1 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */ 2 3 /* 4 * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org> 5 * Copyright (c) 2003, 2004 Theo de Raadt 6 * Copyright (c) 2003 Jason Wright 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for the security block on the AMD Geode LX processors 23 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/bus.h> 32 #include <sys/errno.h> 33 #include <sys/kernel.h> 34 #include <sys/lock.h> 35 #include <sys/malloc.h> 36 #include <sys/mbuf.h> 37 #include <sys/module.h> 38 #include <sys/mutex.h> 39 #include <sys/proc.h> 40 #include <sys/random.h> 41 #include <sys/rman.h> 42 #include <sys/rwlock.h> 43 #include <sys/sysctl.h> 44 #include <sys/taskqueue.h> 45 46 #include <machine/bus.h> 47 #include <machine/cpufunc.h> 48 #include <machine/resource.h> 49 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pcireg.h> 52 53 #include <opencrypto/cryptodev.h> 54 #include <opencrypto/cryptosoft.h> 55 #include <opencrypto/xform.h> 56 57 #include "cryptodev_if.h" 58 #include "glxsb.h" 59 60 #define PCI_VENDOR_AMD 0x1022 /* AMD */ 61 #define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO 0x2082 /* Geode LX Crypto */ 62 63 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */ 64 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */ 65 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */ 66 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */ 67 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */ 68 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */ 69 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */ 70 71 /* For GLD_MSR_CTRL: */ 72 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */ 73 #define SB_GMC_DIV1 0x0001 74 #define SB_GMC_DIV2 0x0002 75 #define SB_GMC_DIV3 0x0003 76 #define SB_GMC_DIV_MASK 0x0003 77 #define SB_GMC_SBI 0x0004 /* AES swap bits */ 78 #define SB_GMC_SBY 0x0008 /* AES swap bytes */ 79 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */ 80 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */ 81 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */ 82 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */ 83 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */ 84 #define SB_GMC_T_SEL_MASK 0x0300 85 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */ 86 #define SB_GMC_T_TM 0x0800 /* RNG test mode */ 87 /* (deterministic) */ 88 89 /* Security Block configuration/control registers (offsets from base) */ 90 #define SB_CTL_A 0x0000 /* RW - SB Control A */ 91 #define SB_CTL_B 0x0004 /* RW - SB Control B */ 92 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */ 93 #define SB_SOURCE_A 0x0010 /* RW - Source A */ 94 #define SB_DEST_A 0x0014 /* RW - Destination A */ 95 #define SB_LENGTH_A 0x0018 /* RW - Length A */ 96 #define SB_SOURCE_B 0x0020 /* RW - Source B */ 97 #define SB_DEST_B 0x0024 /* RW - Destination B */ 98 #define SB_LENGTH_B 0x0028 /* RW - Length B */ 99 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */ 100 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */ 101 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */ 102 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */ 103 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */ 104 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */ 105 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */ 106 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */ 107 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */ 108 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */ 109 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */ 110 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */ 111 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */ 112 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */ 113 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */ 114 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */ 115 116 /* For SB_CTL_A and _B */ 117 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */ 118 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */ 119 #define SB_CTL_DEC 0x0000 /* Decrypt */ 120 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */ 121 #define SB_CTL_DC 0x0008 /* Destination coherent */ 122 #define SB_CTL_SC 0x0010 /* Source coherent */ 123 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */ 124 125 /* For SB_AES_INT */ 126 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */ 127 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */ 128 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */ 129 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */ 130 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */ 131 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */ 132 #define SB_AI_AES_A_COMPLETE 0x10000 /* AES A operation complete */ 133 #define SB_AI_AES_B_COMPLETE 0x20000 /* AES B operation complete */ 134 #define SB_AI_EEPROM_COMPLETE 0x40000 /* EEPROM operation complete */ 135 136 #define SB_AI_CLEAR_INTR \ 137 (SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\ 138 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\ 139 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE) 140 141 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */ 142 143 #define SB_MEM_SIZE 0x0810 /* Size of memory block */ 144 145 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */ 146 /* must be 16-byte aligned */ 147 #define SB_AES_BLOCK_SIZE 0x0010 148 149 /* 150 * The Geode LX security block AES acceleration doesn't perform scatter- 151 * gather: it just takes source and destination addresses. Therefore the 152 * plain- and ciphertexts need to be contiguous. To this end, we allocate 153 * a buffer for both, and accept the overhead of copying in and out. If 154 * the number of bytes in one operation is bigger than allowed for by the 155 * buffer (buffer is twice the size of the max length, as it has both input 156 * and output) then we have to perform multiple encryptions/decryptions. 157 */ 158 159 #define GLXSB_MAX_AES_LEN 16384 160 161 MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data"); 162 163 struct glxsb_dma_map { 164 bus_dmamap_t dma_map; /* DMA map */ 165 bus_dma_segment_t dma_seg; /* segments */ 166 int dma_nsegs; /* #segments */ 167 int dma_size; /* size */ 168 caddr_t dma_vaddr; /* virtual address */ 169 bus_addr_t dma_paddr; /* physical address */ 170 }; 171 172 struct glxsb_taskop { 173 struct glxsb_session *to_ses; /* crypto session */ 174 struct cryptop *to_crp; /* cryptop to perfom */ 175 struct cryptodesc *to_enccrd; /* enccrd to perform */ 176 struct cryptodesc *to_maccrd; /* maccrd to perform */ 177 }; 178 179 struct glxsb_softc { 180 device_t sc_dev; /* device backpointer */ 181 struct resource *sc_sr; /* resource */ 182 int sc_rid; /* resource rid */ 183 struct callout sc_rngco; /* RNG callout */ 184 int sc_rnghz; /* RNG callout ticks */ 185 bus_dma_tag_t sc_dmat; /* DMA tag */ 186 struct glxsb_dma_map sc_dma; /* DMA map */ 187 int32_t sc_cid; /* crypto tag */ 188 struct mtx sc_task_mtx; /* task mutex */ 189 struct taskqueue *sc_tq; /* task queue */ 190 struct task sc_cryptotask; /* task */ 191 struct glxsb_taskop sc_to; /* task's crypto operation */ 192 int sc_task_count; /* tasks count */ 193 }; 194 195 static int glxsb_probe(device_t); 196 static int glxsb_attach(device_t); 197 static int glxsb_detach(device_t); 198 199 static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int); 200 static int glxsb_dma_alloc(struct glxsb_softc *); 201 static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *); 202 static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *); 203 static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *); 204 205 static void glxsb_rnd(void *); 206 static int glxsb_crypto_setup(struct glxsb_softc *); 207 static int glxsb_crypto_newsession(device_t, crypto_session_t, struct cryptoini *); 208 static void glxsb_crypto_freesession(device_t, crypto_session_t); 209 static int glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t, 210 uint32_t, void *, int, void *); 211 212 static int glxsb_crypto_encdec(struct cryptop *, struct cryptodesc *, 213 struct glxsb_session *, struct glxsb_softc *); 214 215 static void glxsb_crypto_task(void *, int); 216 static int glxsb_crypto_process(device_t, struct cryptop *, int); 217 218 static device_method_t glxsb_methods[] = { 219 /* device interface */ 220 DEVMETHOD(device_probe, glxsb_probe), 221 DEVMETHOD(device_attach, glxsb_attach), 222 DEVMETHOD(device_detach, glxsb_detach), 223 224 /* crypto device methods */ 225 DEVMETHOD(cryptodev_newsession, glxsb_crypto_newsession), 226 DEVMETHOD(cryptodev_freesession, glxsb_crypto_freesession), 227 DEVMETHOD(cryptodev_process, glxsb_crypto_process), 228 229 {0,0} 230 }; 231 232 static driver_t glxsb_driver = { 233 "glxsb", 234 glxsb_methods, 235 sizeof(struct glxsb_softc) 236 }; 237 238 static devclass_t glxsb_devclass; 239 240 DRIVER_MODULE(glxsb, pci, glxsb_driver, glxsb_devclass, 0, 0); 241 MODULE_VERSION(glxsb, 1); 242 MODULE_DEPEND(glxsb, crypto, 1, 1, 1); 243 244 static int 245 glxsb_probe(device_t dev) 246 { 247 248 if (pci_get_vendor(dev) == PCI_VENDOR_AMD && 249 pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) { 250 device_set_desc(dev, 251 "AMD Geode LX Security Block (AES-128-CBC, RNG)"); 252 return (BUS_PROBE_DEFAULT); 253 } 254 255 return (ENXIO); 256 } 257 258 static int 259 glxsb_attach(device_t dev) 260 { 261 struct glxsb_softc *sc = device_get_softc(dev); 262 uint64_t msr; 263 264 sc->sc_dev = dev; 265 msr = rdmsr(SB_GLD_MSR_CAP); 266 267 if ((msr & 0xFFFF00) != 0x130400) { 268 device_printf(dev, "unknown ID 0x%x\n", 269 (int)((msr & 0xFFFF00) >> 16)); 270 return (ENXIO); 271 } 272 273 pci_enable_busmaster(dev); 274 275 /* Map in the security block configuration/control registers */ 276 sc->sc_rid = PCIR_BAR(0); 277 sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid, 278 RF_ACTIVE); 279 if (sc->sc_sr == NULL) { 280 device_printf(dev, "cannot map register space\n"); 281 return (ENXIO); 282 } 283 284 /* 285 * Configure the Security Block. 286 * 287 * We want to enable the noise generator (T_NE), and enable the 288 * linear feedback shift register and whitener post-processing 289 * (T_SEL = 3). Also ensure that test mode (deterministic values) 290 * is disabled. 291 */ 292 msr = rdmsr(SB_GLD_MSR_CTRL); 293 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK); 294 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3; 295 #if 0 296 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */ 297 #endif 298 wrmsr(SB_GLD_MSR_CTRL, msr); 299 300 /* Disable interrupts */ 301 bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR); 302 303 /* Allocate a contiguous DMA-able buffer to work in */ 304 if (glxsb_dma_alloc(sc) != 0) 305 goto fail0; 306 307 /* Initialize our task queue */ 308 sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO, 309 taskqueue_thread_enqueue, &sc->sc_tq); 310 if (sc->sc_tq == NULL) { 311 device_printf(dev, "cannot create task queue\n"); 312 goto fail0; 313 } 314 if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 315 device_get_nameunit(dev)) != 0) { 316 device_printf(dev, "cannot start task queue\n"); 317 goto fail1; 318 } 319 TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc); 320 321 /* Initialize crypto */ 322 if (glxsb_crypto_setup(sc) != 0) 323 goto fail1; 324 325 /* Install a periodic collector for the "true" (AMD's word) RNG */ 326 if (hz > 100) 327 sc->sc_rnghz = hz / 100; 328 else 329 sc->sc_rnghz = 1; 330 callout_init(&sc->sc_rngco, 1); 331 glxsb_rnd(sc); 332 333 return (0); 334 335 fail1: 336 taskqueue_free(sc->sc_tq); 337 fail0: 338 bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr); 339 return (ENXIO); 340 } 341 342 static int 343 glxsb_detach(device_t dev) 344 { 345 struct glxsb_softc *sc = device_get_softc(dev); 346 347 crypto_unregister_all(sc->sc_cid); 348 349 callout_drain(&sc->sc_rngco); 350 taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask); 351 bus_generic_detach(dev); 352 glxsb_dma_free(sc, &sc->sc_dma); 353 bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr); 354 taskqueue_free(sc->sc_tq); 355 mtx_destroy(&sc->sc_task_mtx); 356 return (0); 357 } 358 359 /* 360 * callback for bus_dmamap_load() 361 */ 362 static void 363 glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error) 364 { 365 366 bus_addr_t *paddr = (bus_addr_t*) arg; 367 *paddr = seg[0].ds_addr; 368 } 369 370 static int 371 glxsb_dma_alloc(struct glxsb_softc *sc) 372 { 373 struct glxsb_dma_map *dma = &sc->sc_dma; 374 int rc; 375 376 dma->dma_nsegs = 1; 377 dma->dma_size = GLXSB_MAX_AES_LEN * 2; 378 379 /* Setup DMA descriptor area */ 380 rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 381 SB_AES_ALIGN, 0, /* alignments, bounds */ 382 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 383 BUS_SPACE_MAXADDR, /* highaddr */ 384 NULL, NULL, /* filter, filterarg */ 385 dma->dma_size, /* maxsize */ 386 dma->dma_nsegs, /* nsegments */ 387 dma->dma_size, /* maxsegsize */ 388 BUS_DMA_ALLOCNOW, /* flags */ 389 NULL, NULL, /* lockfunc, lockarg */ 390 &sc->sc_dmat); 391 if (rc != 0) { 392 device_printf(sc->sc_dev, 393 "cannot allocate DMA tag (%d)\n", rc); 394 return (rc); 395 } 396 397 rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr, 398 BUS_DMA_NOWAIT, &dma->dma_map); 399 if (rc != 0) { 400 device_printf(sc->sc_dev, 401 "cannot allocate DMA memory of %d bytes (%d)\n", 402 dma->dma_size, rc); 403 goto fail0; 404 } 405 406 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, 407 dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT); 408 if (rc != 0) { 409 device_printf(sc->sc_dev, 410 "cannot load DMA memory for %d bytes (%d)\n", 411 dma->dma_size, rc); 412 goto fail1; 413 } 414 415 return (0); 416 417 fail1: 418 bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map); 419 fail0: 420 bus_dma_tag_destroy(sc->sc_dmat); 421 return (rc); 422 } 423 424 static void 425 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 426 { 427 428 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 429 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 430 } 431 432 static void 433 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 434 { 435 436 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 437 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 438 } 439 440 static void 441 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 442 { 443 444 bus_dmamap_unload(sc->sc_dmat, dma->dma_map); 445 bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map); 446 bus_dma_tag_destroy(sc->sc_dmat); 447 } 448 449 static void 450 glxsb_rnd(void *v) 451 { 452 struct glxsb_softc *sc = v; 453 uint32_t status, value; 454 455 status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS); 456 if (status & SB_RNS_TRNG_VALID) { 457 value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM); 458 /* feed with one uint32 */ 459 /* MarkM: FIX!! Check that this does not swamp the harvester! */ 460 random_harvest_queue(&value, sizeof(value), 32/2, RANDOM_PURE_GLXSB); 461 } 462 463 callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc); 464 } 465 466 static int 467 glxsb_crypto_setup(struct glxsb_softc *sc) 468 { 469 470 sc->sc_cid = crypto_get_driverid(sc->sc_dev, 471 sizeof(struct glxsb_session), CRYPTOCAP_F_HARDWARE); 472 473 if (sc->sc_cid < 0) { 474 device_printf(sc->sc_dev, "cannot get crypto driver id\n"); 475 return (ENOMEM); 476 } 477 478 mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF); 479 480 if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0) 481 goto crypto_fail; 482 if (crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0) != 0) 483 goto crypto_fail; 484 if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0) 485 goto crypto_fail; 486 if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0) 487 goto crypto_fail; 488 if (crypto_register(sc->sc_cid, CRYPTO_RIPEMD160_HMAC, 0, 0) != 0) 489 goto crypto_fail; 490 if (crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0) != 0) 491 goto crypto_fail; 492 if (crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0) != 0) 493 goto crypto_fail; 494 if (crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0) != 0) 495 goto crypto_fail; 496 497 return (0); 498 499 crypto_fail: 500 device_printf(sc->sc_dev, "cannot register crypto\n"); 501 crypto_unregister_all(sc->sc_cid); 502 mtx_destroy(&sc->sc_task_mtx); 503 return (ENOMEM); 504 } 505 506 static int 507 glxsb_crypto_newsession(device_t dev, crypto_session_t cses, 508 struct cryptoini *cri) 509 { 510 struct glxsb_softc *sc = device_get_softc(dev); 511 struct glxsb_session *ses; 512 struct cryptoini *encini, *macini; 513 int error; 514 515 if (sc == NULL || cri == NULL) 516 return (EINVAL); 517 518 encini = macini = NULL; 519 for (; cri != NULL; cri = cri->cri_next) { 520 switch(cri->cri_alg) { 521 case CRYPTO_NULL_HMAC: 522 case CRYPTO_MD5_HMAC: 523 case CRYPTO_SHA1_HMAC: 524 case CRYPTO_RIPEMD160_HMAC: 525 case CRYPTO_SHA2_256_HMAC: 526 case CRYPTO_SHA2_384_HMAC: 527 case CRYPTO_SHA2_512_HMAC: 528 if (macini != NULL) 529 return (EINVAL); 530 macini = cri; 531 break; 532 case CRYPTO_AES_CBC: 533 if (encini != NULL) 534 return (EINVAL); 535 encini = cri; 536 break; 537 default: 538 return (EINVAL); 539 } 540 } 541 542 /* 543 * We only support HMAC algorithms to be able to work with 544 * ipsec(4), so if we are asked only for authentication without 545 * encryption, don't pretend we can accellerate it. 546 */ 547 if (encini == NULL) 548 return (EINVAL); 549 550 ses = crypto_get_driver_session(cses); 551 if (encini->cri_alg == CRYPTO_AES_CBC) { 552 if (encini->cri_klen != 128) { 553 glxsb_crypto_freesession(sc->sc_dev, cses); 554 return (EINVAL); 555 } 556 arc4rand(ses->ses_iv, sizeof(ses->ses_iv), 0); 557 ses->ses_klen = encini->cri_klen; 558 559 /* Copy the key (Geode LX wants the primary key only) */ 560 bcopy(encini->cri_key, ses->ses_key, sizeof(ses->ses_key)); 561 } 562 563 if (macini != NULL) { 564 error = glxsb_hash_setup(ses, macini); 565 if (error != 0) { 566 glxsb_crypto_freesession(sc->sc_dev, cses); 567 return (error); 568 } 569 } 570 571 return (0); 572 } 573 574 static void 575 glxsb_crypto_freesession(device_t dev, crypto_session_t cses) 576 { 577 struct glxsb_softc *sc = device_get_softc(dev); 578 struct glxsb_session *ses; 579 580 if (sc == NULL) 581 return; 582 583 ses = crypto_get_driver_session(cses); 584 glxsb_hash_free(ses); 585 } 586 587 static int 588 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc, 589 uint32_t pdst, void *key, int len, void *iv) 590 { 591 uint32_t status; 592 int i; 593 594 if (len & 0xF) { 595 device_printf(sc->sc_dev, 596 "len must be a multiple of 16 (not %d)\n", len); 597 return (EINVAL); 598 } 599 600 /* Set the source */ 601 bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc); 602 603 /* Set the destination address */ 604 bus_write_4(sc->sc_sr, SB_DEST_A, pdst); 605 606 /* Set the data length */ 607 bus_write_4(sc->sc_sr, SB_LENGTH_A, len); 608 609 /* Set the IV */ 610 if (iv != NULL) { 611 bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4); 612 control |= SB_CTL_CBC; 613 } 614 615 /* Set the key */ 616 bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4); 617 618 /* Ask the security block to do it */ 619 bus_write_4(sc->sc_sr, SB_CTL_A, 620 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST); 621 622 /* 623 * Now wait until it is done. 624 * 625 * We do a busy wait. Obviously the number of iterations of 626 * the loop required to perform the AES operation depends upon 627 * the number of bytes to process. 628 * 629 * On a 500 MHz Geode LX we see 630 * 631 * length (bytes) typical max iterations 632 * 16 12 633 * 64 22 634 * 256 59 635 * 1024 212 636 * 8192 1,537 637 * 638 * Since we have a maximum size of operation defined in 639 * GLXSB_MAX_AES_LEN, we use this constant to decide how long 640 * to wait. Allow an order of magnitude longer than it should 641 * really take, just in case. 642 */ 643 644 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) { 645 status = bus_read_4(sc->sc_sr, SB_CTL_A); 646 if ((status & SB_CTL_ST) == 0) /* Done */ 647 return (0); 648 } 649 650 device_printf(sc->sc_dev, "operation failed to complete\n"); 651 return (EIO); 652 } 653 654 static int 655 glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd, 656 struct glxsb_session *ses, struct glxsb_softc *sc) 657 { 658 char *op_src, *op_dst; 659 uint32_t op_psrc, op_pdst; 660 uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv; 661 int error; 662 int len, tlen, xlen; 663 int offset; 664 uint32_t control; 665 666 if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) 667 return (EINVAL); 668 669 /* How much of our buffer will we need to use? */ 670 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ? 671 GLXSB_MAX_AES_LEN : crd->crd_len; 672 673 /* 674 * XXX Check if we can have input == output on Geode LX. 675 * XXX In the meantime, use two separate (adjacent) buffers. 676 */ 677 op_src = sc->sc_dma.dma_vaddr; 678 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen; 679 680 op_psrc = sc->sc_dma.dma_paddr; 681 op_pdst = sc->sc_dma.dma_paddr + xlen; 682 683 if (crd->crd_flags & CRD_F_ENCRYPT) { 684 control = SB_CTL_ENC; 685 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 686 bcopy(crd->crd_iv, op_iv, sizeof(op_iv)); 687 else 688 bcopy(ses->ses_iv, op_iv, sizeof(op_iv)); 689 690 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) { 691 crypto_copyback(crp->crp_flags, crp->crp_buf, 692 crd->crd_inject, sizeof(op_iv), op_iv); 693 } 694 } else { 695 control = SB_CTL_DEC; 696 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 697 bcopy(crd->crd_iv, op_iv, sizeof(op_iv)); 698 else { 699 crypto_copydata(crp->crp_flags, crp->crp_buf, 700 crd->crd_inject, sizeof(op_iv), op_iv); 701 } 702 } 703 704 offset = 0; 705 tlen = crd->crd_len; 706 piv = op_iv; 707 708 /* Process the data in GLXSB_MAX_AES_LEN chunks */ 709 while (tlen > 0) { 710 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen; 711 crypto_copydata(crp->crp_flags, crp->crp_buf, 712 crd->crd_skip + offset, len, op_src); 713 714 glxsb_dma_pre_op(sc, &sc->sc_dma); 715 716 error = glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key, 717 len, op_iv); 718 719 glxsb_dma_post_op(sc, &sc->sc_dma); 720 if (error != 0) 721 return (error); 722 723 crypto_copyback(crp->crp_flags, crp->crp_buf, 724 crd->crd_skip + offset, len, op_dst); 725 726 offset += len; 727 tlen -= len; 728 729 if (tlen <= 0) { /* Ideally, just == 0 */ 730 /* Finished - put the IV in session IV */ 731 piv = ses->ses_iv; 732 } 733 734 /* 735 * Copy out last block for use as next iteration/session IV. 736 * 737 * piv is set to op_iv[] before the loop starts, but is 738 * set to ses->ses_iv if we're going to exit the loop this 739 * time. 740 */ 741 if (crd->crd_flags & CRD_F_ENCRYPT) 742 bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv)); 743 else { 744 /* Decryption, only need this if another iteration */ 745 if (tlen > 0) { 746 bcopy(op_src + len - sizeof(op_iv), piv, 747 sizeof(op_iv)); 748 } 749 } 750 } /* while */ 751 752 /* All AES processing has now been done. */ 753 bzero(sc->sc_dma.dma_vaddr, xlen * 2); 754 755 return (0); 756 } 757 758 static void 759 glxsb_crypto_task(void *arg, int pending) 760 { 761 struct glxsb_softc *sc = arg; 762 struct glxsb_session *ses; 763 struct cryptop *crp; 764 struct cryptodesc *enccrd, *maccrd; 765 int error; 766 767 maccrd = sc->sc_to.to_maccrd; 768 enccrd = sc->sc_to.to_enccrd; 769 crp = sc->sc_to.to_crp; 770 ses = sc->sc_to.to_ses; 771 772 /* Perform data authentication if requested before encryption */ 773 if (maccrd != NULL && maccrd->crd_next == enccrd) { 774 error = glxsb_hash_process(ses, maccrd, crp); 775 if (error != 0) 776 goto out; 777 } 778 779 error = glxsb_crypto_encdec(crp, enccrd, ses, sc); 780 if (error != 0) 781 goto out; 782 783 /* Perform data authentication if requested after encryption */ 784 if (maccrd != NULL && enccrd->crd_next == maccrd) { 785 error = glxsb_hash_process(ses, maccrd, crp); 786 if (error != 0) 787 goto out; 788 } 789 out: 790 mtx_lock(&sc->sc_task_mtx); 791 sc->sc_task_count--; 792 mtx_unlock(&sc->sc_task_mtx); 793 794 crp->crp_etype = error; 795 crypto_unblock(sc->sc_cid, CRYPTO_SYMQ); 796 crypto_done(crp); 797 } 798 799 static int 800 glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint) 801 { 802 struct glxsb_softc *sc = device_get_softc(dev); 803 struct glxsb_session *ses; 804 struct cryptodesc *crd, *enccrd, *maccrd; 805 int error = 0; 806 807 enccrd = maccrd = NULL; 808 809 /* Sanity check. */ 810 if (crp == NULL) 811 return (EINVAL); 812 813 if (crp->crp_callback == NULL || crp->crp_desc == NULL) { 814 error = EINVAL; 815 goto fail; 816 } 817 818 for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) { 819 switch (crd->crd_alg) { 820 case CRYPTO_NULL_HMAC: 821 case CRYPTO_MD5_HMAC: 822 case CRYPTO_SHA1_HMAC: 823 case CRYPTO_RIPEMD160_HMAC: 824 case CRYPTO_SHA2_256_HMAC: 825 case CRYPTO_SHA2_384_HMAC: 826 case CRYPTO_SHA2_512_HMAC: 827 if (maccrd != NULL) { 828 error = EINVAL; 829 goto fail; 830 } 831 maccrd = crd; 832 break; 833 case CRYPTO_AES_CBC: 834 if (enccrd != NULL) { 835 error = EINVAL; 836 goto fail; 837 } 838 enccrd = crd; 839 break; 840 default: 841 error = EINVAL; 842 goto fail; 843 } 844 } 845 846 if (enccrd == NULL || enccrd->crd_len % AES_BLOCK_LEN != 0) { 847 error = EINVAL; 848 goto fail; 849 } 850 851 ses = crypto_get_driver_session(crp->crp_session); 852 853 mtx_lock(&sc->sc_task_mtx); 854 if (sc->sc_task_count != 0) { 855 mtx_unlock(&sc->sc_task_mtx); 856 return (ERESTART); 857 } 858 sc->sc_task_count++; 859 860 sc->sc_to.to_maccrd = maccrd; 861 sc->sc_to.to_enccrd = enccrd; 862 sc->sc_to.to_crp = crp; 863 sc->sc_to.to_ses = ses; 864 mtx_unlock(&sc->sc_task_mtx); 865 866 taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask); 867 return(0); 868 869 fail: 870 crp->crp_etype = error; 871 crypto_done(crp); 872 return (error); 873 } 874