495  *
1496  * Note that if the caller is in an acquire lock, perform action, release lock
1497  * phase of operation, it is possible that the FW may detect a timeout and issue
1498  * a CORER. In this case, the driver will receive a CORER interrupt and will
1499  * have to determine its cause. The calling thread that is handling this flow
1500  * will likely get an error propagated back to it indicating the Download
1501  * Package, Update Package or the Release Resource AQ commands timed out.
1502  */
1503 static enum ice_status
1504 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1505 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1506 	       struct ice_sq_cd *cd)
1507 {
1508 	struct ice_aqc_req_res *cmd_resp;
1509 	struct ice_aq_desc desc;
1510 	enum ice_status status;
1511 
1512 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1513 
1514 	cmd_resp = &desc.params.res_owner;
1515 
1516 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1517 
1518 	cmd_resp->res_id = CPU_TO_LE16(res);
1519 	cmd_resp->access_type = CPU_TO_LE16(access);
1520 	cmd_resp->res_number = CPU_TO_LE32(sdp_number);
1521 	cmd_resp->timeout = CPU_TO_LE32(*timeout);
1522 	*timeout = 0;
1523 
1524 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1525 
1526 	/* The completion specifies the maximum time in ms that the driver
1527 	 * may hold the resource in the Timeout field.
1528 	 */
1529 
1530 	/* Global config lock response utilizes an additional status field.
1531 	 *
1532 	 * If the Global config lock resource is held by some other driver, the
1533 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1534 	 * and the timeout field indicates the maximum time the current owner
1535 	 * of the resource has to free it.
1536 	 */
1537 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1538 		if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1539 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1540 			return ICE_SUCCESS;
1541 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1542 			   ICE_AQ_RES_GLBL_IN_PROG) {
1543 			*timeout = LE32_TO_CPU(cmd_resp->timeout);
1544 			return ICE_ERR_AQ_ERROR;
1545 		} else if (LE16_TO_CPU(cmd_resp->status) ==
1546 			   ICE_AQ_RES_GLBL_DONE) {
1547 			return ICE_ERR_AQ_NO_WORK;
1548 		}
1549 
1550 		/* invalid FW response, force a timeout immediately */
1551 		*timeout = 0;
1552 		return ICE_ERR_AQ_ERROR;
1553 	}
1554 
1555 	/* If the resource is held by some other driver, the command completes
1556 	 * with a busy return value and the timeout field indicates the maximum
1557 	 * time the current owner of the resource has to free it.
1558 	 */
1559 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1560 		*timeout = LE32_TO_CPU(cmd_resp->timeout);
1561 
1562 	return status;
1563 }
1564 
1565 /**
1566  * ice_aq_release_res
1567  * @hw: pointer to the HW struct
1568  * @res: resource ID
1569  * @sdp_number: resource number
1570  * @cd: pointer to command details structure or NULL
1571  *
1572  * release common resource using the admin queue commands (0x0009)
1573  */
1574 static enum ice_status
1575 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1576 		   struct ice_sq_cd *cd)
1577 {
1578 	struct ice_aqc_req_res *cmd;
1579 	struct ice_aq_desc desc;
1580 
1581 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1582 
1583 	cmd = &desc.params.res_owner;
1584 
1585 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1586 
1587 	cmd->res_id = CPU_TO_LE16(res);
1588 	cmd->res_number = CPU_TO_LE32(sdp_number);
1589 
1590 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1591 }
1592 
1593 /**
1594  * ice_acquire_res
1595  * @hw: pointer to the HW structure
1596  * @res: resource ID
1597  * @access: access type (read or write)
1598  * @timeout: timeout in milliseconds
1599  *
1600  * This function will attempt to acquire the ownership of a resource.
1601  */
1602 enum ice_status
1603 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1604 		enum ice_aq_res_access_type access, u32 timeout)
1605 {
1606 #define ICE_RES_POLLING_DELAY_MS	10
1607 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1608 	u32 time_left = timeout;
1609 	enum ice_status status;
1610 
1611 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1612 
1613 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1614 
1615 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1616 	 * previously acquired the resource and performed any necessary updates;
1617 	 * in this case the caller does not obtain the resource and has no
1618 	 * further work to do.
1619 	 */
1620 	if (status == ICE_ERR_AQ_NO_WORK)
1621 		goto ice_acquire_res_exit;
1622 
1623 	if (status)
1624 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1625 
1626 	/* If necessary, poll until the current lock owner timeouts */
1627 	timeout = time_left;
1628 	while (status && timeout && time_left) {
1629 		ice_msec_delay(delay, true);
1630 		timeout = (timeout > delay) ? timeout - delay : 0;
1631 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1632 
1633 		if (status == ICE_ERR_AQ_NO_WORK)
1634 			/* lock free, but no work to do */
1635 			break;
1636 
1637 		if (!status)
1638 			/* lock acquired */
1639 			break;
1640 	}
1641 	if (status && status != ICE_ERR_AQ_NO_WORK)
1642 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1643 
1644 ice_acquire_res_exit:
1645 	if (status == ICE_ERR_AQ_NO_WORK) {
1646 		if (access == ICE_RES_WRITE)
1647 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1648 		else
1649 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1650 	}
1651 	return status;
1652 }
1653 
1654 /**
1655  * ice_release_res
1656  * @hw: pointer to the HW structure
1657  * @res: resource ID
1658  *
1659  * This function will release a resource using the proper Admin Command.
1660  */
1661 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1662 {
1663 	enum ice_status status;
1664 	u32 total_delay = 0;
1665 
1666 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1667 
1668 	status = ice_aq_release_res(hw, res, 0, NULL);
1669 
1670 	/* there are some rare cases when trying to release the resource
1671 	 * results in an admin queue timeout, so handle them correctly
1672 	 */
1673 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1674 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1675 		ice_msec_delay(1, true);
1676 		status = ice_aq_release_res(hw, res, 0, NULL);
1677 		total_delay++;
1678 	}
1679 }
1680 
1681 /**
1682  * ice_aq_alloc_free_res - command to allocate/free resources
1683  * @hw: pointer to the HW struct
1684  * @num_entries: number of resource entries in buffer
1685  * @buf: Indirect buffer to hold data parameters and response
1686  * @buf_size: size of buffer for indirect commands
1687  * @opc: pass in the command opcode
1688  * @cd: pointer to command details structure or NULL
1689  *
1690  * Helper function to allocate/free resources using the admin queue commands
1691  */
1692 enum ice_status
1693 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1694 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1695 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1696 {
1697 	struct ice_aqc_alloc_free_res_cmd *cmd;
1698 	struct ice_aq_desc desc;
1699 
1700 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1701 
1702 	cmd = &desc.params.sw_res_ctrl;
1703 
1704 	if (!buf)
1705 		return ICE_ERR_PARAM;
1706 
1707 	if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
1708 		return ICE_ERR_PARAM;
1709 
1710 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1711 
1712 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1713 
1714 	cmd->num_entries = CPU_TO_LE16(num_entries);
1715 
1716 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1717 }
1718 
1719 /**
1720  * ice_alloc_hw_res - allocate resource
1721  * @hw: pointer to the HW struct
1722  * @type: type of resource
1723  * @num: number of resources to allocate
1724  * @btm: allocate from bottom
1725  * @res: pointer to array that will receive the resources
1726  */
1727 enum ice_status
1728 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1729 {
1730 	struct ice_aqc_alloc_free_res_elem *buf;
1731 	enum ice_status status;
1732 	u16 buf_len;
1733 
1734 	buf_len = ice_struct_size(buf, elem, num);
1735 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1736 	if (!buf)
1737 		return ICE_ERR_NO_MEMORY;
1738 
1739 	/* Prepare buffer to allocate resource. */
1740 	buf->num_elems = CPU_TO_LE16(num);
1741 	buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1742 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1743 	if (btm)
1744 		buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1745 
1746 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1747 				       ice_aqc_opc_alloc_res, NULL);
1748 	if (status)
1749 		goto ice_alloc_res_exit;
1750 
1751 	ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
1752 		   ICE_NONDMA_TO_NONDMA);
1753 
1754 ice_alloc_res_exit:
1755 	ice_free(hw, buf);
1756 	return status;
1757 }
1758 
1759 /**
1760  * ice_free_hw_res - free allocated HW resource
1761  * @hw: pointer to the HW struct
1762  * @type: type of resource to free
1763  * @num: number of resources
1764  * @res: pointer to array that contains the resources to free
1765  */
1766 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1767 {
1768 	struct ice_aqc_alloc_free_res_elem *buf;
1769 	enum ice_status status;
1770 	u16 buf_len;
1771 
1772 	buf_len = ice_struct_size(buf, elem, num);
1773 	buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1774 	if (!buf)
1775 		return ICE_ERR_NO_MEMORY;
1776 
1777 	/* Prepare buffer to free resource. */
1778 	buf->num_elems = CPU_TO_LE16(num);
1779 	buf->res_type = CPU_TO_LE16(type);
1780 	ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
1781 		   ICE_NONDMA_TO_NONDMA);
1782 
1783 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1784 				       ice_aqc_opc_free_res, NULL);
1785 	if (status)
1786 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1787 
1788 	ice_free(hw, buf);
1789 	return status;
1790 }
1791 
1792 /**
1793  * ice_get_num_per_func - determine number of resources per PF
1794  * @hw: pointer to the HW structure
1795  * @max: value to be evenly split between each PF
1796  *
1797  * Determine the number of valid functions by going through the bitmap returned
1798  * from parsing capabilities and use this to calculate the number of resources
1799  * per PF based on the max value passed in.
1800  */
1801 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1802 {
1803 	u8 funcs;
1804 
1805 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1806 	funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
1807 			     ICE_CAPS_VALID_FUNCS_M);
1808 
1809 	if (!funcs)
1810 		return 0;
1811 
1812 	return max / funcs;
1813 }
1814 
1815 /**
1816  * ice_print_led_caps - print LED capabilities
1817  * @hw: pointer to the ice_hw instance
1818  * @caps: pointer to common caps instance
1819  * @prefix: string to prefix when printing
1820  * @debug: set to indicate debug print
1821  */
1822 static void
1823 ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1824 		   char const *prefix, bool debug)
1825 {
1826 	u8 i;
1827 
1828 	if (debug)
1829 		ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
1830 			  caps->led_pin_num);
1831 	else
1832 		ice_info(hw, "%s: led_pin_num = %d\n", prefix,
1833 			 caps->led_pin_num);
1834 
1835 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
1836 		if (!caps->led[i])
1837 			continue;
1838 
1839 		if (debug)
1840 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
1841 				  prefix, i, caps->led[i]);
1842 		else
1843 			ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
1844 				 caps->led[i]);
1845 	}
1846 }
1847 
1848 /**
1849  * ice_print_sdp_caps - print SDP capabilities
1850  * @hw: pointer to the ice_hw instance
1851  * @caps: pointer to common caps instance
1852  * @prefix: string to prefix when printing
1853  * @debug: set to indicate debug print
1854  */
1855 static void
1856 ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1857 		   char const *prefix, bool debug)
1858 {
1859 	u8 i;
1860 
1861 	if (debug)
1862 		ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
1863 			  caps->sdp_pin_num);
1864 	else
1865 		ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
1866 			 caps->sdp_pin_num);
1867 
1868 	for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
1869 		if (!caps->sdp[i])
1870 			continue;
1871 
1872 		if (debug)
1873 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
1874 				  prefix, i, caps->sdp[i]);
1875 		else
1876 			ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
1877 				 i, caps->sdp[i]);
1878 	}
1879 }
1880 
1881 /**
1882  * ice_parse_common_caps - parse common device/function capabilities
1883  * @hw: pointer to the HW struct
1884  * @caps: pointer to common capabilities structure
1885  * @elem: the capability element to parse
1886  * @prefix: message prefix for tracing capabilities
1887  *
1888  * Given a capability element, extract relevant details into the common
1889  * capability structure.
1890  *
1891  * Returns: true if the capability matches one of the common capability ids,
1892  * false otherwise.
1893  */
1894 static bool
1895 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1896 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1897 {
1898 	u32 logical_id = LE32_TO_CPU(elem->logical_id);
1899 	u32 phys_id = LE32_TO_CPU(elem->phys_id);
1900 	u32 number = LE32_TO_CPU(elem->number);
1901 	u16 cap = LE16_TO_CPU(elem->cap);
1902 	bool found = true;
1903 
1904 	switch (cap) {
1905 	case ICE_AQC_CAPS_SWITCHING_MODE:
1906 		caps->switching_mode = number;
1907 		ice_debug(hw, ICE_DBG_INIT, "%s: switching_mode = %d\n", prefix,
1908 			  caps->switching_mode);
1909 		break;
1910 	case ICE_AQC_CAPS_MANAGEABILITY_MODE:
1911 		caps->mgmt_mode = number;
1912 		caps->mgmt_protocols_mctp = logical_id;
1913 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_mode = %d\n", prefix,
1914 			  caps->mgmt_mode);
1915 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_protocols_mctp = %d\n", prefix,
1916 			  caps->mgmt_protocols_mctp);
1917 		break;
1918 	case ICE_AQC_CAPS_OS2BMC:
1919 		caps->os2bmc = number;
1920 		ice_debug(hw, ICE_DBG_INIT, "%s: os2bmc = %d\n", prefix, caps->os2bmc);
1921 		break;
1922 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1923 		caps->valid_functions = number;
1924 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1925 			  caps->valid_functions);
1926 		break;
1927 	case ICE_AQC_CAPS_SRIOV:
1928 		caps->sr_iov_1_1 = (number == 1);
1929 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1930 			  caps->sr_iov_1_1);
1931 		break;
1932 	case ICE_AQC_CAPS_802_1QBG:
1933 		caps->evb_802_1_qbg = (number == 1);
1934 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbg = %d\n", prefix, number);
1935 		break;
1936 	case ICE_AQC_CAPS_802_1BR:
1937 		caps->evb_802_1_qbh = (number == 1);
1938 		ice_debug(hw, ICE_DBG_INIT, "%s: evb_802_1_qbh = %d\n", prefix, number);
1939 		break;
1940 	case ICE_AQC_CAPS_DCB:
1941 		caps->dcb = (number == 1);
1942 		caps->active_tc_bitmap = logical_id;
1943 		caps->maxtc = phys_id;
1944 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1945 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1946 			  caps->active_tc_bitmap);
1947 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1948 		break;
1949 	case ICE_AQC_CAPS_ISCSI:
1950 		caps->iscsi = (number == 1);
1951 		ice_debug(hw, ICE_DBG_INIT, "%s: iscsi = %d\n", prefix, caps->iscsi);
1952 		break;
1953 	case ICE_AQC_CAPS_RSS:
1954 		caps->rss_table_size = number;
1955 		caps->rss_table_entry_width = logical_id;
1956 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1957 			  caps->rss_table_size);
1958 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1959 			  caps->rss_table_entry_width);
1960 		break;
1961 	case ICE_AQC_CAPS_RXQS:
1962 		caps->num_rxq = number;
1963 		caps->rxq_first_id = phys_id;
1964 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1965 			  caps->num_rxq);
1966 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1967 			  caps->rxq_first_id);
1968 		break;
1969 	case ICE_AQC_CAPS_TXQS:
1970 		caps->num_txq = number;
1971 		caps->txq_first_id = phys_id;
1972 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1973 			  caps->num_txq);
1974 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1975 			  caps->txq_first_id);
1976 		break;
1977 	case ICE_AQC_CAPS_MSIX:
1978 		caps->num_msix_vectors = number;
1979 		caps->msix_vector_first_id = phys_id;
1980 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1981 			  caps->num_msix_vectors);
1982 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1983 			  caps->msix_vector_first_id);
1984 		break;
1985 	case ICE_AQC_CAPS_NVM_VER:
1986 		break;
1987 	case ICE_AQC_CAPS_NVM_MGMT:
1988 		caps->sec_rev_disabled =
1989 			(number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
1990 			true : false;
1991 		ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
1992 			  caps->sec_rev_disabled);
1993 		caps->update_disabled =
1994 			(number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
1995 			true : false;
1996 		ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
1997 			  caps->update_disabled);
1998 		caps->nvm_unified_update =
1999 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2000 			true : false;
2001 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2002 			  caps->nvm_unified_update);
2003 		break;
2004 	case ICE_AQC_CAPS_CEM:
2005 		caps->mgmt_cem = (number == 1);
2006 		ice_debug(hw, ICE_DBG_INIT, "%s: mgmt_cem = %d\n", prefix,
2007 			  caps->mgmt_cem);
2008 		break;
2009 	case ICE_AQC_CAPS_LED:
2010 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
2011 			caps->led[phys_id] = true;
2012 			caps->led_pin_num++;
2013 			ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = 1\n", prefix, phys_id);
2014 		}
2015 		break;
2016 	case ICE_AQC_CAPS_SDP:
2017 		if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
2018 			caps->sdp[phys_id] = true;
2019 			caps->sdp_pin_num++;
2020 			ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = 1\n", prefix, phys_id);
2021 		}
2022 		break;
2023 	case ICE_AQC_CAPS_WR_CSR_PROT:
2024 		caps->wr_csr_prot = number;
2025 		caps->wr_csr_prot |= (u64)logical_id << 32;
2026 		ice_debug(hw, ICE_DBG_INIT, "%s: wr_csr_prot = 0x%llX\n", prefix,
2027 			  (unsigned long long)caps->wr_csr_prot);
2028 		break;
2029 	case ICE_AQC_CAPS_WOL_PROXY:
2030 		caps->num_wol_proxy_fltr = number;
2031 		caps->wol_proxy_vsi_seid = logical_id;
2032 		caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
2033 		caps->acpi_prog_mthd = !!(phys_id &
2034 					  ICE_ACPI_PROG_MTHD_M);
2035 		caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
2036 		ice_debug(hw, ICE_DBG_INIT, "%s: num_wol_proxy_fltr = %d\n", prefix,
2037 			  caps->num_wol_proxy_fltr);
2038 		ice_debug(hw, ICE_DBG_INIT, "%s: wol_proxy_vsi_seid = %d\n", prefix,
2039 			  caps->wol_proxy_vsi_seid);
2040 		break;
2041 	case ICE_AQC_CAPS_MAX_MTU:
2042 		caps->max_mtu = number;
2043 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2044 			  prefix, caps->max_mtu);
2045 		break;
2046 	default:
2047 		/* Not one of the recognized common capabilities */
2048 		found = false;
2049 	}
2050 
2051 	return found;
2052 }
2053 
2054 /**
2055  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2056  * @hw: pointer to the HW structure
2057  * @caps: pointer to capabilities structure to fix
2058  *
2059  * Re-calculate the capabilities that are dependent on the number of physical
2060  * ports; i.e. some features are not supported or function differently on
2061  * devices with more than 4 ports.
2062  */
2063 static void
2064 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2065 {
2066 	/* This assumes device capabilities are always scanned before function
2067 	 * capabilities during the initialization flow.
2068 	 */
2069 	if (hw->dev_caps.num_funcs > 4) {
2070 		/* Max 4 TCs per port */
2071 		caps->maxtc = 4;
2072 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2073 			  caps->maxtc);
2074 	}
2075 }
2076 
2077 /**
2078  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2079  * @hw: pointer to the HW struct
2080  * @func_p: pointer to function capabilities structure
2081  * @cap: pointer to the capability element to parse
2082  *
2083  * Extract function capabilities for ICE_AQC_CAPS_VF.
2084  */
2085 static void
2086 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2087 		       struct ice_aqc_list_caps_elem *cap)
2088 {
2089 	u32 number = LE32_TO_CPU(cap->number);
2090 	u32 logical_id = LE32_TO_CPU(cap->logical_id);
2091 
2092 	func_p->num_allocd_vfs = number;
2093 	func_p->vf_base_id = logical_id;
2094 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2095 		  func_p->num_allocd_vfs);
2096 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2097 		  func_p->vf_base_id);
2098 }
2099 
2100 /**
2101  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2102  * @hw: pointer to the HW struct
2103  * @func_p: pointer to function capabilities structure
2104  * @cap: pointer to the capability element to parse
2105  *
2106  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2107  */
2108 static void
2109 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2110 			struct ice_aqc_list_caps_elem *cap)
2111 {
2112 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2113 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2114 		  LE32_TO_CPU(cap->number));
2115 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2116 		  func_p->guar_num_vsi);
2117 }
2118 
2119 /**
2120  * ice_parse_func_caps - Parse function capabilities
2121  * @hw: pointer to the HW struct
2122  * @func_p: pointer to function capabilities structure
2123  * @buf: buffer containing the function capability records
2124  * @cap_count: the number of capabilities
2125  *
2126  * Helper function to parse function (0x000A) capabilities list. For
2127  * capabilities shared between device and function, this relies on
2128  * ice_parse_common_caps.
2129  *
2130  * Loop through the list of provided capabilities and extract the relevant
2131  * data into the function capabilities structured.
2132  */
2133 static void
2134 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2135 		    void *buf, u32 cap_count)
2136 {
2137 	struct ice_aqc_list_caps_elem *cap_resp;
2138 	u32 i;
2139 
2140 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2141 
2142 	ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2143 
2144 	for (i = 0; i < cap_count; i++) {
2145 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2146 		bool found;
2147 
2148 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2149 					      &cap_resp[i], "func caps");
2150 
2151 		switch (cap) {
2152 		case ICE_AQC_CAPS_VF:
2153 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2154 			break;
2155 		case ICE_AQC_CAPS_VSI:
2156 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2157 			break;
2158 		default:
2159 			/* Don't list common capabilities as unknown */
2160 			if (!found)
2161 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2162 					  i, cap);
2163 			break;
2164 		}
2165 	}
2166 
2167 	ice_print_led_caps(hw, &func_p->common_cap, "func caps", true);
2168 	ice_print_sdp_caps(hw, &func_p->common_cap, "func caps", true);
2169 
2170 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2171 }
2172 
2173 /**
2174  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2175  * @hw: pointer to the HW struct
2176  * @dev_p: pointer to device capabilities structure
2177  * @cap: capability element to parse
2178  *
2179  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2180  */
2181 static void
2182 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2183 			      struct ice_aqc_list_caps_elem *cap)
2184 {
2185 	u32 number = LE32_TO_CPU(cap->number);
2186 
2187 	dev_p->num_funcs = ice_hweight32(number);
2188 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2189 		  dev_p->num_funcs);
2190 }
2191 
2192 /**
2193  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2194  * @hw: pointer to the HW struct
2195  * @dev_p: pointer to device capabilities structure
2196  * @cap: capability element to parse
2197  *
2198  * Parse ICE_AQC_CAPS_VF for device capabilities.
2199  */
2200 static void
2201 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2202 		      struct ice_aqc_list_caps_elem *cap)
2203 {
2204 	u32 number = LE32_TO_CPU(cap->number);
2205 
2206 	dev_p->num_vfs_exposed = number;
2207 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2208 		  dev_p->num_vfs_exposed);
2209 }
2210 
2211 /**
2212  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2213  * @hw: pointer to the HW struct
2214  * @dev_p: pointer to device capabilities structure
2215  * @cap: capability element to parse
2216  *
2217  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2218  */
2219 static void
2220 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2221 		       struct ice_aqc_list_caps_elem *cap)
2222 {
2223 	u32 number = LE32_TO_CPU(cap->number);
2224 
2225 	dev_p->num_vsi_allocd_to_host = number;
2226 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2227 		  dev_p->num_vsi_allocd_to_host);
2228 }
2229 
2230 /**
2231  * ice_parse_dev_caps - Parse device capabilities
2232  * @hw: pointer to the HW struct
2233  * @dev_p: pointer to device capabilities structure
2234  * @buf: buffer containing the device capability records
2235  * @cap_count: the number of capabilities
2236  *
2237  * Helper device to parse device (0x000B) capabilities list. For
2238  * capabilities shared between device and function, this relies on
2239  * ice_parse_common_caps.
2240  *
2241  * Loop through the list of provided capabilities and extract the relevant
2242  * data into the device capabilities structured.
2243  */
2244 static void
2245 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2246 		   void *buf, u32 cap_count)
2247 {
2248 	struct ice_aqc_list_caps_elem *cap_resp;
2249 	u32 i;
2250 
2251 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2252 
2253 	ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2254 
2255 	for (i = 0; i < cap_count; i++) {
2256 		u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2257 		bool found;
2258 
2259 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2260 					      &cap_resp[i], "dev caps");
2261 
2262 		switch (cap) {
2263 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2264 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2265 			break;
2266 		case ICE_AQC_CAPS_VF:
2267 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2268 			break;
2269 		case ICE_AQC_CAPS_VSI:
2270 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2271 			break;
2272 		default:
2273 			/* Don't list common capabilities as unknown */
2274 			if (!found)
2275 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2276 					  i, cap);
2277 			break;
2278 		}
2279 	}
2280 
2281 	ice_print_led_caps(hw, &dev_p->common_cap, "dev caps", true);
2282 	ice_print_sdp_caps(hw, &dev_p->common_cap, "dev caps", true);
2283 
2284 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2285 }
2286 
2287 /**
2288  * ice_aq_list_caps - query function/device capabilities
2289  * @hw: pointer to the HW struct
2290  * @buf: a buffer to hold the capabilities
2291  * @buf_size: size of the buffer
2292  * @cap_count: if not NULL, set to the number of capabilities reported
2293  * @opc: capabilities type to discover, device or function
2294  * @cd: pointer to command details structure or NULL
2295  *
2296  * Get the function (0x000A) or device (0x000B) capabilities description from
2297  * firmware and store it in the buffer.
2298  *
2299  * If the cap_count pointer is not NULL, then it is set to the number of
2300  * capabilities firmware will report. Note that if the buffer size is too
2301  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2302  * cap_count will still be updated in this case. It is recommended that the
2303  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2304  * firmware could return) to avoid this.
2305  */
2306 static enum ice_status
2307 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2308 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2309 {
2310 	struct ice_aqc_list_caps *cmd;
2311 	struct ice_aq_desc desc;
2312 	enum ice_status status;
2313 
2314 	cmd = &desc.params.get_cap;
2315 
2316 	if (opc != ice_aqc_opc_list_func_caps &&
2317 	    opc != ice_aqc_opc_list_dev_caps)
2318 		return ICE_ERR_PARAM;
2319 
2320 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2321 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2322 
2323 	if (cap_count)
2324 		*cap_count = LE32_TO_CPU(cmd->count);
2325 
2326 	return status;
2327 }
2328 
2329 /**
2330  * ice_discover_dev_caps - Read and extract device capabilities
2331  * @hw: pointer to the hardware structure
2332  * @dev_caps: pointer to device capabilities structure
2333  *
2334  * Read the device capabilities and extract them into the dev_caps structure
2335  * for later use.
2336  */
2337 static enum ice_status
2338 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2339 {
2340 	enum ice_status status;
2341 	u32 cap_count = 0;
2342 	void *cbuf;
2343 
2344 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2345 	if (!cbuf)
2346 		return ICE_ERR_NO_MEMORY;
2347 
2348 	/* Although the driver doesn't know the number of capabilities the
2349 	 * device will return, we can simply send a 4KB buffer, the maximum
2350 	 * possible size that firmware can return.
2351 	 */
2352 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2353 
2354 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2355 				  ice_aqc_opc_list_dev_caps, NULL);
2356 	if (!status)
2357 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2358 	ice_free(hw, cbuf);
2359 
2360 	return status;
2361 }
2362 
2363 /**
2364  * ice_discover_func_caps - Read and extract function capabilities
2365  * @hw: pointer to the hardware structure
2366  * @func_caps: pointer to function capabilities structure
2367  *
2368  * Read the function capabilities and extract them into the func_caps structure
2369  * for later use.
2370  */
2371 static enum ice_status
2372 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2373 {
2374 	enum ice_status status;
2375 	u32 cap_count = 0;
2376 	void *cbuf;
2377 
2378 	cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2379 	if (!cbuf)
2380 		return ICE_ERR_NO_MEMORY;
2381 
2382 	/* Although the driver doesn't know the number of capabilities the
2383 	 * device will return, we can simply send a 4KB buffer, the maximum
2384 	 * possible size that firmware can return.
2385 	 */
2386 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2387 
2388 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2389 				  ice_aqc_opc_list_func_caps, NULL);
2390 	if (!status)
2391 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2392 	ice_free(hw, cbuf);
2393 
2394 	return status;
2395 }
2396 
2397 /**
2398  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2399  * @hw: pointer to the hardware structure
2400  */
2401 void ice_set_safe_mode_caps(struct ice_hw *hw)
2402 {
2403 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2404 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2405 	struct ice_hw_common_caps cached_caps;
2406 	u32 num_funcs;
2407 
2408 	/* cache some func_caps values that should be restored after memset */
2409 	cached_caps = func_caps->common_cap;
2410 
2411 	/* unset func capabilities */
2412 	memset(func_caps, 0, sizeof(*func_caps));
2413 
2414 #define ICE_RESTORE_FUNC_CAP(name) \
2415 	func_caps->common_cap.name = cached_caps.name
2416 
2417 	/* restore cached values */
2418 	ICE_RESTORE_FUNC_CAP(valid_functions);
2419 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2420 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2421 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2422 	ICE_RESTORE_FUNC_CAP(max_mtu);
2423 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2424 
2425 	/* one Tx and one Rx queue in safe mode */
2426 	func_caps->common_cap.num_rxq = 1;
2427 	func_caps->common_cap.num_txq = 1;
2428 
2429 	/* two MSIX vectors, one for traffic and one for misc causes */
2430 	func_caps->common_cap.num_msix_vectors = 2;
2431 	func_caps->guar_num_vsi = 1;
2432 
2433 	/* cache some dev_caps values that should be restored after memset */
2434 	cached_caps = dev_caps->common_cap;
2435 	num_funcs = dev_caps->num_funcs;
2436 
2437 	/* unset dev capabilities */
2438 	memset(dev_caps, 0, sizeof(*dev_caps));
2439 
2440 #define ICE_RESTORE_DEV_CAP(name) \
2441 	dev_caps->common_cap.name = cached_caps.name
2442 
2443 	/* restore cached values */
2444 	ICE_RESTORE_DEV_CAP(valid_functions);
2445 	ICE_RESTORE_DEV_CAP(txq_first_id);
2446 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2447 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2448 	ICE_RESTORE_DEV_CAP(max_mtu);
2449 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2450 	dev_caps->num_funcs = num_funcs;
2451 
2452 	/* one Tx and one Rx queue per function in safe mode */
2453 	dev_caps->common_cap.num_rxq = num_funcs;
2454 	dev_caps->common_cap.num_txq = num_funcs;
2455 
2456 	/* two MSIX vectors per function */
2457 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2458 }
2459 
2460 /**
2461  * ice_get_caps - get info about the HW
2462  * @hw: pointer to the hardware structure
2463  */
2464 enum ice_status ice_get_caps(struct ice_hw *hw)
2465 {
2466 	enum ice_status status;
2467 
2468 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2469 	if (status)
2470 		return status;
2471 
2472 	return ice_discover_func_caps(hw, &hw->func_caps);
2473 }
2474 
2475 /**
2476  * ice_aq_manage_mac_write - manage MAC address write command
2477  * @hw: pointer to the HW struct
2478  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2479  * @flags: flags to control write behavior
2480  * @cd: pointer to command details structure or NULL
2481  *
2482  * This function is used to write MAC address to the NVM (0x0108).
2483  */
2484 enum ice_status
2485 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2486 			struct ice_sq_cd *cd)
2487 {
2488 	struct ice_aqc_manage_mac_write *cmd;
2489 	struct ice_aq_desc desc;
2490 
2491 	cmd = &desc.params.mac_write;
2492 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2493 
2494 	cmd->flags = flags;
2495 	ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
2496 
2497 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2498 }
2499 
2500 /**
2501  * ice_aq_clear_pxe_mode
2502  * @hw: pointer to the HW struct
2503  *
2504  * Tell the firmware that the driver is taking over from PXE (0x0110).
2505  */
2506 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2507 {
2508 	struct ice_aq_desc desc;
2509 
2510 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2511 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2512 
2513 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2514 }
2515 
2516 /**
2517  * ice_clear_pxe_mode - clear pxe operations mode
2518  * @hw: pointer to the HW struct
2519  *
2520  * Make sure all PXE mode settings are cleared, including things
2521  * like descriptor fetch/write-back mode.
2522  */
2523 void ice_clear_pxe_mode(struct ice_hw *hw)
2524 {
2525 	if (ice_check_sq_alive(hw, &hw->adminq))
2526 		ice_aq_clear_pxe_mode(hw);
2527 }
2528 
2529 /**
2530  * ice_aq_set_port_params - set physical port parameters.
2531  * @pi: pointer to the port info struct
2532  * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
2533  * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
2534  * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
2535  * @double_vlan: if set double VLAN is enabled
2536  * @cd: pointer to command details structure or NULL
2537  *
2538  * Set Physical port parameters (0x0203)
2539  */
2540 enum ice_status
2541 ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
2542 		       bool save_bad_pac, bool pad_short_pac, bool double_vlan,
2543 		       struct ice_sq_cd *cd)
2544 
2545 {
2546 	struct ice_aqc_set_port_params *cmd;
2547 	struct ice_hw *hw = pi->hw;
2548 	struct ice_aq_desc desc;
2549 	u16 cmd_flags = 0;
2550 
2551 	cmd = &desc.params.set_port_params;
2552 
2553 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2554 	cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
2555 	if (save_bad_pac)
2556 		cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
2557 	if (pad_short_pac)
2558 		cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
2559 	if (double_vlan)
2560 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2561 	cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
2562 
2563 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2564 }
2565 
2566 /**
2567  * ice_get_link_speed_based_on_phy_type - returns link speed
2568  * @phy_type_low: lower part of phy_type
2569  * @phy_type_high: higher part of phy_type
2570  *
2571  * This helper function will convert an entry in PHY type structure
2572  * [phy_type_low, phy_type_high] to its corresponding link speed.
2573  * Note: In the structure of [phy_type_low, phy_type_high], there should
2574  * be one bit set, as this function will convert one PHY type to its
2575  * speed.
2576  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2577  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2578  */
2579 static u16
2580 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2581 {
2582 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2583 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2584 
2585 	switch (phy_type_low) {
2586 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2587 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2588 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2589 		break;
2590 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2591 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2592 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2593 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2594 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2595 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2596 		break;
2597 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2598 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2599 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2600 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2601 		break;
2602 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2603 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2604 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2605 		break;
2606 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2607 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2608 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2609 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2610 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2611 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2612 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2613 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2614 		break;
2615 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2616 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2617 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2618 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2619 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2620 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2621 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2622 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2623 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2624 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2625 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2626 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2627 		break;
2628 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2629 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2630 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2631 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2632 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2633 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2634 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2635 		break;
2636 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2637 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2638 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2639 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2640 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2641 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2642 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2643 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2644 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2645 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2646 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2647 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2648 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2649 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2650 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2651 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2652 		break;
2653 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2654 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2655 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2656 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2657 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2658 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2659 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2660 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2661 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2662 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2663 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2664 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2665 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2666 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2667 		break;
2668 	default:
2669 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2670 		break;
2671 	}
2672 
2673 	switch (phy_type_high) {
2674 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2675 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2676 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2677 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2678 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2679 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2680 		break;
2681 	default:
2682 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2683 		break;
2684 	}
2685 
2686 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2687 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2688 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2689 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2690 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2691 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2692 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2693 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2694 		return speed_phy_type_low;
2695 	else
2696 		return speed_phy_type_high;
2697 }
2698 
2699 /**
2700  * ice_update_phy_type
2701  * @phy_type_low: pointer to the lower part of phy_type
2702  * @phy_type_high: pointer to the higher part of phy_type
2703  * @link_speeds_bitmap: targeted link speeds bitmap
2704  *
2705  * Note: For the link_speeds_bitmap structure, you can check it at
2706  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2707  * link_speeds_bitmap include multiple speeds.
2708  *
2709  * Each entry in this [phy_type_low, phy_type_high] structure will
2710  * present a certain link speed. This helper function will turn on bits
2711  * in [phy_type_low, phy_type_high] structure based on the value of
2712  * link_speeds_bitmap input parameter.
2713  */
2714 void
2715 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2716 		    u16 link_speeds_bitmap)
2717 {
2718 	u64 pt_high;
2719 	u64 pt_low;
2720 	int index;
2721 	u16 speed;
2722 
2723 	/* We first check with low part of phy_type */
2724 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2725 		pt_low = BIT_ULL(index);
2726 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2727 
2728 		if (link_speeds_bitmap & speed)
2729 			*phy_type_low |= BIT_ULL(index);
2730 	}
2731 
2732 	/* We then check with high part of phy_type */
2733 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2734 		pt_high = BIT_ULL(index);
2735 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2736 
2737 		if (link_speeds_bitmap & speed)
2738 			*phy_type_high |= BIT_ULL(index);
2739 	}
2740 }
2741 
2742 /**
2743  * ice_aq_set_phy_cfg
2744  * @hw: pointer to the HW struct
2745  * @pi: port info structure of the interested logical port
2746  * @cfg: structure with PHY configuration data to be set
2747  * @cd: pointer to command details structure or NULL
2748  *
2749  * Set the various PHY configuration parameters supported on the Port.
2750  * One or more of the Set PHY config parameters may be ignored in an MFP
2751  * mode as the PF may not have the privilege to set some of the PHY Config
2752  * parameters. This status will be indicated by the command response (0x0601).
2753  */
2754 enum ice_status
2755 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2756 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2757 {
2758 	struct ice_aq_desc desc;
2759 	enum ice_status status;
2760 
2761 	if (!cfg)
2762 		return ICE_ERR_PARAM;
2763 
2764 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2765 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2766 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2767 			  cfg->caps);
2768 
2769 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2770 	}
2771 
2772 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2773 	desc.params.set_phy.lport_num = pi->lport;
2774 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2775 
2776 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2777 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2778 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
2779 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2780 		  (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
2781 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2782 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2783 		  cfg->low_power_ctrl_an);
2784 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2785 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2786 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2787 		  cfg->link_fec_opt);
2788 
2789 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2790 
2791 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2792 		status = ICE_SUCCESS;
2793 
2794 	if (!status)
2795 		pi->phy.curr_user_phy_cfg = *cfg;
2796 
2797 	return status;
2798 }
2799 
2800 /**
2801  * ice_update_link_info - update status of the HW network link
2802  * @pi: port info structure of the interested logical port
2803  */
2804 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2805 {
2806 	struct ice_link_status *li;
2807 	enum ice_status status;
2808 
2809 	if (!pi)
2810 		return ICE_ERR_PARAM;
2811 
2812 	li = &pi->phy.link_info;
2813 
2814 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2815 	if (status)
2816 		return status;
2817 
2818 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2819 		struct ice_aqc_get_phy_caps_data *pcaps;
2820 		struct ice_hw *hw;
2821 
2822 		hw = pi->hw;
2823 		pcaps = (struct ice_aqc_get_phy_caps_data *)
2824 			ice_malloc(hw, sizeof(*pcaps));
2825 		if (!pcaps)
2826 			return ICE_ERR_NO_MEMORY;
2827 
2828 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2829 					     pcaps, NULL);
2830 
2831 		if (status == ICE_SUCCESS)
2832 			ice_memcpy(li->module_type, &pcaps->module_type,
2833 				   sizeof(li->module_type),
2834 				   ICE_NONDMA_TO_NONDMA);
2835 
2836 		ice_free(hw, pcaps);
2837 	}
2838 
2839 	return status;
2840 }
2841 
2842 /**
2843  * ice_cache_phy_user_req
2844  * @pi: port information structure
2845  * @cache_data: PHY logging data
2846  * @cache_mode: PHY logging mode
2847  *
2848  * Log the user request on (FC, FEC, SPEED) for later user.
2849  */
2850 static void
2851 ice_cache_phy_user_req(struct ice_port_info *pi,
2852 		       struct ice_phy_cache_mode_data cache_data,
2853 		       enum ice_phy_cache_mode cache_mode)
2854 {
2855 	if (!pi)
2856 		return;
2857 
2858 	switch (cache_mode) {
2859 	case ICE_FC_MODE:
2860 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2861 		break;
2862 	case ICE_SPEED_MODE:
2863 		pi->phy.curr_user_speed_req =
2864 			cache_data.data.curr_user_speed_req;
2865 		break;
2866 	case ICE_FEC_MODE:
2867 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2868 		break;
2869 	default:
2870 		break;
2871 	}
2872 }
2873 
2874 /**
2875  * ice_caps_to_fc_mode
2876  * @caps: PHY capabilities
2877  *
2878  * Convert PHY FC capabilities to ice FC mode
2879  */
2880 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2881 {
2882 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2883 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2884 		return ICE_FC_FULL;
2885 
2886 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2887 		return ICE_FC_TX_PAUSE;
2888 
2889 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2890 		return ICE_FC_RX_PAUSE;
2891 
2892 	return ICE_FC_NONE;
2893 }
2894 
2895 /**
2896  * ice_caps_to_fec_mode
2897  * @caps: PHY capabilities
2898  * @fec_options: Link FEC options
2899  *
2900  * Convert PHY FEC capabilities to ice FEC mode
2901  */
2902 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2903 {
2904 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2905 		return ICE_FEC_AUTO;
2906 
2907 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2908 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2909 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2910 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
2911 		return ICE_FEC_BASER;
2912 
2913 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2914 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2915 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2916 		return ICE_FEC_RS;
2917 
2918 	return ICE_FEC_NONE;
2919 }
2920 
2921 /**
2922  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2923  * @pi: port information structure
2924  * @cfg: PHY configuration data to set FC mode
2925  * @req_mode: FC mode to configure
2926  */
2927 static enum ice_status
2928 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2929 	       enum ice_fc_mode req_mode)
2930 {
2931 	struct ice_phy_cache_mode_data cache_data;
2932 	u8 pause_mask = 0x0;
2933 
2934 	if (!pi || !cfg)
2935 		return ICE_ERR_BAD_PTR;
2936 
2937 	switch (req_mode) {
2938 	case ICE_FC_AUTO:
2939 	{
2940 		struct ice_aqc_get_phy_caps_data *pcaps;
2941 		enum ice_status status;
2942 
2943 		pcaps = (struct ice_aqc_get_phy_caps_data *)
2944 			ice_malloc(pi->hw, sizeof(*pcaps));
2945 		if (!pcaps)
2946 			return ICE_ERR_NO_MEMORY;
2947 
2948 		/* Query the value of FC that both the NIC and attached media
2949 		 * can do.
2950 		 */
2951 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2952 					     pcaps, NULL);
2953 		if (status) {
2954 			ice_free(pi->hw, pcaps);
2955 			return status;
2956 		}
2957 
2958 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2959 		pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2960 
2961 		ice_free(pi->hw, pcaps);
2962 		break;
2963 	}
2964 	case ICE_FC_FULL:
2965 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2966 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2967 		break;
2968 	case ICE_FC_RX_PAUSE:
2969 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2970 		break;
2971 	case ICE_FC_TX_PAUSE:
2972 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2973 		break;
2974 	default:
2975 		break;
2976 	}
2977 
2978 	/* clear the old pause settings */
2979 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2980 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2981 
2982 	/* set the new capabilities */
2983 	cfg->caps |= pause_mask;
2984 
2985 	/* Cache user FC request */
2986 	cache_data.data.curr_user_fc_req = req_mode;
2987 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2988 
2989 	return ICE_SUCCESS;
2990 }
2991 
2992 /**
2993  * ice_set_fc
2994  * @pi: port information structure
2995  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2996  * @ena_auto_link_update: enable automatic link update
2997  *
2998  * Set the requested flow control mode.
2999  */
3000 enum ice_status
3001 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3002 {
3003 	struct ice_aqc_set_phy_cfg_data  cfg = { 0 };
3004 	struct ice_aqc_get_phy_caps_data *pcaps;
3005 	enum ice_status status;
3006 	struct ice_hw *hw;
3007 
3008 	if (!pi || !aq_failures)
3009 		return ICE_ERR_BAD_PTR;
3010 
3011 	*aq_failures = 0;
3012 	hw = pi->hw;
3013 
3014 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3015 		ice_malloc(hw, sizeof(*pcaps));
3016 	if (!pcaps)
3017 		return ICE_ERR_NO_MEMORY;
3018 
3019 	/* Get the current PHY config */
3020 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
3021 				     NULL);
3022 	if (status) {
3023 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3024 		goto out;
3025 	}
3026 
3027 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3028 
3029 	/* Configure the set PHY data */
3030 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3031 	if (status) {
3032 		if (status != ICE_ERR_BAD_PTR)
3033 			*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3034 
3035 		goto out;
3036 	}
3037 
3038 	/* If the capabilities have changed, then set the new config */
3039 	if (cfg.caps != pcaps->caps) {
3040 		int retry_count, retry_max = 10;
3041 
3042 		/* Auto restart link so settings take effect */
3043 		if (ena_auto_link_update)
3044 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3045 
3046 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3047 		if (status) {
3048 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3049 			goto out;
3050 		}
3051 
3052 		/* Update the link info
3053 		 * It sometimes takes a really long time for link to
3054 		 * come back from the atomic reset. Thus, we wait a
3055 		 * little bit.
3056 		 */
3057 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3058 			status = ice_update_link_info(pi);
3059 
3060 			if (status == ICE_SUCCESS)
3061 				break;
3062 
3063 			ice_msec_delay(100, true);
3064 		}
3065 
3066 		if (status)
3067 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3068 	}
3069 
3070 out:
3071 	ice_free(hw, pcaps);
3072 	return status;
3073 }
3074 
3075 /**
3076  * ice_phy_caps_equals_cfg
3077  * @phy_caps: PHY capabilities
3078  * @phy_cfg: PHY configuration
3079  *
3080  * Helper function to determine if PHY capabilities matches PHY
3081  * configuration
3082  */
3083 bool
3084 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3085 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3086 {
3087 	u8 caps_mask, cfg_mask;
3088 
3089 	if (!phy_caps || !phy_cfg)
3090 		return false;
3091 
3092 	/* These bits are not common between capabilities and configuration.
3093 	 * Do not use them to determine equality.
3094 	 */
3095 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3096 					      ICE_AQC_PHY_EN_MOD_QUAL);
3097 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3098 
3099 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3100 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3101 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3102 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3103 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3104 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3105 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3106 		return false;
3107 
3108 	return true;
3109 }
3110 
3111 /**
3112  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3113  * @pi: port information structure
3114  * @caps: PHY ability structure to copy date from
3115  * @cfg: PHY configuration structure to copy data to
3116  *
3117  * Helper function to copy AQC PHY get ability data to PHY set configuration
3118  * data structure
3119  */
3120 void
3121 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3122 			 struct ice_aqc_get_phy_caps_data *caps,
3123 			 struct ice_aqc_set_phy_cfg_data *cfg)
3124 {
3125 	if (!pi || !caps || !cfg)
3126 		return;
3127 
3128 	ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3129 	cfg->phy_type_low = caps->phy_type_low;
3130 	cfg->phy_type_high = caps->phy_type_high;
3131 	cfg->caps = caps->caps;
3132 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3133 	cfg->eee_cap = caps->eee_cap;
3134 	cfg->eeer_value = caps->eeer_value;
3135 	cfg->link_fec_opt = caps->link_fec_options;
3136 	cfg->module_compliance_enforcement =
3137 		caps->module_compliance_enforcement;
3138 
3139 	if (ice_fw_supports_link_override(pi->hw)) {
3140 		struct ice_link_default_override_tlv tlv;
3141 
3142 		if (ice_get_link_default_override(&tlv, pi))
3143 			return;
3144 
3145 		if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
3146 			cfg->module_compliance_enforcement |=
3147 				ICE_LINK_OVERRIDE_STRICT_MODE;
3148 	}
3149 }
3150 
3151 /**
3152  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3153  * @pi: port information structure
3154  * @cfg: PHY configuration data to set FEC mode
3155  * @fec: FEC mode to configure
3156  */
3157 enum ice_status
3158 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3159 		enum ice_fec_mode fec)
3160 {
3161 	struct ice_aqc_get_phy_caps_data *pcaps;
3162 	enum ice_status status = ICE_SUCCESS;
3163 	struct ice_hw *hw;
3164 
3165 	if (!pi || !cfg)
3166 		return ICE_ERR_BAD_PTR;
3167 
3168 	hw = pi->hw;
3169 
3170 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3171 		ice_malloc(hw, sizeof(*pcaps));
3172 	if (!pcaps)
3173 		return ICE_ERR_NO_MEMORY;
3174 
3175 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
3176 				     NULL);
3177 	if (status)
3178 		goto out;
3179 
3180 	cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
3181 	cfg->link_fec_opt = pcaps->link_fec_options;
3182 
3183 	switch (fec) {
3184 	case ICE_FEC_BASER:
3185 		/* Clear RS bits, and AND BASE-R ability
3186 		 * bits and OR request bits.
3187 		 */
3188 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3189 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3190 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3191 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3192 		break;
3193 	case ICE_FEC_RS:
3194 		/* Clear BASE-R bits, and AND RS ability
3195 		 * bits and OR request bits.
3196 		 */
3197 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3198 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3199 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3200 		break;
3201 	case ICE_FEC_NONE:
3202 		/* Clear all FEC option bits. */
3203 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3204 		break;
3205 	case ICE_FEC_AUTO:
3206 		/* AND auto FEC bit, and all caps bits. */
3207 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3208 		cfg->link_fec_opt |= pcaps->link_fec_options;
3209 		break;
3210 	default:
3211 		status = ICE_ERR_PARAM;
3212 		break;
3213 	}
3214 
3215 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
3216 		struct ice_link_default_override_tlv tlv;
3217 
3218 		if (ice_get_link_default_override(&tlv, pi))
3219 			goto out;
3220 
3221 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3222 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3223 			cfg->link_fec_opt = tlv.fec_options;
3224 	}
3225 
3226 out:
3227 	ice_free(hw, pcaps);
3228 
3229 	return status;
3230 }
3231 
3232 /**
3233  * ice_get_link_status - get status of the HW network link
3234  * @pi: port information structure
3235  * @link_up: pointer to bool (true/false = linkup/linkdown)
3236  *
3237  * Variable link_up is true if link is up, false if link is down.
3238  * The variable link_up is invalid if status is non zero. As a
3239  * result of this call, link status reporting becomes enabled
3240  */
3241 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3242 {
3243 	struct ice_phy_info *phy_info;
3244 	enum ice_status status = ICE_SUCCESS;
3245 
3246 	if (!pi || !link_up)
3247 		return ICE_ERR_PARAM;
3248 
3249 	phy_info = &pi->phy;
3250 
3251 	if (phy_info->get_link_info) {
3252 		status = ice_update_link_info(pi);
3253 
3254 		if (status)
3255 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3256 				  status);
3257 	}
3258 
3259 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3260 
3261 	return status;
3262 }
3263 
3264 /**
3265  * ice_aq_set_link_restart_an
3266  * @pi: pointer to the port information structure
3267  * @ena_link: if true: enable link, if false: disable link
3268  * @cd: pointer to command details structure or NULL
3269  *
3270  * Sets up the link and restarts the Auto-Negotiation over the link.
3271  */
3272 enum ice_status
3273 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3274 			   struct ice_sq_cd *cd)
3275 {
3276 	struct ice_aqc_restart_an *cmd;
3277 	struct ice_aq_desc desc;
3278 
3279 	cmd = &desc.params.restart_an;
3280 
3281 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3282 
3283 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3284 	cmd->lport_num = pi->lport;
3285 	if (ena_link)
3286 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3287 	else
3288 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3289 
3290 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3291 }
3292 
3293 /**
3294  * ice_aq_set_event_mask
3295  * @hw: pointer to the HW struct
3296  * @port_num: port number of the physical function
3297  * @mask: event mask to be set
3298  * @cd: pointer to command details structure or NULL
3299  *
3300  * Set event mask (0x0613)
3301  */
3302 enum ice_status
3303 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3304 		      struct ice_sq_cd *cd)
3305 {
3306 	struct ice_aqc_set_event_mask *cmd;
3307 	struct ice_aq_desc desc;
3308 
3309 	cmd = &desc.params.set_event_mask;
3310 
3311 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3312 
3313 	cmd->lport_num = port_num;
3314 
3315 	cmd->event_mask = CPU_TO_LE16(mask);
3316 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3317 }
3318 
3319 /**
3320  * ice_aq_set_mac_loopback
3321  * @hw: pointer to the HW struct
3322  * @ena_lpbk: Enable or Disable loopback
3323  * @cd: pointer to command details structure or NULL
3324  *
3325  * Enable/disable loopback on a given port
3326  */
3327 enum ice_status
3328 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3329 {
3330 	struct ice_aqc_set_mac_lb *cmd;
3331 	struct ice_aq_desc desc;
3332 
3333 	cmd = &desc.params.set_mac_lb;
3334 
3335 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3336 	if (ena_lpbk)
3337 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3338 
3339 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3340 }
3341 
3342 /**
3343  * ice_aq_set_port_id_led
3344  * @pi: pointer to the port information
3345  * @is_orig_mode: is this LED set to original mode (by the net-list)
3346  * @cd: pointer to command details structure or NULL
3347  *
3348  * Set LED value for the given port (0x06e9)
3349  */
3350 enum ice_status
3351 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3352 		       struct ice_sq_cd *cd)
3353 {
3354 	struct ice_aqc_set_port_id_led *cmd;
3355 	struct ice_hw *hw = pi->hw;
3356 	struct ice_aq_desc desc;
3357 
3358 	cmd = &desc.params.set_port_id_led;
3359 
3360 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3361 
3362 	if (is_orig_mode)
3363 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3364 	else
3365 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3366 
3367 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3368 }
3369 
3370 /**
3371  * ice_aq_sff_eeprom
3372  * @hw: pointer to the HW struct
3373  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3374  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3375  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3376  * @page: QSFP page
3377  * @set_page: set or ignore the page
3378  * @data: pointer to data buffer to be read/written to the I2C device.
3379  * @length: 1-16 for read, 1 for write.
3380  * @write: 0 read, 1 for write.
3381  * @cd: pointer to command details structure or NULL
3382  *
3383  * Read/Write SFF EEPROM (0x06EE)
3384  */
3385 enum ice_status
3386 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3387 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3388 		  bool write, struct ice_sq_cd *cd)
3389 {
3390 	struct ice_aqc_sff_eeprom *cmd;
3391 	struct ice_aq_desc desc;
3392 	enum ice_status status;
3393 
3394 	if (!data || (mem_addr & 0xff00))
3395 		return ICE_ERR_PARAM;
3396 
3397 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3398 	cmd = &desc.params.read_write_sff_param;
3399 	desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
3400 	cmd->lport_num = (u8)(lport & 0xff);
3401 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3402 	cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
3403 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3404 					((set_page <<
3405 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3406 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3407 	cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
3408 	cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3409 	if (write)
3410 		cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
3411 
3412 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3413 	return status;
3414 }
3415 
3416 /**
3417  * __ice_aq_get_set_rss_lut
3418  * @hw: pointer to the hardware structure
3419  * @params: RSS LUT parameters
3420  * @set: set true to set the table, false to get the table
3421  *
3422  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3423  */
3424 static enum ice_status
3425 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3426 {
3427 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3428 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3429 	struct ice_aq_desc desc;
3430 	enum ice_status status;
3431 	u8 *lut;
3432 
3433 	if (!params)
3434 		return ICE_ERR_PARAM;
3435 
3436 	vsi_handle = params->vsi_handle;
3437 	lut = params->lut;
3438 
3439 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3440 		return ICE_ERR_PARAM;
3441 
3442 	lut_size = params->lut_size;
3443 	lut_type = params->lut_type;
3444 	glob_lut_idx = params->global_lut_id;
3445 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3446 
3447 	cmd_resp = &desc.params.get_set_rss_lut;
3448 
3449 	if (set) {
3450 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3451 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3452 	} else {
3453 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3454 	}
3455 
3456 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
3457 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3458 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3459 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3460 
3461 	switch (lut_type) {
3462 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3463 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3464 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3465 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3466 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3467 		break;
3468 	default:
3469 		status = ICE_ERR_PARAM;
3470 		goto ice_aq_get_set_rss_lut_exit;
3471 	}
3472 
3473 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3474 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3475 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3476 
3477 		if (!set)
3478 			goto ice_aq_get_set_rss_lut_send;
3479 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3480 		if (!set)
3481 			goto ice_aq_get_set_rss_lut_send;
3482 	} else {
3483 		goto ice_aq_get_set_rss_lut_send;
3484 	}
3485 
3486 	/* LUT size is only valid for Global and PF table types */
3487 	switch (lut_size) {
3488 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3489 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
3490 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3491 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3492 		break;
3493 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3494 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3495 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3496 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3497 		break;
3498 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3499 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3500 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3501 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3502 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3503 			break;
3504 		}
3505 		/* fall-through */
3506 	default:
3507 		status = ICE_ERR_PARAM;
3508 		goto ice_aq_get_set_rss_lut_exit;
3509 	}
3510 
3511 ice_aq_get_set_rss_lut_send:
3512 	cmd_resp->flags = CPU_TO_LE16(flags);
3513 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3514 
3515 ice_aq_get_set_rss_lut_exit:
3516 	return status;
3517 }
3518 
3519 /**
3520  * ice_aq_get_rss_lut
3521  * @hw: pointer to the hardware structure
3522  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3523  *
3524  * get the RSS lookup table, PF or VSI type
3525  */
3526 enum ice_status
3527 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3528 {
3529 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3530 }
3531 
3532 /**
3533  * ice_aq_set_rss_lut
3534  * @hw: pointer to the hardware structure
3535  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3536  *
3537  * set the RSS lookup table, PF or VSI type
3538  */
3539 enum ice_status
3540 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3541 {
3542 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3543 }
3544 
3545 /**
3546  * __ice_aq_get_set_rss_key
3547  * @hw: pointer to the HW struct
3548  * @vsi_id: VSI FW index
3549  * @key: pointer to key info struct
3550  * @set: set true to set the key, false to get the key
3551  *
3552  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3553  */
3554 static enum
3555 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3556 				    struct ice_aqc_get_set_rss_keys *key,
3557 				    bool set)
3558 {
3559 	struct ice_aqc_get_set_rss_key *cmd_resp;
3560 	u16 key_size = sizeof(*key);
3561 	struct ice_aq_desc desc;
3562 
3563 	cmd_resp = &desc.params.get_set_rss_key;
3564 
3565 	if (set) {
3566 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3567 		desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3568 	} else {
3569 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3570 	}
3571 
3572 	cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
3573 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3574 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3575 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3576 
3577 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3578 }
3579 
3580 /**
3581  * ice_aq_get_rss_key
3582  * @hw: pointer to the HW struct
3583  * @vsi_handle: software VSI handle
3584  * @key: pointer to key info struct
3585  *
3586  * get the RSS key per VSI
3587  */
3588 enum ice_status
3589 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3590 		   struct ice_aqc_get_set_rss_keys *key)
3591 {
3592 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3593 		return ICE_ERR_PARAM;
3594 
3595 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3596 					key, false);
3597 }
3598 
3599 /**
3600  * ice_aq_set_rss_key
3601  * @hw: pointer to the HW struct
3602  * @vsi_handle: software VSI handle
3603  * @keys: pointer to key info struct
3604  *
3605  * set the RSS key per VSI
3606  */
3607 enum ice_status
3608 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3609 		   struct ice_aqc_get_set_rss_keys *keys)
3610 {
3611 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3612 		return ICE_ERR_PARAM;
3613 
3614 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3615 					keys, true);
3616 }
3617 
3618 /**
3619  * ice_aq_add_lan_txq
3620  * @hw: pointer to the hardware structure
3621  * @num_qgrps: Number of added queue groups
3622  * @qg_list: list of queue groups to be added
3623  * @buf_size: size of buffer for indirect command
3624  * @cd: pointer to command details structure or NULL
3625  *
3626  * Add Tx LAN queue (0x0C30)
3627  *
3628  * NOTE:
3629  * Prior to calling add Tx LAN queue:
3630  * Initialize the following as part of the Tx queue context:
3631  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3632  * Cache profile and Packet shaper profile.
3633  *
3634  * After add Tx LAN queue AQ command is completed:
3635  * Interrupts should be associated with specific queues,
3636  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3637  * flow.
3638  */
3639 enum ice_status
3640 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3641 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3642 		   struct ice_sq_cd *cd)
3643 {
3644 	struct ice_aqc_add_tx_qgrp *list;
3645 	struct ice_aqc_add_txqs *cmd;
3646 	struct ice_aq_desc desc;
3647 	u16 i, sum_size = 0;
3648 
3649 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3650 
3651 	cmd = &desc.params.add_txqs;
3652 
3653 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3654 
3655 	if (!qg_list)
3656 		return ICE_ERR_PARAM;
3657 
3658 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3659 		return ICE_ERR_PARAM;
3660 
3661 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3662 		sum_size += ice_struct_size(list, txqs, list->num_txqs);
3663 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3664 						      list->num_txqs);
3665 	}
3666 
3667 	if (buf_size != sum_size)
3668 		return ICE_ERR_PARAM;
3669 
3670 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3671 
3672 	cmd->num_qgrps = num_qgrps;
3673 
3674 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3675 }
3676 
3677 /**
3678  * ice_aq_dis_lan_txq
3679  * @hw: pointer to the hardware structure
3680  * @num_qgrps: number of groups in the list
3681  * @qg_list: the list of groups to disable
3682  * @buf_size: the total size of the qg_list buffer in bytes
3683  * @rst_src: if called due to reset, specifies the reset source
3684  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3685  * @cd: pointer to command details structure or NULL
3686  *
3687  * Disable LAN Tx queue (0x0C31)
3688  */
3689 static enum ice_status
3690 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3691 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3692 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3693 		   struct ice_sq_cd *cd)
3694 {
3695 	struct ice_aqc_dis_txq_item *item;
3696 	struct ice_aqc_dis_txqs *cmd;
3697 	struct ice_aq_desc desc;
3698 	enum ice_status status;
3699 	u16 i, sz = 0;
3700 
3701 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3702 	cmd = &desc.params.dis_txqs;
3703 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3704 
3705 	/* qg_list can be NULL only in VM/VF reset flow */
3706 	if (!qg_list && !rst_src)
3707 		return ICE_ERR_PARAM;
3708 
3709 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3710 		return ICE_ERR_PARAM;
3711 
3712 	cmd->num_entries = num_qgrps;
3713 
3714 	cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3715 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3716 
3717 	switch (rst_src) {
3718 	case ICE_VM_RESET:
3719 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3720 		cmd->vmvf_and_timeout |=
3721 			CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3722 		break;
3723 	case ICE_VF_RESET:
3724 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3725 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3726 		cmd->vmvf_and_timeout |=
3727 			CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
3728 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3729 		break;
3730 	case ICE_NO_RESET:
3731 	default:
3732 		break;
3733 	}
3734 
3735 	/* flush pipe on time out */
3736 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3737 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3738 	if (!qg_list)
3739 		goto do_aq;
3740 
3741 	/* set RD bit to indicate that command buffer is provided by the driver
3742 	 * and it needs to be read by the firmware
3743 	 */
3744 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3745 
3746 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3747 		u16 item_size = ice_struct_size(item, q_id, item->num_qs);
3748 
3749 		/* If the num of queues is even, add 2 bytes of padding */
3750 		if ((item->num_qs % 2) == 0)
3751 			item_size += 2;
3752 
3753 		sz += item_size;
3754 
3755 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3756 	}
3757 
3758 	if (buf_size != sz)
3759 		return ICE_ERR_PARAM;
3760 
3761 do_aq:
3762 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3763 	if (status) {
3764 		if (!qg_list)
3765 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3766 				  vmvf_num, hw->adminq.sq_last_status);
3767 		else
3768 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3769 				  LE16_TO_CPU(qg_list[0].q_id[0]),
3770 				  hw->adminq.sq_last_status);
3771 	}
3772 	return status;
3773 }
3774 
3775 /**
3776  * ice_aq_move_recfg_lan_txq
3777  * @hw: pointer to the hardware structure
3778  * @num_qs: number of queues to move/reconfigure
3779  * @is_move: true if this operation involves node movement
3780  * @is_tc_change: true if this operation involves a TC change
3781  * @subseq_call: true if this operation is a subsequent call
3782  * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
3783  * @timeout: timeout in units of 100 usec (valid values 0-50)
3784  * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
3785  * @buf: struct containing src/dest TEID and per-queue info
3786  * @buf_size: size of buffer for indirect command
3787  * @txqs_moved: out param, number of queues successfully moved
3788  * @cd: pointer to command details structure or NULL
3789  *
3790  * Move / Reconfigure Tx LAN queues (0x0C32)
3791  */
3792 enum ice_status
3793 ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
3794 			  bool is_tc_change, bool subseq_call, bool flush_pipe,
3795 			  u8 timeout, u32 *blocked_cgds,
3796 			  struct ice_aqc_move_txqs_data *buf, u16 buf_size,
3797 			  u8 *txqs_moved, struct ice_sq_cd *cd)
3798 {
3799 	struct ice_aqc_move_txqs *cmd;
3800 	struct ice_aq_desc desc;
3801 	enum ice_status status;
3802 
3803 	cmd = &desc.params.move_txqs;
3804 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
3805 
3806 #define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
3807 	if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
3808 		return ICE_ERR_PARAM;
3809 
3810 	if (is_tc_change && !flush_pipe && !blocked_cgds)
3811 		return ICE_ERR_PARAM;
3812 
3813 	if (!is_move && !is_tc_change)
3814 		return ICE_ERR_PARAM;
3815 
3816 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3817 
3818 	if (is_move)
3819 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
3820 
3821 	if (is_tc_change)
3822 		cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
3823 
3824 	if (subseq_call)
3825 		cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
3826 
3827 	if (flush_pipe)
3828 		cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
3829 
3830 	cmd->num_qs = num_qs;
3831 	cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
3832 			ICE_AQC_Q_CMD_TIMEOUT_M);
3833 
3834 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3835 
3836 	if (!status && txqs_moved)
3837 		*txqs_moved = cmd->num_qs;
3838 
3839 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
3840 	    is_tc_change && !flush_pipe)
3841 		*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
3842 
3843 	return status;
3844 }
3845 
3846 /* End of FW Admin Queue command wrappers */
3847 
3848 /**
3849  * ice_write_byte - write a byte to a packed context structure
3850  * @src_ctx:  the context structure to read from
3851  * @dest_ctx: the context to be written to
3852  * @ce_info:  a description of the struct to be filled
3853  */
3854 static void
3855 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3856 {
3857 	u8 src_byte, dest_byte, mask;
3858 	u8 *from, *dest;
3859 	u16 shift_width;
3860 
3861 	/* copy from the next struct field */
3862 	from = src_ctx + ce_info->offset;
3863 
3864 	/* prepare the bits and mask */
3865 	shift_width = ce_info->lsb % 8;
3866 	mask = (u8)(BIT(ce_info->width) - 1);
3867 
3868 	src_byte = *from;
3869 	src_byte &= mask;
3870 
3871 	/* shift to correct alignment */
3872 	mask <<= shift_width;
3873 	src_byte <<= shift_width;
3874 
3875 	/* get the current bits from the target bit string */
3876 	dest = dest_ctx + (ce_info->lsb / 8);
3877 
3878 	ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
3879 
3880 	dest_byte &= ~mask;	/* get the bits not changing */
3881 	dest_byte |= src_byte;	/* add in the new bits */
3882 
3883 	/* put it all back */
3884 	ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
3885 }
3886 
3887 /**
3888  * ice_write_word - write a word to a packed context structure
3889  * @src_ctx:  the context structure to read from
3890  * @dest_ctx: the context to be written to
3891  * @ce_info:  a description of the struct to be filled
3892  */
3893 static void
3894 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3895 {
3896 	u16 src_word, mask;
3897 	__le16 dest_word;
3898 	u8 *from, *dest;
3899 	u16 shift_width;
3900 
3901 	/* copy from the next struct field */
3902 	from = src_ctx + ce_info->offset;
3903 
3904 	/* prepare the bits and mask */
3905 	shift_width = ce_info->lsb % 8;
3906 	mask = BIT(ce_info->width) - 1;
3907 
3908 	/* don't swizzle the bits until after the mask because the mask bits
3909 	 * will be in a different bit position on big endian machines
3910 	 */
3911 	src_word = *(u16 *)from;
3912 	src_word &= mask;
3913 
3914 	/* shift to correct alignment */
3915 	mask <<= shift_width;
3916 	src_word <<= shift_width;
3917 
3918 	/* get the current bits from the target bit string */
3919 	dest = dest_ctx + (ce_info->lsb / 8);
3920 
3921 	ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
3922 
3923 	dest_word &= ~(CPU_TO_LE16(mask));	/* get the bits not changing */
3924 	dest_word |= CPU_TO_LE16(src_word);	/* add in the new bits */
3925 
3926 	/* put it all back */
3927 	ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
3928 }
3929 
3930 /**
3931  * ice_write_dword - write a dword to a packed context structure
3932  * @src_ctx:  the context structure to read from
3933  * @dest_ctx: the context to be written to
3934  * @ce_info:  a description of the struct to be filled
3935  */
3936 static void
3937 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3938 {
3939 	u32 src_dword, mask;
3940 	__le32 dest_dword;
3941 	u8 *from, *dest;
3942 	u16 shift_width;
3943 
3944 	/* copy from the next struct field */
3945 	from = src_ctx + ce_info->offset;
3946 
3947 	/* prepare the bits and mask */
3948 	shift_width = ce_info->lsb % 8;
3949 
3950 	/* if the field width is exactly 32 on an x86 machine, then the shift
3951 	 * operation will not work because the SHL instructions count is masked
3952 	 * to 5 bits so the shift will do nothing
3953 	 */
3954 	if (ce_info->width < 32)
3955 		mask = BIT(ce_info->width) - 1;
3956 	else
3957 		mask = (u32)~0;
3958 
3959 	/* don't swizzle the bits until after the mask because the mask bits
3960 	 * will be in a different bit position on big endian machines
3961 	 */
3962 	src_dword = *(u32 *)from;
3963 	src_dword &= mask;
3964 
3965 	/* shift to correct alignment */
3966 	mask <<= shift_width;
3967 	src_dword <<= shift_width;
3968 
3969 	/* get the current bits from the target bit string */
3970 	dest = dest_ctx + (ce_info->lsb / 8);
3971 
3972 	ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
3973 
3974 	dest_dword &= ~(CPU_TO_LE32(mask));	/* get the bits not changing */
3975 	dest_dword |= CPU_TO_LE32(src_dword);	/* add in the new bits */
3976 
3977 	/* put it all back */
3978 	ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
3979 }
3980 
3981 /**
3982  * ice_write_qword - write a qword to a packed context structure
3983  * @src_ctx:  the context structure to read from
3984  * @dest_ctx: the context to be written to
3985  * @ce_info:  a description of the struct to be filled
3986  */
3987 static void
3988 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3989 {
3990 	u64 src_qword, mask;
3991 	__le64 dest_qword;
3992 	u8 *from, *dest;
3993 	u16 shift_width;
3994 
3995 	/* copy from the next struct field */
3996 	from = src_ctx + ce_info->offset;
3997 
3998 	/* prepare the bits and mask */
3999 	shift_width = ce_info->lsb % 8;
4000 
4001 	/* if the field width is exactly 64 on an x86 machine, then the shift
4002 	 * operation will not work because the SHL instructions count is masked
4003 	 * to 6 bits so the shift will do nothing
4004 	 */
4005 	if (ce_info->width < 64)
4006 		mask = BIT_ULL(ce_info->width) - 1;
4007 	else
4008 		mask = (u64)~0;
4009 
4010 	/* don't swizzle the bits until after the mask because the mask bits
4011 	 * will be in a different bit position on big endian machines
4012 	 */
4013 	src_qword = *(u64 *)from;
4014 	src_qword &= mask;
4015 
4016 	/* shift to correct alignment */
4017 	mask <<= shift_width;
4018 	src_qword <<= shift_width;
4019 
4020 	/* get the current bits from the target bit string */
4021 	dest = dest_ctx + (ce_info->lsb / 8);
4022 
4023 	ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
4024 
4025 	dest_qword &= ~(CPU_TO_LE64(mask));	/* get the bits not changing */
4026 	dest_qword |= CPU_TO_LE64(src_qword);	/* add in the new bits */
4027 
4028 	/* put it all back */
4029 	ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4030 }
4031 
4032 /**
4033  * ice_set_ctx - set context bits in packed structure
4034  * @hw: pointer to the hardware structure
4035  * @src_ctx:  pointer to a generic non-packed context structure
4036  * @dest_ctx: pointer to memory for the packed structure
4037  * @ce_info:  a description of the structure to be transformed
4038  */
4039 enum ice_status
4040 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4041 	    const struct ice_ctx_ele *ce_info)
4042 {
4043 	int f;
4044 
4045 	for (f = 0; ce_info[f].width; f++) {
4046 		/* We have to deal with each element of the FW response
4047 		 * using the correct size so that we are correct regardless
4048 		 * of the endianness of the machine.
4049 		 */
4050 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4051 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4052 				  f, ce_info[f].width, ce_info[f].size_of);
4053 			continue;
4054 		}
4055 		switch (ce_info[f].size_of) {
4056 		case sizeof(u8):
4057 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4058 			break;
4059 		case sizeof(u16):
4060 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4061 			break;
4062 		case sizeof(u32):
4063 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4064 			break;
4065 		case sizeof(u64):
4066 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4067 			break;
4068 		default:
4069 			return ICE_ERR_INVAL_SIZE;
4070 		}
4071 	}
4072 
4073 	return ICE_SUCCESS;
4074 }
4075 
4076 /**
4077  * ice_read_byte - read context byte into struct
4078  * @src_ctx:  the context structure to read from
4079  * @dest_ctx: the context to be written to
4080  * @ce_info:  a description of the struct to be filled
4081  */
4082 static void
4083 ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4084 {
4085 	u8 dest_byte, mask;
4086 	u8 *src, *target;
4087 	u16 shift_width;
4088 
4089 	/* prepare the bits and mask */
4090 	shift_width = ce_info->lsb % 8;
4091 	mask = (u8)(BIT(ce_info->width) - 1);
4092 
4093 	/* shift to correct alignment */
4094 	mask <<= shift_width;
4095 
4096 	/* get the current bits from the src bit string */
4097 	src = src_ctx + (ce_info->lsb / 8);
4098 
4099 	ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4100 
4101 	dest_byte &= ~(mask);
4102 
4103 	dest_byte >>= shift_width;
4104 
4105 	/* get the address from the struct field */
4106 	target = dest_ctx + ce_info->offset;
4107 
4108 	/* put it back in the struct */
4109 	ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4110 }
4111 
4112 /**
4113  * ice_read_word - read context word into struct
4114  * @src_ctx:  the context structure to read from
4115  * @dest_ctx: the context to be written to
4116  * @ce_info:  a description of the struct to be filled
4117  */
4118 static void
4119 ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4120 {
4121 	u16 dest_word, mask;
4122 	u8 *src, *target;
4123 	__le16 src_word;
4124 	u16 shift_width;
4125 
4126 	/* prepare the bits and mask */
4127 	shift_width = ce_info->lsb % 8;
4128 	mask = BIT(ce_info->width) - 1;
4129 
4130 	/* shift to correct alignment */
4131 	mask <<= shift_width;
4132 
4133 	/* get the current bits from the src bit string */
4134 	src = src_ctx + (ce_info->lsb / 8);
4135 
4136 	ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
4137 
4138 	/* the data in the memory is stored as little endian so mask it
4139 	 * correctly
4140 	 */
4141 	src_word &= ~(CPU_TO_LE16(mask));
4142 
4143 	/* get the data back into host order before shifting */
4144 	dest_word = LE16_TO_CPU(src_word);
4145 
4146 	dest_word >>= shift_width;
4147 
4148 	/* get the address from the struct field */
4149 	target = dest_ctx + ce_info->offset;
4150 
4151 	/* put it back in the struct */
4152 	ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4153 }
4154 
4155 /**
4156  * ice_read_dword - read context dword into struct
4157  * @src_ctx:  the context structure to read from
4158  * @dest_ctx: the context to be written to
4159  * @ce_info:  a description of the struct to be filled
4160  */
4161 static void
4162 ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4163 {
4164 	u32 dest_dword, mask;
4165 	__le32 src_dword;
4166 	u8 *src, *target;
4167 	u16 shift_width;
4168 
4169 	/* prepare the bits and mask */
4170 	shift_width = ce_info->lsb % 8;
4171 
4172 	/* if the field width is exactly 32 on an x86 machine, then the shift
4173 	 * operation will not work because the SHL instructions count is masked
4174 	 * to 5 bits so the shift will do nothing
4175 	 */
4176 	if (ce_info->width < 32)
4177 		mask = BIT(ce_info->width) - 1;
4178 	else
4179 		mask = (u32)~0;
4180 
4181 	/* shift to correct alignment */
4182 	mask <<= shift_width;
4183 
4184 	/* get the current bits from the src bit string */
4185 	src = src_ctx + (ce_info->lsb / 8);
4186 
4187 	ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
4188 
4189 	/* the data in the memory is stored as little endian so mask it
4190 	 * correctly
4191 	 */
4192 	src_dword &= ~(CPU_TO_LE32(mask));
4193 
4194 	/* get the data back into host order before shifting */
4195 	dest_dword = LE32_TO_CPU(src_dword);
4196 
4197 	dest_dword >>= shift_width;
4198 
4199 	/* get the address from the struct field */
4200 	target = dest_ctx + ce_info->offset;
4201 
4202 	/* put it back in the struct */
4203 	ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4204 }
4205 
4206 /**
4207  * ice_read_qword - read context qword into struct
4208  * @src_ctx:  the context structure to read from
4209  * @dest_ctx: the context to be written to
4210  * @ce_info:  a description of the struct to be filled
4211  */
4212 static void
4213 ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4214 {
4215 	u64 dest_qword, mask;
4216 	__le64 src_qword;
4217 	u8 *src, *target;
4218 	u16 shift_width;
4219 
4220 	/* prepare the bits and mask */
4221 	shift_width = ce_info->lsb % 8;
4222 
4223 	/* if the field width is exactly 64 on an x86 machine, then the shift
4224 	 * operation will not work because the SHL instructions count is masked
4225 	 * to 6 bits so the shift will do nothing
4226 	 */
4227 	if (ce_info->width < 64)
4228 		mask = BIT_ULL(ce_info->width) - 1;
4229 	else
4230 		mask = (u64)~0;
4231 
4232 	/* shift to correct alignment */
4233 	mask <<= shift_width;
4234 
4235 	/* get the current bits from the src bit string */
4236 	src = src_ctx + (ce_info->lsb / 8);
4237 
4238 	ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
4239 
4240 	/* the data in the memory is stored as little endian so mask it
4241 	 * correctly
4242 	 */
4243 	src_qword &= ~(CPU_TO_LE64(mask));
4244 
4245 	/* get the data back into host order before shifting */
4246 	dest_qword = LE64_TO_CPU(src_qword);
4247 
4248 	dest_qword >>= shift_width;
4249 
4250 	/* get the address from the struct field */
4251 	target = dest_ctx + ce_info->offset;
4252 
4253 	/* put it back in the struct */
4254 	ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4255 }
4256 
4257 /**
4258  * ice_get_ctx - extract context bits from a packed structure
4259  * @src_ctx:  pointer to a generic packed context structure
4260  * @dest_ctx: pointer to a generic non-packed context structure
4261  * @ce_info:  a description of the structure to be read from
4262  */
4263 enum ice_status
4264 ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4265 {
4266 	int f;
4267 
4268 	for (f = 0; ce_info[f].width; f++) {
4269 		switch (ce_info[f].size_of) {
4270 		case 1:
4271 			ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
4272 			break;
4273 		case 2:
4274 			ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
4275 			break;
4276 		case 4:
4277 			ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
4278 			break;
4279 		case 8:
4280 			ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
4281 			break;
4282 		default:
4283 			/* nothing to do, just keep going */
4284 			break;
4285 		}
4286 	}
4287 
4288 	return ICE_SUCCESS;
4289 }
4290 
4291 /**
4292  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4293  * @hw: pointer to the HW struct
4294  * @vsi_handle: software VSI handle
4295  * @tc: TC number
4296  * @q_handle: software queue handle
4297  */
4298 struct ice_q_ctx *
4299 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4300 {
4301 	struct ice_vsi_ctx *vsi;
4302 	struct ice_q_ctx *q_ctx;
4303 
4304 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4305 	if (!vsi)
4306 		return NULL;
4307 	if (q_handle >= vsi->num_lan_q_entries[tc])
4308 		return NULL;
4309 	if (!vsi->lan_q_ctx[tc])
4310 		return NULL;
4311 	q_ctx = vsi->lan_q_ctx[tc];
4312 	return &q_ctx[q_handle];
4313 }
4314 
4315 /**
4316  * ice_ena_vsi_txq
4317  * @pi: port information structure
4318  * @vsi_handle: software VSI handle
4319  * @tc: TC number
4320  * @q_handle: software queue handle
4321  * @num_qgrps: Number of added queue groups
4322  * @buf: list of queue groups to be added
4323  * @buf_size: size of buffer for indirect command
4324  * @cd: pointer to command details structure or NULL
4325  *
4326  * This function adds one LAN queue
4327  */
4328 enum ice_status
4329 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4330 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4331 		struct ice_sq_cd *cd)
4332 {
4333 	struct ice_aqc_txsched_elem_data node = { 0 };
4334 	struct ice_sched_node *parent;
4335 	struct ice_q_ctx *q_ctx;
4336 	enum ice_status status;
4337 	struct ice_hw *hw;
4338 
4339 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4340 		return ICE_ERR_CFG;
4341 
4342 	if (num_qgrps > 1 || buf->num_txqs > 1)
4343 		return ICE_ERR_MAX_LIMIT;
4344 
4345 	hw = pi->hw;
4346 
4347 	if (!ice_is_vsi_valid(hw, vsi_handle))
4348 		return ICE_ERR_PARAM;
4349 
4350 	ice_acquire_lock(&pi->sched_lock);
4351 
4352 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4353 	if (!q_ctx) {
4354 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4355 			  q_handle);
4356 		status = ICE_ERR_PARAM;
4357 		goto ena_txq_exit;
4358 	}
4359 
4360 	/* find a parent node */
4361 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4362 					    ICE_SCHED_NODE_OWNER_LAN);
4363 	if (!parent) {
4364 		status = ICE_ERR_PARAM;
4365 		goto ena_txq_exit;
4366 	}
4367 
4368 	buf->parent_teid = parent->info.node_teid;
4369 	node.parent_teid = parent->info.node_teid;
4370 	/* Mark that the values in the "generic" section as valid. The default
4371 	 * value in the "generic" section is zero. This means that :
4372 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4373 	 * - 0 priority among siblings, indicated by Bit 1-3.
4374 	 * - WFQ, indicated by Bit 4.
4375 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4376 	 * Bit 5-6.
4377 	 * - Bit 7 is reserved.
4378 	 * Without setting the generic section as valid in valid_sections, the
4379 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4380 	 */
4381 	buf->txqs[0].info.valid_sections =
4382 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4383 		ICE_AQC_ELEM_VALID_EIR;
4384 	buf->txqs[0].info.generic = 0;
4385 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4386 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4387 	buf->txqs[0].info.cir_bw.bw_alloc =
4388 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4389 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4390 		CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4391 	buf->txqs[0].info.eir_bw.bw_alloc =
4392 		CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4393 
4394 	/* add the LAN queue */
4395 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4396 	if (status != ICE_SUCCESS) {
4397 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4398 			  LE16_TO_CPU(buf->txqs[0].txq_id),
4399 			  hw->adminq.sq_last_status);
4400 		goto ena_txq_exit;
4401 	}
4402 
4403 	node.node_teid = buf->txqs[0].q_teid;
4404 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4405 	q_ctx->q_handle = q_handle;
4406 	q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
4407 
4408 	/* add a leaf node into scheduler tree queue layer */
4409 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4410 	if (!status)
4411 		status = ice_sched_replay_q_bw(pi, q_ctx);
4412 
4413 ena_txq_exit:
4414 	ice_release_lock(&pi->sched_lock);
4415 	return status;
4416 }
4417 
4418 /**
4419  * ice_dis_vsi_txq
4420  * @pi: port information structure
4421  * @vsi_handle: software VSI handle
4422  * @tc: TC number
4423  * @num_queues: number of queues
4424  * @q_handles: pointer to software queue handle array
4425  * @q_ids: pointer to the q_id array
4426  * @q_teids: pointer to queue node teids
4427  * @rst_src: if called due to reset, specifies the reset source
4428  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4429  * @cd: pointer to command details structure or NULL
4430  *
4431  * This function removes queues and their corresponding nodes in SW DB
4432  */
4433 enum ice_status
4434 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4435 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4436 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4437 		struct ice_sq_cd *cd)
4438 {
4439 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4440 	struct ice_aqc_dis_txq_item *qg_list;
4441 	struct ice_q_ctx *q_ctx;
4442 	struct ice_hw *hw;
4443 	u16 i, buf_size;
4444 
4445 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4446 		return ICE_ERR_CFG;
4447 
4448 	hw = pi->hw;
4449 
4450 	if (!num_queues) {
4451 		/* if queue is disabled already yet the disable queue command
4452 		 * has to be sent to complete the VF reset, then call
4453 		 * ice_aq_dis_lan_txq without any queue information
4454 		 */
4455 		if (rst_src)
4456 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4457 						  vmvf_num, NULL);
4458 		return ICE_ERR_CFG;
4459 	}
4460 
4461 	buf_size = ice_struct_size(qg_list, q_id, 1);
4462 	qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
4463 	if (!qg_list)
4464 		return ICE_ERR_NO_MEMORY;
4465 
4466 	ice_acquire_lock(&pi->sched_lock);
4467 
4468 	for (i = 0; i < num_queues; i++) {
4469 		struct ice_sched_node *node;
4470 
4471 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4472 		if (!node)
4473 			continue;
4474 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4475 		if (!q_ctx) {
4476 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4477 				  q_handles[i]);
4478 			continue;
4479 		}
4480 		if (q_ctx->q_handle != q_handles[i]) {
4481 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4482 				  q_ctx->q_handle, q_handles[i]);
4483 			continue;
4484 		}
4485 		qg_list->parent_teid = node->info.parent_teid;
4486 		qg_list->num_qs = 1;
4487 		qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
4488 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4489 					    vmvf_num, cd);
4490 
4491 		if (status != ICE_SUCCESS)
4492 			break;
4493 		ice_free_sched_node(pi, node);
4494 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4495 	}
4496 	ice_release_lock(&pi->sched_lock);
4497 	ice_free(hw, qg_list);
4498 	return status;
4499 }
4500 
4501 /**
4502  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4503  * @pi: port information structure
4504  * @vsi_handle: software VSI handle
4505  * @tc_bitmap: TC bitmap
4506  * @maxqs: max queues array per TC
4507  * @owner: LAN or RDMA
4508  *
4509  * This function adds/updates the VSI queues per TC.
4510  */
4511 static enum ice_status
4512 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4513 	       u16 *maxqs, u8 owner)
4514 {
4515 	enum ice_status status = ICE_SUCCESS;
4516 	u8 i;
4517 
4518 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4519 		return ICE_ERR_CFG;
4520 
4521 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4522 		return ICE_ERR_PARAM;
4523 
4524 	ice_acquire_lock(&pi->sched_lock);
4525 
4526 	ice_for_each_traffic_class(i) {
4527 		/* configuration is possible only if TC node is present */
4528 		if (!ice_sched_get_tc_node(pi, i))
4529 			continue;
4530 
4531 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4532 					   ice_is_tc_ena(tc_bitmap, i));
4533 		if (status)
4534 			break;
4535 	}
4536 
4537 	ice_release_lock(&pi->sched_lock);
4538 	return status;
4539 }
4540 
4541 /**
4542  * ice_cfg_vsi_lan - configure VSI LAN queues
4543  * @pi: port information structure
4544  * @vsi_handle: software VSI handle
4545  * @tc_bitmap: TC bitmap
4546  * @max_lanqs: max LAN queues array per TC
4547  *
4548  * This function adds/updates the VSI LAN queues per TC.
4549  */
4550 enum ice_status
4551 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4552 		u16 *max_lanqs)
4553 {
4554 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4555 			      ICE_SCHED_NODE_OWNER_LAN);
4556 }
4557 
4558 /**
4559  * ice_is_main_vsi - checks whether the VSI is main VSI
4560  * @hw: pointer to the HW struct
4561  * @vsi_handle: VSI handle
4562  *
4563  * Checks whether the VSI is the main VSI (the first PF VSI created on
4564  * given PF).
4565  */
4566 static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
4567 {
4568 	return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
4569 }
4570 
4571 /**
4572  * ice_replay_pre_init - replay pre initialization
4573  * @hw: pointer to the HW struct
4574  * @sw: pointer to switch info struct for which function initializes filters
4575  *
4576  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4577  */
4578 static enum ice_status
4579 ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
4580 {
4581 	enum ice_status status;
4582 	u8 i;
4583 
4584 	/* Delete old entries from replay filter list head if there is any */
4585 	ice_rm_sw_replay_rule_info(hw, sw);
4586 	/* In start of replay, move entries into replay_rules list, it
4587 	 * will allow adding rules entries back to filt_rules list,
4588 	 * which is operational list.
4589 	 */
4590 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4591 		LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
4592 				  &sw->recp_list[i].filt_replay_rules);
4593 	ice_sched_replay_agg_vsi_preinit(hw);
4594 
4595 	status = ice_sched_replay_root_node_bw(hw->port_info);
4596 	if (status)
4597 		return status;
4598 
4599 	return ice_sched_replay_tc_node_bw(hw->port_info);
4600 }
4601 
4602 /**
4603  * ice_replay_vsi - replay VSI configuration
4604  * @hw: pointer to the HW struct
4605  * @vsi_handle: driver VSI handle
4606  *
4607  * Restore all VSI configuration after reset. It is required to call this
4608  * function with main VSI first.
4609  */
4610 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4611 {
4612 	struct ice_switch_info *sw = hw->switch_info;
4613 	struct ice_port_info *pi = hw->port_info;
4614 	enum ice_status status;
4615 
4616 	if (!ice_is_vsi_valid(hw, vsi_handle))
4617 		return ICE_ERR_PARAM;
4618 
4619 	/* Replay pre-initialization if there is any */
4620 	if (ice_is_main_vsi(hw, vsi_handle)) {
4621 		status = ice_replay_pre_init(hw, sw);
4622 		if (status)
4623 			return status;
4624 	}
4625 	/* Replay per VSI all RSS configurations */
4626 	status = ice_replay_rss_cfg(hw, vsi_handle);
4627 	if (status)
4628 		return status;
4629 	/* Replay per VSI all filters */
4630 	status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
4631 	if (!status)
4632 		status = ice_replay_vsi_agg(hw, vsi_handle);
4633 	return status;
4634 }
4635 
4636 /**
4637  * ice_replay_post - post replay configuration cleanup
4638  * @hw: pointer to the HW struct
4639  *
4640  * Post replay cleanup.
4641  */
4642 void ice_replay_post(struct ice_hw *hw)
4643 {
4644 	/* Delete old entries from replay filter list head */
4645 	ice_rm_all_sw_replay_rule_info(hw);
4646 	ice_sched_replay_agg(hw);
4647 }
4648 
4649 /**
4650  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4651  * @hw: ptr to the hardware info
4652  * @reg: offset of 64 bit HW register to read from
4653  * @prev_stat_loaded: bool to specify if previous stats are loaded
4654  * @prev_stat: ptr to previous loaded stat value
4655  * @cur_stat: ptr to current stat value
4656  */
4657 void
4658 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4659 		  u64 *prev_stat, u64 *cur_stat)
4660 {
4661 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4662 
4663 	/* device stats are not reset at PFR, they likely will not be zeroed
4664 	 * when the driver starts. Thus, save the value from the first read
4665 	 * without adding to the statistic value so that we report stats which
4666 	 * count up from zero.
4667 	 */
4668 	if (!prev_stat_loaded) {
4669 		*prev_stat = new_data;
4670 		return;
4671 	}
4672 
4673 	/* Calculate the difference between the new and old values, and then
4674 	 * add it to the software stat value.
4675 	 */
4676 	if (new_data >= *prev_stat)
4677 		*cur_stat += new_data - *prev_stat;
4678 	else
4679 		/* to manage the potential roll-over */
4680 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4681 
4682 	/* Update the previously stored value to prepare for next read */
4683 	*prev_stat = new_data;
4684 }
4685 
4686 /**
4687  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4688  * @hw: ptr to the hardware info
4689  * @reg: offset of HW register to read from
4690  * @prev_stat_loaded: bool to specify if previous stats are loaded
4691  * @prev_stat: ptr to previous loaded stat value
4692  * @cur_stat: ptr to current stat value
4693  */
4694 void
4695 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4696 		  u64 *prev_stat, u64 *cur_stat)
4697 {
4698 	u32 new_data;
4699 
4700 	new_data = rd32(hw, reg);
4701 
4702 	/* device stats are not reset at PFR, they likely will not be zeroed
4703 	 * when the driver starts. Thus, save the value from the first read
4704 	 * without adding to the statistic value so that we report stats which
4705 	 * count up from zero.
4706 	 */
4707 	if (!prev_stat_loaded) {
4708 		*prev_stat = new_data;
4709 		return;
4710 	}
4711 
4712 	/* Calculate the difference between the new and old values, and then
4713 	 * add it to the software stat value.
4714 	 */
4715 	if (new_data >= *prev_stat)
4716 		*cur_stat += new_data - *prev_stat;
4717 	else
4718 		/* to manage the potential roll-over */
4719 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4720 
4721 	/* Update the previously stored value to prepare for next read */
4722 	*prev_stat = new_data;
4723 }
4724 
4725 /**
4726  * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
4727  * @hw: ptr to the hardware info
4728  * @vsi_handle: VSI handle
4729  * @prev_stat_loaded: bool to specify if the previous stat values are loaded
4730  * @cur_stats: ptr to current stats structure
4731  *
4732  * The GLV_REPC statistic register actually tracks two 16bit statistics, and
4733  * thus cannot be read using the normal ice_stat_update32 function.
4734  *
4735  * Read the GLV_REPC register associated with the given VSI, and update the
4736  * rx_no_desc and rx_error values in the ice_eth_stats structure.
4737  *
4738  * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
4739  * cleared each time it's read.
4740  *
4741  * Note that the GLV_RDPC register also counts the causes that would trigger
4742  * GLV_REPC. However, it does not give the finer grained detail about why the
4743  * packets are being dropped. The GLV_REPC values can be used to distinguish
4744  * whether Rx packets are dropped due to errors or due to no available
4745  * descriptors.
4746  */
4747 void
4748 ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
4749 		     struct ice_eth_stats *cur_stats)
4750 {
4751 	u16 vsi_num, no_desc, error_cnt;
4752 	u32 repc;
4753 
4754 	if (!ice_is_vsi_valid(hw, vsi_handle))
4755 		return;
4756 
4757 	vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
4758 
4759 	/* If we haven't loaded stats yet, just clear the current value */
4760 	if (!prev_stat_loaded) {
4761 		wr32(hw, GLV_REPC(vsi_num), 0);
4762 		return;
4763 	}
4764 
4765 	repc = rd32(hw, GLV_REPC(vsi_num));
4766 	no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
4767 	error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
4768 
4769 	/* Clear the count by writing to the stats register */
4770 	wr32(hw, GLV_REPC(vsi_num), 0);
4771 
4772 	cur_stats->rx_no_desc += no_desc;
4773 	cur_stats->rx_errors += error_cnt;
4774 }
4775 
4776 /**
4777  * ice_aq_alternate_write
4778  * @hw: pointer to the hardware structure
4779  * @reg_addr0: address of first dword to be written
4780  * @reg_val0: value to be written under 'reg_addr0'
4781  * @reg_addr1: address of second dword to be written
4782  * @reg_val1: value to be written under 'reg_addr1'
4783  *
4784  * Write one or two dwords to alternate structure. Fields are indicated
4785  * by 'reg_addr0' and 'reg_addr1' register numbers.
4786  */
4787 enum ice_status
4788 ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
4789 		       u32 reg_addr1, u32 reg_val1)
4790 {
4791 	struct ice_aqc_read_write_alt_direct *cmd;
4792 	struct ice_aq_desc desc;
4793 	enum ice_status status;
4794 
4795 	cmd = &desc.params.read_write_alt_direct;
4796 
4797 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
4798 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
4799 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
4800 	cmd->dword0_value = CPU_TO_LE32(reg_val0);
4801 	cmd->dword1_value = CPU_TO_LE32(reg_val1);
4802 
4803 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4804 
4805 	return status;
4806 }
4807 
4808 /**
4809  * ice_aq_alternate_read
4810  * @hw: pointer to the hardware structure
4811  * @reg_addr0: address of first dword to be read
4812  * @reg_val0: pointer for data read from 'reg_addr0'
4813  * @reg_addr1: address of second dword to be read
4814  * @reg_val1: pointer for data read from 'reg_addr1'
4815  *
4816  * Read one or two dwords from alternate structure. Fields are indicated
4817  * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
4818  * is not passed then only register at 'reg_addr0' is read.
4819  */
4820 enum ice_status
4821 ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
4822 		      u32 reg_addr1, u32 *reg_val1)
4823 {
4824 	struct ice_aqc_read_write_alt_direct *cmd;
4825 	struct ice_aq_desc desc;
4826 	enum ice_status status;
4827 
4828 	cmd = &desc.params.read_write_alt_direct;
4829 
4830 	if (!reg_val0)
4831 		return ICE_ERR_PARAM;
4832 
4833 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
4834 	cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
4835 	cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
4836 
4837 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4838 
4839 	if (status == ICE_SUCCESS) {
4840 		*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
4841 
4842 		if (reg_val1)
4843 			*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
4844 	}
4845 
4846 	return status;
4847 }
4848 
4849 /**
4850  *  ice_aq_alternate_write_done
4851  *  @hw: pointer to the HW structure.
4852  *  @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
4853  *  @reset_needed: indicates the SW should trigger GLOBAL reset
4854  *
4855  *  Indicates to the FW that alternate structures have been changed.
4856  */
4857 enum ice_status
4858 ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
4859 {
4860 	struct ice_aqc_done_alt_write *cmd;
4861 	struct ice_aq_desc desc;
4862 	enum ice_status status;
4863 
4864 	cmd = &desc.params.done_alt_write;
4865 
4866 	if (!reset_needed)
4867 		return ICE_ERR_PARAM;
4868 
4869 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
4870 	cmd->flags = bios_mode;
4871 
4872 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4873 	if (!status)
4874 		*reset_needed = (LE16_TO_CPU(cmd->flags) &
4875 				 ICE_AQC_RESP_RESET_NEEDED) != 0;
4876 
4877 	return status;
4878 }
4879 
4880 /**
4881  *  ice_aq_alternate_clear
4882  *  @hw: pointer to the HW structure.
4883  *
4884  *  Clear the alternate structures of the port from which the function
4885  *  is called.
4886  */
4887 enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
4888 {
4889 	struct ice_aq_desc desc;
4890 	enum ice_status status;
4891 
4892 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
4893 
4894 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4895 
4896 	return status;
4897 }
4898 
4899 /**
4900  * ice_sched_query_elem - query element information from HW
4901  * @hw: pointer to the HW struct
4902  * @node_teid: node TEID to be queried
4903  * @buf: buffer to element information
4904  *
4905  * This function queries HW element information
4906  */
4907 enum ice_status
4908 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4909 		     struct ice_aqc_txsched_elem_data *buf)
4910 {
4911 	u16 buf_size, num_elem_ret = 0;
4912 	enum ice_status status;
4913 
4914 	buf_size = sizeof(*buf);
4915 	ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
4916 	buf->node_teid = CPU_TO_LE32(node_teid);
4917 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4918 					  NULL);
4919 	if (status != ICE_SUCCESS || num_elem_ret != 1)
4920 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4921 	return status;
4922 }
4923 
4924 /**
4925  * ice_get_fw_mode - returns FW mode
4926  * @hw: pointer to the HW struct
4927  */
4928 enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
4929 {
4930 #define ICE_FW_MODE_DBG_M BIT(0)
4931 #define ICE_FW_MODE_REC_M BIT(1)
4932 #define ICE_FW_MODE_ROLLBACK_M BIT(2)
4933 	u32 fw_mode;
4934 
4935 	/* check the current FW mode */
4936 	fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
4937 
4938 	if (fw_mode & ICE_FW_MODE_DBG_M)
4939 		return ICE_FW_MODE_DBG;
4940 	else if (fw_mode & ICE_FW_MODE_REC_M)
4941 		return ICE_FW_MODE_REC;
4942 	else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
4943 		return ICE_FW_MODE_ROLLBACK;
4944 	else
4945 		return ICE_FW_MODE_NORMAL;
4946 }
4947 
4948 /**
4949  * ice_cfg_get_cur_lldp_persist_status
4950  * @hw: pointer to the HW struct
4951  * @lldp_status: return value of LLDP persistent status
4952  *
4953  * Get the current status of LLDP persistent
4954  */
4955 enum ice_status
4956 ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
4957 {
4958 	struct ice_port_info *pi = hw->port_info;
4959 	enum ice_status ret;
4960 	__le32 raw_data;
4961 	u32 data, mask;
4962 
4963 	if (!lldp_status)
4964 		return ICE_ERR_BAD_PTR;
4965 
4966 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
4967 	if (ret)
4968 		return ret;
4969 
4970 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
4971 			      ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
4972 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
4973 			      false, true, NULL);
4974 	if (!ret) {
4975 		data = LE32_TO_CPU(raw_data);
4976 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
4977 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
4978 		data = data & mask;
4979 		*lldp_status = data >>
4980 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
4981 	}
4982 
4983 	ice_release_nvm(hw);
4984 
4985 	return ret;
4986 }
4987 
4988 /**
4989  * ice_get_dflt_lldp_persist_status
4990  * @hw: pointer to the HW struct
4991  * @lldp_status: return value of LLDP persistent status
4992  *
4993  * Get the default status of LLDP persistent
4994  */
4995 enum ice_status
4996 ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
4997 {
4998 	struct ice_port_info *pi = hw->port_info;
4999 	u32 data, mask, loc_data, loc_data_tmp;
5000 	enum ice_status ret;
5001 	__le16 loc_raw_data;
5002 	__le32 raw_data;
5003 
5004 	if (!lldp_status)
5005 		return ICE_ERR_BAD_PTR;
5006 
5007 	ret = ice_acquire_nvm(hw, ICE_RES_READ);
5008 	if (ret)
5009 		return ret;
5010 
5011 	/* Read the offset of EMP_SR_PTR */
5012 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
5013 			      ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
5014 			      ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
5015 			      &loc_raw_data, false, true, NULL);
5016 	if (ret)
5017 		goto exit;
5018 
5019 	loc_data = LE16_TO_CPU(loc_raw_data);
5020 	if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
5021 		loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
5022 		loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
5023 	} else {
5024 		loc_data *= ICE_AQC_NVM_WORD_UNIT;
5025 	}
5026 
5027 	/* Read the offset of LLDP configuration pointer */
5028 	loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
5029 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5030 			      ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
5031 			      false, true, NULL);
5032 	if (ret)
5033 		goto exit;
5034 
5035 	loc_data_tmp = LE16_TO_CPU(loc_raw_data);
5036 	loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
5037 	loc_data += loc_data_tmp;
5038 
5039 	/* We need to skip LLDP configuration section length (2 bytes) */
5040 	loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
5041 
5042 	/* Read the LLDP Default Configure */
5043 	ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
5044 			      ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
5045 			      true, NULL);
5046 	if (!ret) {
5047 		data = LE32_TO_CPU(raw_data);
5048 		mask = ICE_AQC_NVM_LLDP_STATUS_M <<
5049 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5050 		data = data & mask;
5051 		*lldp_status = data >>
5052 			(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
5053 	}
5054 
5055 exit:
5056 	ice_release_nvm(hw);
5057 
5058 	return ret;
5059 }
5060 
5061 /**
5062  * ice_fw_supports_link_override
5063  * @hw: pointer to the hardware structure
5064  *
5065  * Checks if the firmware supports link override
5066  */
5067 bool ice_fw_supports_link_override(struct ice_hw *hw)
5068 {
5069 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
5070 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
5071 			return true;
5072 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
5073 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
5074 			return true;
5075 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
5076 		return true;
5077 	}
5078 
5079 	return false;
5080 }
5081 
5082 /**
5083  * ice_get_link_default_override
5084  * @ldo: pointer to the link default override struct
5085  * @pi: pointer to the port info struct
5086  *
5087  * Gets the link default override for a port
5088  */
5089 enum ice_status
5090 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5091 			      struct ice_port_info *pi)
5092 {
5093 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5094 	struct ice_hw *hw = pi->hw;
5095 	enum ice_status status;
5096 
5097 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5098 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5099 	if (status) {
5100 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5101 		return status;
5102 	}
5103 
5104 	/* Each port has its own config; calculate for our port */
5105 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5106 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5107 
5108 	/* link options first */
5109 	status = ice_read_sr_word(hw, tlv_start, &buf);
5110 	if (status) {
5111 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5112 		return status;
5113 	}
5114 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5115 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5116 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5117 
5118 	/* link PHY config */
5119 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5120 	status = ice_read_sr_word(hw, offset, &buf);
5121 	if (status) {
5122 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5123 		return status;
5124 	}
5125 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5126 
5127 	/* PHY types low */
5128 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5129 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5130 		status = ice_read_sr_word(hw, (offset + i), &buf);
5131 		if (status) {
5132 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5133 			return status;
5134 		}
5135 		/* shift 16 bits at a time to fill 64 bits */
5136 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5137 	}
5138 
5139 	/* PHY types high */
5140 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5141 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5142 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5143 		status = ice_read_sr_word(hw, (offset + i), &buf);
5144 		if (status) {
5145 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5146 			return status;
5147 		}
5148 		/* shift 16 bits at a time to fill 64 bits */
5149 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5150 	}
5151 
5152 	return status;
5153 }
5154 
5155 /**
5156  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5157  * @caps: get PHY capability data
5158  */
5159 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5160 {
5161 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5162 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5163 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5164 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5165 		return true;
5166 
5167 	return false;
5168 }
5169 
5170 /**
5171  * ice_aq_set_lldp_mib - Set the LLDP MIB
5172  * @hw: pointer to the HW struct
5173  * @mib_type: Local, Remote or both Local and Remote MIBs
5174  * @buf: pointer to the caller-supplied buffer to store the MIB block
5175  * @buf_size: size of the buffer (in bytes)
5176  * @cd: pointer to command details structure or NULL
5177  *
5178  * Set the LLDP MIB. (0x0A08)
5179  */
5180 enum ice_status
5181 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5182 		    struct ice_sq_cd *cd)
5183 {
5184 	struct ice_aqc_lldp_set_local_mib *cmd;
5185 	struct ice_aq_desc desc;
5186 
5187 	cmd = &desc.params.lldp_set_mib;
5188 
5189 	if (buf_size == 0 || !buf)
5190 		return ICE_ERR_PARAM;
5191 
5192 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5193 
5194 	desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
5195 	desc.datalen = CPU_TO_LE16(buf_size);
5196 
5197 	cmd->type = mib_type;
5198 	cmd->length = CPU_TO_LE16(buf_size);
5199 
5200 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5201 }
5202 
5203 /**
5204  * ice_fw_supports_lldp_fltr - check NVM version supports lldp_fltr_ctrl
5205  * @hw: pointer to HW struct
5206  */
5207 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5208 {
5209 	if (hw->mac_type != ICE_MAC_E810)
5210 		return false;
5211 
5212 	if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
5213 		if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
5214 			return true;
5215 		if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
5216 		    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
5217 			return true;
5218 	} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
5219 		return true;
5220 	}
5221 	return false;
5222 }
5223 
5224 /**
5225  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5226  * @hw: pointer to HW struct
5227  * @vsi_num: absolute HW index for VSI
5228  * @add: boolean for if adding or removing a filter
5229  */
5230 enum ice_status
5231 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5232 {
5233 	struct ice_aqc_lldp_filter_ctrl *cmd;
5234 	struct ice_aq_desc desc;
5235 
5236 	cmd = &desc.params.lldp_filter_ctrl;
5237 
5238 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5239 
5240 	if (add)
5241 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5242 	else
5243 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5244 
5245 	cmd->vsi_num = CPU_TO_LE16(vsi_num);
5246 
5247 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5248 }
5249