1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1995, David Greenman 5 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 /* 34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 35 */ 36 37 #ifdef HAVE_KERNEL_OPTION_HEADERS 38 #include "opt_device_polling.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kernel.h> 46 #include <sys/mbuf.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/module.h> 50 #include <sys/mutex.h> 51 #include <sys/rman.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 56 #include <net/bpf.h> 57 #include <net/ethernet.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_arp.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 #include <net/if_types.h> 64 #include <net/if_vlan_var.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/tcp.h> 70 #include <netinet/udp.h> 71 72 #include <machine/bus.h> 73 #include <machine/in_cksum.h> 74 #include <machine/resource.h> 75 76 #include <dev/pci/pcivar.h> 77 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */ 78 79 #include <dev/mii/mii.h> 80 #include <dev/mii/miivar.h> 81 82 #include <dev/fxp/if_fxpreg.h> 83 #include <dev/fxp/if_fxpvar.h> 84 #include <dev/fxp/rcvbundl.h> 85 86 MODULE_DEPEND(fxp, pci, 1, 1, 1); 87 MODULE_DEPEND(fxp, ether, 1, 1, 1); 88 MODULE_DEPEND(fxp, miibus, 1, 1, 1); 89 #include "miibus_if.h" 90 91 /* 92 * NOTE! On !x86 we typically have an alignment constraint. The 93 * card DMAs the packet immediately following the RFA. However, 94 * the first thing in the packet is a 14-byte Ethernet header. 95 * This means that the packet is misaligned. To compensate, 96 * we actually offset the RFA 2 bytes into the cluster. This 97 * alignes the packet after the Ethernet header at a 32-bit 98 * boundary. HOWEVER! This means that the RFA is misaligned! 99 */ 100 #define RFA_ALIGNMENT_FUDGE 2 101 102 /* 103 * Set initial transmit threshold at 64 (512 bytes). This is 104 * increased by 64 (512 bytes) at a time, to maximum of 192 105 * (1536 bytes), if an underrun occurs. 106 */ 107 static int tx_threshold = 64; 108 109 /* 110 * The configuration byte map has several undefined fields which 111 * must be one or must be zero. Set up a template for these bits. 112 * The actual configuration is performed in fxp_init_body. 113 * 114 * See struct fxp_cb_config for the bit definitions. 115 */ 116 static const u_char fxp_cb_config_template[] = { 117 0x0, 0x0, /* cb_status */ 118 0x0, 0x0, /* cb_command */ 119 0x0, 0x0, 0x0, 0x0, /* link_addr */ 120 0x0, /* 0 */ 121 0x0, /* 1 */ 122 0x0, /* 2 */ 123 0x0, /* 3 */ 124 0x0, /* 4 */ 125 0x0, /* 5 */ 126 0x32, /* 6 */ 127 0x0, /* 7 */ 128 0x0, /* 8 */ 129 0x0, /* 9 */ 130 0x6, /* 10 */ 131 0x0, /* 11 */ 132 0x0, /* 12 */ 133 0x0, /* 13 */ 134 0xf2, /* 14 */ 135 0x48, /* 15 */ 136 0x0, /* 16 */ 137 0x40, /* 17 */ 138 0xf0, /* 18 */ 139 0x0, /* 19 */ 140 0x3f, /* 20 */ 141 0x5, /* 21 */ 142 0x0, /* 22 */ 143 0x0, /* 23 */ 144 0x0, /* 24 */ 145 0x0, /* 25 */ 146 0x0, /* 26 */ 147 0x0, /* 27 */ 148 0x0, /* 28 */ 149 0x0, /* 29 */ 150 0x0, /* 30 */ 151 0x0 /* 31 */ 152 }; 153 154 /* 155 * Claim various Intel PCI device identifiers for this driver. The 156 * sub-vendor and sub-device field are extensively used to identify 157 * particular variants, but we don't currently differentiate between 158 * them. 159 */ 160 static const struct fxp_ident fxp_ident_table[] = { 161 { 0x8086, 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" }, 162 { 0x8086, 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" }, 163 { 0x8086, 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 164 { 0x8086, 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, 165 { 0x8086, 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 166 { 0x8086, 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 167 { 0x8086, 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 168 { 0x8086, 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 169 { 0x8086, 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, 170 { 0x8086, 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, 171 { 0x8086, 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 172 { 0x8086, 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 173 { 0x8086, 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 174 { 0x8086, 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, 175 { 0x8086, 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, 176 { 0x8086, 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, 177 { 0x8086, 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, 178 { 0x8086, 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, 179 { 0x8086, 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" }, 180 { 0x8086, 0x1064, -1, 6, "Intel 82562EZ (ICH6)" }, 181 { 0x8086, 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, 182 { 0x8086, 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, 183 { 0x8086, 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, 184 { 0x8086, 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" }, 185 { 0x8086, 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" }, 186 { 0x8086, 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" }, 187 { 0x8086, 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" }, 188 { 0x8086, 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" }, 189 { 0x8086, 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" }, 190 { 0x8086, 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" }, 191 { 0x8086, 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" }, 192 { 0x8086, 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" }, 193 { 0x8086, 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" }, 194 { 0x8086, 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" }, 195 { 0x8086, 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" }, 196 { 0x8086, 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" }, 197 { 0x8086, 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" }, 198 { 0x8086, 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" }, 199 { 0x8086, 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" }, 200 { 0x8086, 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" }, 201 { 0x8086, 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" }, 202 { 0x8086, 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" }, 203 { 0x8086, 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" }, 204 { 0x8086, 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, 205 { 0x8086, 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" }, 206 { 0, 0, -1, 0, NULL }, 207 }; 208 209 #ifdef FXP_IP_CSUM_WAR 210 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 211 #else 212 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 213 #endif 214 215 static int fxp_probe(device_t dev); 216 static int fxp_attach(device_t dev); 217 static int fxp_detach(device_t dev); 218 static int fxp_shutdown(device_t dev); 219 static int fxp_suspend(device_t dev); 220 static int fxp_resume(device_t dev); 221 222 static const struct fxp_ident *fxp_find_ident(device_t dev); 223 static void fxp_intr(void *xsc); 224 static void fxp_rxcsum(struct fxp_softc *sc, if_t ifp, 225 struct mbuf *m, uint16_t status, int pos); 226 static int fxp_intr_body(struct fxp_softc *sc, if_t ifp, 227 uint8_t statack, int count); 228 static void fxp_init(void *xsc); 229 static void fxp_init_body(struct fxp_softc *sc, int); 230 static void fxp_tick(void *xsc); 231 static void fxp_start(if_t ifp); 232 static void fxp_start_body(if_t ifp); 233 static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head); 234 static void fxp_txeof(struct fxp_softc *sc); 235 static void fxp_stop(struct fxp_softc *sc); 236 static void fxp_release(struct fxp_softc *sc); 237 static int fxp_ioctl(if_t ifp, u_long command, 238 caddr_t data); 239 static void fxp_watchdog(struct fxp_softc *sc); 240 static void fxp_add_rfabuf(struct fxp_softc *sc, 241 struct fxp_rx *rxp); 242 static void fxp_discard_rfabuf(struct fxp_softc *sc, 243 struct fxp_rx *rxp); 244 static int fxp_new_rfabuf(struct fxp_softc *sc, 245 struct fxp_rx *rxp); 246 static void fxp_mc_addrs(struct fxp_softc *sc); 247 static void fxp_mc_setup(struct fxp_softc *sc); 248 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, 249 int autosize); 250 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, 251 uint16_t data); 252 static void fxp_autosize_eeprom(struct fxp_softc *sc); 253 static void fxp_load_eeprom(struct fxp_softc *sc); 254 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, 255 int offset, int words); 256 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, 257 int offset, int words); 258 static int fxp_ifmedia_upd(if_t ifp); 259 static void fxp_ifmedia_sts(if_t ifp, 260 struct ifmediareq *ifmr); 261 static int fxp_serial_ifmedia_upd(if_t ifp); 262 static void fxp_serial_ifmedia_sts(if_t ifp, 263 struct ifmediareq *ifmr); 264 static int fxp_miibus_readreg(device_t dev, int phy, int reg); 265 static int fxp_miibus_writereg(device_t dev, int phy, int reg, 266 int value); 267 static void fxp_miibus_statchg(device_t dev); 268 static void fxp_load_ucode(struct fxp_softc *sc); 269 static void fxp_update_stats(struct fxp_softc *sc); 270 static void fxp_sysctl_node(struct fxp_softc *sc); 271 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, 272 int low, int high); 273 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); 274 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); 275 static void fxp_scb_wait(struct fxp_softc *sc); 276 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); 277 static void fxp_dma_wait(struct fxp_softc *sc, 278 volatile uint16_t *status, bus_dma_tag_t dmat, 279 bus_dmamap_t map); 280 281 static device_method_t fxp_methods[] = { 282 /* Device interface */ 283 DEVMETHOD(device_probe, fxp_probe), 284 DEVMETHOD(device_attach, fxp_attach), 285 DEVMETHOD(device_detach, fxp_detach), 286 DEVMETHOD(device_shutdown, fxp_shutdown), 287 DEVMETHOD(device_suspend, fxp_suspend), 288 DEVMETHOD(device_resume, fxp_resume), 289 290 /* MII interface */ 291 DEVMETHOD(miibus_readreg, fxp_miibus_readreg), 292 DEVMETHOD(miibus_writereg, fxp_miibus_writereg), 293 DEVMETHOD(miibus_statchg, fxp_miibus_statchg), 294 295 DEVMETHOD_END 296 }; 297 298 static driver_t fxp_driver = { 299 "fxp", 300 fxp_methods, 301 sizeof(struct fxp_softc), 302 }; 303 304 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY); 305 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table, 306 nitems(fxp_ident_table) - 1); 307 DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL); 308 309 static struct resource_spec fxp_res_spec_mem[] = { 310 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, 311 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 312 { -1, 0 } 313 }; 314 315 static struct resource_spec fxp_res_spec_io[] = { 316 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, 317 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 318 { -1, 0 } 319 }; 320 321 /* 322 * Wait for the previous command to be accepted (but not necessarily 323 * completed). 324 */ 325 static void 326 fxp_scb_wait(struct fxp_softc *sc) 327 { 328 union { 329 uint16_t w; 330 uint8_t b[2]; 331 } flowctl; 332 int i = 10000; 333 334 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) 335 DELAY(2); 336 if (i == 0) { 337 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH); 338 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS); 339 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", 340 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), 341 CSR_READ_1(sc, FXP_CSR_SCB_STATACK), 342 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); 343 } 344 } 345 346 static void 347 fxp_scb_cmd(struct fxp_softc *sc, int cmd) 348 { 349 350 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { 351 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); 352 fxp_scb_wait(sc); 353 } 354 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); 355 } 356 357 static void 358 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, 359 bus_dma_tag_t dmat, bus_dmamap_t map) 360 { 361 int i; 362 363 for (i = 10000; i > 0; i--) { 364 DELAY(2); 365 bus_dmamap_sync(dmat, map, 366 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 367 if ((le16toh(*status) & FXP_CB_STATUS_C) != 0) 368 break; 369 } 370 if (i == 0) 371 device_printf(sc->dev, "DMA timeout\n"); 372 } 373 374 static const struct fxp_ident * 375 fxp_find_ident(device_t dev) 376 { 377 uint16_t vendor; 378 uint16_t device; 379 uint8_t revid; 380 const struct fxp_ident *ident; 381 382 vendor = pci_get_vendor(dev); 383 device = pci_get_device(dev); 384 revid = pci_get_revid(dev); 385 for (ident = fxp_ident_table; ident->name != NULL; ident++) { 386 if (ident->vendor == vendor && ident->device == device && 387 (ident->revid == revid || ident->revid == -1)) { 388 return (ident); 389 } 390 } 391 return (NULL); 392 } 393 394 /* 395 * Return identification string if this device is ours. 396 */ 397 static int 398 fxp_probe(device_t dev) 399 { 400 const struct fxp_ident *ident; 401 402 ident = fxp_find_ident(dev); 403 if (ident != NULL) { 404 device_set_desc(dev, ident->name); 405 return (BUS_PROBE_DEFAULT); 406 } 407 return (ENXIO); 408 } 409 410 static void 411 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 412 { 413 uint32_t *addr; 414 415 if (error) 416 return; 417 418 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 419 addr = arg; 420 *addr = segs->ds_addr; 421 } 422 423 static int 424 fxp_attach(device_t dev) 425 { 426 struct fxp_softc *sc; 427 struct fxp_cb_tx *tcbp; 428 struct fxp_tx *txp; 429 struct fxp_rx *rxp; 430 if_t ifp; 431 uint32_t val; 432 uint16_t data; 433 u_char eaddr[ETHER_ADDR_LEN]; 434 int error, flags, i, pmc, prefer_iomap; 435 436 error = 0; 437 sc = device_get_softc(dev); 438 sc->dev = dev; 439 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 440 MTX_DEF); 441 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); 442 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, 443 fxp_serial_ifmedia_sts); 444 445 ifp = sc->ifp = if_gethandle(IFT_ETHER); 446 if (ifp == (void *)NULL) { 447 device_printf(dev, "can not if_alloc()\n"); 448 error = ENOSPC; 449 goto fail; 450 } 451 452 /* 453 * Enable bus mastering. 454 */ 455 pci_enable_busmaster(dev); 456 457 /* 458 * Figure out which we should try first - memory mapping or i/o mapping? 459 * We default to memory mapping. Then we accept an override from the 460 * command line. Then we check to see which one is enabled. 461 */ 462 prefer_iomap = 0; 463 resource_int_value(device_get_name(dev), device_get_unit(dev), 464 "prefer_iomap", &prefer_iomap); 465 if (prefer_iomap) 466 sc->fxp_spec = fxp_res_spec_io; 467 else 468 sc->fxp_spec = fxp_res_spec_mem; 469 470 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 471 if (error) { 472 if (sc->fxp_spec == fxp_res_spec_mem) 473 sc->fxp_spec = fxp_res_spec_io; 474 else 475 sc->fxp_spec = fxp_res_spec_mem; 476 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); 477 } 478 if (error) { 479 device_printf(dev, "could not allocate resources\n"); 480 error = ENXIO; 481 goto fail; 482 } 483 484 if (bootverbose) { 485 device_printf(dev, "using %s space register mapping\n", 486 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); 487 } 488 489 /* 490 * Put CU/RU idle state and prepare full reset. 491 */ 492 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 493 DELAY(10); 494 /* Full reset and disable interrupts. */ 495 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 496 DELAY(10); 497 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 498 499 /* 500 * Find out how large of an SEEPROM we have. 501 */ 502 fxp_autosize_eeprom(sc); 503 fxp_load_eeprom(sc); 504 505 /* 506 * Find out the chip revision; lump all 82557 revs together. 507 */ 508 sc->ident = fxp_find_ident(dev); 509 if (sc->ident->ich > 0) { 510 /* Assume ICH controllers are 82559. */ 511 sc->revision = FXP_REV_82559_A0; 512 } else { 513 data = sc->eeprom[FXP_EEPROM_MAP_CNTR]; 514 if ((data >> 8) == 1) 515 sc->revision = FXP_REV_82557; 516 else 517 sc->revision = pci_get_revid(dev); 518 } 519 520 /* 521 * Check availability of WOL. 82559ER does not support WOL. 522 */ 523 if (sc->revision >= FXP_REV_82558_A4 && 524 sc->revision != FXP_REV_82559S_A) { 525 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 526 if ((data & 0x20) != 0 && 527 pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) 528 sc->flags |= FXP_FLAG_WOLCAP; 529 } 530 531 if (sc->revision == FXP_REV_82550_C) { 532 /* 533 * 82550C with server extension requires microcode to 534 * receive fragmented UDP datagrams. However if the 535 * microcode is used for client-only featured 82550C 536 * it locks up controller. 537 */ 538 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 539 if ((data & 0x0400) == 0) 540 sc->flags |= FXP_FLAG_NO_UCODE; 541 } 542 543 /* Receiver lock-up workaround detection. */ 544 if (sc->revision < FXP_REV_82558_A4) { 545 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; 546 if ((data & 0x03) != 0x03) { 547 sc->flags |= FXP_FLAG_RXBUG; 548 device_printf(dev, "Enabling Rx lock-up workaround\n"); 549 } 550 } 551 552 /* 553 * Determine whether we must use the 503 serial interface. 554 */ 555 data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY]; 556 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 557 && (data & FXP_PHY_SERIAL_ONLY)) 558 sc->flags |= FXP_FLAG_SERIAL_MEDIA; 559 560 fxp_sysctl_node(sc); 561 /* 562 * Enable workarounds for certain chip revision deficiencies. 563 * 564 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly 565 * some systems based a normal 82559 design, have a defect where 566 * the chip can cause a PCI protocol violation if it receives 567 * a CU_RESUME command when it is entering the IDLE state. The 568 * workaround is to disable Dynamic Standby Mode, so the chip never 569 * deasserts CLKRUN#, and always remains in an active state. 570 * 571 * See Intel 82801BA/82801BAM Specification Update, Errata #30. 572 */ 573 if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) || 574 (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) { 575 data = sc->eeprom[FXP_EEPROM_MAP_ID]; 576 if (data & 0x02) { /* STB enable */ 577 uint16_t cksum; 578 int i; 579 580 device_printf(dev, 581 "Disabling dynamic standby mode in EEPROM\n"); 582 data &= ~0x02; 583 sc->eeprom[FXP_EEPROM_MAP_ID] = data; 584 fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1); 585 device_printf(dev, "New EEPROM ID: 0x%x\n", data); 586 cksum = 0; 587 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 588 cksum += sc->eeprom[i]; 589 i = (1 << sc->eeprom_size) - 1; 590 cksum = 0xBABA - cksum; 591 fxp_write_eeprom(sc, &cksum, i, 1); 592 device_printf(dev, 593 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", 594 i, sc->eeprom[i], cksum); 595 sc->eeprom[i] = cksum; 596 /* 597 * If the user elects to continue, try the software 598 * workaround, as it is better than nothing. 599 */ 600 sc->flags |= FXP_FLAG_CU_RESUME_BUG; 601 } 602 } 603 604 /* 605 * If we are not a 82557 chip, we can enable extended features. 606 */ 607 if (sc->revision != FXP_REV_82557) { 608 /* 609 * If MWI is enabled in the PCI configuration, and there 610 * is a valid cacheline size (8 or 16 dwords), then tell 611 * the board to turn on MWI. 612 */ 613 val = pci_read_config(dev, PCIR_COMMAND, 2); 614 if (val & PCIM_CMD_MWRICEN && 615 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) 616 sc->flags |= FXP_FLAG_MWI_ENABLE; 617 618 /* turn on the extended TxCB feature */ 619 sc->flags |= FXP_FLAG_EXT_TXCB; 620 621 /* enable reception of long frames for VLAN */ 622 sc->flags |= FXP_FLAG_LONG_PKT_EN; 623 } else { 624 /* a hack to get long VLAN frames on a 82557 */ 625 sc->flags |= FXP_FLAG_SAVE_BAD; 626 } 627 628 /* For 82559 or later chips, Rx checksum offload is supported. */ 629 if (sc->revision >= FXP_REV_82559_A0) { 630 /* 82559ER does not support Rx checksum offloading. */ 631 if (sc->ident->device != 0x1209) 632 sc->flags |= FXP_FLAG_82559_RXCSUM; 633 } 634 /* 635 * Enable use of extended RFDs and TCBs for 82550 636 * and later chips. Note: we need extended TXCB support 637 * too, but that's already enabled by the code above. 638 * Be careful to do this only on the right devices. 639 */ 640 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || 641 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F 642 || sc->revision == FXP_REV_82551_10) { 643 sc->rfa_size = sizeof (struct fxp_rfa); 644 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; 645 sc->flags |= FXP_FLAG_EXT_RFA; 646 /* Use extended RFA instead of 82559 checksum mode. */ 647 sc->flags &= ~FXP_FLAG_82559_RXCSUM; 648 } else { 649 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; 650 sc->tx_cmd = FXP_CB_COMMAND_XMIT; 651 } 652 653 /* 654 * Allocate DMA tags and DMA safe memory. 655 */ 656 sc->maxtxseg = FXP_NTXSEG; 657 sc->maxsegsize = MCLBYTES; 658 if (sc->flags & FXP_FLAG_EXT_RFA) { 659 sc->maxtxseg--; 660 sc->maxsegsize = FXP_TSO_SEGSIZE; 661 } 662 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 663 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 664 sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header), 665 sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag); 666 if (error) { 667 device_printf(dev, "could not create TX DMA tag\n"); 668 goto fail; 669 } 670 671 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, 672 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 673 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag); 674 if (error) { 675 device_printf(dev, "could not create RX DMA tag\n"); 676 goto fail; 677 } 678 679 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 680 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 681 sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0, 682 NULL, NULL, &sc->fxp_stag); 683 if (error) { 684 device_printf(dev, "could not create stats DMA tag\n"); 685 goto fail; 686 } 687 688 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, 689 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap); 690 if (error) { 691 device_printf(dev, "could not allocate stats DMA memory\n"); 692 goto fail; 693 } 694 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, 695 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 696 BUS_DMA_NOWAIT); 697 if (error) { 698 device_printf(dev, "could not load the stats DMA buffer\n"); 699 goto fail; 700 } 701 702 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 703 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 704 FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag); 705 if (error) { 706 device_printf(dev, "could not create TxCB DMA tag\n"); 707 goto fail; 708 } 709 710 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, 711 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map); 712 if (error) { 713 device_printf(dev, "could not allocate TxCB DMA memory\n"); 714 goto fail; 715 } 716 717 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, 718 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, 719 &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT); 720 if (error) { 721 device_printf(dev, "could not load TxCB DMA buffer\n"); 722 goto fail; 723 } 724 725 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, 726 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 727 sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0, 728 NULL, NULL, &sc->mcs_tag); 729 if (error) { 730 device_printf(dev, 731 "could not create multicast setup DMA tag\n"); 732 goto fail; 733 } 734 735 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, 736 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map); 737 if (error) { 738 device_printf(dev, 739 "could not allocate multicast setup DMA memory\n"); 740 goto fail; 741 } 742 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, 743 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 744 BUS_DMA_NOWAIT); 745 if (error) { 746 device_printf(dev, 747 "can't load the multicast setup DMA buffer\n"); 748 goto fail; 749 } 750 751 /* 752 * Pre-allocate the TX DMA maps and setup the pointers to 753 * the TX command blocks. 754 */ 755 txp = sc->fxp_desc.tx_list; 756 tcbp = sc->fxp_desc.cbl_list; 757 for (i = 0; i < FXP_NTXCB; i++) { 758 txp[i].tx_cb = tcbp + i; 759 error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map); 760 if (error) { 761 device_printf(dev, "can't create DMA map for TX\n"); 762 goto fail; 763 } 764 } 765 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map); 766 if (error) { 767 device_printf(dev, "can't create spare DMA map\n"); 768 goto fail; 769 } 770 771 /* 772 * Pre-allocate our receive buffers. 773 */ 774 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; 775 for (i = 0; i < FXP_NRFABUFS; i++) { 776 rxp = &sc->fxp_desc.rx_list[i]; 777 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map); 778 if (error) { 779 device_printf(dev, "can't create DMA map for RX\n"); 780 goto fail; 781 } 782 if (fxp_new_rfabuf(sc, rxp) != 0) { 783 error = ENOMEM; 784 goto fail; 785 } 786 fxp_add_rfabuf(sc, rxp); 787 } 788 789 /* 790 * Read MAC address. 791 */ 792 eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff; 793 eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8; 794 eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff; 795 eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8; 796 eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff; 797 eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8; 798 if (bootverbose) { 799 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", 800 pci_get_vendor(dev), pci_get_device(dev), 801 pci_get_subvendor(dev), pci_get_subdevice(dev), 802 pci_get_revid(dev)); 803 device_printf(dev, "Dynamic Standby mode is %s\n", 804 sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" : 805 "disabled"); 806 } 807 808 /* 809 * If this is only a 10Mbps device, then there is no MII, and 810 * the PHY will use a serial interface instead. 811 * 812 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 813 * doesn't have a programming interface of any sort. The 814 * media is sensed automatically based on how the link partner 815 * is configured. This is, in essence, manual configuration. 816 */ 817 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { 818 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 819 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); 820 } else { 821 /* 822 * i82557 wedge when isolating all of their PHYs. 823 */ 824 flags = MIIF_NOISOLATE; 825 if (sc->revision >= FXP_REV_82558_A4) 826 flags |= MIIF_DOPAUSE; 827 error = mii_attach(dev, &sc->miibus, ifp, 828 (ifm_change_cb_t)fxp_ifmedia_upd, 829 (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK, 830 MII_PHY_ANY, MII_OFFSET_ANY, flags); 831 if (error != 0) { 832 device_printf(dev, "attaching PHYs failed\n"); 833 goto fail; 834 } 835 } 836 837 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 838 if_setdev(ifp, dev); 839 if_setinitfn(ifp, fxp_init); 840 if_setsoftc(ifp, sc); 841 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 842 if_setioctlfn(ifp, fxp_ioctl); 843 if_setstartfn(ifp, fxp_start); 844 845 if_setcapabilities(ifp, 0); 846 if_setcapenable(ifp, 0); 847 848 /* Enable checksum offload/TSO for 82550 or better chips */ 849 if (sc->flags & FXP_FLAG_EXT_RFA) { 850 if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO); 851 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 852 if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); 853 } 854 855 if (sc->flags & FXP_FLAG_82559_RXCSUM) { 856 if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0); 857 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); 858 } 859 860 if (sc->flags & FXP_FLAG_WOLCAP) { 861 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0); 862 if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0); 863 } 864 865 #ifdef DEVICE_POLLING 866 /* Inform the world we support polling. */ 867 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 868 #endif 869 870 /* 871 * Attach the interface. 872 */ 873 ether_ifattach(ifp, eaddr); 874 875 /* 876 * Tell the upper layer(s) we support long frames. 877 * Must appear after the call to ether_ifattach() because 878 * ether_ifattach() sets ifi_hdrlen to the default value. 879 */ 880 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 881 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); 882 if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0); 883 if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) { 884 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | 885 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); 886 if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING | 887 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); 888 } 889 890 /* 891 * Let the system queue as many packets as we have available 892 * TX descriptors. 893 */ 894 if_setsendqlen(ifp, FXP_NTXCB - 1); 895 if_setsendqready(ifp); 896 897 /* 898 * Hook our interrupt after all initialization is complete. 899 */ 900 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, 901 NULL, fxp_intr, sc, &sc->ih); 902 if (error) { 903 device_printf(dev, "could not setup irq\n"); 904 ether_ifdetach(sc->ifp); 905 goto fail; 906 } 907 908 /* 909 * Configure hardware to reject magic frames otherwise 910 * system will hang on recipt of magic frames. 911 */ 912 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) { 913 FXP_LOCK(sc); 914 /* Clear wakeup events. */ 915 CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); 916 fxp_init_body(sc, 0); 917 fxp_stop(sc); 918 FXP_UNLOCK(sc); 919 } 920 921 fail: 922 if (error) 923 fxp_release(sc); 924 return (error); 925 } 926 927 /* 928 * Release all resources. The softc lock should not be held and the 929 * interrupt should already be torn down. 930 */ 931 static void 932 fxp_release(struct fxp_softc *sc) 933 { 934 struct fxp_rx *rxp; 935 struct fxp_tx *txp; 936 int i; 937 938 FXP_LOCK_ASSERT(sc, MA_NOTOWNED); 939 KASSERT(sc->ih == NULL, 940 ("fxp_release() called with intr handle still active")); 941 if (sc->miibus) 942 device_delete_child(sc->dev, sc->miibus); 943 bus_generic_detach(sc->dev); 944 ifmedia_removeall(&sc->sc_media); 945 if (sc->fxp_desc.cbl_list) { 946 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); 947 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, 948 sc->cbl_map); 949 } 950 if (sc->fxp_stats) { 951 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); 952 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); 953 } 954 if (sc->mcsp) { 955 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); 956 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); 957 } 958 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); 959 if (sc->fxp_rxmtag) { 960 for (i = 0; i < FXP_NRFABUFS; i++) { 961 rxp = &sc->fxp_desc.rx_list[i]; 962 if (rxp->rx_mbuf != NULL) { 963 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 964 BUS_DMASYNC_POSTREAD); 965 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 966 m_freem(rxp->rx_mbuf); 967 } 968 bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map); 969 } 970 bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map); 971 bus_dma_tag_destroy(sc->fxp_rxmtag); 972 } 973 if (sc->fxp_txmtag) { 974 for (i = 0; i < FXP_NTXCB; i++) { 975 txp = &sc->fxp_desc.tx_list[i]; 976 if (txp->tx_mbuf != NULL) { 977 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 978 BUS_DMASYNC_POSTWRITE); 979 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 980 m_freem(txp->tx_mbuf); 981 } 982 bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map); 983 } 984 bus_dma_tag_destroy(sc->fxp_txmtag); 985 } 986 if (sc->fxp_stag) 987 bus_dma_tag_destroy(sc->fxp_stag); 988 if (sc->cbl_tag) 989 bus_dma_tag_destroy(sc->cbl_tag); 990 if (sc->mcs_tag) 991 bus_dma_tag_destroy(sc->mcs_tag); 992 if (sc->ifp) 993 if_free(sc->ifp); 994 995 mtx_destroy(&sc->sc_mtx); 996 } 997 998 /* 999 * Detach interface. 1000 */ 1001 static int 1002 fxp_detach(device_t dev) 1003 { 1004 struct fxp_softc *sc = device_get_softc(dev); 1005 1006 #ifdef DEVICE_POLLING 1007 if (if_getcapenable(sc->ifp) & IFCAP_POLLING) 1008 ether_poll_deregister(sc->ifp); 1009 #endif 1010 1011 FXP_LOCK(sc); 1012 /* 1013 * Stop DMA and drop transmit queue, but disable interrupts first. 1014 */ 1015 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 1016 fxp_stop(sc); 1017 FXP_UNLOCK(sc); 1018 callout_drain(&sc->stat_ch); 1019 1020 /* 1021 * Close down routes etc. 1022 */ 1023 ether_ifdetach(sc->ifp); 1024 1025 /* 1026 * Unhook interrupt before dropping lock. This is to prevent 1027 * races with fxp_intr(). 1028 */ 1029 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); 1030 sc->ih = NULL; 1031 1032 /* Release our allocated resources. */ 1033 fxp_release(sc); 1034 return (0); 1035 } 1036 1037 /* 1038 * Device shutdown routine. Called at system shutdown after sync. The 1039 * main purpose of this routine is to shut off receiver DMA so that 1040 * kernel memory doesn't get clobbered during warmboot. 1041 */ 1042 static int 1043 fxp_shutdown(device_t dev) 1044 { 1045 1046 /* 1047 * Make sure that DMA is disabled prior to reboot. Not doing 1048 * do could allow DMA to corrupt kernel memory during the 1049 * reboot before the driver initializes. 1050 */ 1051 return (fxp_suspend(dev)); 1052 } 1053 1054 /* 1055 * Device suspend routine. Stop the interface and save some PCI 1056 * settings in case the BIOS doesn't restore them properly on 1057 * resume. 1058 */ 1059 static int 1060 fxp_suspend(device_t dev) 1061 { 1062 struct fxp_softc *sc = device_get_softc(dev); 1063 if_t ifp; 1064 int pmc; 1065 uint16_t pmstat; 1066 1067 FXP_LOCK(sc); 1068 1069 ifp = sc->ifp; 1070 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1071 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1072 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1073 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) { 1074 /* Request PME. */ 1075 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1076 sc->flags |= FXP_FLAG_WOL; 1077 /* Reconfigure hardware to accept magic frames. */ 1078 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1079 fxp_init_body(sc, 0); 1080 } 1081 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1082 } 1083 fxp_stop(sc); 1084 1085 sc->suspended = 1; 1086 1087 FXP_UNLOCK(sc); 1088 return (0); 1089 } 1090 1091 /* 1092 * Device resume routine. re-enable busmastering, and restart the interface if 1093 * appropriate. 1094 */ 1095 static int 1096 fxp_resume(device_t dev) 1097 { 1098 struct fxp_softc *sc = device_get_softc(dev); 1099 if_t ifp = sc->ifp; 1100 int pmc; 1101 uint16_t pmstat; 1102 1103 FXP_LOCK(sc); 1104 1105 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1106 sc->flags &= ~FXP_FLAG_WOL; 1107 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1108 /* Disable PME and clear PME status. */ 1109 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1110 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1111 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) 1112 CSR_WRITE_1(sc, FXP_CSR_PMDR, 1113 CSR_READ_1(sc, FXP_CSR_PMDR)); 1114 } 1115 1116 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1117 DELAY(10); 1118 1119 /* reinitialize interface if necessary */ 1120 if (if_getflags(ifp) & IFF_UP) 1121 fxp_init_body(sc, 1); 1122 1123 sc->suspended = 0; 1124 1125 FXP_UNLOCK(sc); 1126 return (0); 1127 } 1128 1129 static void 1130 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 1131 { 1132 uint16_t reg; 1133 int x; 1134 1135 /* 1136 * Shift in data. 1137 */ 1138 for (x = 1 << (length - 1); x; x >>= 1) { 1139 if (data & x) 1140 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1141 else 1142 reg = FXP_EEPROM_EECS; 1143 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1144 DELAY(1); 1145 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1146 DELAY(1); 1147 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1148 DELAY(1); 1149 } 1150 } 1151 1152 /* 1153 * Read from the serial EEPROM. Basically, you manually shift in 1154 * the read opcode (one bit at a time) and then shift in the address, 1155 * and then you shift out the data (all of this one bit at a time). 1156 * The word size is 16 bits, so you have to provide the address for 1157 * every 16 bits of data. 1158 */ 1159 static uint16_t 1160 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) 1161 { 1162 uint16_t reg, data; 1163 int x; 1164 1165 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1166 /* 1167 * Shift in read opcode. 1168 */ 1169 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); 1170 /* 1171 * Shift in address. 1172 */ 1173 data = 0; 1174 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { 1175 if (offset & x) 1176 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 1177 else 1178 reg = FXP_EEPROM_EECS; 1179 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1180 DELAY(1); 1181 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1182 DELAY(1); 1183 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1184 DELAY(1); 1185 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; 1186 data++; 1187 if (autosize && reg == 0) { 1188 sc->eeprom_size = data; 1189 break; 1190 } 1191 } 1192 /* 1193 * Shift out data. 1194 */ 1195 data = 0; 1196 reg = FXP_EEPROM_EECS; 1197 for (x = 1 << 15; x; x >>= 1) { 1198 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 1199 DELAY(1); 1200 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1201 data |= x; 1202 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 1203 DELAY(1); 1204 } 1205 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1206 DELAY(1); 1207 1208 return (data); 1209 } 1210 1211 static void 1212 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) 1213 { 1214 int i; 1215 1216 /* 1217 * Erase/write enable. 1218 */ 1219 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1220 fxp_eeprom_shiftin(sc, 0x4, 3); 1221 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 1222 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1223 DELAY(1); 1224 /* 1225 * Shift in write opcode, address, data. 1226 */ 1227 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1228 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 1229 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 1230 fxp_eeprom_shiftin(sc, data, 16); 1231 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1232 DELAY(1); 1233 /* 1234 * Wait for EEPROM to finish up. 1235 */ 1236 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1237 DELAY(1); 1238 for (i = 0; i < 1000; i++) { 1239 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 1240 break; 1241 DELAY(50); 1242 } 1243 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1244 DELAY(1); 1245 /* 1246 * Erase/write disable. 1247 */ 1248 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 1249 fxp_eeprom_shiftin(sc, 0x4, 3); 1250 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 1251 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 1252 DELAY(1); 1253 } 1254 1255 /* 1256 * From NetBSD: 1257 * 1258 * Figure out EEPROM size. 1259 * 1260 * 559's can have either 64-word or 256-word EEPROMs, the 558 1261 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 1262 * talks about the existence of 16 to 256 word EEPROMs. 1263 * 1264 * The only known sizes are 64 and 256, where the 256 version is used 1265 * by CardBus cards to store CIS information. 1266 * 1267 * The address is shifted in msb-to-lsb, and after the last 1268 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 1269 * after which follows the actual data. We try to detect this zero, by 1270 * probing the data-out bit in the EEPROM control register just after 1271 * having shifted in a bit. If the bit is zero, we assume we've 1272 * shifted enough address bits. The data-out should be tri-state, 1273 * before this, which should translate to a logical one. 1274 */ 1275 static void 1276 fxp_autosize_eeprom(struct fxp_softc *sc) 1277 { 1278 1279 /* guess maximum size of 256 words */ 1280 sc->eeprom_size = 8; 1281 1282 /* autosize */ 1283 (void) fxp_eeprom_getword(sc, 0, 1); 1284 } 1285 1286 static void 1287 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1288 { 1289 int i; 1290 1291 for (i = 0; i < words; i++) 1292 data[i] = fxp_eeprom_getword(sc, offset + i, 0); 1293 } 1294 1295 static void 1296 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 1297 { 1298 int i; 1299 1300 for (i = 0; i < words; i++) 1301 fxp_eeprom_putword(sc, offset + i, data[i]); 1302 } 1303 1304 static void 1305 fxp_load_eeprom(struct fxp_softc *sc) 1306 { 1307 int i; 1308 uint16_t cksum; 1309 1310 fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size); 1311 cksum = 0; 1312 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) 1313 cksum += sc->eeprom[i]; 1314 cksum = 0xBABA - cksum; 1315 if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1]) 1316 device_printf(sc->dev, 1317 "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n", 1318 cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]); 1319 } 1320 1321 /* 1322 * Grab the softc lock and call the real fxp_start_body() routine 1323 */ 1324 static void 1325 fxp_start(if_t ifp) 1326 { 1327 struct fxp_softc *sc = if_getsoftc(ifp); 1328 1329 FXP_LOCK(sc); 1330 fxp_start_body(ifp); 1331 FXP_UNLOCK(sc); 1332 } 1333 1334 /* 1335 * Start packet transmission on the interface. 1336 * This routine must be called with the softc lock held, and is an 1337 * internal entry point only. 1338 */ 1339 static void 1340 fxp_start_body(if_t ifp) 1341 { 1342 struct fxp_softc *sc = if_getsoftc(ifp); 1343 struct mbuf *mb_head; 1344 int txqueued; 1345 1346 FXP_LOCK_ASSERT(sc, MA_OWNED); 1347 1348 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1349 IFF_DRV_RUNNING) 1350 return; 1351 1352 if (sc->tx_queued > FXP_NTXCB_HIWAT) 1353 fxp_txeof(sc); 1354 /* 1355 * We're finished if there is nothing more to add to the list or if 1356 * we're all filled up with buffers to transmit. 1357 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add 1358 * a NOP command when needed. 1359 */ 1360 txqueued = 0; 1361 while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) { 1362 1363 /* 1364 * Grab a packet to transmit. 1365 */ 1366 mb_head = if_dequeue(ifp); 1367 if (mb_head == NULL) 1368 break; 1369 1370 if (fxp_encap(sc, &mb_head)) { 1371 if (mb_head == NULL) 1372 break; 1373 if_sendq_prepend(ifp, mb_head); 1374 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 1375 } 1376 txqueued++; 1377 /* 1378 * Pass packet to bpf if there is a listener. 1379 */ 1380 bpf_mtap_if(ifp, mb_head); 1381 } 1382 1383 /* 1384 * We're finished. If we added to the list, issue a RESUME to get DMA 1385 * going again if suspended. 1386 */ 1387 if (txqueued > 0) { 1388 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1389 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1390 fxp_scb_wait(sc); 1391 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 1392 /* 1393 * Set a 5 second timer just in case we don't hear 1394 * from the card again. 1395 */ 1396 sc->watchdog_timer = 5; 1397 } 1398 } 1399 1400 static int 1401 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head) 1402 { 1403 struct mbuf *m; 1404 struct fxp_tx *txp; 1405 struct fxp_cb_tx *cbp; 1406 struct tcphdr *tcp; 1407 bus_dma_segment_t segs[FXP_NTXSEG]; 1408 int error, i, nseg, tcp_payload; 1409 1410 FXP_LOCK_ASSERT(sc, MA_OWNED); 1411 1412 tcp_payload = 0; 1413 tcp = NULL; 1414 /* 1415 * Get pointer to next available tx desc. 1416 */ 1417 txp = sc->fxp_desc.tx_last->tx_next; 1418 1419 /* 1420 * A note in Appendix B of the Intel 8255x 10/100 Mbps 1421 * Ethernet Controller Family Open Source Software 1422 * Developer Manual says: 1423 * Using software parsing is only allowed with legal 1424 * TCP/IP or UDP/IP packets. 1425 * ... 1426 * For all other datagrams, hardware parsing must 1427 * be used. 1428 * Software parsing appears to truncate ICMP and 1429 * fragmented UDP packets that contain one to three 1430 * bytes in the second (and final) mbuf of the packet. 1431 */ 1432 if (sc->flags & FXP_FLAG_EXT_RFA) 1433 txp->tx_cb->ipcb_ip_activation_high = 1434 FXP_IPCB_HARDWAREPARSING_ENABLE; 1435 1436 m = *m_head; 1437 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1438 /* 1439 * 82550/82551 requires ethernet/IP/TCP headers must be 1440 * contained in the first active transmit buffer. 1441 */ 1442 struct ether_header *eh; 1443 struct ip *ip; 1444 uint32_t ip_off, poff; 1445 1446 if (M_WRITABLE(*m_head) == 0) { 1447 /* Get a writable copy. */ 1448 m = m_dup(*m_head, M_NOWAIT); 1449 m_freem(*m_head); 1450 if (m == NULL) { 1451 *m_head = NULL; 1452 return (ENOBUFS); 1453 } 1454 *m_head = m; 1455 } 1456 ip_off = sizeof(struct ether_header); 1457 m = m_pullup(*m_head, ip_off); 1458 if (m == NULL) { 1459 *m_head = NULL; 1460 return (ENOBUFS); 1461 } 1462 eh = mtod(m, struct ether_header *); 1463 /* Check the existence of VLAN tag. */ 1464 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1465 ip_off = sizeof(struct ether_vlan_header); 1466 m = m_pullup(m, ip_off); 1467 if (m == NULL) { 1468 *m_head = NULL; 1469 return (ENOBUFS); 1470 } 1471 } 1472 m = m_pullup(m, ip_off + sizeof(struct ip)); 1473 if (m == NULL) { 1474 *m_head = NULL; 1475 return (ENOBUFS); 1476 } 1477 ip = (struct ip *)(mtod(m, char *) + ip_off); 1478 poff = ip_off + (ip->ip_hl << 2); 1479 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1480 if (m == NULL) { 1481 *m_head = NULL; 1482 return (ENOBUFS); 1483 } 1484 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1485 m = m_pullup(m, poff + (tcp->th_off << 2)); 1486 if (m == NULL) { 1487 *m_head = NULL; 1488 return (ENOBUFS); 1489 } 1490 1491 /* 1492 * Since 82550/82551 doesn't modify IP length and pseudo 1493 * checksum in the first frame driver should compute it. 1494 */ 1495 ip = (struct ip *)(mtod(m, char *) + ip_off); 1496 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1497 ip->ip_sum = 0; 1498 ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) + 1499 (tcp->th_off << 2)); 1500 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1501 htons(IPPROTO_TCP + (tcp->th_off << 2) + 1502 m->m_pkthdr.tso_segsz)); 1503 /* Compute total TCP payload. */ 1504 tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2); 1505 tcp_payload -= tcp->th_off << 2; 1506 *m_head = m; 1507 } else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) { 1508 /* 1509 * Deal with TCP/IP checksum offload. Note that 1510 * in order for TCP checksum offload to work, 1511 * the pseudo header checksum must have already 1512 * been computed and stored in the checksum field 1513 * in the TCP header. The stack should have 1514 * already done this for us. 1515 */ 1516 txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1517 if (m->m_pkthdr.csum_flags & CSUM_TCP) 1518 txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET; 1519 1520 #ifdef FXP_IP_CSUM_WAR 1521 /* 1522 * XXX The 82550 chip appears to have trouble 1523 * dealing with IP header checksums in very small 1524 * datagrams, namely fragments from 1 to 3 bytes 1525 * in size. For example, say you want to transmit 1526 * a UDP packet of 1473 bytes. The packet will be 1527 * fragmented over two IP datagrams, the latter 1528 * containing only one byte of data. The 82550 will 1529 * botch the header checksum on the 1-byte fragment. 1530 * As long as the datagram contains 4 or more bytes 1531 * of data, you're ok. 1532 * 1533 * The following code attempts to work around this 1534 * problem: if the datagram is less than 38 bytes 1535 * in size (14 bytes ether header, 20 bytes IP header, 1536 * plus 4 bytes of data), we punt and compute the IP 1537 * header checksum by hand. This workaround doesn't 1538 * work very well, however, since it can be fooled 1539 * by things like VLAN tags and IP options that make 1540 * the header sizes/offsets vary. 1541 */ 1542 1543 if (m->m_pkthdr.csum_flags & CSUM_IP) { 1544 if (m->m_pkthdr.len < 38) { 1545 struct ip *ip; 1546 m->m_data += ETHER_HDR_LEN; 1547 ip = mtod(m, struct ip *); 1548 ip->ip_sum = in_cksum(m, ip->ip_hl << 2); 1549 m->m_data -= ETHER_HDR_LEN; 1550 m->m_pkthdr.csum_flags &= ~CSUM_IP; 1551 } else { 1552 txp->tx_cb->ipcb_ip_activation_high = 1553 FXP_IPCB_HARDWAREPARSING_ENABLE; 1554 txp->tx_cb->ipcb_ip_schedule |= 1555 FXP_IPCB_IP_CHECKSUM_ENABLE; 1556 } 1557 } 1558 #endif 1559 } 1560 1561 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, 1562 segs, &nseg, 0); 1563 if (error == EFBIG) { 1564 m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg); 1565 if (m == NULL) { 1566 m_freem(*m_head); 1567 *m_head = NULL; 1568 return (ENOMEM); 1569 } 1570 *m_head = m; 1571 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, 1572 *m_head, segs, &nseg, 0); 1573 if (error != 0) { 1574 m_freem(*m_head); 1575 *m_head = NULL; 1576 return (ENOMEM); 1577 } 1578 } else if (error != 0) 1579 return (error); 1580 if (nseg == 0) { 1581 m_freem(*m_head); 1582 *m_head = NULL; 1583 return (EIO); 1584 } 1585 1586 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); 1587 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE); 1588 1589 cbp = txp->tx_cb; 1590 for (i = 0; i < nseg; i++) { 1591 /* 1592 * If this is an 82550/82551, then we're using extended 1593 * TxCBs _and_ we're using checksum offload. This means 1594 * that the TxCB is really an IPCB. One major difference 1595 * between the two is that with plain extended TxCBs, 1596 * the bottom half of the TxCB contains two entries from 1597 * the TBD array, whereas IPCBs contain just one entry: 1598 * one entry (8 bytes) has been sacrificed for the TCP/IP 1599 * checksum offload control bits. So to make things work 1600 * right, we have to start filling in the TBD array 1601 * starting from a different place depending on whether 1602 * the chip is an 82550/82551 or not. 1603 */ 1604 if (sc->flags & FXP_FLAG_EXT_RFA) { 1605 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); 1606 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); 1607 } else { 1608 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); 1609 cbp->tbd[i].tb_size = htole32(segs[i].ds_len); 1610 } 1611 } 1612 if (sc->flags & FXP_FLAG_EXT_RFA) { 1613 /* Configure dynamic TBD for 82550/82551. */ 1614 cbp->tbd_number = 0xFF; 1615 cbp->tbd[nseg].tb_size |= htole32(0x8000); 1616 } else 1617 cbp->tbd_number = nseg; 1618 /* Configure TSO. */ 1619 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1620 cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16); 1621 cbp->tbd[1].tb_size |= htole32(tcp_payload << 16); 1622 cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE | 1623 FXP_IPCB_IP_CHECKSUM_ENABLE | 1624 FXP_IPCB_TCP_PACKET | 1625 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; 1626 } 1627 /* Configure VLAN hardware tag insertion. */ 1628 if ((m->m_flags & M_VLANTAG) != 0) { 1629 cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag); 1630 txp->tx_cb->ipcb_ip_activation_high |= 1631 FXP_IPCB_INSERTVLAN_ENABLE; 1632 } 1633 1634 txp->tx_mbuf = m; 1635 txp->tx_cb->cb_status = 0; 1636 txp->tx_cb->byte_count = 0; 1637 if (sc->tx_queued != FXP_CXINT_THRESH - 1) 1638 txp->tx_cb->cb_command = 1639 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1640 FXP_CB_COMMAND_S); 1641 else 1642 txp->tx_cb->cb_command = 1643 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | 1644 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1645 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) 1646 txp->tx_cb->tx_threshold = tx_threshold; 1647 1648 /* 1649 * Advance the end of list forward. 1650 */ 1651 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); 1652 sc->fxp_desc.tx_last = txp; 1653 1654 /* 1655 * Advance the beginning of the list forward if there are 1656 * no other packets queued (when nothing is queued, tx_first 1657 * sits on the last TxCB that was sent out). 1658 */ 1659 if (sc->tx_queued == 0) 1660 sc->fxp_desc.tx_first = txp; 1661 1662 sc->tx_queued++; 1663 1664 return (0); 1665 } 1666 1667 #ifdef DEVICE_POLLING 1668 static poll_handler_t fxp_poll; 1669 1670 static int 1671 fxp_poll(if_t ifp, enum poll_cmd cmd, int count) 1672 { 1673 struct fxp_softc *sc = if_getsoftc(ifp); 1674 uint8_t statack; 1675 int rx_npkts = 0; 1676 1677 FXP_LOCK(sc); 1678 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 1679 FXP_UNLOCK(sc); 1680 return (rx_npkts); 1681 } 1682 1683 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | 1684 FXP_SCB_STATACK_FR; 1685 if (cmd == POLL_AND_CHECK_STATUS) { 1686 uint8_t tmp; 1687 1688 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); 1689 if (tmp == 0xff || tmp == 0) { 1690 FXP_UNLOCK(sc); 1691 return (rx_npkts); /* nothing to do */ 1692 } 1693 tmp &= ~statack; 1694 /* ack what we can */ 1695 if (tmp != 0) 1696 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); 1697 statack |= tmp; 1698 } 1699 rx_npkts = fxp_intr_body(sc, ifp, statack, count); 1700 FXP_UNLOCK(sc); 1701 return (rx_npkts); 1702 } 1703 #endif /* DEVICE_POLLING */ 1704 1705 /* 1706 * Process interface interrupts. 1707 */ 1708 static void 1709 fxp_intr(void *xsc) 1710 { 1711 struct fxp_softc *sc = xsc; 1712 if_t ifp = sc->ifp; 1713 uint8_t statack; 1714 1715 FXP_LOCK(sc); 1716 if (sc->suspended) { 1717 FXP_UNLOCK(sc); 1718 return; 1719 } 1720 1721 #ifdef DEVICE_POLLING 1722 if (if_getcapenable(ifp) & IFCAP_POLLING) { 1723 FXP_UNLOCK(sc); 1724 return; 1725 } 1726 #endif 1727 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { 1728 /* 1729 * It should not be possible to have all bits set; the 1730 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If 1731 * all bits are set, this may indicate that the card has 1732 * been physically ejected, so ignore it. 1733 */ 1734 if (statack == 0xff) { 1735 FXP_UNLOCK(sc); 1736 return; 1737 } 1738 1739 /* 1740 * First ACK all the interrupts in this pass. 1741 */ 1742 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); 1743 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 1744 fxp_intr_body(sc, ifp, statack, -1); 1745 } 1746 FXP_UNLOCK(sc); 1747 } 1748 1749 static void 1750 fxp_txeof(struct fxp_softc *sc) 1751 { 1752 if_t ifp; 1753 struct fxp_tx *txp; 1754 1755 ifp = sc->ifp; 1756 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1757 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1758 for (txp = sc->fxp_desc.tx_first; sc->tx_queued && 1759 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; 1760 txp = txp->tx_next) { 1761 if (txp->tx_mbuf != NULL) { 1762 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, 1763 BUS_DMASYNC_POSTWRITE); 1764 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); 1765 m_freem(txp->tx_mbuf); 1766 txp->tx_mbuf = NULL; 1767 /* clear this to reset csum offload bits */ 1768 txp->tx_cb->tbd[0].tb_addr = 0; 1769 } 1770 sc->tx_queued--; 1771 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1772 } 1773 sc->fxp_desc.tx_first = txp; 1774 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 1775 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1776 if (sc->tx_queued == 0) 1777 sc->watchdog_timer = 0; 1778 } 1779 1780 static void 1781 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m, 1782 uint16_t status, int pos) 1783 { 1784 struct ether_header *eh; 1785 struct ip *ip; 1786 struct udphdr *uh; 1787 int32_t hlen, len, pktlen, temp32; 1788 uint16_t csum, *opts; 1789 1790 if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) { 1791 if ((status & FXP_RFA_STATUS_PARSE) != 0) { 1792 if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID) 1793 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1794 if (status & FXP_RFDX_CS_IP_CSUM_VALID) 1795 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1796 if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && 1797 (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { 1798 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 1799 CSUM_PSEUDO_HDR; 1800 m->m_pkthdr.csum_data = 0xffff; 1801 } 1802 } 1803 return; 1804 } 1805 1806 pktlen = m->m_pkthdr.len; 1807 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) 1808 return; 1809 eh = mtod(m, struct ether_header *); 1810 if (eh->ether_type != htons(ETHERTYPE_IP)) 1811 return; 1812 ip = (struct ip *)(eh + 1); 1813 if (ip->ip_v != IPVERSION) 1814 return; 1815 1816 hlen = ip->ip_hl << 2; 1817 pktlen -= sizeof(struct ether_header); 1818 if (hlen < sizeof(struct ip)) 1819 return; 1820 if (ntohs(ip->ip_len) < hlen) 1821 return; 1822 if (ntohs(ip->ip_len) != pktlen) 1823 return; 1824 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) 1825 return; /* can't handle fragmented packet */ 1826 1827 switch (ip->ip_p) { 1828 case IPPROTO_TCP: 1829 if (pktlen < (hlen + sizeof(struct tcphdr))) 1830 return; 1831 break; 1832 case IPPROTO_UDP: 1833 if (pktlen < (hlen + sizeof(struct udphdr))) 1834 return; 1835 uh = (struct udphdr *)((caddr_t)ip + hlen); 1836 if (uh->uh_sum == 0) 1837 return; /* no checksum */ 1838 break; 1839 default: 1840 return; 1841 } 1842 /* Extract computed checksum. */ 1843 csum = be16dec(mtod(m, char *) + pos); 1844 /* checksum fixup for IP options */ 1845 len = hlen - sizeof(struct ip); 1846 if (len > 0) { 1847 opts = (uint16_t *)(ip + 1); 1848 for (; len > 0; len -= sizeof(uint16_t), opts++) { 1849 temp32 = csum - *opts; 1850 temp32 = (temp32 >> 16) + (temp32 & 65535); 1851 csum = temp32 & 65535; 1852 } 1853 } 1854 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1855 m->m_pkthdr.csum_data = csum; 1856 } 1857 1858 static int 1859 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack, 1860 int count) 1861 { 1862 struct mbuf *m; 1863 struct fxp_rx *rxp; 1864 struct fxp_rfa *rfa; 1865 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; 1866 int rx_npkts; 1867 uint16_t status; 1868 1869 rx_npkts = 0; 1870 FXP_LOCK_ASSERT(sc, MA_OWNED); 1871 1872 if (rnr) 1873 sc->rnr++; 1874 #ifdef DEVICE_POLLING 1875 /* Pick up a deferred RNR condition if `count' ran out last time. */ 1876 if (sc->flags & FXP_FLAG_DEFERRED_RNR) { 1877 sc->flags &= ~FXP_FLAG_DEFERRED_RNR; 1878 rnr = 1; 1879 } 1880 #endif 1881 1882 /* 1883 * Free any finished transmit mbuf chains. 1884 * 1885 * Handle the CNA event likt a CXTNO event. It used to 1886 * be that this event (control unit not ready) was not 1887 * encountered, but it is now with the SMPng modifications. 1888 * The exact sequence of events that occur when the interface 1889 * is brought up are different now, and if this event 1890 * goes unhandled, the configuration/rxfilter setup sequence 1891 * can stall for several seconds. The result is that no 1892 * packets go out onto the wire for about 5 to 10 seconds 1893 * after the interface is ifconfig'ed for the first time. 1894 */ 1895 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) 1896 fxp_txeof(sc); 1897 1898 /* 1899 * Try to start more packets transmitting. 1900 */ 1901 if (!if_sendq_empty(ifp)) 1902 fxp_start_body(ifp); 1903 1904 /* 1905 * Just return if nothing happened on the receive side. 1906 */ 1907 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) 1908 return (rx_npkts); 1909 1910 /* 1911 * Process receiver interrupts. If a no-resource (RNR) 1912 * condition exists, get whatever packets we can and 1913 * re-start the receiver. 1914 * 1915 * When using polling, we do not process the list to completion, 1916 * so when we get an RNR interrupt we must defer the restart 1917 * until we hit the last buffer with the C bit set. 1918 * If we run out of cycles and rfa_headm has the C bit set, 1919 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so 1920 * that the info will be used in the subsequent polling cycle. 1921 */ 1922 for (;;) { 1923 rxp = sc->fxp_desc.rx_head; 1924 m = rxp->rx_mbuf; 1925 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + 1926 RFA_ALIGNMENT_FUDGE); 1927 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 1928 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1929 1930 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ 1931 if (count >= 0 && count-- == 0) { 1932 if (rnr) { 1933 /* Defer RNR processing until the next time. */ 1934 sc->flags |= FXP_FLAG_DEFERRED_RNR; 1935 rnr = 0; 1936 } 1937 break; 1938 } 1939 #endif /* DEVICE_POLLING */ 1940 1941 status = le16toh(rfa->rfa_status); 1942 if ((status & FXP_RFA_STATUS_C) == 0) 1943 break; 1944 1945 if ((status & FXP_RFA_STATUS_RNR) != 0) 1946 rnr++; 1947 /* 1948 * Advance head forward. 1949 */ 1950 sc->fxp_desc.rx_head = rxp->rx_next; 1951 1952 /* 1953 * Add a new buffer to the receive chain. 1954 * If this fails, the old buffer is recycled 1955 * instead. 1956 */ 1957 if (fxp_new_rfabuf(sc, rxp) == 0) { 1958 int total_len; 1959 1960 /* 1961 * Fetch packet length (the top 2 bits of 1962 * actual_size are flags set by the controller 1963 * upon completion), and drop the packet in case 1964 * of bogus length or CRC errors. 1965 */ 1966 total_len = le16toh(rfa->actual_size) & 0x3fff; 1967 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 1968 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 1969 /* Adjust for appended checksum bytes. */ 1970 total_len -= 2; 1971 } 1972 if (total_len < (int)sizeof(struct ether_header) || 1973 total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE - 1974 sc->rfa_size) || 1975 status & (FXP_RFA_STATUS_CRC | 1976 FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) { 1977 m_freem(m); 1978 fxp_add_rfabuf(sc, rxp); 1979 continue; 1980 } 1981 1982 m->m_pkthdr.len = m->m_len = total_len; 1983 if_setrcvif(m, ifp); 1984 1985 /* Do IP checksum checking. */ 1986 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 1987 fxp_rxcsum(sc, ifp, m, status, total_len); 1988 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 && 1989 (status & FXP_RFA_STATUS_VLAN) != 0) { 1990 m->m_pkthdr.ether_vtag = 1991 ntohs(rfa->rfax_vlan_id); 1992 m->m_flags |= M_VLANTAG; 1993 } 1994 /* 1995 * Drop locks before calling if_input() since it 1996 * may re-enter fxp_start() in the netisr case. 1997 * This would result in a lock reversal. Better 1998 * performance might be obtained by chaining all 1999 * packets received, dropping the lock, and then 2000 * calling if_input() on each one. 2001 */ 2002 FXP_UNLOCK(sc); 2003 if_input(ifp, m); 2004 FXP_LOCK(sc); 2005 rx_npkts++; 2006 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 2007 return (rx_npkts); 2008 } else { 2009 /* Reuse RFA and loaded DMA map. */ 2010 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2011 fxp_discard_rfabuf(sc, rxp); 2012 } 2013 fxp_add_rfabuf(sc, rxp); 2014 } 2015 if (rnr) { 2016 fxp_scb_wait(sc); 2017 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 2018 sc->fxp_desc.rx_head->rx_addr); 2019 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2020 } 2021 return (rx_npkts); 2022 } 2023 2024 static void 2025 fxp_update_stats(struct fxp_softc *sc) 2026 { 2027 if_t ifp = sc->ifp; 2028 struct fxp_stats *sp = sc->fxp_stats; 2029 struct fxp_hwstats *hsp; 2030 uint32_t *status; 2031 2032 FXP_LOCK_ASSERT(sc, MA_OWNED); 2033 2034 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2035 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2036 /* Update statistical counters. */ 2037 if (sc->revision >= FXP_REV_82559_A0) 2038 status = &sp->completion_status; 2039 else if (sc->revision >= FXP_REV_82558_A4) 2040 status = (uint32_t *)&sp->tx_tco; 2041 else 2042 status = &sp->tx_pause; 2043 if (*status == htole32(FXP_STATS_DR_COMPLETE)) { 2044 hsp = &sc->fxp_hwstats; 2045 hsp->tx_good += le32toh(sp->tx_good); 2046 hsp->tx_maxcols += le32toh(sp->tx_maxcols); 2047 hsp->tx_latecols += le32toh(sp->tx_latecols); 2048 hsp->tx_underruns += le32toh(sp->tx_underruns); 2049 hsp->tx_lostcrs += le32toh(sp->tx_lostcrs); 2050 hsp->tx_deffered += le32toh(sp->tx_deffered); 2051 hsp->tx_single_collisions += le32toh(sp->tx_single_collisions); 2052 hsp->tx_multiple_collisions += 2053 le32toh(sp->tx_multiple_collisions); 2054 hsp->tx_total_collisions += le32toh(sp->tx_total_collisions); 2055 hsp->rx_good += le32toh(sp->rx_good); 2056 hsp->rx_crc_errors += le32toh(sp->rx_crc_errors); 2057 hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors); 2058 hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors); 2059 hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors); 2060 hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors); 2061 hsp->rx_shortframes += le32toh(sp->rx_shortframes); 2062 hsp->tx_pause += le32toh(sp->tx_pause); 2063 hsp->rx_pause += le32toh(sp->rx_pause); 2064 hsp->rx_controls += le32toh(sp->rx_controls); 2065 hsp->tx_tco += le16toh(sp->tx_tco); 2066 hsp->rx_tco += le16toh(sp->rx_tco); 2067 2068 if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good)); 2069 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 2070 le32toh(sp->tx_total_collisions)); 2071 if (sp->rx_good) { 2072 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 2073 le32toh(sp->rx_good)); 2074 sc->rx_idle_secs = 0; 2075 } else if (sc->flags & FXP_FLAG_RXBUG) { 2076 /* 2077 * Receiver's been idle for another second. 2078 */ 2079 sc->rx_idle_secs++; 2080 } 2081 if_inc_counter(ifp, IFCOUNTER_IERRORS, 2082 le32toh(sp->rx_crc_errors) + 2083 le32toh(sp->rx_alignment_errors) + 2084 le32toh(sp->rx_rnr_errors) + 2085 le32toh(sp->rx_overrun_errors)); 2086 /* 2087 * If any transmit underruns occurred, bump up the transmit 2088 * threshold by another 512 bytes (64 * 8). 2089 */ 2090 if (sp->tx_underruns) { 2091 if_inc_counter(ifp, IFCOUNTER_OERRORS, 2092 le32toh(sp->tx_underruns)); 2093 if (tx_threshold < 192) 2094 tx_threshold += 64; 2095 } 2096 *status = 0; 2097 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2098 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2099 } 2100 } 2101 2102 /* 2103 * Update packet in/out/collision statistics. The i82557 doesn't 2104 * allow you to access these counters without doing a fairly 2105 * expensive DMA to get _all_ of the statistics it maintains, so 2106 * we do this operation here only once per second. The statistics 2107 * counters in the kernel are updated from the previous dump-stats 2108 * DMA and then a new dump-stats DMA is started. The on-chip 2109 * counters are zeroed when the DMA completes. If we can't start 2110 * the DMA immediately, we don't wait - we just prepare to read 2111 * them again next time. 2112 */ 2113 static void 2114 fxp_tick(void *xsc) 2115 { 2116 struct fxp_softc *sc = xsc; 2117 if_t ifp = sc->ifp; 2118 2119 FXP_LOCK_ASSERT(sc, MA_OWNED); 2120 2121 /* Update statistical counters. */ 2122 fxp_update_stats(sc); 2123 2124 /* 2125 * Release any xmit buffers that have completed DMA. This isn't 2126 * strictly necessary to do here, but it's advantagous for mbufs 2127 * with external storage to be released in a timely manner rather 2128 * than being defered for a potentially long time. This limits 2129 * the delay to a maximum of one second. 2130 */ 2131 fxp_txeof(sc); 2132 2133 /* 2134 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, 2135 * then assume the receiver has locked up and attempt to clear 2136 * the condition by reprogramming the multicast filter. This is 2137 * a work-around for a bug in the 82557 where the receiver locks 2138 * up if it gets certain types of garbage in the synchronization 2139 * bits prior to the packet header. This bug is supposed to only 2140 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 2141 * mode as well (perhaps due to a 10/100 speed transition). 2142 */ 2143 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 2144 sc->rx_idle_secs = 0; 2145 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2146 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2147 fxp_init_body(sc, 1); 2148 } 2149 return; 2150 } 2151 /* 2152 * If there is no pending command, start another stats 2153 * dump. Otherwise punt for now. 2154 */ 2155 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { 2156 /* 2157 * Start another stats dump. 2158 */ 2159 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 2160 } 2161 if (sc->miibus != NULL) 2162 mii_tick(device_get_softc(sc->miibus)); 2163 2164 /* 2165 * Check that chip hasn't hung. 2166 */ 2167 fxp_watchdog(sc); 2168 2169 /* 2170 * Schedule another timeout one second from now. 2171 */ 2172 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2173 } 2174 2175 /* 2176 * Stop the interface. Cancels the statistics updater and resets 2177 * the interface. 2178 */ 2179 static void 2180 fxp_stop(struct fxp_softc *sc) 2181 { 2182 if_t ifp = sc->ifp; 2183 struct fxp_tx *txp; 2184 int i; 2185 2186 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 2187 sc->watchdog_timer = 0; 2188 2189 /* 2190 * Cancel stats updater. 2191 */ 2192 callout_stop(&sc->stat_ch); 2193 2194 /* 2195 * Preserve PCI configuration, configure, IA/multicast 2196 * setup and put RU and CU into idle state. 2197 */ 2198 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 2199 DELAY(50); 2200 /* Disable interrupts. */ 2201 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2202 2203 fxp_update_stats(sc); 2204 2205 /* 2206 * Release any xmit buffers. 2207 */ 2208 txp = sc->fxp_desc.tx_list; 2209 for (i = 0; i < FXP_NTXCB; i++) { 2210 if (txp[i].tx_mbuf != NULL) { 2211 bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map, 2212 BUS_DMASYNC_POSTWRITE); 2213 bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map); 2214 m_freem(txp[i].tx_mbuf); 2215 txp[i].tx_mbuf = NULL; 2216 /* clear this to reset csum offload bits */ 2217 txp[i].tx_cb->tbd[0].tb_addr = 0; 2218 } 2219 } 2220 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2221 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2222 sc->tx_queued = 0; 2223 } 2224 2225 /* 2226 * Watchdog/transmission transmit timeout handler. Called when a 2227 * transmission is started on the interface, but no interrupt is 2228 * received before the timeout. This usually indicates that the 2229 * card has wedged for some reason. 2230 */ 2231 static void 2232 fxp_watchdog(struct fxp_softc *sc) 2233 { 2234 if_t ifp = sc->ifp; 2235 2236 FXP_LOCK_ASSERT(sc, MA_OWNED); 2237 2238 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 2239 return; 2240 2241 device_printf(sc->dev, "device timeout\n"); 2242 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2243 2244 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2245 fxp_init_body(sc, 1); 2246 } 2247 2248 /* 2249 * Acquire locks and then call the real initialization function. This 2250 * is necessary because ether_ioctl() calls if_init() and this would 2251 * result in mutex recursion if the mutex was held. 2252 */ 2253 static void 2254 fxp_init(void *xsc) 2255 { 2256 struct fxp_softc *sc = xsc; 2257 2258 FXP_LOCK(sc); 2259 fxp_init_body(sc, 1); 2260 FXP_UNLOCK(sc); 2261 } 2262 2263 /* 2264 * Perform device initialization. This routine must be called with the 2265 * softc lock held. 2266 */ 2267 static void 2268 fxp_init_body(struct fxp_softc *sc, int setmedia) 2269 { 2270 if_t ifp = sc->ifp; 2271 struct mii_data *mii; 2272 struct fxp_cb_config *cbp; 2273 struct fxp_cb_ias *cb_ias; 2274 struct fxp_cb_tx *tcbp; 2275 struct fxp_tx *txp; 2276 int i, prm; 2277 2278 FXP_LOCK_ASSERT(sc, MA_OWNED); 2279 2280 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2281 return; 2282 2283 /* 2284 * Cancel any pending I/O 2285 */ 2286 fxp_stop(sc); 2287 2288 /* 2289 * Issue software reset, which also unloads the microcode. 2290 */ 2291 sc->flags &= ~FXP_FLAG_UCODE; 2292 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 2293 DELAY(50); 2294 2295 prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0; 2296 2297 /* 2298 * Initialize base of CBL and RFA memory. Loading with zero 2299 * sets it up for regular linear addressing. 2300 */ 2301 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 2302 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 2303 2304 fxp_scb_wait(sc); 2305 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 2306 2307 /* 2308 * Initialize base of dump-stats buffer. 2309 */ 2310 fxp_scb_wait(sc); 2311 bzero(sc->fxp_stats, sizeof(struct fxp_stats)); 2312 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, 2313 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2314 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); 2315 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 2316 2317 /* 2318 * Attempt to load microcode if requested. 2319 * For ICH based controllers do not load microcode. 2320 */ 2321 if (sc->ident->ich == 0) { 2322 if (if_getflags(ifp) & IFF_LINK0 && 2323 (sc->flags & FXP_FLAG_UCODE) == 0) 2324 fxp_load_ucode(sc); 2325 } 2326 2327 /* 2328 * Set IFF_ALLMULTI status. It's needed in configure action 2329 * command. 2330 */ 2331 fxp_mc_addrs(sc); 2332 2333 /* 2334 * We temporarily use memory that contains the TxCB list to 2335 * construct the config CB. The TxCB list memory is rebuilt 2336 * later. 2337 */ 2338 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; 2339 2340 /* 2341 * This bcopy is kind of disgusting, but there are a bunch of must be 2342 * zero and must be one bits in this structure and this is the easiest 2343 * way to initialize them all to proper values. 2344 */ 2345 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); 2346 2347 cbp->cb_status = 0; 2348 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | 2349 FXP_CB_COMMAND_EL); 2350 cbp->link_addr = 0xffffffff; /* (no) next command */ 2351 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; 2352 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 2353 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 2354 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 2355 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; 2356 cbp->type_enable = 0; /* actually reserved */ 2357 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; 2358 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; 2359 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 2360 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 2361 cbp->dma_mbce = 0; /* (disable) dma max counters */ 2362 cbp->late_scb = 0; /* (don't) defer SCB update */ 2363 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ 2364 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ 2365 cbp->ci_int = 1; /* interrupt on CU idle */ 2366 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; 2367 cbp->ext_stats_dis = 1; /* disable extended counters */ 2368 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ 2369 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; 2370 cbp->disc_short_rx = !prm; /* discard short packets */ 2371 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ 2372 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ 2373 cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2374 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2375 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; 2376 cbp->csma_dis = 0; /* (don't) disable link */ 2377 cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && 2378 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0; 2379 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ 2380 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ 2381 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ 2382 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ 2383 cbp->nsai = 1; /* (don't) disable source addr insert */ 2384 cbp->preamble_length = 2; /* (7 byte) preamble */ 2385 cbp->loopback = 0; /* (don't) loopback */ 2386 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 2387 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 2388 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 2389 cbp->promiscuous = prm; /* promiscuous mode */ 2390 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 2391 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ 2392 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ 2393 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ 2394 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; 2395 2396 cbp->stripping = !prm; /* truncate rx packet to byte count */ 2397 cbp->padding = 1; /* (do) pad short tx packets */ 2398 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 2399 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; 2400 cbp->ia_wake_en = 0; /* (don't) wake up on address match */ 2401 cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1; 2402 cbp->force_fdx = 0; /* (don't) force full duplex */ 2403 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 2404 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 2405 cbp->mc_all = if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm; 2406 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; 2407 cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 && 2408 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0; 2409 2410 if (sc->revision == FXP_REV_82557) { 2411 /* 2412 * The 82557 has no hardware flow control, the values 2413 * below are the defaults for the chip. 2414 */ 2415 cbp->fc_delay_lsb = 0; 2416 cbp->fc_delay_msb = 0x40; 2417 cbp->pri_fc_thresh = 3; 2418 cbp->tx_fc_dis = 0; 2419 cbp->rx_fc_restop = 0; 2420 cbp->rx_fc_restart = 0; 2421 cbp->fc_filter = 0; 2422 cbp->pri_fc_loc = 1; 2423 } else { 2424 /* Set pause RX FIFO threshold to 1KB. */ 2425 CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1); 2426 /* Set pause time. */ 2427 cbp->fc_delay_lsb = 0xff; 2428 cbp->fc_delay_msb = 0xff; 2429 cbp->pri_fc_thresh = 3; 2430 mii = device_get_softc(sc->miibus); 2431 if ((IFM_OPTIONS(mii->mii_media_active) & 2432 IFM_ETH_TXPAUSE) != 0) 2433 /* enable transmit FC */ 2434 cbp->tx_fc_dis = 0; 2435 else 2436 /* disable transmit FC */ 2437 cbp->tx_fc_dis = 1; 2438 if ((IFM_OPTIONS(mii->mii_media_active) & 2439 IFM_ETH_RXPAUSE) != 0) { 2440 /* enable FC restart/restop frames */ 2441 cbp->rx_fc_restart = 1; 2442 cbp->rx_fc_restop = 1; 2443 } else { 2444 /* disable FC restart/restop frames */ 2445 cbp->rx_fc_restart = 0; 2446 cbp->rx_fc_restop = 0; 2447 } 2448 cbp->fc_filter = !prm; /* drop FC frames to host */ 2449 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ 2450 } 2451 2452 /* Enable 82558 and 82559 extended statistics functionality. */ 2453 if (sc->revision >= FXP_REV_82558_A4) { 2454 if (sc->revision >= FXP_REV_82559_A0) { 2455 /* 2456 * Extend configuration table size to 32 2457 * to include TCO configuration. 2458 */ 2459 cbp->byte_count = 32; 2460 cbp->ext_stats_dis = 1; 2461 /* Enable TCO stats. */ 2462 cbp->tno_int_or_tco_en = 1; 2463 cbp->gamla_rx = 1; 2464 } else 2465 cbp->ext_stats_dis = 0; 2466 } 2467 2468 /* 2469 * Start the config command/DMA. 2470 */ 2471 fxp_scb_wait(sc); 2472 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2473 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2474 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2475 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2476 /* ...and wait for it to complete. */ 2477 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 2478 2479 /* 2480 * Now initialize the station address. Temporarily use the TxCB 2481 * memory area like we did above for the config CB. 2482 */ 2483 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; 2484 cb_ias->cb_status = 0; 2485 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 2486 cb_ias->link_addr = 0xffffffff; 2487 bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); 2488 2489 /* 2490 * Start the IAS (Individual Address Setup) command/DMA. 2491 */ 2492 fxp_scb_wait(sc); 2493 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2494 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2495 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2496 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2497 /* ...and wait for it to complete. */ 2498 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); 2499 2500 /* 2501 * Initialize the multicast address list. 2502 */ 2503 fxp_mc_setup(sc); 2504 2505 /* 2506 * Initialize transmit control block (TxCB) list. 2507 */ 2508 txp = sc->fxp_desc.tx_list; 2509 tcbp = sc->fxp_desc.cbl_list; 2510 bzero(tcbp, FXP_TXCB_SZ); 2511 for (i = 0; i < FXP_NTXCB; i++) { 2512 txp[i].tx_mbuf = NULL; 2513 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); 2514 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 2515 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + 2516 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); 2517 if (sc->flags & FXP_FLAG_EXT_TXCB) 2518 tcbp[i].tbd_array_addr = 2519 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); 2520 else 2521 tcbp[i].tbd_array_addr = 2522 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); 2523 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; 2524 } 2525 /* 2526 * Set the suspend flag on the first TxCB and start the control 2527 * unit. It will execute the NOP and then suspend. 2528 */ 2529 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 2530 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 2531 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2532 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; 2533 sc->tx_queued = 1; 2534 2535 fxp_scb_wait(sc); 2536 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 2537 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 2538 2539 /* 2540 * Initialize receiver buffer area - RFA. 2541 */ 2542 fxp_scb_wait(sc); 2543 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); 2544 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 2545 2546 if (sc->miibus != NULL && setmedia != 0) 2547 mii_mediachg(device_get_softc(sc->miibus)); 2548 2549 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); 2550 2551 /* 2552 * Enable interrupts. 2553 */ 2554 #ifdef DEVICE_POLLING 2555 /* 2556 * ... but only do that if we are not polling. And because (presumably) 2557 * the default is interrupts on, we need to disable them explicitly! 2558 */ 2559 if (if_getcapenable(ifp) & IFCAP_POLLING ) 2560 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); 2561 else 2562 #endif /* DEVICE_POLLING */ 2563 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2564 2565 /* 2566 * Start stats updater. 2567 */ 2568 callout_reset(&sc->stat_ch, hz, fxp_tick, sc); 2569 } 2570 2571 static int 2572 fxp_serial_ifmedia_upd(if_t ifp) 2573 { 2574 2575 return (0); 2576 } 2577 2578 static void 2579 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2580 { 2581 2582 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2583 } 2584 2585 /* 2586 * Change media according to request. 2587 */ 2588 static int 2589 fxp_ifmedia_upd(if_t ifp) 2590 { 2591 struct fxp_softc *sc = if_getsoftc(ifp); 2592 struct mii_data *mii; 2593 struct mii_softc *miisc; 2594 2595 mii = device_get_softc(sc->miibus); 2596 FXP_LOCK(sc); 2597 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 2598 PHY_RESET(miisc); 2599 mii_mediachg(mii); 2600 FXP_UNLOCK(sc); 2601 return (0); 2602 } 2603 2604 /* 2605 * Notify the world which media we're using. 2606 */ 2607 static void 2608 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2609 { 2610 struct fxp_softc *sc = if_getsoftc(ifp); 2611 struct mii_data *mii; 2612 2613 mii = device_get_softc(sc->miibus); 2614 FXP_LOCK(sc); 2615 mii_pollstat(mii); 2616 ifmr->ifm_active = mii->mii_media_active; 2617 ifmr->ifm_status = mii->mii_media_status; 2618 FXP_UNLOCK(sc); 2619 } 2620 2621 /* 2622 * Add a buffer to the end of the RFA buffer list. 2623 * Return 0 if successful, 1 for failure. A failure results in 2624 * reusing the RFA buffer. 2625 * The RFA struct is stuck at the beginning of mbuf cluster and the 2626 * data pointer is fixed up to point just past it. 2627 */ 2628 static int 2629 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2630 { 2631 struct mbuf *m; 2632 struct fxp_rfa *rfa; 2633 bus_dmamap_t tmp_map; 2634 int error; 2635 2636 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2637 if (m == NULL) 2638 return (ENOBUFS); 2639 2640 /* 2641 * Move the data pointer up so that the incoming data packet 2642 * will be 32-bit aligned. 2643 */ 2644 m->m_data += RFA_ALIGNMENT_FUDGE; 2645 2646 /* 2647 * Get a pointer to the base of the mbuf cluster and move 2648 * data start past it. 2649 */ 2650 rfa = mtod(m, struct fxp_rfa *); 2651 m->m_data += sc->rfa_size; 2652 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2653 2654 rfa->rfa_status = 0; 2655 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2656 rfa->actual_size = 0; 2657 m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE - 2658 sc->rfa_size; 2659 2660 /* 2661 * Initialize the rest of the RFA. Note that since the RFA 2662 * is misaligned, we cannot store values directly. We're thus 2663 * using the le32enc() function which handles endianness and 2664 * is also alignment-safe. 2665 */ 2666 le32enc(&rfa->link_addr, 0xffffffff); 2667 le32enc(&rfa->rbd_addr, 0xffffffff); 2668 2669 /* Map the RFA into DMA memory. */ 2670 error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa, 2671 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, 2672 &rxp->rx_addr, BUS_DMA_NOWAIT); 2673 if (error) { 2674 m_freem(m); 2675 return (error); 2676 } 2677 2678 if (rxp->rx_mbuf != NULL) 2679 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); 2680 tmp_map = sc->spare_map; 2681 sc->spare_map = rxp->rx_map; 2682 rxp->rx_map = tmp_map; 2683 rxp->rx_mbuf = m; 2684 2685 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2686 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2687 return (0); 2688 } 2689 2690 static void 2691 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2692 { 2693 struct fxp_rfa *p_rfa; 2694 struct fxp_rx *p_rx; 2695 2696 /* 2697 * If there are other buffers already on the list, attach this 2698 * one to the end by fixing up the tail to point to this one. 2699 */ 2700 if (sc->fxp_desc.rx_head != NULL) { 2701 p_rx = sc->fxp_desc.rx_tail; 2702 p_rfa = (struct fxp_rfa *) 2703 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); 2704 p_rx->rx_next = rxp; 2705 le32enc(&p_rfa->link_addr, rxp->rx_addr); 2706 p_rfa->rfa_control = 0; 2707 bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map, 2708 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2709 } else { 2710 rxp->rx_next = NULL; 2711 sc->fxp_desc.rx_head = rxp; 2712 } 2713 sc->fxp_desc.rx_tail = rxp; 2714 } 2715 2716 static void 2717 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) 2718 { 2719 struct mbuf *m; 2720 struct fxp_rfa *rfa; 2721 2722 m = rxp->rx_mbuf; 2723 m->m_data = m->m_ext.ext_buf; 2724 /* 2725 * Move the data pointer up so that the incoming data packet 2726 * will be 32-bit aligned. 2727 */ 2728 m->m_data += RFA_ALIGNMENT_FUDGE; 2729 2730 /* 2731 * Get a pointer to the base of the mbuf cluster and move 2732 * data start past it. 2733 */ 2734 rfa = mtod(m, struct fxp_rfa *); 2735 m->m_data += sc->rfa_size; 2736 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); 2737 2738 rfa->rfa_status = 0; 2739 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); 2740 rfa->actual_size = 0; 2741 2742 /* 2743 * Initialize the rest of the RFA. Note that since the RFA 2744 * is misaligned, we cannot store values directly. We're thus 2745 * using the le32enc() function which handles endianness and 2746 * is also alignment-safe. 2747 */ 2748 le32enc(&rfa->link_addr, 0xffffffff); 2749 le32enc(&rfa->rbd_addr, 0xffffffff); 2750 2751 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, 2752 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2753 } 2754 2755 static int 2756 fxp_miibus_readreg(device_t dev, int phy, int reg) 2757 { 2758 struct fxp_softc *sc = device_get_softc(dev); 2759 int count = 10000; 2760 int value; 2761 2762 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2763 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 2764 2765 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 2766 && count--) 2767 DELAY(10); 2768 2769 if (count <= 0) 2770 device_printf(dev, "fxp_miibus_readreg: timed out\n"); 2771 2772 return (value & 0xffff); 2773 } 2774 2775 static int 2776 fxp_miibus_writereg(device_t dev, int phy, int reg, int value) 2777 { 2778 struct fxp_softc *sc = device_get_softc(dev); 2779 int count = 10000; 2780 2781 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 2782 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 2783 (value & 0xffff)); 2784 2785 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 2786 count--) 2787 DELAY(10); 2788 2789 if (count <= 0) 2790 device_printf(dev, "fxp_miibus_writereg: timed out\n"); 2791 return (0); 2792 } 2793 2794 static void 2795 fxp_miibus_statchg(device_t dev) 2796 { 2797 struct fxp_softc *sc; 2798 struct mii_data *mii; 2799 if_t ifp; 2800 2801 sc = device_get_softc(dev); 2802 mii = device_get_softc(sc->miibus); 2803 ifp = sc->ifp; 2804 if (mii == NULL || ifp == (void *)NULL || 2805 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 2806 (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) != 2807 (IFM_AVALID | IFM_ACTIVE)) 2808 return; 2809 2810 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && 2811 sc->flags & FXP_FLAG_CU_RESUME_BUG) 2812 sc->cu_resume_bug = 1; 2813 else 2814 sc->cu_resume_bug = 0; 2815 /* 2816 * Call fxp_init_body in order to adjust the flow control settings. 2817 * Note that the 82557 doesn't support hardware flow control. 2818 */ 2819 if (sc->revision == FXP_REV_82557) 2820 return; 2821 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2822 fxp_init_body(sc, 0); 2823 } 2824 2825 static int 2826 fxp_ioctl(if_t ifp, u_long command, caddr_t data) 2827 { 2828 struct fxp_softc *sc = if_getsoftc(ifp); 2829 struct ifreq *ifr = (struct ifreq *)data; 2830 struct mii_data *mii; 2831 int flag, mask, error = 0, reinit; 2832 2833 switch (command) { 2834 case SIOCSIFFLAGS: 2835 FXP_LOCK(sc); 2836 /* 2837 * If interface is marked up and not running, then start it. 2838 * If it is marked down and running, stop it. 2839 * XXX If it's up then re-initialize it. This is so flags 2840 * such as IFF_PROMISC are handled. 2841 */ 2842 if (if_getflags(ifp) & IFF_UP) { 2843 if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) && 2844 ((if_getflags(ifp) ^ sc->if_flags) & 2845 (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) { 2846 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2847 fxp_init_body(sc, 0); 2848 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 2849 fxp_init_body(sc, 1); 2850 } else { 2851 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 2852 fxp_stop(sc); 2853 } 2854 sc->if_flags = if_getflags(ifp); 2855 FXP_UNLOCK(sc); 2856 break; 2857 2858 case SIOCADDMULTI: 2859 case SIOCDELMULTI: 2860 FXP_LOCK(sc); 2861 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2862 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2863 fxp_init_body(sc, 0); 2864 } 2865 FXP_UNLOCK(sc); 2866 break; 2867 2868 case SIOCSIFMEDIA: 2869 case SIOCGIFMEDIA: 2870 if (sc->miibus != NULL) { 2871 mii = device_get_softc(sc->miibus); 2872 error = ifmedia_ioctl(ifp, ifr, 2873 &mii->mii_media, command); 2874 } else { 2875 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); 2876 } 2877 break; 2878 2879 case SIOCSIFCAP: 2880 reinit = 0; 2881 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; 2882 #ifdef DEVICE_POLLING 2883 if (mask & IFCAP_POLLING) { 2884 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2885 error = ether_poll_register(fxp_poll, ifp); 2886 if (error) 2887 return(error); 2888 FXP_LOCK(sc); 2889 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 2890 FXP_SCB_INTR_DISABLE); 2891 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 2892 FXP_UNLOCK(sc); 2893 } else { 2894 error = ether_poll_deregister(ifp); 2895 /* Enable interrupts in any case */ 2896 FXP_LOCK(sc); 2897 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); 2898 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 2899 FXP_UNLOCK(sc); 2900 } 2901 } 2902 #endif 2903 FXP_LOCK(sc); 2904 if ((mask & IFCAP_TXCSUM) != 0 && 2905 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 2906 if_togglecapenable(ifp, IFCAP_TXCSUM); 2907 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 2908 if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0); 2909 else 2910 if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES); 2911 } 2912 if ((mask & IFCAP_RXCSUM) != 0 && 2913 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) { 2914 if_togglecapenable(ifp, IFCAP_RXCSUM); 2915 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0) 2916 reinit++; 2917 } 2918 if ((mask & IFCAP_TSO4) != 0 && 2919 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 2920 if_togglecapenable(ifp, IFCAP_TSO4); 2921 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 2922 if_sethwassistbits(ifp, CSUM_TSO, 0); 2923 else 2924 if_sethwassistbits(ifp, 0, CSUM_TSO); 2925 } 2926 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2927 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0) 2928 if_togglecapenable(ifp, IFCAP_WOL_MAGIC); 2929 if ((mask & IFCAP_VLAN_MTU) != 0 && 2930 (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) { 2931 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2932 if (sc->revision != FXP_REV_82557) 2933 flag = FXP_FLAG_LONG_PKT_EN; 2934 else /* a hack to get long frames on the old chip */ 2935 flag = FXP_FLAG_SAVE_BAD; 2936 sc->flags ^= flag; 2937 if (if_getflags(ifp) & IFF_UP) 2938 reinit++; 2939 } 2940 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2941 (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0) 2942 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2943 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2944 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 2945 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2946 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2947 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 2948 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2949 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 2950 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO | 2951 IFCAP_VLAN_HWCSUM); 2952 reinit++; 2953 } 2954 if (reinit > 0 && 2955 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2956 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2957 fxp_init_body(sc, 0); 2958 } 2959 FXP_UNLOCK(sc); 2960 if_vlancap(ifp); 2961 break; 2962 2963 default: 2964 error = ether_ioctl(ifp, command, data); 2965 } 2966 return (error); 2967 } 2968 2969 static u_int 2970 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2971 { 2972 struct fxp_softc *sc = arg; 2973 struct fxp_cb_mcs *mcsp = sc->mcsp; 2974 2975 if (mcsp->mc_cnt < MAXMCADDR) 2976 bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN], 2977 ETHER_ADDR_LEN); 2978 mcsp->mc_cnt++; 2979 return (1); 2980 } 2981 2982 /* 2983 * Fill in the multicast address list and return number of entries. 2984 */ 2985 static void 2986 fxp_mc_addrs(struct fxp_softc *sc) 2987 { 2988 struct fxp_cb_mcs *mcsp = sc->mcsp; 2989 if_t ifp = sc->ifp; 2990 2991 if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) { 2992 mcsp->mc_cnt = 0; 2993 if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc); 2994 if (mcsp->mc_cnt >= MAXMCADDR) { 2995 if_setflagbits(ifp, IFF_ALLMULTI, 0); 2996 mcsp->mc_cnt = 0; 2997 } 2998 } 2999 mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN); 3000 } 3001 3002 /* 3003 * Program the multicast filter. 3004 * 3005 * We have an artificial restriction that the multicast setup command 3006 * must be the first command in the chain, so we take steps to ensure 3007 * this. By requiring this, it allows us to keep up the performance of 3008 * the pre-initialized command ring (esp. link pointers) by not actually 3009 * inserting the mcsetup command in the ring - i.e. its link pointer 3010 * points to the TxCB ring, but the mcsetup descriptor itself is not part 3011 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 3012 * lead into the regular TxCB ring when it completes. 3013 */ 3014 static void 3015 fxp_mc_setup(struct fxp_softc *sc) 3016 { 3017 struct fxp_cb_mcs *mcsp; 3018 int count; 3019 3020 FXP_LOCK_ASSERT(sc, MA_OWNED); 3021 3022 mcsp = sc->mcsp; 3023 mcsp->cb_status = 0; 3024 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 3025 mcsp->link_addr = 0xffffffff; 3026 fxp_mc_addrs(sc); 3027 3028 /* 3029 * Wait until command unit is idle. This should never be the 3030 * case when nothing is queued, but make sure anyway. 3031 */ 3032 count = 100; 3033 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != 3034 FXP_SCB_CUS_IDLE && --count) 3035 DELAY(10); 3036 if (count == 0) { 3037 device_printf(sc->dev, "command queue timeout\n"); 3038 return; 3039 } 3040 3041 /* 3042 * Start the multicast setup command. 3043 */ 3044 fxp_scb_wait(sc); 3045 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, 3046 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3047 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); 3048 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3049 /* ...and wait for it to complete. */ 3050 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); 3051 } 3052 3053 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; 3054 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; 3055 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; 3056 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; 3057 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; 3058 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; 3059 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; 3060 3061 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) 3062 3063 static const struct ucode { 3064 uint32_t revision; 3065 uint32_t *ucode; 3066 int length; 3067 u_short int_delay_offset; 3068 u_short bundle_max_offset; 3069 } ucode_table[] = { 3070 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, 3071 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, 3072 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), 3073 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, 3074 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), 3075 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, 3076 { FXP_REV_82550, UCODE(fxp_ucode_d102), 3077 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, 3078 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), 3079 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, 3080 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), 3081 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3082 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e), 3083 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, 3084 { 0, NULL, 0, 0, 0 } 3085 }; 3086 3087 static void 3088 fxp_load_ucode(struct fxp_softc *sc) 3089 { 3090 const struct ucode *uc; 3091 struct fxp_cb_ucode *cbp; 3092 int i; 3093 3094 if (sc->flags & FXP_FLAG_NO_UCODE) 3095 return; 3096 3097 for (uc = ucode_table; uc->ucode != NULL; uc++) 3098 if (sc->revision == uc->revision) 3099 break; 3100 if (uc->ucode == NULL) 3101 return; 3102 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; 3103 cbp->cb_status = 0; 3104 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); 3105 cbp->link_addr = 0xffffffff; /* (no) next command */ 3106 for (i = 0; i < uc->length; i++) 3107 cbp->ucode[i] = htole32(uc->ucode[i]); 3108 if (uc->int_delay_offset) 3109 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = 3110 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); 3111 if (uc->bundle_max_offset) 3112 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = 3113 htole16(sc->tunable_bundle_max); 3114 /* 3115 * Download the ucode to the chip. 3116 */ 3117 fxp_scb_wait(sc); 3118 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, 3119 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3120 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); 3121 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 3122 /* ...and wait for it to complete. */ 3123 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); 3124 device_printf(sc->dev, 3125 "Microcode loaded, int_delay: %d usec bundle_max: %d\n", 3126 sc->tunable_int_delay, 3127 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); 3128 sc->flags |= FXP_FLAG_UCODE; 3129 bzero(cbp, FXP_TXCB_SZ); 3130 } 3131 3132 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \ 3133 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 3134 3135 static void 3136 fxp_sysctl_node(struct fxp_softc *sc) 3137 { 3138 struct sysctl_ctx_list *ctx; 3139 struct sysctl_oid_list *child, *parent; 3140 struct sysctl_oid *tree; 3141 struct fxp_hwstats *hsp; 3142 3143 ctx = device_get_sysctl_ctx(sc->dev); 3144 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 3145 3146 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay", 3147 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 3148 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", 3149 "FXP driver receive interrupt microcode bundling delay"); 3150 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max", 3151 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 3152 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", 3153 "FXP driver receive interrupt microcode bundle size limit"); 3154 SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, 3155 "FXP RNR events"); 3156 3157 /* 3158 * Pull in device tunables. 3159 */ 3160 sc->tunable_int_delay = TUNABLE_INT_DELAY; 3161 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; 3162 (void) resource_int_value(device_get_name(sc->dev), 3163 device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay); 3164 (void) resource_int_value(device_get_name(sc->dev), 3165 device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max); 3166 sc->rnr = 0; 3167 3168 hsp = &sc->fxp_hwstats; 3169 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 3170 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics"); 3171 parent = SYSCTL_CHILDREN(tree); 3172 3173 /* Rx MAC statistics. */ 3174 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", 3175 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics"); 3176 child = SYSCTL_CHILDREN(tree); 3177 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3178 &hsp->rx_good, "Good frames"); 3179 FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors", 3180 &hsp->rx_crc_errors, "CRC errors"); 3181 FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors", 3182 &hsp->rx_alignment_errors, "Alignment errors"); 3183 FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors", 3184 &hsp->rx_rnr_errors, "RNR errors"); 3185 FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors", 3186 &hsp->rx_overrun_errors, "Overrun errors"); 3187 FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors", 3188 &hsp->rx_cdt_errors, "Collision detect errors"); 3189 FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes", 3190 &hsp->rx_shortframes, "Short frame errors"); 3191 if (sc->revision >= FXP_REV_82558_A4) { 3192 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3193 &hsp->rx_pause, "Pause frames"); 3194 FXP_SYSCTL_STAT_ADD(ctx, child, "controls", 3195 &hsp->rx_controls, "Unsupported control frames"); 3196 } 3197 if (sc->revision >= FXP_REV_82559_A0) 3198 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3199 &hsp->rx_tco, "TCO frames"); 3200 3201 /* Tx MAC statistics. */ 3202 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", 3203 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics"); 3204 child = SYSCTL_CHILDREN(tree); 3205 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", 3206 &hsp->tx_good, "Good frames"); 3207 FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols", 3208 &hsp->tx_maxcols, "Maximum collisions errors"); 3209 FXP_SYSCTL_STAT_ADD(ctx, child, "latecols", 3210 &hsp->tx_latecols, "Late collisions errors"); 3211 FXP_SYSCTL_STAT_ADD(ctx, child, "underruns", 3212 &hsp->tx_underruns, "Underrun errors"); 3213 FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs", 3214 &hsp->tx_lostcrs, "Lost carrier sense"); 3215 FXP_SYSCTL_STAT_ADD(ctx, child, "deffered", 3216 &hsp->tx_deffered, "Deferred"); 3217 FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions", 3218 &hsp->tx_single_collisions, "Single collisions"); 3219 FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions", 3220 &hsp->tx_multiple_collisions, "Multiple collisions"); 3221 FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions", 3222 &hsp->tx_total_collisions, "Total collisions"); 3223 if (sc->revision >= FXP_REV_82558_A4) 3224 FXP_SYSCTL_STAT_ADD(ctx, child, "pause", 3225 &hsp->tx_pause, "Pause frames"); 3226 if (sc->revision >= FXP_REV_82559_A0) 3227 FXP_SYSCTL_STAT_ADD(ctx, child, "tco", 3228 &hsp->tx_tco, "TCO frames"); 3229 } 3230 3231 #undef FXP_SYSCTL_STAT_ADD 3232 3233 static int 3234 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3235 { 3236 int error, value; 3237 3238 value = *(int *)arg1; 3239 error = sysctl_handle_int(oidp, &value, 0, req); 3240 if (error || !req->newptr) 3241 return (error); 3242 if (value < low || value > high) 3243 return (EINVAL); 3244 *(int *)arg1 = value; 3245 return (0); 3246 } 3247 3248 /* 3249 * Interrupt delay is expressed in microseconds, a multiplier is used 3250 * to convert this to the appropriate clock ticks before using. 3251 */ 3252 static int 3253 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) 3254 { 3255 3256 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); 3257 } 3258 3259 static int 3260 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) 3261 { 3262 3263 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); 3264 } 3265