1 /*- 2 * Copyright (c) 2015 Ruslan Bukin <br@bsdpad.com> 3 * All rights reserved. 4 * 5 * This software was developed by the University of Cambridge Computer 6 * Laboratory with support from ARM Ltd. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/pmc.h> 36 #include <sys/pmckern.h> 37 38 #include <machine/pmc_mdep.h> 39 #include <machine/cpu.h> 40 41 #include "opt_acpi.h" 42 43 static int arm64_npmcs; 44 45 struct arm64_event_code_map { 46 enum pmc_event pe_ev; 47 uint8_t pe_code; 48 }; 49 50 /* 51 * Per-processor information. 52 */ 53 struct arm64_cpu { 54 struct pmc_hw *pc_arm64pmcs; 55 }; 56 57 static struct arm64_cpu **arm64_pcpu; 58 59 /* 60 * Interrupt Enable Set Register 61 */ 62 static __inline void 63 arm64_interrupt_enable(uint32_t pmc) 64 { 65 uint32_t reg; 66 67 reg = (1 << pmc); 68 WRITE_SPECIALREG(pmintenset_el1, reg); 69 70 isb(); 71 } 72 73 /* 74 * Interrupt Clear Set Register 75 */ 76 static __inline void 77 arm64_interrupt_disable(uint32_t pmc) 78 { 79 uint32_t reg; 80 81 reg = (1 << pmc); 82 WRITE_SPECIALREG(pmintenclr_el1, reg); 83 84 isb(); 85 } 86 87 /* 88 * Counter Set Enable Register 89 */ 90 static __inline void 91 arm64_counter_enable(unsigned int pmc) 92 { 93 uint32_t reg; 94 95 reg = (1 << pmc); 96 WRITE_SPECIALREG(pmcntenset_el0, reg); 97 98 isb(); 99 } 100 101 /* 102 * Counter Clear Enable Register 103 */ 104 static __inline void 105 arm64_counter_disable(unsigned int pmc) 106 { 107 uint32_t reg; 108 109 reg = (1 << pmc); 110 WRITE_SPECIALREG(pmcntenclr_el0, reg); 111 112 isb(); 113 } 114 115 /* 116 * Performance Monitors Control Register 117 */ 118 static uint32_t 119 arm64_pmcr_read(void) 120 { 121 uint32_t reg; 122 123 reg = READ_SPECIALREG(pmcr_el0); 124 125 return (reg); 126 } 127 128 static void 129 arm64_pmcr_write(uint32_t reg) 130 { 131 132 WRITE_SPECIALREG(pmcr_el0, reg); 133 134 isb(); 135 } 136 137 /* 138 * Performance Count Register N 139 */ 140 static uint32_t 141 arm64_pmcn_read(unsigned int pmc) 142 { 143 144 KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc)); 145 146 WRITE_SPECIALREG(pmselr_el0, pmc); 147 148 isb(); 149 150 return (READ_SPECIALREG(pmxevcntr_el0)); 151 } 152 153 static void 154 arm64_pmcn_write(unsigned int pmc, uint32_t reg) 155 { 156 157 KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc)); 158 159 WRITE_SPECIALREG(pmselr_el0, pmc); 160 WRITE_SPECIALREG(pmxevcntr_el0, reg); 161 162 isb(); 163 } 164 165 static int 166 arm64_allocate_pmc(int cpu, int ri, struct pmc *pm, 167 const struct pmc_op_pmcallocate *a) 168 { 169 uint32_t config; 170 enum pmc_event pe; 171 172 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 173 ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); 174 KASSERT(ri >= 0 && ri < arm64_npmcs, 175 ("[arm64,%d] illegal row index %d", __LINE__, ri)); 176 177 if (a->pm_class != PMC_CLASS_ARMV8) { 178 return (EINVAL); 179 } 180 pe = a->pm_ev; 181 182 /* Adjust the config value if needed. */ 183 config = a->pm_md.pm_md_config; 184 if ((a->pm_md.pm_md_flags & PM_MD_RAW_EVENT) == 0) { 185 config = (uint32_t)pe - PMC_EV_ARMV8_FIRST; 186 if (config > (PMC_EV_ARMV8_LAST - PMC_EV_ARMV8_FIRST)) 187 return (EINVAL); 188 } 189 190 switch (a->pm_caps & (PMC_CAP_SYSTEM | PMC_CAP_USER)) { 191 case PMC_CAP_SYSTEM: 192 config |= PMEVTYPER_U; 193 break; 194 case PMC_CAP_USER: 195 config |= PMEVTYPER_P; 196 break; 197 default: 198 /* 199 * Trace both USER and SYSTEM if none are specified 200 * (default setting) or if both flags are specified 201 * (user explicitly requested both qualifiers). 202 */ 203 break; 204 } 205 206 pm->pm_md.pm_arm64.pm_arm64_evsel = config; 207 PMCDBG2(MDP, ALL, 2, "arm64-allocate ri=%d -> config=0x%x", ri, config); 208 209 return (0); 210 } 211 212 213 static int 214 arm64_read_pmc(int cpu, int ri, pmc_value_t *v) 215 { 216 pmc_value_t tmp; 217 struct pmc *pm; 218 register_t s; 219 int reg; 220 221 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 222 ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); 223 KASSERT(ri >= 0 && ri < arm64_npmcs, 224 ("[arm64,%d] illegal row index %d", __LINE__, ri)); 225 226 pm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc; 227 228 /* 229 * Ensure we don't get interrupted while updating the overflow count. 230 */ 231 s = intr_disable(); 232 tmp = arm64_pmcn_read(ri); 233 reg = (1 << ri); 234 if ((READ_SPECIALREG(pmovsclr_el0) & reg) != 0) { 235 /* Clear Overflow Flag */ 236 WRITE_SPECIALREG(pmovsclr_el0, reg); 237 pm->pm_pcpu_state[cpu].pps_overflowcnt++; 238 239 /* Reread counter in case we raced. */ 240 tmp = arm64_pmcn_read(ri); 241 } 242 tmp += 0x100000000llu * pm->pm_pcpu_state[cpu].pps_overflowcnt; 243 intr_restore(s); 244 245 PMCDBG2(MDP, REA, 2, "arm64-read id=%d -> %jd", ri, tmp); 246 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) { 247 /* 248 * Clamp value to 0 if the counter just overflowed, 249 * otherwise the returned reload count would wrap to a 250 * huge value. 251 */ 252 if ((tmp & (1ull << 63)) == 0) 253 tmp = 0; 254 else 255 tmp = ARMV8_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp); 256 } 257 *v = tmp; 258 259 return (0); 260 } 261 262 static int 263 arm64_write_pmc(int cpu, int ri, pmc_value_t v) 264 { 265 struct pmc *pm; 266 267 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 268 ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); 269 KASSERT(ri >= 0 && ri < arm64_npmcs, 270 ("[arm64,%d] illegal row-index %d", __LINE__, ri)); 271 272 pm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc; 273 274 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) 275 v = ARMV8_RELOAD_COUNT_TO_PERFCTR_VALUE(v); 276 277 PMCDBG3(MDP, WRI, 1, "arm64-write cpu=%d ri=%d v=%jx", cpu, ri, v); 278 279 pm->pm_pcpu_state[cpu].pps_overflowcnt = v >> 32; 280 arm64_pmcn_write(ri, v); 281 282 return (0); 283 } 284 285 static int 286 arm64_config_pmc(int cpu, int ri, struct pmc *pm) 287 { 288 struct pmc_hw *phw; 289 290 PMCDBG3(MDP, CFG, 1, "cpu=%d ri=%d pm=%p", cpu, ri, pm); 291 292 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 293 ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); 294 KASSERT(ri >= 0 && ri < arm64_npmcs, 295 ("[arm64,%d] illegal row-index %d", __LINE__, ri)); 296 297 phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri]; 298 299 KASSERT(pm == NULL || phw->phw_pmc == NULL, 300 ("[arm64,%d] pm=%p phw->pm=%p hwpmc not unconfigured", 301 __LINE__, pm, phw->phw_pmc)); 302 303 phw->phw_pmc = pm; 304 305 return (0); 306 } 307 308 static int 309 arm64_start_pmc(int cpu, int ri) 310 { 311 struct pmc_hw *phw; 312 uint32_t config; 313 struct pmc *pm; 314 315 phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri]; 316 pm = phw->phw_pmc; 317 config = pm->pm_md.pm_arm64.pm_arm64_evsel; 318 319 /* 320 * Configure the event selection. 321 */ 322 WRITE_SPECIALREG(pmselr_el0, ri); 323 WRITE_SPECIALREG(pmxevtyper_el0, config); 324 325 isb(); 326 327 /* 328 * Enable the PMC. 329 */ 330 arm64_interrupt_enable(ri); 331 arm64_counter_enable(ri); 332 333 return (0); 334 } 335 336 static int 337 arm64_stop_pmc(int cpu, int ri) 338 { 339 /* 340 * Disable the PMCs. 341 */ 342 arm64_counter_disable(ri); 343 arm64_interrupt_disable(ri); 344 345 return (0); 346 } 347 348 static int 349 arm64_release_pmc(int cpu, int ri, struct pmc *pmc) 350 { 351 struct pmc_hw *phw __diagused; 352 353 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 354 ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); 355 KASSERT(ri >= 0 && ri < arm64_npmcs, 356 ("[arm64,%d] illegal row-index %d", __LINE__, ri)); 357 358 phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri]; 359 KASSERT(phw->phw_pmc == NULL, 360 ("[arm64,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc)); 361 362 return (0); 363 } 364 365 static int 366 arm64_intr(struct trapframe *tf) 367 { 368 int retval, ri; 369 struct pmc *pm; 370 int error; 371 int reg, cpu; 372 373 cpu = curcpu; 374 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 375 ("[arm64,%d] CPU %d out of range", __LINE__, cpu)); 376 377 PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *)tf, 378 TRAPF_USERMODE(tf)); 379 380 retval = 0; 381 382 for (ri = 0; ri < arm64_npmcs; ri++) { 383 pm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc; 384 if (pm == NULL) 385 continue; 386 /* Check if counter is overflowed */ 387 reg = (1 << ri); 388 if ((READ_SPECIALREG(pmovsclr_el0) & reg) == 0) 389 continue; 390 /* Clear Overflow Flag */ 391 WRITE_SPECIALREG(pmovsclr_el0, reg); 392 393 isb(); 394 395 retval = 1; /* Found an interrupting PMC. */ 396 397 pm->pm_pcpu_state[cpu].pps_overflowcnt += 1; 398 399 if (!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) 400 continue; 401 402 if (pm->pm_state != PMC_STATE_RUNNING) 403 continue; 404 405 error = pmc_process_interrupt(PMC_HR, pm, tf); 406 if (error) 407 arm64_stop_pmc(cpu, ri); 408 409 /* Reload sampling count */ 410 arm64_write_pmc(cpu, ri, pm->pm_sc.pm_reloadcount); 411 } 412 413 return (retval); 414 } 415 416 static int 417 arm64_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) 418 { 419 char arm64_name[PMC_NAME_MAX]; 420 struct pmc_hw *phw; 421 int error; 422 423 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 424 ("[arm64,%d], illegal CPU %d", __LINE__, cpu)); 425 KASSERT(ri >= 0 && ri < arm64_npmcs, 426 ("[arm64,%d] row-index %d out of range", __LINE__, ri)); 427 428 phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri]; 429 snprintf(arm64_name, sizeof(arm64_name), "ARMV8-%d", ri); 430 if ((error = copystr(arm64_name, pi->pm_name, PMC_NAME_MAX, 431 NULL)) != 0) 432 return (error); 433 pi->pm_class = PMC_CLASS_ARMV8; 434 if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { 435 pi->pm_enabled = TRUE; 436 *ppmc = phw->phw_pmc; 437 } else { 438 pi->pm_enabled = FALSE; 439 *ppmc = NULL; 440 } 441 442 return (0); 443 } 444 445 static int 446 arm64_get_config(int cpu, int ri, struct pmc **ppm) 447 { 448 449 *ppm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc; 450 451 return (0); 452 } 453 454 /* 455 * XXX don't know what we should do here. 456 */ 457 static int 458 arm64_switch_in(struct pmc_cpu *pc, struct pmc_process *pp) 459 { 460 461 return (0); 462 } 463 464 static int 465 arm64_switch_out(struct pmc_cpu *pc, struct pmc_process *pp) 466 { 467 468 return (0); 469 } 470 471 static int 472 arm64_pcpu_init(struct pmc_mdep *md, int cpu) 473 { 474 struct arm64_cpu *pac; 475 struct pmc_hw *phw; 476 struct pmc_cpu *pc; 477 uint64_t pmcr; 478 int first_ri; 479 int i; 480 481 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), 482 ("[arm64,%d] wrong cpu number %d", __LINE__, cpu)); 483 PMCDBG1(MDP, INI, 1, "arm64-init cpu=%d", cpu); 484 485 arm64_pcpu[cpu] = pac = malloc(sizeof(struct arm64_cpu), M_PMC, 486 M_WAITOK | M_ZERO); 487 488 pac->pc_arm64pmcs = malloc(sizeof(struct pmc_hw) * arm64_npmcs, 489 M_PMC, M_WAITOK | M_ZERO); 490 pc = pmc_pcpu[cpu]; 491 first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8].pcd_ri; 492 KASSERT(pc != NULL, ("[arm64,%d] NULL per-cpu pointer", __LINE__)); 493 494 for (i = 0, phw = pac->pc_arm64pmcs; i < arm64_npmcs; i++, phw++) { 495 phw->phw_state = PMC_PHW_FLAG_IS_ENABLED | 496 PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i); 497 phw->phw_pmc = NULL; 498 pc->pc_hwpmcs[i + first_ri] = phw; 499 } 500 501 /* 502 * Disable all counters and overflow interrupts. Upon reset they are in 503 * an undefined state. 504 * 505 * Don't issue an isb here, just wait for the one in arm64_pmcr_write() 506 * to make the writes visible. 507 */ 508 WRITE_SPECIALREG(pmcntenclr_el0, 0xffffffff); 509 WRITE_SPECIALREG(pmintenclr_el1, 0xffffffff); 510 511 /* Enable unit */ 512 pmcr = arm64_pmcr_read(); 513 pmcr |= PMCR_E; 514 arm64_pmcr_write(pmcr); 515 516 return (0); 517 } 518 519 static int 520 arm64_pcpu_fini(struct pmc_mdep *md, int cpu) 521 { 522 uint32_t pmcr; 523 524 pmcr = arm64_pmcr_read(); 525 pmcr &= ~PMCR_E; 526 arm64_pmcr_write(pmcr); 527 528 return (0); 529 } 530 531 struct pmc_mdep * 532 pmc_arm64_initialize(void) 533 { 534 struct pmc_mdep *pmc_mdep; 535 struct pmc_classdep *pcd; 536 int classes, idcode, impcode; 537 int reg; 538 uint64_t midr; 539 540 reg = arm64_pmcr_read(); 541 arm64_npmcs = (reg & PMCR_N_MASK) >> PMCR_N_SHIFT; 542 impcode = (reg & PMCR_IMP_MASK) >> PMCR_IMP_SHIFT; 543 idcode = (reg & PMCR_IDCODE_MASK) >> PMCR_IDCODE_SHIFT; 544 545 PMCDBG1(MDP, INI, 1, "arm64-init npmcs=%d", arm64_npmcs); 546 547 /* 548 * Write the CPU model to kern.hwpmc.cpuid. 549 * 550 * We zero the variant and revision fields. 551 * 552 * TODO: how to handle differences between cores due to big.LITTLE? 553 * For now, just use MIDR from CPU 0. 554 */ 555 midr = (uint64_t)(pcpu_find(0)->pc_midr); 556 midr &= ~(CPU_VAR_MASK | CPU_REV_MASK); 557 snprintf(pmc_cpuid, sizeof(pmc_cpuid), "0x%016lx", midr); 558 559 /* 560 * Allocate space for pointers to PMC HW descriptors and for 561 * the MDEP structure used by MI code. 562 */ 563 arm64_pcpu = malloc(sizeof(struct arm64_cpu *) * pmc_cpu_max(), 564 M_PMC, M_WAITOK | M_ZERO); 565 566 /* One AArch64 CPU class */ 567 classes = 1; 568 569 #ifdef DEV_ACPI 570 /* Query presence of optional classes and set max class. */ 571 if (pmc_cmn600_nclasses() > 0) 572 classes = MAX(classes, PMC_MDEP_CLASS_INDEX_CMN600); 573 if (pmc_dmc620_nclasses() > 0) 574 classes = MAX(classes, PMC_MDEP_CLASS_INDEX_DMC620_C); 575 #endif 576 577 pmc_mdep = pmc_mdep_alloc(classes); 578 579 switch(impcode) { 580 case PMCR_IMP_ARM: 581 switch (idcode) { 582 case PMCR_IDCODE_CORTEX_A76: 583 case PMCR_IDCODE_NEOVERSE_N1: 584 pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A76; 585 break; 586 case PMCR_IDCODE_CORTEX_A57: 587 case PMCR_IDCODE_CORTEX_A72: 588 pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A57; 589 break; 590 default: 591 case PMCR_IDCODE_CORTEX_A53: 592 pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53; 593 break; 594 } 595 break; 596 default: 597 pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53; 598 break; 599 } 600 601 pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8]; 602 pcd->pcd_caps = ARMV8_PMC_CAPS; 603 pcd->pcd_class = PMC_CLASS_ARMV8; 604 pcd->pcd_num = arm64_npmcs; 605 pcd->pcd_ri = pmc_mdep->pmd_npmc; 606 pcd->pcd_width = 32; 607 608 pcd->pcd_allocate_pmc = arm64_allocate_pmc; 609 pcd->pcd_config_pmc = arm64_config_pmc; 610 pcd->pcd_pcpu_fini = arm64_pcpu_fini; 611 pcd->pcd_pcpu_init = arm64_pcpu_init; 612 pcd->pcd_describe = arm64_describe; 613 pcd->pcd_get_config = arm64_get_config; 614 pcd->pcd_read_pmc = arm64_read_pmc; 615 pcd->pcd_release_pmc = arm64_release_pmc; 616 pcd->pcd_start_pmc = arm64_start_pmc; 617 pcd->pcd_stop_pmc = arm64_stop_pmc; 618 pcd->pcd_write_pmc = arm64_write_pmc; 619 620 pmc_mdep->pmd_intr = arm64_intr; 621 pmc_mdep->pmd_switch_in = arm64_switch_in; 622 pmc_mdep->pmd_switch_out = arm64_switch_out; 623 624 pmc_mdep->pmd_npmc += arm64_npmcs; 625 626 #ifdef DEV_ACPI 627 if (pmc_cmn600_nclasses() > 0) 628 pmc_cmn600_initialize(pmc_mdep); 629 if (pmc_dmc620_nclasses() > 0) { 630 pmc_dmc620_initialize_cd2(pmc_mdep); 631 pmc_dmc620_initialize_c(pmc_mdep); 632 } 633 #endif 634 635 return (pmc_mdep); 636 } 637 638 void 639 pmc_arm64_finalize(struct pmc_mdep *md) 640 { 641 642 } 643