xref: /freebsd/sys/dev/fxp/if_fxp.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
3  *
4  * Copyright (c) 1995, David Greenman
5  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
37  */
38 
39 #ifdef HAVE_KERNEL_OPTION_HEADERS
40 #include "opt_device_polling.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/module.h>
52 #include <sys/mutex.h>
53 #include <sys/rman.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 
74 #include <machine/bus.h>
75 #include <machine/in_cksum.h>
76 #include <machine/resource.h>
77 
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
80 
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83 
84 #include <dev/fxp/if_fxpreg.h>
85 #include <dev/fxp/if_fxpvar.h>
86 #include <dev/fxp/rcvbundl.h>
87 
88 MODULE_DEPEND(fxp, pci, 1, 1, 1);
89 MODULE_DEPEND(fxp, ether, 1, 1, 1);
90 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
91 #include "miibus_if.h"
92 
93 /*
94  * NOTE!  On !x86 we typically have an alignment constraint.  The
95  * card DMAs the packet immediately following the RFA.  However,
96  * the first thing in the packet is a 14-byte Ethernet header.
97  * This means that the packet is misaligned.  To compensate,
98  * we actually offset the RFA 2 bytes into the cluster.  This
99  * alignes the packet after the Ethernet header at a 32-bit
100  * boundary.  HOWEVER!  This means that the RFA is misaligned!
101  */
102 #define	RFA_ALIGNMENT_FUDGE	2
103 
104 /*
105  * Set initial transmit threshold at 64 (512 bytes). This is
106  * increased by 64 (512 bytes) at a time, to maximum of 192
107  * (1536 bytes), if an underrun occurs.
108  */
109 static int tx_threshold = 64;
110 
111 /*
112  * The configuration byte map has several undefined fields which
113  * must be one or must be zero.  Set up a template for these bits.
114  * The actual configuration is performed in fxp_init_body.
115  *
116  * See struct fxp_cb_config for the bit definitions.
117  */
118 static const u_char fxp_cb_config_template[] = {
119 	0x0, 0x0,		/* cb_status */
120 	0x0, 0x0,		/* cb_command */
121 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
122 	0x0,	/*  0 */
123 	0x0,	/*  1 */
124 	0x0,	/*  2 */
125 	0x0,	/*  3 */
126 	0x0,	/*  4 */
127 	0x0,	/*  5 */
128 	0x32,	/*  6 */
129 	0x0,	/*  7 */
130 	0x0,	/*  8 */
131 	0x0,	/*  9 */
132 	0x6,	/* 10 */
133 	0x0,	/* 11 */
134 	0x0,	/* 12 */
135 	0x0,	/* 13 */
136 	0xf2,	/* 14 */
137 	0x48,	/* 15 */
138 	0x0,	/* 16 */
139 	0x40,	/* 17 */
140 	0xf0,	/* 18 */
141 	0x0,	/* 19 */
142 	0x3f,	/* 20 */
143 	0x5,	/* 21 */
144 	0x0,	/* 22 */
145 	0x0,	/* 23 */
146 	0x0,	/* 24 */
147 	0x0,	/* 25 */
148 	0x0,	/* 26 */
149 	0x0,	/* 27 */
150 	0x0,	/* 28 */
151 	0x0,	/* 29 */
152 	0x0,	/* 30 */
153 	0x0	/* 31 */
154 };
155 
156 /*
157  * Claim various Intel PCI device identifiers for this driver.  The
158  * sub-vendor and sub-device field are extensively used to identify
159  * particular variants, but we don't currently differentiate between
160  * them.
161  */
162 static const struct fxp_ident fxp_ident_table[] = {
163     { 0x8086, 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
164     { 0x8086, 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
165     { 0x8086, 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
166     { 0x8086, 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
167     { 0x8086, 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168     { 0x8086, 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169     { 0x8086, 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170     { 0x8086, 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
171     { 0x8086, 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
172     { 0x8086, 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
173     { 0x8086, 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174     { 0x8086, 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175     { 0x8086, 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176     { 0x8086, 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
177     { 0x8086, 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
178     { 0x8086, 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
179     { 0x8086, 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
180     { 0x8086, 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
181     { 0x8086, 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
182     { 0x8086, 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
183     { 0x8086, 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
184     { 0x8086, 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
185     { 0x8086, 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
186     { 0x8086, 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
187     { 0x8086, 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
188     { 0x8086, 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
189     { 0x8086, 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
190     { 0x8086, 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
191     { 0x8086, 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
192     { 0x8086, 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
193     { 0x8086, 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
194     { 0x8086, 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
195     { 0x8086, 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
196     { 0x8086, 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
197     { 0x8086, 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
198     { 0x8086, 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
199     { 0x8086, 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
200     { 0x8086, 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
201     { 0x8086, 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
202     { 0x8086, 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
203     { 0x8086, 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
204     { 0x8086, 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
205     { 0x8086, 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
206     { 0x8086, 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
207     { 0x8086, 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
208     { 0,      0,	-1,	0, NULL },
209 };
210 
211 #ifdef FXP_IP_CSUM_WAR
212 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
213 #else
214 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
215 #endif
216 
217 static int		fxp_probe(device_t dev);
218 static int		fxp_attach(device_t dev);
219 static int		fxp_detach(device_t dev);
220 static int		fxp_shutdown(device_t dev);
221 static int		fxp_suspend(device_t dev);
222 static int		fxp_resume(device_t dev);
223 
224 static const struct fxp_ident *fxp_find_ident(device_t dev);
225 static void		fxp_intr(void *xsc);
226 static void		fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
227 			    struct mbuf *m, uint16_t status, int pos);
228 static int		fxp_intr_body(struct fxp_softc *sc, if_t ifp,
229 			    uint8_t statack, int count);
230 static void 		fxp_init(void *xsc);
231 static void 		fxp_init_body(struct fxp_softc *sc, int);
232 static void 		fxp_tick(void *xsc);
233 static void 		fxp_start(if_t ifp);
234 static void 		fxp_start_body(if_t ifp);
235 static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
236 static void		fxp_txeof(struct fxp_softc *sc);
237 static void		fxp_stop(struct fxp_softc *sc);
238 static void 		fxp_release(struct fxp_softc *sc);
239 static int		fxp_ioctl(if_t ifp, u_long command,
240 			    caddr_t data);
241 static void 		fxp_watchdog(struct fxp_softc *sc);
242 static void		fxp_add_rfabuf(struct fxp_softc *sc,
243 			    struct fxp_rx *rxp);
244 static void		fxp_discard_rfabuf(struct fxp_softc *sc,
245 			    struct fxp_rx *rxp);
246 static int		fxp_new_rfabuf(struct fxp_softc *sc,
247 			    struct fxp_rx *rxp);
248 static void		fxp_mc_addrs(struct fxp_softc *sc);
249 static void		fxp_mc_setup(struct fxp_softc *sc);
250 static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
251 			    int autosize);
252 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
253 			    uint16_t data);
254 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
255 static void		fxp_load_eeprom(struct fxp_softc *sc);
256 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
257 			    int offset, int words);
258 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
259 			    int offset, int words);
260 static int		fxp_ifmedia_upd(if_t ifp);
261 static void		fxp_ifmedia_sts(if_t ifp,
262 			    struct ifmediareq *ifmr);
263 static int		fxp_serial_ifmedia_upd(if_t ifp);
264 static void		fxp_serial_ifmedia_sts(if_t ifp,
265 			    struct ifmediareq *ifmr);
266 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
267 static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
268 			    int value);
269 static void		fxp_miibus_statchg(device_t dev);
270 static void		fxp_load_ucode(struct fxp_softc *sc);
271 static void		fxp_update_stats(struct fxp_softc *sc);
272 static void		fxp_sysctl_node(struct fxp_softc *sc);
273 static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
274 			    int low, int high);
275 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
276 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
277 static void 		fxp_scb_wait(struct fxp_softc *sc);
278 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
279 static void		fxp_dma_wait(struct fxp_softc *sc,
280 			    volatile uint16_t *status, bus_dma_tag_t dmat,
281 			    bus_dmamap_t map);
282 
283 static device_method_t fxp_methods[] = {
284 	/* Device interface */
285 	DEVMETHOD(device_probe,		fxp_probe),
286 	DEVMETHOD(device_attach,	fxp_attach),
287 	DEVMETHOD(device_detach,	fxp_detach),
288 	DEVMETHOD(device_shutdown,	fxp_shutdown),
289 	DEVMETHOD(device_suspend,	fxp_suspend),
290 	DEVMETHOD(device_resume,	fxp_resume),
291 
292 	/* MII interface */
293 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
294 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
295 	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
296 
297 	DEVMETHOD_END
298 };
299 
300 static driver_t fxp_driver = {
301 	"fxp",
302 	fxp_methods,
303 	sizeof(struct fxp_softc),
304 };
305 
306 static devclass_t fxp_devclass;
307 
308 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
309     SI_ORDER_ANY);
310 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
311     nitems(fxp_ident_table) - 1);
312 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
313 
314 static struct resource_spec fxp_res_spec_mem[] = {
315 	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
316 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
317 	{ -1, 0 }
318 };
319 
320 static struct resource_spec fxp_res_spec_io[] = {
321 	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
322 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
323 	{ -1, 0 }
324 };
325 
326 /*
327  * Wait for the previous command to be accepted (but not necessarily
328  * completed).
329  */
330 static void
331 fxp_scb_wait(struct fxp_softc *sc)
332 {
333 	union {
334 		uint16_t w;
335 		uint8_t b[2];
336 	} flowctl;
337 	int i = 10000;
338 
339 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
340 		DELAY(2);
341 	if (i == 0) {
342 		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
343 		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
344 		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
345 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
346 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
347 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
348 	}
349 }
350 
351 static void
352 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
353 {
354 
355 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
356 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
357 		fxp_scb_wait(sc);
358 	}
359 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
360 }
361 
362 static void
363 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
364     bus_dma_tag_t dmat, bus_dmamap_t map)
365 {
366 	int i;
367 
368 	for (i = 10000; i > 0; i--) {
369 		DELAY(2);
370 		bus_dmamap_sync(dmat, map,
371 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
372 		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
373 			break;
374 	}
375 	if (i == 0)
376 		device_printf(sc->dev, "DMA timeout\n");
377 }
378 
379 static const struct fxp_ident *
380 fxp_find_ident(device_t dev)
381 {
382 	uint16_t vendor;
383 	uint16_t device;
384 	uint8_t revid;
385 	const struct fxp_ident *ident;
386 
387 	vendor = pci_get_vendor(dev);
388 	device = pci_get_device(dev);
389 	revid = pci_get_revid(dev);
390 	for (ident = fxp_ident_table; ident->name != NULL; ident++) {
391 		if (ident->vendor == vendor && ident->device == device &&
392 		    (ident->revid == revid || ident->revid == -1)) {
393 			return (ident);
394 		}
395 	}
396 	return (NULL);
397 }
398 
399 /*
400  * Return identification string if this device is ours.
401  */
402 static int
403 fxp_probe(device_t dev)
404 {
405 	const struct fxp_ident *ident;
406 
407 	ident = fxp_find_ident(dev);
408 	if (ident != NULL) {
409 		device_set_desc(dev, ident->name);
410 		return (BUS_PROBE_DEFAULT);
411 	}
412 	return (ENXIO);
413 }
414 
415 static void
416 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
417 {
418 	uint32_t *addr;
419 
420 	if (error)
421 		return;
422 
423 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
424 	addr = arg;
425 	*addr = segs->ds_addr;
426 }
427 
428 static int
429 fxp_attach(device_t dev)
430 {
431 	struct fxp_softc *sc;
432 	struct fxp_cb_tx *tcbp;
433 	struct fxp_tx *txp;
434 	struct fxp_rx *rxp;
435 	if_t ifp;
436 	uint32_t val;
437 	uint16_t data;
438 	u_char eaddr[ETHER_ADDR_LEN];
439 	int error, flags, i, pmc, prefer_iomap;
440 
441 	error = 0;
442 	sc = device_get_softc(dev);
443 	sc->dev = dev;
444 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
445 	    MTX_DEF);
446 	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
447 	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
448 	    fxp_serial_ifmedia_sts);
449 
450 	ifp = sc->ifp = if_gethandle(IFT_ETHER);
451 	if (ifp == (void *)NULL) {
452 		device_printf(dev, "can not if_alloc()\n");
453 		error = ENOSPC;
454 		goto fail;
455 	}
456 
457 	/*
458 	 * Enable bus mastering.
459 	 */
460 	pci_enable_busmaster(dev);
461 
462 	/*
463 	 * Figure out which we should try first - memory mapping or i/o mapping?
464 	 * We default to memory mapping. Then we accept an override from the
465 	 * command line. Then we check to see which one is enabled.
466 	 */
467 	prefer_iomap = 0;
468 	resource_int_value(device_get_name(dev), device_get_unit(dev),
469 	    "prefer_iomap", &prefer_iomap);
470 	if (prefer_iomap)
471 		sc->fxp_spec = fxp_res_spec_io;
472 	else
473 		sc->fxp_spec = fxp_res_spec_mem;
474 
475 	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
476 	if (error) {
477 		if (sc->fxp_spec == fxp_res_spec_mem)
478 			sc->fxp_spec = fxp_res_spec_io;
479 		else
480 			sc->fxp_spec = fxp_res_spec_mem;
481 		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
482 	}
483 	if (error) {
484 		device_printf(dev, "could not allocate resources\n");
485 		error = ENXIO;
486 		goto fail;
487 	}
488 
489 	if (bootverbose) {
490 		device_printf(dev, "using %s space register mapping\n",
491 		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
492 	}
493 
494 	/*
495 	 * Put CU/RU idle state and prepare full reset.
496 	 */
497 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
498 	DELAY(10);
499 	/* Full reset and disable interrupts. */
500 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
501 	DELAY(10);
502 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
503 
504 	/*
505 	 * Find out how large of an SEEPROM we have.
506 	 */
507 	fxp_autosize_eeprom(sc);
508 	fxp_load_eeprom(sc);
509 
510 	/*
511 	 * Find out the chip revision; lump all 82557 revs together.
512 	 */
513 	sc->ident = fxp_find_ident(dev);
514 	if (sc->ident->ich > 0) {
515 		/* Assume ICH controllers are 82559. */
516 		sc->revision = FXP_REV_82559_A0;
517 	} else {
518 		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
519 		if ((data >> 8) == 1)
520 			sc->revision = FXP_REV_82557;
521 		else
522 			sc->revision = pci_get_revid(dev);
523 	}
524 
525 	/*
526 	 * Check availability of WOL. 82559ER does not support WOL.
527 	 */
528 	if (sc->revision >= FXP_REV_82558_A4 &&
529 	    sc->revision != FXP_REV_82559S_A) {
530 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
531 		if ((data & 0x20) != 0 &&
532 		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
533 			sc->flags |= FXP_FLAG_WOLCAP;
534 	}
535 
536 	if (sc->revision == FXP_REV_82550_C) {
537 		/*
538 		 * 82550C with server extension requires microcode to
539 		 * receive fragmented UDP datagrams.  However if the
540 		 * microcode is used for client-only featured 82550C
541 		 * it locks up controller.
542 		 */
543 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
544 		if ((data & 0x0400) == 0)
545 			sc->flags |= FXP_FLAG_NO_UCODE;
546 	}
547 
548 	/* Receiver lock-up workaround detection. */
549 	if (sc->revision < FXP_REV_82558_A4) {
550 		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
551 		if ((data & 0x03) != 0x03) {
552 			sc->flags |= FXP_FLAG_RXBUG;
553 			device_printf(dev, "Enabling Rx lock-up workaround\n");
554 		}
555 	}
556 
557 	/*
558 	 * Determine whether we must use the 503 serial interface.
559 	 */
560 	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
561 	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
562 	    && (data & FXP_PHY_SERIAL_ONLY))
563 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
564 
565 	fxp_sysctl_node(sc);
566 	/*
567 	 * Enable workarounds for certain chip revision deficiencies.
568 	 *
569 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
570 	 * some systems based a normal 82559 design, have a defect where
571 	 * the chip can cause a PCI protocol violation if it receives
572 	 * a CU_RESUME command when it is entering the IDLE state.  The
573 	 * workaround is to disable Dynamic Standby Mode, so the chip never
574 	 * deasserts CLKRUN#, and always remains in an active state.
575 	 *
576 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
577 	 */
578 	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
579 	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
580 		data = sc->eeprom[FXP_EEPROM_MAP_ID];
581 		if (data & 0x02) {			/* STB enable */
582 			uint16_t cksum;
583 			int i;
584 
585 			device_printf(dev,
586 			    "Disabling dynamic standby mode in EEPROM\n");
587 			data &= ~0x02;
588 			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
589 			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
590 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
591 			cksum = 0;
592 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
593 				cksum += sc->eeprom[i];
594 			i = (1 << sc->eeprom_size) - 1;
595 			cksum = 0xBABA - cksum;
596 			fxp_write_eeprom(sc, &cksum, i, 1);
597 			device_printf(dev,
598 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
599 			    i, sc->eeprom[i], cksum);
600 			sc->eeprom[i] = cksum;
601 			/*
602 			 * If the user elects to continue, try the software
603 			 * workaround, as it is better than nothing.
604 			 */
605 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
606 		}
607 	}
608 
609 	/*
610 	 * If we are not a 82557 chip, we can enable extended features.
611 	 */
612 	if (sc->revision != FXP_REV_82557) {
613 		/*
614 		 * If MWI is enabled in the PCI configuration, and there
615 		 * is a valid cacheline size (8 or 16 dwords), then tell
616 		 * the board to turn on MWI.
617 		 */
618 		val = pci_read_config(dev, PCIR_COMMAND, 2);
619 		if (val & PCIM_CMD_MWRICEN &&
620 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
621 			sc->flags |= FXP_FLAG_MWI_ENABLE;
622 
623 		/* turn on the extended TxCB feature */
624 		sc->flags |= FXP_FLAG_EXT_TXCB;
625 
626 		/* enable reception of long frames for VLAN */
627 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
628 	} else {
629 		/* a hack to get long VLAN frames on a 82557 */
630 		sc->flags |= FXP_FLAG_SAVE_BAD;
631 	}
632 
633 	/* For 82559 or later chips, Rx checksum offload is supported. */
634 	if (sc->revision >= FXP_REV_82559_A0) {
635 		/* 82559ER does not support Rx checksum offloading. */
636 		if (sc->ident->device != 0x1209)
637 			sc->flags |= FXP_FLAG_82559_RXCSUM;
638 	}
639 	/*
640 	 * Enable use of extended RFDs and TCBs for 82550
641 	 * and later chips. Note: we need extended TXCB support
642 	 * too, but that's already enabled by the code above.
643 	 * Be careful to do this only on the right devices.
644 	 */
645 	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
646 	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
647 	    || sc->revision == FXP_REV_82551_10) {
648 		sc->rfa_size = sizeof (struct fxp_rfa);
649 		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
650 		sc->flags |= FXP_FLAG_EXT_RFA;
651 		/* Use extended RFA instead of 82559 checksum mode. */
652 		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
653 	} else {
654 		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
655 		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
656 	}
657 
658 	/*
659 	 * Allocate DMA tags and DMA safe memory.
660 	 */
661 	sc->maxtxseg = FXP_NTXSEG;
662 	sc->maxsegsize = MCLBYTES;
663 	if (sc->flags & FXP_FLAG_EXT_RFA) {
664 		sc->maxtxseg--;
665 		sc->maxsegsize = FXP_TSO_SEGSIZE;
666 	}
667 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
668 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
669 	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
670 	    sc->maxtxseg, sc->maxsegsize, 0,
671 	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
672 	if (error) {
673 		device_printf(dev, "could not create TX DMA tag\n");
674 		goto fail;
675 	}
676 
677 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
678 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
679 	    MCLBYTES, 1, MCLBYTES, 0,
680 	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
681 	if (error) {
682 		device_printf(dev, "could not create RX DMA tag\n");
683 		goto fail;
684 	}
685 
686 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
687 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
688 	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
689 	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
690 	if (error) {
691 		device_printf(dev, "could not create stats DMA tag\n");
692 		goto fail;
693 	}
694 
695 	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
696 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
697 	if (error) {
698 		device_printf(dev, "could not allocate stats DMA memory\n");
699 		goto fail;
700 	}
701 	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
702 	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
703 	    BUS_DMA_NOWAIT);
704 	if (error) {
705 		device_printf(dev, "could not load the stats DMA buffer\n");
706 		goto fail;
707 	}
708 
709 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
710 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
711 	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
712 	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
713 	if (error) {
714 		device_printf(dev, "could not create TxCB DMA tag\n");
715 		goto fail;
716 	}
717 
718 	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
719 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
720 	if (error) {
721 		device_printf(dev, "could not allocate TxCB DMA memory\n");
722 		goto fail;
723 	}
724 
725 	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
726 	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
727 	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
728 	if (error) {
729 		device_printf(dev, "could not load TxCB DMA buffer\n");
730 		goto fail;
731 	}
732 
733 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
734 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
735 	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
736 	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
737 	if (error) {
738 		device_printf(dev,
739 		    "could not create multicast setup DMA tag\n");
740 		goto fail;
741 	}
742 
743 	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
744 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
745 	if (error) {
746 		device_printf(dev,
747 		    "could not allocate multicast setup DMA memory\n");
748 		goto fail;
749 	}
750 	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
751 	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
752 	    BUS_DMA_NOWAIT);
753 	if (error) {
754 		device_printf(dev,
755 		    "can't load the multicast setup DMA buffer\n");
756 		goto fail;
757 	}
758 
759 	/*
760 	 * Pre-allocate the TX DMA maps and setup the pointers to
761 	 * the TX command blocks.
762 	 */
763 	txp = sc->fxp_desc.tx_list;
764 	tcbp = sc->fxp_desc.cbl_list;
765 	for (i = 0; i < FXP_NTXCB; i++) {
766 		txp[i].tx_cb = tcbp + i;
767 		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
768 		if (error) {
769 			device_printf(dev, "can't create DMA map for TX\n");
770 			goto fail;
771 		}
772 	}
773 	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
774 	if (error) {
775 		device_printf(dev, "can't create spare DMA map\n");
776 		goto fail;
777 	}
778 
779 	/*
780 	 * Pre-allocate our receive buffers.
781 	 */
782 	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
783 	for (i = 0; i < FXP_NRFABUFS; i++) {
784 		rxp = &sc->fxp_desc.rx_list[i];
785 		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
786 		if (error) {
787 			device_printf(dev, "can't create DMA map for RX\n");
788 			goto fail;
789 		}
790 		if (fxp_new_rfabuf(sc, rxp) != 0) {
791 			error = ENOMEM;
792 			goto fail;
793 		}
794 		fxp_add_rfabuf(sc, rxp);
795 	}
796 
797 	/*
798 	 * Read MAC address.
799 	 */
800 	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
801 	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
802 	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
803 	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
804 	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
805 	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
806 	if (bootverbose) {
807 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
808 		    pci_get_vendor(dev), pci_get_device(dev),
809 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
810 		    pci_get_revid(dev));
811 		device_printf(dev, "Dynamic Standby mode is %s\n",
812 		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
813 		    "disabled");
814 	}
815 
816 	/*
817 	 * If this is only a 10Mbps device, then there is no MII, and
818 	 * the PHY will use a serial interface instead.
819 	 *
820 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
821 	 * doesn't have a programming interface of any sort.  The
822 	 * media is sensed automatically based on how the link partner
823 	 * is configured.  This is, in essence, manual configuration.
824 	 */
825 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
826 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
827 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
828 	} else {
829 		/*
830 		 * i82557 wedge when isolating all of their PHYs.
831 		 */
832 		flags = MIIF_NOISOLATE;
833 		if (sc->revision >= FXP_REV_82558_A4)
834 			flags |= MIIF_DOPAUSE;
835 		error = mii_attach(dev, &sc->miibus, ifp,
836 		    (ifm_change_cb_t)fxp_ifmedia_upd,
837 		    (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
838 		    MII_PHY_ANY, MII_OFFSET_ANY, flags);
839 		if (error != 0) {
840 			device_printf(dev, "attaching PHYs failed\n");
841 			goto fail;
842 		}
843 	}
844 
845 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
846 	if_setdev(ifp, dev);
847 	if_setinitfn(ifp, fxp_init);
848 	if_setsoftc(ifp, sc);
849 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
850 	if_setioctlfn(ifp, fxp_ioctl);
851 	if_setstartfn(ifp, fxp_start);
852 
853 	if_setcapabilities(ifp, 0);
854 	if_setcapenable(ifp, 0);
855 
856 	/* Enable checksum offload/TSO for 82550 or better chips */
857 	if (sc->flags & FXP_FLAG_EXT_RFA) {
858 		if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
859 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
860 		if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
861 	}
862 
863 	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
864 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
865 		if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
866 	}
867 
868 	if (sc->flags & FXP_FLAG_WOLCAP) {
869 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
870 		if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
871 	}
872 
873 #ifdef DEVICE_POLLING
874 	/* Inform the world we support polling. */
875 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
876 #endif
877 
878 	/*
879 	 * Attach the interface.
880 	 */
881 	ether_ifattach(ifp, eaddr);
882 
883 	/*
884 	 * Tell the upper layer(s) we support long frames.
885 	 * Must appear after the call to ether_ifattach() because
886 	 * ether_ifattach() sets ifi_hdrlen to the default value.
887 	 */
888 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
889 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
890 	if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
891 	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
892 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
893 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
894 		if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
895 		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
896 	}
897 
898 	/*
899 	 * Let the system queue as many packets as we have available
900 	 * TX descriptors.
901 	 */
902 	if_setsendqlen(ifp, FXP_NTXCB - 1);
903 	if_setsendqready(ifp);
904 
905 	/*
906 	 * Hook our interrupt after all initialization is complete.
907 	 */
908 	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
909 			       NULL, fxp_intr, sc, &sc->ih);
910 	if (error) {
911 		device_printf(dev, "could not setup irq\n");
912 		ether_ifdetach(sc->ifp);
913 		goto fail;
914 	}
915 
916 	/*
917 	 * Configure hardware to reject magic frames otherwise
918 	 * system will hang on recipt of magic frames.
919 	 */
920 	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
921 		FXP_LOCK(sc);
922 		/* Clear wakeup events. */
923 		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
924 		fxp_init_body(sc, 0);
925 		fxp_stop(sc);
926 		FXP_UNLOCK(sc);
927 	}
928 
929 fail:
930 	if (error)
931 		fxp_release(sc);
932 	return (error);
933 }
934 
935 /*
936  * Release all resources.  The softc lock should not be held and the
937  * interrupt should already be torn down.
938  */
939 static void
940 fxp_release(struct fxp_softc *sc)
941 {
942 	struct fxp_rx *rxp;
943 	struct fxp_tx *txp;
944 	int i;
945 
946 	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
947 	KASSERT(sc->ih == NULL,
948 	    ("fxp_release() called with intr handle still active"));
949 	if (sc->miibus)
950 		device_delete_child(sc->dev, sc->miibus);
951 	bus_generic_detach(sc->dev);
952 	ifmedia_removeall(&sc->sc_media);
953 	if (sc->fxp_desc.cbl_list) {
954 		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
955 		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
956 		    sc->cbl_map);
957 	}
958 	if (sc->fxp_stats) {
959 		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
960 		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
961 	}
962 	if (sc->mcsp) {
963 		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
964 		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
965 	}
966 	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
967 	if (sc->fxp_rxmtag) {
968 		for (i = 0; i < FXP_NRFABUFS; i++) {
969 			rxp = &sc->fxp_desc.rx_list[i];
970 			if (rxp->rx_mbuf != NULL) {
971 				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
972 				    BUS_DMASYNC_POSTREAD);
973 				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
974 				m_freem(rxp->rx_mbuf);
975 			}
976 			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
977 		}
978 		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
979 		bus_dma_tag_destroy(sc->fxp_rxmtag);
980 	}
981 	if (sc->fxp_txmtag) {
982 		for (i = 0; i < FXP_NTXCB; i++) {
983 			txp = &sc->fxp_desc.tx_list[i];
984 			if (txp->tx_mbuf != NULL) {
985 				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
986 				    BUS_DMASYNC_POSTWRITE);
987 				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
988 				m_freem(txp->tx_mbuf);
989 			}
990 			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
991 		}
992 		bus_dma_tag_destroy(sc->fxp_txmtag);
993 	}
994 	if (sc->fxp_stag)
995 		bus_dma_tag_destroy(sc->fxp_stag);
996 	if (sc->cbl_tag)
997 		bus_dma_tag_destroy(sc->cbl_tag);
998 	if (sc->mcs_tag)
999 		bus_dma_tag_destroy(sc->mcs_tag);
1000 	if (sc->ifp)
1001 		if_free(sc->ifp);
1002 
1003 	mtx_destroy(&sc->sc_mtx);
1004 }
1005 
1006 /*
1007  * Detach interface.
1008  */
1009 static int
1010 fxp_detach(device_t dev)
1011 {
1012 	struct fxp_softc *sc = device_get_softc(dev);
1013 
1014 #ifdef DEVICE_POLLING
1015 	if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1016 		ether_poll_deregister(sc->ifp);
1017 #endif
1018 
1019 	FXP_LOCK(sc);
1020 	/*
1021 	 * Stop DMA and drop transmit queue, but disable interrupts first.
1022 	 */
1023 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1024 	fxp_stop(sc);
1025 	FXP_UNLOCK(sc);
1026 	callout_drain(&sc->stat_ch);
1027 
1028 	/*
1029 	 * Close down routes etc.
1030 	 */
1031 	ether_ifdetach(sc->ifp);
1032 
1033 	/*
1034 	 * Unhook interrupt before dropping lock. This is to prevent
1035 	 * races with fxp_intr().
1036 	 */
1037 	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1038 	sc->ih = NULL;
1039 
1040 	/* Release our allocated resources. */
1041 	fxp_release(sc);
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Device shutdown routine. Called at system shutdown after sync. The
1047  * main purpose of this routine is to shut off receiver DMA so that
1048  * kernel memory doesn't get clobbered during warmboot.
1049  */
1050 static int
1051 fxp_shutdown(device_t dev)
1052 {
1053 
1054 	/*
1055 	 * Make sure that DMA is disabled prior to reboot. Not doing
1056 	 * do could allow DMA to corrupt kernel memory during the
1057 	 * reboot before the driver initializes.
1058 	 */
1059 	return (fxp_suspend(dev));
1060 }
1061 
1062 /*
1063  * Device suspend routine.  Stop the interface and save some PCI
1064  * settings in case the BIOS doesn't restore them properly on
1065  * resume.
1066  */
1067 static int
1068 fxp_suspend(device_t dev)
1069 {
1070 	struct fxp_softc *sc = device_get_softc(dev);
1071 	if_t ifp;
1072 	int pmc;
1073 	uint16_t pmstat;
1074 
1075 	FXP_LOCK(sc);
1076 
1077 	ifp = sc->ifp;
1078 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1079 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1080 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1081 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1082 			/* Request PME. */
1083 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1084 			sc->flags |= FXP_FLAG_WOL;
1085 			/* Reconfigure hardware to accept magic frames. */
1086 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1087 			fxp_init_body(sc, 0);
1088 		}
1089 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1090 	}
1091 	fxp_stop(sc);
1092 
1093 	sc->suspended = 1;
1094 
1095 	FXP_UNLOCK(sc);
1096 	return (0);
1097 }
1098 
1099 /*
1100  * Device resume routine. re-enable busmastering, and restart the interface if
1101  * appropriate.
1102  */
1103 static int
1104 fxp_resume(device_t dev)
1105 {
1106 	struct fxp_softc *sc = device_get_softc(dev);
1107 	if_t ifp = sc->ifp;
1108 	int pmc;
1109 	uint16_t pmstat;
1110 
1111 	FXP_LOCK(sc);
1112 
1113 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1114 		sc->flags &= ~FXP_FLAG_WOL;
1115 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1116 		/* Disable PME and clear PME status. */
1117 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1118 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1119 		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1120 			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1121 			    CSR_READ_1(sc, FXP_CSR_PMDR));
1122 	}
1123 
1124 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1125 	DELAY(10);
1126 
1127 	/* reinitialize interface if necessary */
1128 	if (if_getflags(ifp) & IFF_UP)
1129 		fxp_init_body(sc, 1);
1130 
1131 	sc->suspended = 0;
1132 
1133 	FXP_UNLOCK(sc);
1134 	return (0);
1135 }
1136 
1137 static void
1138 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1139 {
1140 	uint16_t reg;
1141 	int x;
1142 
1143 	/*
1144 	 * Shift in data.
1145 	 */
1146 	for (x = 1 << (length - 1); x; x >>= 1) {
1147 		if (data & x)
1148 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1149 		else
1150 			reg = FXP_EEPROM_EECS;
1151 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1152 		DELAY(1);
1153 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1154 		DELAY(1);
1155 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1156 		DELAY(1);
1157 	}
1158 }
1159 
1160 /*
1161  * Read from the serial EEPROM. Basically, you manually shift in
1162  * the read opcode (one bit at a time) and then shift in the address,
1163  * and then you shift out the data (all of this one bit at a time).
1164  * The word size is 16 bits, so you have to provide the address for
1165  * every 16 bits of data.
1166  */
1167 static uint16_t
1168 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1169 {
1170 	uint16_t reg, data;
1171 	int x;
1172 
1173 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1174 	/*
1175 	 * Shift in read opcode.
1176 	 */
1177 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1178 	/*
1179 	 * Shift in address.
1180 	 */
1181 	data = 0;
1182 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1183 		if (offset & x)
1184 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1185 		else
1186 			reg = FXP_EEPROM_EECS;
1187 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1188 		DELAY(1);
1189 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1190 		DELAY(1);
1191 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1192 		DELAY(1);
1193 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1194 		data++;
1195 		if (autosize && reg == 0) {
1196 			sc->eeprom_size = data;
1197 			break;
1198 		}
1199 	}
1200 	/*
1201 	 * Shift out data.
1202 	 */
1203 	data = 0;
1204 	reg = FXP_EEPROM_EECS;
1205 	for (x = 1 << 15; x; x >>= 1) {
1206 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1207 		DELAY(1);
1208 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1209 			data |= x;
1210 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1211 		DELAY(1);
1212 	}
1213 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1214 	DELAY(1);
1215 
1216 	return (data);
1217 }
1218 
1219 static void
1220 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1221 {
1222 	int i;
1223 
1224 	/*
1225 	 * Erase/write enable.
1226 	 */
1227 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1228 	fxp_eeprom_shiftin(sc, 0x4, 3);
1229 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1230 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1231 	DELAY(1);
1232 	/*
1233 	 * Shift in write opcode, address, data.
1234 	 */
1235 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1236 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1237 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1238 	fxp_eeprom_shiftin(sc, data, 16);
1239 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1240 	DELAY(1);
1241 	/*
1242 	 * Wait for EEPROM to finish up.
1243 	 */
1244 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1245 	DELAY(1);
1246 	for (i = 0; i < 1000; i++) {
1247 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1248 			break;
1249 		DELAY(50);
1250 	}
1251 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1252 	DELAY(1);
1253 	/*
1254 	 * Erase/write disable.
1255 	 */
1256 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1257 	fxp_eeprom_shiftin(sc, 0x4, 3);
1258 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1259 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1260 	DELAY(1);
1261 }
1262 
1263 /*
1264  * From NetBSD:
1265  *
1266  * Figure out EEPROM size.
1267  *
1268  * 559's can have either 64-word or 256-word EEPROMs, the 558
1269  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1270  * talks about the existence of 16 to 256 word EEPROMs.
1271  *
1272  * The only known sizes are 64 and 256, where the 256 version is used
1273  * by CardBus cards to store CIS information.
1274  *
1275  * The address is shifted in msb-to-lsb, and after the last
1276  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1277  * after which follows the actual data. We try to detect this zero, by
1278  * probing the data-out bit in the EEPROM control register just after
1279  * having shifted in a bit. If the bit is zero, we assume we've
1280  * shifted enough address bits. The data-out should be tri-state,
1281  * before this, which should translate to a logical one.
1282  */
1283 static void
1284 fxp_autosize_eeprom(struct fxp_softc *sc)
1285 {
1286 
1287 	/* guess maximum size of 256 words */
1288 	sc->eeprom_size = 8;
1289 
1290 	/* autosize */
1291 	(void) fxp_eeprom_getword(sc, 0, 1);
1292 }
1293 
1294 static void
1295 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1296 {
1297 	int i;
1298 
1299 	for (i = 0; i < words; i++)
1300 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1301 }
1302 
1303 static void
1304 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1305 {
1306 	int i;
1307 
1308 	for (i = 0; i < words; i++)
1309 		fxp_eeprom_putword(sc, offset + i, data[i]);
1310 }
1311 
1312 static void
1313 fxp_load_eeprom(struct fxp_softc *sc)
1314 {
1315 	int i;
1316 	uint16_t cksum;
1317 
1318 	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1319 	cksum = 0;
1320 	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1321 		cksum += sc->eeprom[i];
1322 	cksum = 0xBABA - cksum;
1323 	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1324 		device_printf(sc->dev,
1325 		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1326 		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1327 }
1328 
1329 /*
1330  * Grab the softc lock and call the real fxp_start_body() routine
1331  */
1332 static void
1333 fxp_start(if_t ifp)
1334 {
1335 	struct fxp_softc *sc = if_getsoftc(ifp);
1336 
1337 	FXP_LOCK(sc);
1338 	fxp_start_body(ifp);
1339 	FXP_UNLOCK(sc);
1340 }
1341 
1342 /*
1343  * Start packet transmission on the interface.
1344  * This routine must be called with the softc lock held, and is an
1345  * internal entry point only.
1346  */
1347 static void
1348 fxp_start_body(if_t ifp)
1349 {
1350 	struct fxp_softc *sc = if_getsoftc(ifp);
1351 	struct mbuf *mb_head;
1352 	int txqueued;
1353 
1354 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1355 
1356 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1357 	    IFF_DRV_RUNNING)
1358 		return;
1359 
1360 	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1361 		fxp_txeof(sc);
1362 	/*
1363 	 * We're finished if there is nothing more to add to the list or if
1364 	 * we're all filled up with buffers to transmit.
1365 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1366 	 *       a NOP command when needed.
1367 	 */
1368 	txqueued = 0;
1369 	while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1370 
1371 		/*
1372 		 * Grab a packet to transmit.
1373 		 */
1374 		mb_head = if_dequeue(ifp);
1375 		if (mb_head == NULL)
1376 			break;
1377 
1378 		if (fxp_encap(sc, &mb_head)) {
1379 			if (mb_head == NULL)
1380 				break;
1381 			if_sendq_prepend(ifp, mb_head);
1382 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1383 		}
1384 		txqueued++;
1385 		/*
1386 		 * Pass packet to bpf if there is a listener.
1387 		 */
1388 		if_bpfmtap(ifp, mb_head);
1389 	}
1390 
1391 	/*
1392 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1393 	 * going again if suspended.
1394 	 */
1395 	if (txqueued > 0) {
1396 		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1397 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1398 		fxp_scb_wait(sc);
1399 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1400 		/*
1401 		 * Set a 5 second timer just in case we don't hear
1402 		 * from the card again.
1403 		 */
1404 		sc->watchdog_timer = 5;
1405 	}
1406 }
1407 
1408 static int
1409 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1410 {
1411 	if_t ifp;
1412 	struct mbuf *m;
1413 	struct fxp_tx *txp;
1414 	struct fxp_cb_tx *cbp;
1415 	struct tcphdr *tcp;
1416 	bus_dma_segment_t segs[FXP_NTXSEG];
1417 	int error, i, nseg, tcp_payload;
1418 
1419 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1420 	ifp = sc->ifp;
1421 
1422 	tcp_payload = 0;
1423 	tcp = NULL;
1424 	/*
1425 	 * Get pointer to next available tx desc.
1426 	 */
1427 	txp = sc->fxp_desc.tx_last->tx_next;
1428 
1429 	/*
1430 	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1431 	 * Ethernet Controller Family Open Source Software
1432 	 * Developer Manual says:
1433 	 *   Using software parsing is only allowed with legal
1434 	 *   TCP/IP or UDP/IP packets.
1435 	 *   ...
1436 	 *   For all other datagrams, hardware parsing must
1437 	 *   be used.
1438 	 * Software parsing appears to truncate ICMP and
1439 	 * fragmented UDP packets that contain one to three
1440 	 * bytes in the second (and final) mbuf of the packet.
1441 	 */
1442 	if (sc->flags & FXP_FLAG_EXT_RFA)
1443 		txp->tx_cb->ipcb_ip_activation_high =
1444 		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1445 
1446 	m = *m_head;
1447 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1448 		/*
1449 		 * 82550/82551 requires ethernet/IP/TCP headers must be
1450 		 * contained in the first active transmit buffer.
1451 		 */
1452 		struct ether_header *eh;
1453 		struct ip *ip;
1454 		uint32_t ip_off, poff;
1455 
1456 		if (M_WRITABLE(*m_head) == 0) {
1457 			/* Get a writable copy. */
1458 			m = m_dup(*m_head, M_NOWAIT);
1459 			m_freem(*m_head);
1460 			if (m == NULL) {
1461 				*m_head = NULL;
1462 				return (ENOBUFS);
1463 			}
1464 			*m_head = m;
1465 		}
1466 		ip_off = sizeof(struct ether_header);
1467 		m = m_pullup(*m_head, ip_off);
1468 		if (m == NULL) {
1469 			*m_head = NULL;
1470 			return (ENOBUFS);
1471 		}
1472 		eh = mtod(m, struct ether_header *);
1473 		/* Check the existence of VLAN tag. */
1474 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1475 			ip_off = sizeof(struct ether_vlan_header);
1476 			m = m_pullup(m, ip_off);
1477 			if (m == NULL) {
1478 				*m_head = NULL;
1479 				return (ENOBUFS);
1480 			}
1481 		}
1482 		m = m_pullup(m, ip_off + sizeof(struct ip));
1483 		if (m == NULL) {
1484 			*m_head = NULL;
1485 			return (ENOBUFS);
1486 		}
1487 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1488 		poff = ip_off + (ip->ip_hl << 2);
1489 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1490 		if (m == NULL) {
1491 			*m_head = NULL;
1492 			return (ENOBUFS);
1493 		}
1494 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1495 		m = m_pullup(m, poff + (tcp->th_off << 2));
1496 		if (m == NULL) {
1497 			*m_head = NULL;
1498 			return (ENOBUFS);
1499 		}
1500 
1501 		/*
1502 		 * Since 82550/82551 doesn't modify IP length and pseudo
1503 		 * checksum in the first frame driver should compute it.
1504 		 */
1505 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1506 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1507 		ip->ip_sum = 0;
1508 		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1509 		    (tcp->th_off << 2));
1510 		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1511 		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1512 		    m->m_pkthdr.tso_segsz));
1513 		/* Compute total TCP payload. */
1514 		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1515 		tcp_payload -= tcp->th_off << 2;
1516 		*m_head = m;
1517 	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1518 		/*
1519 		 * Deal with TCP/IP checksum offload. Note that
1520 		 * in order for TCP checksum offload to work,
1521 		 * the pseudo header checksum must have already
1522 		 * been computed and stored in the checksum field
1523 		 * in the TCP header. The stack should have
1524 		 * already done this for us.
1525 		 */
1526 		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1527 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1528 			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1529 
1530 #ifdef FXP_IP_CSUM_WAR
1531 		/*
1532 		 * XXX The 82550 chip appears to have trouble
1533 		 * dealing with IP header checksums in very small
1534 		 * datagrams, namely fragments from 1 to 3 bytes
1535 		 * in size. For example, say you want to transmit
1536 		 * a UDP packet of 1473 bytes. The packet will be
1537 		 * fragmented over two IP datagrams, the latter
1538 		 * containing only one byte of data. The 82550 will
1539 		 * botch the header checksum on the 1-byte fragment.
1540 		 * As long as the datagram contains 4 or more bytes
1541 		 * of data, you're ok.
1542 		 *
1543                  * The following code attempts to work around this
1544 		 * problem: if the datagram is less than 38 bytes
1545 		 * in size (14 bytes ether header, 20 bytes IP header,
1546 		 * plus 4 bytes of data), we punt and compute the IP
1547 		 * header checksum by hand. This workaround doesn't
1548 		 * work very well, however, since it can be fooled
1549 		 * by things like VLAN tags and IP options that make
1550 		 * the header sizes/offsets vary.
1551 		 */
1552 
1553 		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1554 			if (m->m_pkthdr.len < 38) {
1555 				struct ip *ip;
1556 				m->m_data += ETHER_HDR_LEN;
1557 				ip = mtod(m, struct ip *);
1558 				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1559 				m->m_data -= ETHER_HDR_LEN;
1560 				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1561 			} else {
1562 				txp->tx_cb->ipcb_ip_activation_high =
1563 				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1564 				txp->tx_cb->ipcb_ip_schedule |=
1565 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1566 			}
1567 		}
1568 #endif
1569 	}
1570 
1571 	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1572 	    segs, &nseg, 0);
1573 	if (error == EFBIG) {
1574 		m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1575 		if (m == NULL) {
1576 			m_freem(*m_head);
1577 			*m_head = NULL;
1578 			return (ENOMEM);
1579 		}
1580 		*m_head = m;
1581 		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1582 		    *m_head, segs, &nseg, 0);
1583 		if (error != 0) {
1584 			m_freem(*m_head);
1585 			*m_head = NULL;
1586 			return (ENOMEM);
1587 		}
1588 	} else if (error != 0)
1589 		return (error);
1590 	if (nseg == 0) {
1591 		m_freem(*m_head);
1592 		*m_head = NULL;
1593 		return (EIO);
1594 	}
1595 
1596 	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1597 	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1598 
1599 	cbp = txp->tx_cb;
1600 	for (i = 0; i < nseg; i++) {
1601 		/*
1602 		 * If this is an 82550/82551, then we're using extended
1603 		 * TxCBs _and_ we're using checksum offload. This means
1604 		 * that the TxCB is really an IPCB. One major difference
1605 		 * between the two is that with plain extended TxCBs,
1606 		 * the bottom half of the TxCB contains two entries from
1607 		 * the TBD array, whereas IPCBs contain just one entry:
1608 		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1609 		 * checksum offload control bits. So to make things work
1610 		 * right, we have to start filling in the TBD array
1611 		 * starting from a different place depending on whether
1612 		 * the chip is an 82550/82551 or not.
1613 		 */
1614 		if (sc->flags & FXP_FLAG_EXT_RFA) {
1615 			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1616 			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1617 		} else {
1618 			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1619 			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1620 		}
1621 	}
1622 	if (sc->flags & FXP_FLAG_EXT_RFA) {
1623 		/* Configure dynamic TBD for 82550/82551. */
1624 		cbp->tbd_number = 0xFF;
1625 		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1626 	} else
1627 		cbp->tbd_number = nseg;
1628 	/* Configure TSO. */
1629 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1630 		cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1631 		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1632 		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1633 		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1634 		    FXP_IPCB_TCP_PACKET |
1635 		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1636 	}
1637 	/* Configure VLAN hardware tag insertion. */
1638 	if ((m->m_flags & M_VLANTAG) != 0) {
1639 		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1640 		txp->tx_cb->ipcb_ip_activation_high |=
1641 		    FXP_IPCB_INSERTVLAN_ENABLE;
1642 	}
1643 
1644 	txp->tx_mbuf = m;
1645 	txp->tx_cb->cb_status = 0;
1646 	txp->tx_cb->byte_count = 0;
1647 	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1648 		txp->tx_cb->cb_command =
1649 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1650 		    FXP_CB_COMMAND_S);
1651 	else
1652 		txp->tx_cb->cb_command =
1653 		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1654 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1655 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1656 		txp->tx_cb->tx_threshold = tx_threshold;
1657 
1658 	/*
1659 	 * Advance the end of list forward.
1660 	 */
1661 	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1662 	sc->fxp_desc.tx_last = txp;
1663 
1664 	/*
1665 	 * Advance the beginning of the list forward if there are
1666 	 * no other packets queued (when nothing is queued, tx_first
1667 	 * sits on the last TxCB that was sent out).
1668 	 */
1669 	if (sc->tx_queued == 0)
1670 		sc->fxp_desc.tx_first = txp;
1671 
1672 	sc->tx_queued++;
1673 
1674 	return (0);
1675 }
1676 
1677 #ifdef DEVICE_POLLING
1678 static poll_handler_t fxp_poll;
1679 
1680 static int
1681 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1682 {
1683 	struct fxp_softc *sc = if_getsoftc(ifp);
1684 	uint8_t statack;
1685 	int rx_npkts = 0;
1686 
1687 	FXP_LOCK(sc);
1688 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1689 		FXP_UNLOCK(sc);
1690 		return (rx_npkts);
1691 	}
1692 
1693 	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1694 	    FXP_SCB_STATACK_FR;
1695 	if (cmd == POLL_AND_CHECK_STATUS) {
1696 		uint8_t tmp;
1697 
1698 		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1699 		if (tmp == 0xff || tmp == 0) {
1700 			FXP_UNLOCK(sc);
1701 			return (rx_npkts); /* nothing to do */
1702 		}
1703 		tmp &= ~statack;
1704 		/* ack what we can */
1705 		if (tmp != 0)
1706 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1707 		statack |= tmp;
1708 	}
1709 	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1710 	FXP_UNLOCK(sc);
1711 	return (rx_npkts);
1712 }
1713 #endif /* DEVICE_POLLING */
1714 
1715 /*
1716  * Process interface interrupts.
1717  */
1718 static void
1719 fxp_intr(void *xsc)
1720 {
1721 	struct fxp_softc *sc = xsc;
1722 	if_t ifp = sc->ifp;
1723 	uint8_t statack;
1724 
1725 	FXP_LOCK(sc);
1726 	if (sc->suspended) {
1727 		FXP_UNLOCK(sc);
1728 		return;
1729 	}
1730 
1731 #ifdef DEVICE_POLLING
1732 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
1733 		FXP_UNLOCK(sc);
1734 		return;
1735 	}
1736 #endif
1737 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1738 		/*
1739 		 * It should not be possible to have all bits set; the
1740 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1741 		 * all bits are set, this may indicate that the card has
1742 		 * been physically ejected, so ignore it.
1743 		 */
1744 		if (statack == 0xff) {
1745 			FXP_UNLOCK(sc);
1746 			return;
1747 		}
1748 
1749 		/*
1750 		 * First ACK all the interrupts in this pass.
1751 		 */
1752 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1753 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1754 			fxp_intr_body(sc, ifp, statack, -1);
1755 	}
1756 	FXP_UNLOCK(sc);
1757 }
1758 
1759 static void
1760 fxp_txeof(struct fxp_softc *sc)
1761 {
1762 	if_t ifp;
1763 	struct fxp_tx *txp;
1764 
1765 	ifp = sc->ifp;
1766 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1767 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1768 	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1769 	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1770 	    txp = txp->tx_next) {
1771 		if (txp->tx_mbuf != NULL) {
1772 			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1773 			    BUS_DMASYNC_POSTWRITE);
1774 			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1775 			m_freem(txp->tx_mbuf);
1776 			txp->tx_mbuf = NULL;
1777 			/* clear this to reset csum offload bits */
1778 			txp->tx_cb->tbd[0].tb_addr = 0;
1779 		}
1780 		sc->tx_queued--;
1781 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1782 	}
1783 	sc->fxp_desc.tx_first = txp;
1784 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1785 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1786 	if (sc->tx_queued == 0)
1787 		sc->watchdog_timer = 0;
1788 }
1789 
1790 static void
1791 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1792     uint16_t status, int pos)
1793 {
1794 	struct ether_header *eh;
1795 	struct ip *ip;
1796 	struct udphdr *uh;
1797 	int32_t hlen, len, pktlen, temp32;
1798 	uint16_t csum, *opts;
1799 
1800 	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1801 		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1802 			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1803 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1804 			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1805 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1806 			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1807 			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1808 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1809 				    CSUM_PSEUDO_HDR;
1810 				m->m_pkthdr.csum_data = 0xffff;
1811 			}
1812 		}
1813 		return;
1814 	}
1815 
1816 	pktlen = m->m_pkthdr.len;
1817 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1818 		return;
1819 	eh = mtod(m, struct ether_header *);
1820 	if (eh->ether_type != htons(ETHERTYPE_IP))
1821 		return;
1822 	ip = (struct ip *)(eh + 1);
1823 	if (ip->ip_v != IPVERSION)
1824 		return;
1825 
1826 	hlen = ip->ip_hl << 2;
1827 	pktlen -= sizeof(struct ether_header);
1828 	if (hlen < sizeof(struct ip))
1829 		return;
1830 	if (ntohs(ip->ip_len) < hlen)
1831 		return;
1832 	if (ntohs(ip->ip_len) != pktlen)
1833 		return;
1834 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1835 		return;	/* can't handle fragmented packet */
1836 
1837 	switch (ip->ip_p) {
1838 	case IPPROTO_TCP:
1839 		if (pktlen < (hlen + sizeof(struct tcphdr)))
1840 			return;
1841 		break;
1842 	case IPPROTO_UDP:
1843 		if (pktlen < (hlen + sizeof(struct udphdr)))
1844 			return;
1845 		uh = (struct udphdr *)((caddr_t)ip + hlen);
1846 		if (uh->uh_sum == 0)
1847 			return; /* no checksum */
1848 		break;
1849 	default:
1850 		return;
1851 	}
1852 	/* Extract computed checksum. */
1853 	csum = be16dec(mtod(m, char *) + pos);
1854 	/* checksum fixup for IP options */
1855 	len = hlen - sizeof(struct ip);
1856 	if (len > 0) {
1857 		opts = (uint16_t *)(ip + 1);
1858 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1859 			temp32 = csum - *opts;
1860 			temp32 = (temp32 >> 16) + (temp32 & 65535);
1861 			csum = temp32 & 65535;
1862 		}
1863 	}
1864 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1865 	m->m_pkthdr.csum_data = csum;
1866 }
1867 
1868 static int
1869 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1870     int count)
1871 {
1872 	struct mbuf *m;
1873 	struct fxp_rx *rxp;
1874 	struct fxp_rfa *rfa;
1875 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1876 	int rx_npkts;
1877 	uint16_t status;
1878 
1879 	rx_npkts = 0;
1880 	FXP_LOCK_ASSERT(sc, MA_OWNED);
1881 
1882 	if (rnr)
1883 		sc->rnr++;
1884 #ifdef DEVICE_POLLING
1885 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1886 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1887 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1888 		rnr = 1;
1889 	}
1890 #endif
1891 
1892 	/*
1893 	 * Free any finished transmit mbuf chains.
1894 	 *
1895 	 * Handle the CNA event likt a CXTNO event. It used to
1896 	 * be that this event (control unit not ready) was not
1897 	 * encountered, but it is now with the SMPng modifications.
1898 	 * The exact sequence of events that occur when the interface
1899 	 * is brought up are different now, and if this event
1900 	 * goes unhandled, the configuration/rxfilter setup sequence
1901 	 * can stall for several seconds. The result is that no
1902 	 * packets go out onto the wire for about 5 to 10 seconds
1903 	 * after the interface is ifconfig'ed for the first time.
1904 	 */
1905 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1906 		fxp_txeof(sc);
1907 
1908 	/*
1909 	 * Try to start more packets transmitting.
1910 	 */
1911 	if (!if_sendq_empty(ifp))
1912 		fxp_start_body(ifp);
1913 
1914 	/*
1915 	 * Just return if nothing happened on the receive side.
1916 	 */
1917 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1918 		return (rx_npkts);
1919 
1920 	/*
1921 	 * Process receiver interrupts. If a no-resource (RNR)
1922 	 * condition exists, get whatever packets we can and
1923 	 * re-start the receiver.
1924 	 *
1925 	 * When using polling, we do not process the list to completion,
1926 	 * so when we get an RNR interrupt we must defer the restart
1927 	 * until we hit the last buffer with the C bit set.
1928 	 * If we run out of cycles and rfa_headm has the C bit set,
1929 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1930 	 * that the info will be used in the subsequent polling cycle.
1931 	 */
1932 	for (;;) {
1933 		rxp = sc->fxp_desc.rx_head;
1934 		m = rxp->rx_mbuf;
1935 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1936 		    RFA_ALIGNMENT_FUDGE);
1937 		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1938 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1939 
1940 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1941 		if (count >= 0 && count-- == 0) {
1942 			if (rnr) {
1943 				/* Defer RNR processing until the next time. */
1944 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1945 				rnr = 0;
1946 			}
1947 			break;
1948 		}
1949 #endif /* DEVICE_POLLING */
1950 
1951 		status = le16toh(rfa->rfa_status);
1952 		if ((status & FXP_RFA_STATUS_C) == 0)
1953 			break;
1954 
1955 		if ((status & FXP_RFA_STATUS_RNR) != 0)
1956 			rnr++;
1957 		/*
1958 		 * Advance head forward.
1959 		 */
1960 		sc->fxp_desc.rx_head = rxp->rx_next;
1961 
1962 		/*
1963 		 * Add a new buffer to the receive chain.
1964 		 * If this fails, the old buffer is recycled
1965 		 * instead.
1966 		 */
1967 		if (fxp_new_rfabuf(sc, rxp) == 0) {
1968 			int total_len;
1969 
1970 			/*
1971 			 * Fetch packet length (the top 2 bits of
1972 			 * actual_size are flags set by the controller
1973 			 * upon completion), and drop the packet in case
1974 			 * of bogus length or CRC errors.
1975 			 */
1976 			total_len = le16toh(rfa->actual_size) & 0x3fff;
1977 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1978 			    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1979 				/* Adjust for appended checksum bytes. */
1980 				total_len -= 2;
1981 			}
1982 			if (total_len < (int)sizeof(struct ether_header) ||
1983 			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1984 			    sc->rfa_size) ||
1985 			    status & (FXP_RFA_STATUS_CRC |
1986 			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1987 				m_freem(m);
1988 				fxp_add_rfabuf(sc, rxp);
1989 				continue;
1990 			}
1991 
1992 			m->m_pkthdr.len = m->m_len = total_len;
1993 			if_setrcvif(m, ifp);
1994 
1995                         /* Do IP checksum checking. */
1996 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1997 				fxp_rxcsum(sc, ifp, m, status, total_len);
1998 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1999 			    (status & FXP_RFA_STATUS_VLAN) != 0) {
2000 				m->m_pkthdr.ether_vtag =
2001 				    ntohs(rfa->rfax_vlan_id);
2002 				m->m_flags |= M_VLANTAG;
2003 			}
2004 			/*
2005 			 * Drop locks before calling if_input() since it
2006 			 * may re-enter fxp_start() in the netisr case.
2007 			 * This would result in a lock reversal.  Better
2008 			 * performance might be obtained by chaining all
2009 			 * packets received, dropping the lock, and then
2010 			 * calling if_input() on each one.
2011 			 */
2012 			FXP_UNLOCK(sc);
2013 			if_input(ifp, m);
2014 			FXP_LOCK(sc);
2015 			rx_npkts++;
2016 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2017 				return (rx_npkts);
2018 		} else {
2019 			/* Reuse RFA and loaded DMA map. */
2020 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2021 			fxp_discard_rfabuf(sc, rxp);
2022 		}
2023 		fxp_add_rfabuf(sc, rxp);
2024 	}
2025 	if (rnr) {
2026 		fxp_scb_wait(sc);
2027 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2028 		    sc->fxp_desc.rx_head->rx_addr);
2029 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2030 	}
2031 	return (rx_npkts);
2032 }
2033 
2034 static void
2035 fxp_update_stats(struct fxp_softc *sc)
2036 {
2037 	if_t ifp = sc->ifp;
2038 	struct fxp_stats *sp = sc->fxp_stats;
2039 	struct fxp_hwstats *hsp;
2040 	uint32_t *status;
2041 
2042 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2043 
2044 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2045 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2046 	/* Update statistical counters. */
2047 	if (sc->revision >= FXP_REV_82559_A0)
2048 		status = &sp->completion_status;
2049 	else if (sc->revision >= FXP_REV_82558_A4)
2050 		status = (uint32_t *)&sp->tx_tco;
2051 	else
2052 		status = &sp->tx_pause;
2053 	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2054 		hsp = &sc->fxp_hwstats;
2055 		hsp->tx_good += le32toh(sp->tx_good);
2056 		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2057 		hsp->tx_latecols += le32toh(sp->tx_latecols);
2058 		hsp->tx_underruns += le32toh(sp->tx_underruns);
2059 		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2060 		hsp->tx_deffered += le32toh(sp->tx_deffered);
2061 		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2062 		hsp->tx_multiple_collisions +=
2063 		    le32toh(sp->tx_multiple_collisions);
2064 		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2065 		hsp->rx_good += le32toh(sp->rx_good);
2066 		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2067 		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2068 		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2069 		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2070 		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2071 		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2072 		hsp->tx_pause += le32toh(sp->tx_pause);
2073 		hsp->rx_pause += le32toh(sp->rx_pause);
2074 		hsp->rx_controls += le32toh(sp->rx_controls);
2075 		hsp->tx_tco += le16toh(sp->tx_tco);
2076 		hsp->rx_tco += le16toh(sp->rx_tco);
2077 
2078 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2079 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2080 		    le32toh(sp->tx_total_collisions));
2081 		if (sp->rx_good) {
2082 			if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2083 			    le32toh(sp->rx_good));
2084 			sc->rx_idle_secs = 0;
2085 		} else if (sc->flags & FXP_FLAG_RXBUG) {
2086 			/*
2087 			 * Receiver's been idle for another second.
2088 			 */
2089 			sc->rx_idle_secs++;
2090 		}
2091 		if_inc_counter(ifp, IFCOUNTER_IERRORS,
2092 		    le32toh(sp->rx_crc_errors) +
2093 		    le32toh(sp->rx_alignment_errors) +
2094 		    le32toh(sp->rx_rnr_errors) +
2095 		    le32toh(sp->rx_overrun_errors));
2096 		/*
2097 		 * If any transmit underruns occurred, bump up the transmit
2098 		 * threshold by another 512 bytes (64 * 8).
2099 		 */
2100 		if (sp->tx_underruns) {
2101 			if_inc_counter(ifp, IFCOUNTER_OERRORS,
2102 			    le32toh(sp->tx_underruns));
2103 			if (tx_threshold < 192)
2104 				tx_threshold += 64;
2105 		}
2106 		*status = 0;
2107 		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2108 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2109 	}
2110 }
2111 
2112 /*
2113  * Update packet in/out/collision statistics. The i82557 doesn't
2114  * allow you to access these counters without doing a fairly
2115  * expensive DMA to get _all_ of the statistics it maintains, so
2116  * we do this operation here only once per second. The statistics
2117  * counters in the kernel are updated from the previous dump-stats
2118  * DMA and then a new dump-stats DMA is started. The on-chip
2119  * counters are zeroed when the DMA completes. If we can't start
2120  * the DMA immediately, we don't wait - we just prepare to read
2121  * them again next time.
2122  */
2123 static void
2124 fxp_tick(void *xsc)
2125 {
2126 	struct fxp_softc *sc = xsc;
2127 	if_t ifp = sc->ifp;
2128 
2129 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2130 
2131 	/* Update statistical counters. */
2132 	fxp_update_stats(sc);
2133 
2134 	/*
2135 	 * Release any xmit buffers that have completed DMA. This isn't
2136 	 * strictly necessary to do here, but it's advantagous for mbufs
2137 	 * with external storage to be released in a timely manner rather
2138 	 * than being defered for a potentially long time. This limits
2139 	 * the delay to a maximum of one second.
2140 	 */
2141 	fxp_txeof(sc);
2142 
2143 	/*
2144 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2145 	 * then assume the receiver has locked up and attempt to clear
2146 	 * the condition by reprogramming the multicast filter. This is
2147 	 * a work-around for a bug in the 82557 where the receiver locks
2148 	 * up if it gets certain types of garbage in the synchronization
2149 	 * bits prior to the packet header. This bug is supposed to only
2150 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2151 	 * mode as well (perhaps due to a 10/100 speed transition).
2152 	 */
2153 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2154 		sc->rx_idle_secs = 0;
2155 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2156 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2157 			fxp_init_body(sc, 1);
2158 		}
2159 		return;
2160 	}
2161 	/*
2162 	 * If there is no pending command, start another stats
2163 	 * dump. Otherwise punt for now.
2164 	 */
2165 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2166 		/*
2167 		 * Start another stats dump.
2168 		 */
2169 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2170 	}
2171 	if (sc->miibus != NULL)
2172 		mii_tick(device_get_softc(sc->miibus));
2173 
2174 	/*
2175 	 * Check that chip hasn't hung.
2176 	 */
2177 	fxp_watchdog(sc);
2178 
2179 	/*
2180 	 * Schedule another timeout one second from now.
2181 	 */
2182 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2183 }
2184 
2185 /*
2186  * Stop the interface. Cancels the statistics updater and resets
2187  * the interface.
2188  */
2189 static void
2190 fxp_stop(struct fxp_softc *sc)
2191 {
2192 	if_t ifp = sc->ifp;
2193 	struct fxp_tx *txp;
2194 	int i;
2195 
2196 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2197 	sc->watchdog_timer = 0;
2198 
2199 	/*
2200 	 * Cancel stats updater.
2201 	 */
2202 	callout_stop(&sc->stat_ch);
2203 
2204 	/*
2205 	 * Preserve PCI configuration, configure, IA/multicast
2206 	 * setup and put RU and CU into idle state.
2207 	 */
2208 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2209 	DELAY(50);
2210 	/* Disable interrupts. */
2211 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2212 
2213 	fxp_update_stats(sc);
2214 
2215 	/*
2216 	 * Release any xmit buffers.
2217 	 */
2218 	txp = sc->fxp_desc.tx_list;
2219 	for (i = 0; i < FXP_NTXCB; i++) {
2220 		if (txp[i].tx_mbuf != NULL) {
2221 			bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2222 			    BUS_DMASYNC_POSTWRITE);
2223 			bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2224 			m_freem(txp[i].tx_mbuf);
2225 			txp[i].tx_mbuf = NULL;
2226 			/* clear this to reset csum offload bits */
2227 			txp[i].tx_cb->tbd[0].tb_addr = 0;
2228 		}
2229 	}
2230 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2231 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2232 	sc->tx_queued = 0;
2233 }
2234 
2235 /*
2236  * Watchdog/transmission transmit timeout handler. Called when a
2237  * transmission is started on the interface, but no interrupt is
2238  * received before the timeout. This usually indicates that the
2239  * card has wedged for some reason.
2240  */
2241 static void
2242 fxp_watchdog(struct fxp_softc *sc)
2243 {
2244 	if_t ifp = sc->ifp;
2245 
2246 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2247 
2248 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2249 		return;
2250 
2251 	device_printf(sc->dev, "device timeout\n");
2252 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2253 
2254 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2255 	fxp_init_body(sc, 1);
2256 }
2257 
2258 /*
2259  * Acquire locks and then call the real initialization function.  This
2260  * is necessary because ether_ioctl() calls if_init() and this would
2261  * result in mutex recursion if the mutex was held.
2262  */
2263 static void
2264 fxp_init(void *xsc)
2265 {
2266 	struct fxp_softc *sc = xsc;
2267 
2268 	FXP_LOCK(sc);
2269 	fxp_init_body(sc, 1);
2270 	FXP_UNLOCK(sc);
2271 }
2272 
2273 /*
2274  * Perform device initialization. This routine must be called with the
2275  * softc lock held.
2276  */
2277 static void
2278 fxp_init_body(struct fxp_softc *sc, int setmedia)
2279 {
2280 	if_t ifp = sc->ifp;
2281 	struct mii_data *mii;
2282 	struct fxp_cb_config *cbp;
2283 	struct fxp_cb_ias *cb_ias;
2284 	struct fxp_cb_tx *tcbp;
2285 	struct fxp_tx *txp;
2286 	int i, prm;
2287 
2288 	FXP_LOCK_ASSERT(sc, MA_OWNED);
2289 
2290 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2291 		return;
2292 
2293 	/*
2294 	 * Cancel any pending I/O
2295 	 */
2296 	fxp_stop(sc);
2297 
2298 	/*
2299 	 * Issue software reset, which also unloads the microcode.
2300 	 */
2301 	sc->flags &= ~FXP_FLAG_UCODE;
2302 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2303 	DELAY(50);
2304 
2305 	prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2306 
2307 	/*
2308 	 * Initialize base of CBL and RFA memory. Loading with zero
2309 	 * sets it up for regular linear addressing.
2310 	 */
2311 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2312 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2313 
2314 	fxp_scb_wait(sc);
2315 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2316 
2317 	/*
2318 	 * Initialize base of dump-stats buffer.
2319 	 */
2320 	fxp_scb_wait(sc);
2321 	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2322 	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2323 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2324 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2325 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2326 
2327 	/*
2328 	 * Attempt to load microcode if requested.
2329 	 * For ICH based controllers do not load microcode.
2330 	 */
2331 	if (sc->ident->ich == 0) {
2332 		if (if_getflags(ifp) & IFF_LINK0 &&
2333 		    (sc->flags & FXP_FLAG_UCODE) == 0)
2334 			fxp_load_ucode(sc);
2335 	}
2336 
2337 	/*
2338 	 * Set IFF_ALLMULTI status. It's needed in configure action
2339 	 * command.
2340 	 */
2341 	fxp_mc_addrs(sc);
2342 
2343 	/*
2344 	 * We temporarily use memory that contains the TxCB list to
2345 	 * construct the config CB. The TxCB list memory is rebuilt
2346 	 * later.
2347 	 */
2348 	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2349 
2350 	/*
2351 	 * This bcopy is kind of disgusting, but there are a bunch of must be
2352 	 * zero and must be one bits in this structure and this is the easiest
2353 	 * way to initialize them all to proper values.
2354 	 */
2355 	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2356 
2357 	cbp->cb_status =	0;
2358 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2359 	    FXP_CB_COMMAND_EL);
2360 	cbp->link_addr =	0xffffffff;	/* (no) next command */
2361 	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2362 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2363 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2364 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2365 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2366 	cbp->type_enable =	0;	/* actually reserved */
2367 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2368 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2369 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2370 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2371 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2372 	cbp->late_scb =		0;	/* (don't) defer SCB update */
2373 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2374 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2375 	cbp->ci_int =		1;	/* interrupt on CU idle */
2376 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2377 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2378 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2379 	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2380 	cbp->disc_short_rx =	!prm;	/* discard short packets */
2381 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2382 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2383 	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2384 	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2385 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2386 	cbp->csma_dis =		0;	/* (don't) disable link */
2387 	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2388 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2389 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2390 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2391 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2392 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2393 	cbp->nsai =		1;	/* (don't) disable source addr insert */
2394 	cbp->preamble_length =	2;	/* (7 byte) preamble */
2395 	cbp->loopback =		0;	/* (don't) loopback */
2396 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2397 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2398 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2399 	cbp->promiscuous =	prm;	/* promiscuous mode */
2400 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2401 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2402 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2403 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2404 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2405 
2406 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2407 	cbp->padding =		1;	/* (do) pad short tx packets */
2408 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2409 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2410 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2411 	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2412 	cbp->force_fdx =	0;	/* (don't) force full duplex */
2413 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2414 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2415 	cbp->mc_all =		if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2416 	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2417 	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2418 	    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2419 
2420 	if (sc->revision == FXP_REV_82557) {
2421 		/*
2422 		 * The 82557 has no hardware flow control, the values
2423 		 * below are the defaults for the chip.
2424 		 */
2425 		cbp->fc_delay_lsb =	0;
2426 		cbp->fc_delay_msb =	0x40;
2427 		cbp->pri_fc_thresh =	3;
2428 		cbp->tx_fc_dis =	0;
2429 		cbp->rx_fc_restop =	0;
2430 		cbp->rx_fc_restart =	0;
2431 		cbp->fc_filter =	0;
2432 		cbp->pri_fc_loc =	1;
2433 	} else {
2434 		/* Set pause RX FIFO threshold to 1KB. */
2435 		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2436 		/* Set pause time. */
2437 		cbp->fc_delay_lsb =	0xff;
2438 		cbp->fc_delay_msb =	0xff;
2439 		cbp->pri_fc_thresh =	3;
2440 		mii = device_get_softc(sc->miibus);
2441 		if ((IFM_OPTIONS(mii->mii_media_active) &
2442 		    IFM_ETH_TXPAUSE) != 0)
2443 			/* enable transmit FC */
2444 			cbp->tx_fc_dis = 0;
2445 		else
2446 			/* disable transmit FC */
2447 			cbp->tx_fc_dis = 1;
2448 		if ((IFM_OPTIONS(mii->mii_media_active) &
2449 		    IFM_ETH_RXPAUSE) != 0) {
2450 			/* enable FC restart/restop frames */
2451 			cbp->rx_fc_restart = 1;
2452 			cbp->rx_fc_restop = 1;
2453 		} else {
2454 			/* disable FC restart/restop frames */
2455 			cbp->rx_fc_restart = 0;
2456 			cbp->rx_fc_restop = 0;
2457 		}
2458 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2459 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2460 	}
2461 
2462 	/* Enable 82558 and 82559 extended statistics functionality. */
2463 	if (sc->revision >= FXP_REV_82558_A4) {
2464 		if (sc->revision >= FXP_REV_82559_A0) {
2465 			/*
2466 			 * Extend configuration table size to 32
2467 			 * to include TCO configuration.
2468 			 */
2469 			cbp->byte_count = 32;
2470 			cbp->ext_stats_dis = 1;
2471 			/* Enable TCO stats. */
2472 			cbp->tno_int_or_tco_en = 1;
2473 			cbp->gamla_rx = 1;
2474 		} else
2475 			cbp->ext_stats_dis = 0;
2476 	}
2477 
2478 	/*
2479 	 * Start the config command/DMA.
2480 	 */
2481 	fxp_scb_wait(sc);
2482 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2483 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2484 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2485 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2486 	/* ...and wait for it to complete. */
2487 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2488 
2489 	/*
2490 	 * Now initialize the station address. Temporarily use the TxCB
2491 	 * memory area like we did above for the config CB.
2492 	 */
2493 	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2494 	cb_ias->cb_status = 0;
2495 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2496 	cb_ias->link_addr = 0xffffffff;
2497 	bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2498 
2499 	/*
2500 	 * Start the IAS (Individual Address Setup) command/DMA.
2501 	 */
2502 	fxp_scb_wait(sc);
2503 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2504 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2505 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2506 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2507 	/* ...and wait for it to complete. */
2508 	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2509 
2510 	/*
2511 	 * Initialize the multicast address list.
2512 	 */
2513 	fxp_mc_setup(sc);
2514 
2515 	/*
2516 	 * Initialize transmit control block (TxCB) list.
2517 	 */
2518 	txp = sc->fxp_desc.tx_list;
2519 	tcbp = sc->fxp_desc.cbl_list;
2520 	bzero(tcbp, FXP_TXCB_SZ);
2521 	for (i = 0; i < FXP_NTXCB; i++) {
2522 		txp[i].tx_mbuf = NULL;
2523 		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2524 		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2525 		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2526 		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2527 		if (sc->flags & FXP_FLAG_EXT_TXCB)
2528 			tcbp[i].tbd_array_addr =
2529 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2530 		else
2531 			tcbp[i].tbd_array_addr =
2532 			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2533 		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2534 	}
2535 	/*
2536 	 * Set the suspend flag on the first TxCB and start the control
2537 	 * unit. It will execute the NOP and then suspend.
2538 	 */
2539 	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2540 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2541 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2542 	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2543 	sc->tx_queued = 1;
2544 
2545 	fxp_scb_wait(sc);
2546 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2547 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2548 
2549 	/*
2550 	 * Initialize receiver buffer area - RFA.
2551 	 */
2552 	fxp_scb_wait(sc);
2553 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2554 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2555 
2556 	if (sc->miibus != NULL && setmedia != 0)
2557 		mii_mediachg(device_get_softc(sc->miibus));
2558 
2559 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2560 
2561 	/*
2562 	 * Enable interrupts.
2563 	 */
2564 #ifdef DEVICE_POLLING
2565 	/*
2566 	 * ... but only do that if we are not polling. And because (presumably)
2567 	 * the default is interrupts on, we need to disable them explicitly!
2568 	 */
2569 	if (if_getcapenable(ifp) & IFCAP_POLLING )
2570 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2571 	else
2572 #endif /* DEVICE_POLLING */
2573 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2574 
2575 	/*
2576 	 * Start stats updater.
2577 	 */
2578 	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2579 }
2580 
2581 static int
2582 fxp_serial_ifmedia_upd(if_t ifp)
2583 {
2584 
2585 	return (0);
2586 }
2587 
2588 static void
2589 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2590 {
2591 
2592 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2593 }
2594 
2595 /*
2596  * Change media according to request.
2597  */
2598 static int
2599 fxp_ifmedia_upd(if_t ifp)
2600 {
2601 	struct fxp_softc *sc = if_getsoftc(ifp);
2602 	struct mii_data *mii;
2603 	struct mii_softc	*miisc;
2604 
2605 	mii = device_get_softc(sc->miibus);
2606 	FXP_LOCK(sc);
2607 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2608 		PHY_RESET(miisc);
2609 	mii_mediachg(mii);
2610 	FXP_UNLOCK(sc);
2611 	return (0);
2612 }
2613 
2614 /*
2615  * Notify the world which media we're using.
2616  */
2617 static void
2618 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2619 {
2620 	struct fxp_softc *sc = if_getsoftc(ifp);
2621 	struct mii_data *mii;
2622 
2623 	mii = device_get_softc(sc->miibus);
2624 	FXP_LOCK(sc);
2625 	mii_pollstat(mii);
2626 	ifmr->ifm_active = mii->mii_media_active;
2627 	ifmr->ifm_status = mii->mii_media_status;
2628 	FXP_UNLOCK(sc);
2629 }
2630 
2631 /*
2632  * Add a buffer to the end of the RFA buffer list.
2633  * Return 0 if successful, 1 for failure. A failure results in
2634  * reusing the RFA buffer.
2635  * The RFA struct is stuck at the beginning of mbuf cluster and the
2636  * data pointer is fixed up to point just past it.
2637  */
2638 static int
2639 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2640 {
2641 	struct mbuf *m;
2642 	struct fxp_rfa *rfa;
2643 	bus_dmamap_t tmp_map;
2644 	int error;
2645 
2646 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2647 	if (m == NULL)
2648 		return (ENOBUFS);
2649 
2650 	/*
2651 	 * Move the data pointer up so that the incoming data packet
2652 	 * will be 32-bit aligned.
2653 	 */
2654 	m->m_data += RFA_ALIGNMENT_FUDGE;
2655 
2656 	/*
2657 	 * Get a pointer to the base of the mbuf cluster and move
2658 	 * data start past it.
2659 	 */
2660 	rfa = mtod(m, struct fxp_rfa *);
2661 	m->m_data += sc->rfa_size;
2662 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2663 
2664 	rfa->rfa_status = 0;
2665 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2666 	rfa->actual_size = 0;
2667 	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2668 	    sc->rfa_size;
2669 
2670 	/*
2671 	 * Initialize the rest of the RFA.  Note that since the RFA
2672 	 * is misaligned, we cannot store values directly.  We're thus
2673 	 * using the le32enc() function which handles endianness and
2674 	 * is also alignment-safe.
2675 	 */
2676 	le32enc(&rfa->link_addr, 0xffffffff);
2677 	le32enc(&rfa->rbd_addr, 0xffffffff);
2678 
2679 	/* Map the RFA into DMA memory. */
2680 	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2681 	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2682 	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2683 	if (error) {
2684 		m_freem(m);
2685 		return (error);
2686 	}
2687 
2688 	if (rxp->rx_mbuf != NULL)
2689 		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2690 	tmp_map = sc->spare_map;
2691 	sc->spare_map = rxp->rx_map;
2692 	rxp->rx_map = tmp_map;
2693 	rxp->rx_mbuf = m;
2694 
2695 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2696 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2697 	return (0);
2698 }
2699 
2700 static void
2701 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2702 {
2703 	struct fxp_rfa *p_rfa;
2704 	struct fxp_rx *p_rx;
2705 
2706 	/*
2707 	 * If there are other buffers already on the list, attach this
2708 	 * one to the end by fixing up the tail to point to this one.
2709 	 */
2710 	if (sc->fxp_desc.rx_head != NULL) {
2711 		p_rx = sc->fxp_desc.rx_tail;
2712 		p_rfa = (struct fxp_rfa *)
2713 		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2714 		p_rx->rx_next = rxp;
2715 		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2716 		p_rfa->rfa_control = 0;
2717 		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2718 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2719 	} else {
2720 		rxp->rx_next = NULL;
2721 		sc->fxp_desc.rx_head = rxp;
2722 	}
2723 	sc->fxp_desc.rx_tail = rxp;
2724 }
2725 
2726 static void
2727 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2728 {
2729 	struct mbuf *m;
2730 	struct fxp_rfa *rfa;
2731 
2732 	m = rxp->rx_mbuf;
2733 	m->m_data = m->m_ext.ext_buf;
2734 	/*
2735 	 * Move the data pointer up so that the incoming data packet
2736 	 * will be 32-bit aligned.
2737 	 */
2738 	m->m_data += RFA_ALIGNMENT_FUDGE;
2739 
2740 	/*
2741 	 * Get a pointer to the base of the mbuf cluster and move
2742 	 * data start past it.
2743 	 */
2744 	rfa = mtod(m, struct fxp_rfa *);
2745 	m->m_data += sc->rfa_size;
2746 	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2747 
2748 	rfa->rfa_status = 0;
2749 	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2750 	rfa->actual_size = 0;
2751 
2752 	/*
2753 	 * Initialize the rest of the RFA.  Note that since the RFA
2754 	 * is misaligned, we cannot store values directly.  We're thus
2755 	 * using the le32enc() function which handles endianness and
2756 	 * is also alignment-safe.
2757 	 */
2758 	le32enc(&rfa->link_addr, 0xffffffff);
2759 	le32enc(&rfa->rbd_addr, 0xffffffff);
2760 
2761 	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2762 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2763 }
2764 
2765 static int
2766 fxp_miibus_readreg(device_t dev, int phy, int reg)
2767 {
2768 	struct fxp_softc *sc = device_get_softc(dev);
2769 	int count = 10000;
2770 	int value;
2771 
2772 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2773 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2774 
2775 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2776 	    && count--)
2777 		DELAY(10);
2778 
2779 	if (count <= 0)
2780 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2781 
2782 	return (value & 0xffff);
2783 }
2784 
2785 static int
2786 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2787 {
2788 	struct fxp_softc *sc = device_get_softc(dev);
2789 	int count = 10000;
2790 
2791 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2792 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2793 	    (value & 0xffff));
2794 
2795 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2796 	    count--)
2797 		DELAY(10);
2798 
2799 	if (count <= 0)
2800 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2801 	return (0);
2802 }
2803 
2804 static void
2805 fxp_miibus_statchg(device_t dev)
2806 {
2807 	struct fxp_softc *sc;
2808 	struct mii_data *mii;
2809 	if_t ifp;
2810 
2811 	sc = device_get_softc(dev);
2812 	mii = device_get_softc(sc->miibus);
2813 	ifp = sc->ifp;
2814 	if (mii == NULL || ifp == (void *)NULL ||
2815 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2816 	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2817 	    (IFM_AVALID | IFM_ACTIVE))
2818 		return;
2819 
2820 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2821 	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2822 		sc->cu_resume_bug = 1;
2823 	else
2824 		sc->cu_resume_bug = 0;
2825 	/*
2826 	 * Call fxp_init_body in order to adjust the flow control settings.
2827 	 * Note that the 82557 doesn't support hardware flow control.
2828 	 */
2829 	if (sc->revision == FXP_REV_82557)
2830 		return;
2831 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2832 	fxp_init_body(sc, 0);
2833 }
2834 
2835 static int
2836 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2837 {
2838 	struct fxp_softc *sc = if_getsoftc(ifp);
2839 	struct ifreq *ifr = (struct ifreq *)data;
2840 	struct mii_data *mii;
2841 	int flag, mask, error = 0, reinit;
2842 
2843 	switch (command) {
2844 	case SIOCSIFFLAGS:
2845 		FXP_LOCK(sc);
2846 		/*
2847 		 * If interface is marked up and not running, then start it.
2848 		 * If it is marked down and running, stop it.
2849 		 * XXX If it's up then re-initialize it. This is so flags
2850 		 * such as IFF_PROMISC are handled.
2851 		 */
2852 		if (if_getflags(ifp) & IFF_UP) {
2853 			if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2854 			    ((if_getflags(ifp) ^ sc->if_flags) &
2855 			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2856 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2857 				fxp_init_body(sc, 0);
2858 			} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2859 				fxp_init_body(sc, 1);
2860 		} else {
2861 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2862 				fxp_stop(sc);
2863 		}
2864 		sc->if_flags = if_getflags(ifp);
2865 		FXP_UNLOCK(sc);
2866 		break;
2867 
2868 	case SIOCADDMULTI:
2869 	case SIOCDELMULTI:
2870 		FXP_LOCK(sc);
2871 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2872 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2873 			fxp_init_body(sc, 0);
2874 		}
2875 		FXP_UNLOCK(sc);
2876 		break;
2877 
2878 	case SIOCSIFMEDIA:
2879 	case SIOCGIFMEDIA:
2880 		if (sc->miibus != NULL) {
2881 			mii = device_get_softc(sc->miibus);
2882                         error = ifmedia_ioctl(ifp, ifr,
2883                             &mii->mii_media, command);
2884 		} else {
2885                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2886 		}
2887 		break;
2888 
2889 	case SIOCSIFCAP:
2890 		reinit = 0;
2891 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2892 #ifdef DEVICE_POLLING
2893 		if (mask & IFCAP_POLLING) {
2894 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2895 				error = ether_poll_register(fxp_poll, ifp);
2896 				if (error)
2897 					return(error);
2898 				FXP_LOCK(sc);
2899 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2900 				    FXP_SCB_INTR_DISABLE);
2901 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2902 				FXP_UNLOCK(sc);
2903 			} else {
2904 				error = ether_poll_deregister(ifp);
2905 				/* Enable interrupts in any case */
2906 				FXP_LOCK(sc);
2907 				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2908 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2909 				FXP_UNLOCK(sc);
2910 			}
2911 		}
2912 #endif
2913 		FXP_LOCK(sc);
2914 		if ((mask & IFCAP_TXCSUM) != 0 &&
2915 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2916 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2917 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2918 				if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2919 			else
2920 				if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2921 		}
2922 		if ((mask & IFCAP_RXCSUM) != 0 &&
2923 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2924 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2925 			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2926 				reinit++;
2927 		}
2928 		if ((mask & IFCAP_TSO4) != 0 &&
2929 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2930 			if_togglecapenable(ifp, IFCAP_TSO4);
2931 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2932 				if_sethwassistbits(ifp, CSUM_TSO, 0);
2933 			else
2934 				if_sethwassistbits(ifp, 0, CSUM_TSO);
2935 		}
2936 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2937 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2938 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2939 		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2940 		    (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2941 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2942 			if (sc->revision != FXP_REV_82557)
2943 				flag = FXP_FLAG_LONG_PKT_EN;
2944 			else /* a hack to get long frames on the old chip */
2945 				flag = FXP_FLAG_SAVE_BAD;
2946 			sc->flags ^= flag;
2947 			if (if_getflags(ifp) & IFF_UP)
2948 				reinit++;
2949 		}
2950 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2951 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2952 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2953 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2954 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2955 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2956 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2957 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2958 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2959 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2960 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2961 				    IFCAP_VLAN_HWCSUM);
2962 			reinit++;
2963 		}
2964 		if (reinit > 0 &&
2965 		    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2966 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2967 			fxp_init_body(sc, 0);
2968 		}
2969 		FXP_UNLOCK(sc);
2970 		if_vlancap(ifp);
2971 		break;
2972 
2973 	default:
2974 		error = ether_ioctl(ifp, command, data);
2975 	}
2976 	return (error);
2977 }
2978 
2979 static u_int
2980 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2981 {
2982 	struct fxp_softc *sc = arg;
2983 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2984 
2985 	if (mcsp->mc_cnt < MAXMCADDR)
2986 		bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2987 		    ETHER_ADDR_LEN);
2988 	mcsp->mc_cnt++;
2989 	return (1);
2990 }
2991 
2992 /*
2993  * Fill in the multicast address list and return number of entries.
2994  */
2995 static void
2996 fxp_mc_addrs(struct fxp_softc *sc)
2997 {
2998 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2999 	if_t ifp = sc->ifp;
3000 
3001 	if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
3002 		mcsp->mc_cnt = 0;
3003 		if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
3004 		if (mcsp->mc_cnt >= MAXMCADDR) {
3005 			if_setflagbits(ifp, IFF_ALLMULTI, 0);
3006 			mcsp->mc_cnt = 0;
3007 		}
3008 	}
3009 	mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
3010 }
3011 
3012 /*
3013  * Program the multicast filter.
3014  *
3015  * We have an artificial restriction that the multicast setup command
3016  * must be the first command in the chain, so we take steps to ensure
3017  * this. By requiring this, it allows us to keep up the performance of
3018  * the pre-initialized command ring (esp. link pointers) by not actually
3019  * inserting the mcsetup command in the ring - i.e. its link pointer
3020  * points to the TxCB ring, but the mcsetup descriptor itself is not part
3021  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3022  * lead into the regular TxCB ring when it completes.
3023  */
3024 static void
3025 fxp_mc_setup(struct fxp_softc *sc)
3026 {
3027 	struct fxp_cb_mcs *mcsp;
3028 	int count;
3029 
3030 	FXP_LOCK_ASSERT(sc, MA_OWNED);
3031 
3032 	mcsp = sc->mcsp;
3033 	mcsp->cb_status = 0;
3034 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3035 	mcsp->link_addr = 0xffffffff;
3036 	fxp_mc_addrs(sc);
3037 
3038 	/*
3039 	 * Wait until command unit is idle. This should never be the
3040 	 * case when nothing is queued, but make sure anyway.
3041 	 */
3042 	count = 100;
3043 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3044 	    FXP_SCB_CUS_IDLE && --count)
3045 		DELAY(10);
3046 	if (count == 0) {
3047 		device_printf(sc->dev, "command queue timeout\n");
3048 		return;
3049 	}
3050 
3051 	/*
3052 	 * Start the multicast setup command.
3053 	 */
3054 	fxp_scb_wait(sc);
3055 	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3056 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3057 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3058 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3059 	/* ...and wait for it to complete. */
3060 	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3061 }
3062 
3063 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3064 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3065 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3066 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3067 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3068 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3069 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3070 
3071 #define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3072 
3073 static const struct ucode {
3074 	uint32_t	revision;
3075 	uint32_t	*ucode;
3076 	int		length;
3077 	u_short		int_delay_offset;
3078 	u_short		bundle_max_offset;
3079 } ucode_table[] = {
3080 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3081 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3082 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3083 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3084 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3085 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3086 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3087 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3088 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3089 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3090 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3091 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3092 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3093 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3094 	{ 0, NULL, 0, 0, 0 }
3095 };
3096 
3097 static void
3098 fxp_load_ucode(struct fxp_softc *sc)
3099 {
3100 	const struct ucode *uc;
3101 	struct fxp_cb_ucode *cbp;
3102 	int i;
3103 
3104 	if (sc->flags & FXP_FLAG_NO_UCODE)
3105 		return;
3106 
3107 	for (uc = ucode_table; uc->ucode != NULL; uc++)
3108 		if (sc->revision == uc->revision)
3109 			break;
3110 	if (uc->ucode == NULL)
3111 		return;
3112 	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3113 	cbp->cb_status = 0;
3114 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3115 	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3116 	for (i = 0; i < uc->length; i++)
3117 		cbp->ucode[i] = htole32(uc->ucode[i]);
3118 	if (uc->int_delay_offset)
3119 		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3120 		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3121 	if (uc->bundle_max_offset)
3122 		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3123 		    htole16(sc->tunable_bundle_max);
3124 	/*
3125 	 * Download the ucode to the chip.
3126 	 */
3127 	fxp_scb_wait(sc);
3128 	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3129 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3130 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3131 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3132 	/* ...and wait for it to complete. */
3133 	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3134 	device_printf(sc->dev,
3135 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3136 	    sc->tunable_int_delay,
3137 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3138 	sc->flags |= FXP_FLAG_UCODE;
3139 	bzero(cbp, FXP_TXCB_SZ);
3140 }
3141 
3142 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3143 	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3144 
3145 static void
3146 fxp_sysctl_node(struct fxp_softc *sc)
3147 {
3148 	struct sysctl_ctx_list *ctx;
3149 	struct sysctl_oid_list *child, *parent;
3150 	struct sysctl_oid *tree;
3151 	struct fxp_hwstats *hsp;
3152 
3153 	ctx = device_get_sysctl_ctx(sc->dev);
3154 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3155 
3156 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3157 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3158 	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3159 	    "FXP driver receive interrupt microcode bundling delay");
3160 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3161 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3162 	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3163 	    "FXP driver receive interrupt microcode bundle size limit");
3164 	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3165 	    "FXP RNR events");
3166 
3167 	/*
3168 	 * Pull in device tunables.
3169 	 */
3170 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3171 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3172 	(void) resource_int_value(device_get_name(sc->dev),
3173 	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3174 	(void) resource_int_value(device_get_name(sc->dev),
3175 	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3176 	sc->rnr = 0;
3177 
3178 	hsp = &sc->fxp_hwstats;
3179 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3180 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3181 	parent = SYSCTL_CHILDREN(tree);
3182 
3183 	/* Rx MAC statistics. */
3184 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3185 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3186 	child = SYSCTL_CHILDREN(tree);
3187 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3188 	    &hsp->rx_good, "Good frames");
3189 	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3190 	    &hsp->rx_crc_errors, "CRC errors");
3191 	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3192 	    &hsp->rx_alignment_errors, "Alignment errors");
3193 	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3194 	    &hsp->rx_rnr_errors, "RNR errors");
3195 	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3196 	    &hsp->rx_overrun_errors, "Overrun errors");
3197 	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3198 	    &hsp->rx_cdt_errors, "Collision detect errors");
3199 	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3200 	    &hsp->rx_shortframes, "Short frame errors");
3201 	if (sc->revision >= FXP_REV_82558_A4) {
3202 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3203 		    &hsp->rx_pause, "Pause frames");
3204 		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3205 		    &hsp->rx_controls, "Unsupported control frames");
3206 	}
3207 	if (sc->revision >= FXP_REV_82559_A0)
3208 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3209 		    &hsp->rx_tco, "TCO frames");
3210 
3211 	/* Tx MAC statistics. */
3212 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3213 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3214 	child = SYSCTL_CHILDREN(tree);
3215 	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3216 	    &hsp->tx_good, "Good frames");
3217 	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3218 	    &hsp->tx_maxcols, "Maximum collisions errors");
3219 	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3220 	    &hsp->tx_latecols, "Late collisions errors");
3221 	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3222 	    &hsp->tx_underruns, "Underrun errors");
3223 	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3224 	    &hsp->tx_lostcrs, "Lost carrier sense");
3225 	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3226 	    &hsp->tx_deffered, "Deferred");
3227 	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3228 	    &hsp->tx_single_collisions, "Single collisions");
3229 	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3230 	    &hsp->tx_multiple_collisions, "Multiple collisions");
3231 	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3232 	    &hsp->tx_total_collisions, "Total collisions");
3233 	if (sc->revision >= FXP_REV_82558_A4)
3234 		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3235 		    &hsp->tx_pause, "Pause frames");
3236 	if (sc->revision >= FXP_REV_82559_A0)
3237 		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3238 		    &hsp->tx_tco, "TCO frames");
3239 }
3240 
3241 #undef FXP_SYSCTL_STAT_ADD
3242 
3243 static int
3244 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3245 {
3246 	int error, value;
3247 
3248 	value = *(int *)arg1;
3249 	error = sysctl_handle_int(oidp, &value, 0, req);
3250 	if (error || !req->newptr)
3251 		return (error);
3252 	if (value < low || value > high)
3253 		return (EINVAL);
3254 	*(int *)arg1 = value;
3255 	return (0);
3256 }
3257 
3258 /*
3259  * Interrupt delay is expressed in microseconds, a multiplier is used
3260  * to convert this to the appropriate clock ticks before using.
3261  */
3262 static int
3263 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3264 {
3265 
3266 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3267 }
3268 
3269 static int
3270 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3271 {
3272 
3273 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3274 }
3275