1 /*- 2 * Copyright (c) 2007 Sepherosa Ziehau. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Sepherosa Ziehau <sepherosa@gmail.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.10 2008/05/18 07:47:14 sephe Exp $ 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/proc.h> 48 #include <sys/rman.h> 49 #include <sys/module.h> 50 #include <sys/socket.h> 51 #include <sys/sockio.h> 52 #include <sys/sysctl.h> 53 54 #include <net/ethernet.h> 55 #include <net/if.h> 56 #include <net/if_var.h> 57 #include <net/if_dl.h> 58 #include <net/if_types.h> 59 #include <net/bpf.h> 60 #include <net/if_arp.h> 61 #include <net/if_media.h> 62 #include <net/if_vlan_var.h> 63 64 #include <machine/bus.h> 65 66 #include <dev/mii/mii.h> 67 #include <dev/mii/miivar.h> 68 69 #include <dev/pci/pcireg.h> 70 #include <dev/pci/pcivar.h> 71 72 #include <dev/et/if_etreg.h> 73 #include <dev/et/if_etvar.h> 74 75 #include "miibus_if.h" 76 77 MODULE_DEPEND(et, pci, 1, 1, 1); 78 MODULE_DEPEND(et, ether, 1, 1, 1); 79 MODULE_DEPEND(et, miibus, 1, 1, 1); 80 81 /* Tunables. */ 82 static int msi_disable = 0; 83 TUNABLE_INT("hw.et.msi_disable", &msi_disable); 84 85 #define ET_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 86 87 static int et_probe(device_t); 88 static int et_attach(device_t); 89 static int et_detach(device_t); 90 static int et_shutdown(device_t); 91 static int et_suspend(device_t); 92 static int et_resume(device_t); 93 94 static int et_miibus_readreg(device_t, int, int); 95 static int et_miibus_writereg(device_t, int, int, int); 96 static void et_miibus_statchg(device_t); 97 98 static void et_init_locked(struct et_softc *); 99 static void et_init(void *); 100 static int et_ioctl(struct ifnet *, u_long, caddr_t); 101 static void et_start_locked(struct ifnet *); 102 static void et_start(struct ifnet *); 103 static int et_watchdog(struct et_softc *); 104 static int et_ifmedia_upd_locked(struct ifnet *); 105 static int et_ifmedia_upd(struct ifnet *); 106 static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *); 107 static uint64_t et_get_counter(struct ifnet *, ift_counter); 108 109 static void et_add_sysctls(struct et_softc *); 110 static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS); 111 static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS); 112 113 static void et_intr(void *); 114 static void et_rxeof(struct et_softc *); 115 static void et_txeof(struct et_softc *); 116 117 static int et_dma_alloc(struct et_softc *); 118 static void et_dma_free(struct et_softc *); 119 static void et_dma_map_addr(void *, bus_dma_segment_t *, int, int); 120 static int et_dma_ring_alloc(struct et_softc *, bus_size_t, bus_size_t, 121 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, 122 const char *); 123 static void et_dma_ring_free(struct et_softc *, bus_dma_tag_t *, uint8_t **, 124 bus_dmamap_t, bus_addr_t *); 125 static void et_init_tx_ring(struct et_softc *); 126 static int et_init_rx_ring(struct et_softc *); 127 static void et_free_tx_ring(struct et_softc *); 128 static void et_free_rx_ring(struct et_softc *); 129 static int et_encap(struct et_softc *, struct mbuf **); 130 static int et_newbuf_cluster(struct et_rxbuf_data *, int); 131 static int et_newbuf_hdr(struct et_rxbuf_data *, int); 132 static void et_rxbuf_discard(struct et_rxbuf_data *, int); 133 134 static void et_stop(struct et_softc *); 135 static int et_chip_init(struct et_softc *); 136 static void et_chip_attach(struct et_softc *); 137 static void et_init_mac(struct et_softc *); 138 static void et_init_rxmac(struct et_softc *); 139 static void et_init_txmac(struct et_softc *); 140 static int et_init_rxdma(struct et_softc *); 141 static int et_init_txdma(struct et_softc *); 142 static int et_start_rxdma(struct et_softc *); 143 static int et_start_txdma(struct et_softc *); 144 static int et_stop_rxdma(struct et_softc *); 145 static int et_stop_txdma(struct et_softc *); 146 static void et_reset(struct et_softc *); 147 static int et_bus_config(struct et_softc *); 148 static void et_get_eaddr(device_t, uint8_t[]); 149 static void et_setmulti(struct et_softc *); 150 static void et_tick(void *); 151 static void et_stats_update(struct et_softc *); 152 153 static const struct et_dev { 154 uint16_t vid; 155 uint16_t did; 156 const char *desc; 157 } et_devices[] = { 158 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310, 159 "Agere ET1310 Gigabit Ethernet" }, 160 { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST, 161 "Agere ET1310 Fast Ethernet" }, 162 { 0, 0, NULL } 163 }; 164 165 static device_method_t et_methods[] = { 166 DEVMETHOD(device_probe, et_probe), 167 DEVMETHOD(device_attach, et_attach), 168 DEVMETHOD(device_detach, et_detach), 169 DEVMETHOD(device_shutdown, et_shutdown), 170 DEVMETHOD(device_suspend, et_suspend), 171 DEVMETHOD(device_resume, et_resume), 172 173 DEVMETHOD(miibus_readreg, et_miibus_readreg), 174 DEVMETHOD(miibus_writereg, et_miibus_writereg), 175 DEVMETHOD(miibus_statchg, et_miibus_statchg), 176 177 DEVMETHOD_END 178 }; 179 180 static driver_t et_driver = { 181 "et", 182 et_methods, 183 sizeof(struct et_softc) 184 }; 185 186 static devclass_t et_devclass; 187 188 DRIVER_MODULE(et, pci, et_driver, et_devclass, 0, 0); 189 DRIVER_MODULE(miibus, et, miibus_driver, miibus_devclass, 0, 0); 190 191 static int et_rx_intr_npkts = 32; 192 static int et_rx_intr_delay = 20; /* x10 usec */ 193 static int et_tx_intr_nsegs = 126; 194 static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */ 195 196 TUNABLE_INT("hw.et.timer", &et_timer); 197 TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts); 198 TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay); 199 TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs); 200 201 static int 202 et_probe(device_t dev) 203 { 204 const struct et_dev *d; 205 uint16_t did, vid; 206 207 vid = pci_get_vendor(dev); 208 did = pci_get_device(dev); 209 210 for (d = et_devices; d->desc != NULL; ++d) { 211 if (vid == d->vid && did == d->did) { 212 device_set_desc(dev, d->desc); 213 return (BUS_PROBE_DEFAULT); 214 } 215 } 216 return (ENXIO); 217 } 218 219 static int 220 et_attach(device_t dev) 221 { 222 struct et_softc *sc; 223 struct ifnet *ifp; 224 uint8_t eaddr[ETHER_ADDR_LEN]; 225 uint32_t pmcfg; 226 int cap, error, msic; 227 228 sc = device_get_softc(dev); 229 sc->dev = dev; 230 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 231 MTX_DEF); 232 callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0); 233 234 ifp = sc->ifp = if_alloc(IFT_ETHER); 235 if (ifp == NULL) { 236 device_printf(dev, "can not if_alloc()\n"); 237 error = ENOSPC; 238 goto fail; 239 } 240 241 /* 242 * Initialize tunables 243 */ 244 sc->sc_rx_intr_npkts = et_rx_intr_npkts; 245 sc->sc_rx_intr_delay = et_rx_intr_delay; 246 sc->sc_tx_intr_nsegs = et_tx_intr_nsegs; 247 sc->sc_timer = et_timer; 248 249 /* Enable bus mastering */ 250 pci_enable_busmaster(dev); 251 252 /* 253 * Allocate IO memory 254 */ 255 sc->sc_mem_rid = PCIR_BAR(0); 256 sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 257 &sc->sc_mem_rid, RF_ACTIVE); 258 if (sc->sc_mem_res == NULL) { 259 device_printf(dev, "can't allocate IO memory\n"); 260 return (ENXIO); 261 } 262 263 msic = 0; 264 if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) { 265 sc->sc_expcap = cap; 266 sc->sc_flags |= ET_FLAG_PCIE; 267 msic = pci_msi_count(dev); 268 if (bootverbose) 269 device_printf(dev, "MSI count: %d\n", msic); 270 } 271 if (msic > 0 && msi_disable == 0) { 272 msic = 1; 273 if (pci_alloc_msi(dev, &msic) == 0) { 274 if (msic == 1) { 275 device_printf(dev, "Using %d MSI message\n", 276 msic); 277 sc->sc_flags |= ET_FLAG_MSI; 278 } else 279 pci_release_msi(dev); 280 } 281 } 282 283 /* 284 * Allocate IRQ 285 */ 286 if ((sc->sc_flags & ET_FLAG_MSI) == 0) { 287 sc->sc_irq_rid = 0; 288 sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, 289 &sc->sc_irq_rid, RF_SHAREABLE | RF_ACTIVE); 290 } else { 291 sc->sc_irq_rid = 1; 292 sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, 293 &sc->sc_irq_rid, RF_ACTIVE); 294 } 295 if (sc->sc_irq_res == NULL) { 296 device_printf(dev, "can't allocate irq\n"); 297 error = ENXIO; 298 goto fail; 299 } 300 301 if (pci_get_device(dev) == PCI_PRODUCT_LUCENT_ET1310_FAST) 302 sc->sc_flags |= ET_FLAG_FASTETHER; 303 304 error = et_bus_config(sc); 305 if (error) 306 goto fail; 307 308 et_get_eaddr(dev, eaddr); 309 310 /* Take PHY out of COMA and enable clocks. */ 311 pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE; 312 if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0) 313 pmcfg |= EM_PM_GIGEPHY_ENB; 314 CSR_WRITE_4(sc, ET_PM, pmcfg); 315 316 et_reset(sc); 317 318 error = et_dma_alloc(sc); 319 if (error) 320 goto fail; 321 322 ifp->if_softc = sc; 323 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 324 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 325 ifp->if_init = et_init; 326 ifp->if_ioctl = et_ioctl; 327 ifp->if_start = et_start; 328 ifp->if_get_counter = et_get_counter; 329 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU; 330 ifp->if_capenable = ifp->if_capabilities; 331 ifp->if_snd.ifq_drv_maxlen = ET_TX_NDESC - 1; 332 IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC - 1); 333 IFQ_SET_READY(&ifp->if_snd); 334 335 et_chip_attach(sc); 336 337 error = mii_attach(dev, &sc->sc_miibus, ifp, et_ifmedia_upd, 338 et_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 339 MIIF_DOPAUSE); 340 if (error) { 341 device_printf(dev, "attaching PHYs failed\n"); 342 goto fail; 343 } 344 345 ether_ifattach(ifp, eaddr); 346 347 /* Tell the upper layer(s) we support long frames. */ 348 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 349 350 error = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_NET | INTR_MPSAFE, 351 NULL, et_intr, sc, &sc->sc_irq_handle); 352 if (error) { 353 ether_ifdetach(ifp); 354 device_printf(dev, "can't setup intr\n"); 355 goto fail; 356 } 357 358 et_add_sysctls(sc); 359 360 return (0); 361 fail: 362 et_detach(dev); 363 return (error); 364 } 365 366 static int 367 et_detach(device_t dev) 368 { 369 struct et_softc *sc; 370 371 sc = device_get_softc(dev); 372 if (device_is_attached(dev)) { 373 ether_ifdetach(sc->ifp); 374 ET_LOCK(sc); 375 et_stop(sc); 376 ET_UNLOCK(sc); 377 callout_drain(&sc->sc_tick); 378 } 379 380 if (sc->sc_miibus != NULL) 381 device_delete_child(dev, sc->sc_miibus); 382 bus_generic_detach(dev); 383 384 if (sc->sc_irq_handle != NULL) 385 bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle); 386 if (sc->sc_irq_res != NULL) 387 bus_release_resource(dev, SYS_RES_IRQ, 388 rman_get_rid(sc->sc_irq_res), sc->sc_irq_res); 389 if ((sc->sc_flags & ET_FLAG_MSI) != 0) 390 pci_release_msi(dev); 391 if (sc->sc_mem_res != NULL) 392 bus_release_resource(dev, SYS_RES_MEMORY, 393 rman_get_rid(sc->sc_mem_res), sc->sc_mem_res); 394 395 if (sc->ifp != NULL) 396 if_free(sc->ifp); 397 398 et_dma_free(sc); 399 400 mtx_destroy(&sc->sc_mtx); 401 402 return (0); 403 } 404 405 static int 406 et_shutdown(device_t dev) 407 { 408 struct et_softc *sc; 409 410 sc = device_get_softc(dev); 411 ET_LOCK(sc); 412 et_stop(sc); 413 ET_UNLOCK(sc); 414 return (0); 415 } 416 417 static int 418 et_miibus_readreg(device_t dev, int phy, int reg) 419 { 420 struct et_softc *sc; 421 uint32_t val; 422 int i, ret; 423 424 sc = device_get_softc(dev); 425 /* Stop any pending operations */ 426 CSR_WRITE_4(sc, ET_MII_CMD, 0); 427 428 val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK; 429 val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK; 430 CSR_WRITE_4(sc, ET_MII_ADDR, val); 431 432 /* Start reading */ 433 CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ); 434 435 #define NRETRY 50 436 437 for (i = 0; i < NRETRY; ++i) { 438 val = CSR_READ_4(sc, ET_MII_IND); 439 if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0) 440 break; 441 DELAY(50); 442 } 443 if (i == NRETRY) { 444 if_printf(sc->ifp, 445 "read phy %d, reg %d timed out\n", phy, reg); 446 ret = 0; 447 goto back; 448 } 449 450 #undef NRETRY 451 452 val = CSR_READ_4(sc, ET_MII_STAT); 453 ret = val & ET_MII_STAT_VALUE_MASK; 454 455 back: 456 /* Make sure that the current operation is stopped */ 457 CSR_WRITE_4(sc, ET_MII_CMD, 0); 458 return (ret); 459 } 460 461 static int 462 et_miibus_writereg(device_t dev, int phy, int reg, int val0) 463 { 464 struct et_softc *sc; 465 uint32_t val; 466 int i; 467 468 sc = device_get_softc(dev); 469 /* Stop any pending operations */ 470 CSR_WRITE_4(sc, ET_MII_CMD, 0); 471 472 val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK; 473 val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK; 474 CSR_WRITE_4(sc, ET_MII_ADDR, val); 475 476 /* Start writing */ 477 CSR_WRITE_4(sc, ET_MII_CTRL, 478 (val0 << ET_MII_CTRL_VALUE_SHIFT) & ET_MII_CTRL_VALUE_MASK); 479 480 #define NRETRY 100 481 482 for (i = 0; i < NRETRY; ++i) { 483 val = CSR_READ_4(sc, ET_MII_IND); 484 if ((val & ET_MII_IND_BUSY) == 0) 485 break; 486 DELAY(50); 487 } 488 if (i == NRETRY) { 489 if_printf(sc->ifp, 490 "write phy %d, reg %d timed out\n", phy, reg); 491 et_miibus_readreg(dev, phy, reg); 492 } 493 494 #undef NRETRY 495 496 /* Make sure that the current operation is stopped */ 497 CSR_WRITE_4(sc, ET_MII_CMD, 0); 498 return (0); 499 } 500 501 static void 502 et_miibus_statchg(device_t dev) 503 { 504 struct et_softc *sc; 505 struct mii_data *mii; 506 struct ifnet *ifp; 507 uint32_t cfg1, cfg2, ctrl; 508 int i; 509 510 sc = device_get_softc(dev); 511 512 mii = device_get_softc(sc->sc_miibus); 513 ifp = sc->ifp; 514 if (mii == NULL || ifp == NULL || 515 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 516 return; 517 518 sc->sc_flags &= ~ET_FLAG_LINK; 519 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 520 (IFM_ACTIVE | IFM_AVALID)) { 521 switch (IFM_SUBTYPE(mii->mii_media_active)) { 522 case IFM_10_T: 523 case IFM_100_TX: 524 sc->sc_flags |= ET_FLAG_LINK; 525 break; 526 case IFM_1000_T: 527 if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0) 528 sc->sc_flags |= ET_FLAG_LINK; 529 break; 530 } 531 } 532 533 /* XXX Stop TX/RX MAC? */ 534 if ((sc->sc_flags & ET_FLAG_LINK) == 0) 535 return; 536 537 /* Program MACs with resolved speed/duplex/flow-control. */ 538 ctrl = CSR_READ_4(sc, ET_MAC_CTRL); 539 ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII); 540 cfg1 = CSR_READ_4(sc, ET_MAC_CFG1); 541 cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW | 542 ET_MAC_CFG1_LOOPBACK); 543 cfg2 = CSR_READ_4(sc, ET_MAC_CFG2); 544 cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII | 545 ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM); 546 cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC | 547 ((7 << ET_MAC_CFG2_PREAMBLE_LEN_SHIFT) & 548 ET_MAC_CFG2_PREAMBLE_LEN_MASK); 549 550 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) 551 cfg2 |= ET_MAC_CFG2_MODE_GMII; 552 else { 553 cfg2 |= ET_MAC_CFG2_MODE_MII; 554 ctrl |= ET_MAC_CTRL_MODE_MII; 555 } 556 557 if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) { 558 cfg2 |= ET_MAC_CFG2_FDX; 559 /* 560 * Controller lacks automatic TX pause frame 561 * generation so it should be handled by driver. 562 * Even though driver can send pause frame with 563 * arbitrary pause time, controller does not 564 * provide a way that tells how many free RX 565 * buffers are available in controller. This 566 * limitation makes it hard to generate XON frame 567 * in time on driver side so don't enable TX flow 568 * control. 569 */ 570 #ifdef notyet 571 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) 572 cfg1 |= ET_MAC_CFG1_TXFLOW; 573 #endif 574 if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) 575 cfg1 |= ET_MAC_CFG1_RXFLOW; 576 } else 577 ctrl |= ET_MAC_CTRL_GHDX; 578 579 CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl); 580 CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2); 581 cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN; 582 CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1); 583 584 #define NRETRY 50 585 586 for (i = 0; i < NRETRY; ++i) { 587 cfg1 = CSR_READ_4(sc, ET_MAC_CFG1); 588 if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) == 589 (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) 590 break; 591 DELAY(100); 592 } 593 if (i == NRETRY) 594 if_printf(ifp, "can't enable RX/TX\n"); 595 sc->sc_flags |= ET_FLAG_TXRX_ENABLED; 596 597 #undef NRETRY 598 } 599 600 static int 601 et_ifmedia_upd_locked(struct ifnet *ifp) 602 { 603 struct et_softc *sc; 604 struct mii_data *mii; 605 struct mii_softc *miisc; 606 607 sc = ifp->if_softc; 608 mii = device_get_softc(sc->sc_miibus); 609 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 610 PHY_RESET(miisc); 611 return (mii_mediachg(mii)); 612 } 613 614 static int 615 et_ifmedia_upd(struct ifnet *ifp) 616 { 617 struct et_softc *sc; 618 int res; 619 620 sc = ifp->if_softc; 621 ET_LOCK(sc); 622 res = et_ifmedia_upd_locked(ifp); 623 ET_UNLOCK(sc); 624 625 return (res); 626 } 627 628 static void 629 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 630 { 631 struct et_softc *sc; 632 struct mii_data *mii; 633 634 sc = ifp->if_softc; 635 ET_LOCK(sc); 636 if ((ifp->if_flags & IFF_UP) == 0) { 637 ET_UNLOCK(sc); 638 return; 639 } 640 641 mii = device_get_softc(sc->sc_miibus); 642 mii_pollstat(mii); 643 ifmr->ifm_active = mii->mii_media_active; 644 ifmr->ifm_status = mii->mii_media_status; 645 ET_UNLOCK(sc); 646 } 647 648 static void 649 et_stop(struct et_softc *sc) 650 { 651 struct ifnet *ifp; 652 653 ET_LOCK_ASSERT(sc); 654 655 ifp = sc->ifp; 656 callout_stop(&sc->sc_tick); 657 /* Disable interrupts. */ 658 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff); 659 660 CSR_WRITE_4(sc, ET_MAC_CFG1, CSR_READ_4(sc, ET_MAC_CFG1) & ~( 661 ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN)); 662 DELAY(100); 663 664 et_stop_rxdma(sc); 665 et_stop_txdma(sc); 666 et_stats_update(sc); 667 668 et_free_tx_ring(sc); 669 et_free_rx_ring(sc); 670 671 sc->sc_tx = 0; 672 sc->sc_tx_intr = 0; 673 sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED; 674 675 sc->watchdog_timer = 0; 676 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 677 } 678 679 static int 680 et_bus_config(struct et_softc *sc) 681 { 682 uint32_t val, max_plsz; 683 uint16_t ack_latency, replay_timer; 684 685 /* 686 * Test whether EEPROM is valid 687 * NOTE: Read twice to get the correct value 688 */ 689 pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1); 690 val = pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1); 691 if (val & ET_PCIM_EEPROM_STATUS_ERROR) { 692 device_printf(sc->dev, "EEPROM status error 0x%02x\n", val); 693 return (ENXIO); 694 } 695 696 /* TODO: LED */ 697 698 if ((sc->sc_flags & ET_FLAG_PCIE) == 0) 699 return (0); 700 701 /* 702 * Configure ACK latency and replay timer according to 703 * max playload size 704 */ 705 val = pci_read_config(sc->dev, 706 sc->sc_expcap + PCIER_DEVICE_CAP, 4); 707 max_plsz = val & PCIEM_CAP_MAX_PAYLOAD; 708 709 switch (max_plsz) { 710 case ET_PCIV_DEVICE_CAPS_PLSZ_128: 711 ack_latency = ET_PCIV_ACK_LATENCY_128; 712 replay_timer = ET_PCIV_REPLAY_TIMER_128; 713 break; 714 715 case ET_PCIV_DEVICE_CAPS_PLSZ_256: 716 ack_latency = ET_PCIV_ACK_LATENCY_256; 717 replay_timer = ET_PCIV_REPLAY_TIMER_256; 718 break; 719 720 default: 721 ack_latency = pci_read_config(sc->dev, ET_PCIR_ACK_LATENCY, 2); 722 replay_timer = pci_read_config(sc->dev, 723 ET_PCIR_REPLAY_TIMER, 2); 724 device_printf(sc->dev, "ack latency %u, replay timer %u\n", 725 ack_latency, replay_timer); 726 break; 727 } 728 if (ack_latency != 0) { 729 pci_write_config(sc->dev, ET_PCIR_ACK_LATENCY, ack_latency, 2); 730 pci_write_config(sc->dev, ET_PCIR_REPLAY_TIMER, replay_timer, 731 2); 732 } 733 734 /* 735 * Set L0s and L1 latency timer to 2us 736 */ 737 val = pci_read_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, 4); 738 val &= ~(PCIEM_LINK_CAP_L0S_EXIT | PCIEM_LINK_CAP_L1_EXIT); 739 /* L0s exit latency : 2us */ 740 val |= 0x00005000; 741 /* L1 exit latency : 2us */ 742 val |= 0x00028000; 743 pci_write_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, val, 4); 744 745 /* 746 * Set max read request size to 2048 bytes 747 */ 748 pci_set_max_read_req(sc->dev, 2048); 749 750 return (0); 751 } 752 753 static void 754 et_get_eaddr(device_t dev, uint8_t eaddr[]) 755 { 756 uint32_t val; 757 int i; 758 759 val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4); 760 for (i = 0; i < 4; ++i) 761 eaddr[i] = (val >> (8 * i)) & 0xff; 762 763 val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2); 764 for (; i < ETHER_ADDR_LEN; ++i) 765 eaddr[i] = (val >> (8 * (i - 4))) & 0xff; 766 } 767 768 static void 769 et_reset(struct et_softc *sc) 770 { 771 772 CSR_WRITE_4(sc, ET_MAC_CFG1, 773 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | 774 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | 775 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); 776 777 CSR_WRITE_4(sc, ET_SWRST, 778 ET_SWRST_TXDMA | ET_SWRST_RXDMA | 779 ET_SWRST_TXMAC | ET_SWRST_RXMAC | 780 ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC); 781 782 CSR_WRITE_4(sc, ET_MAC_CFG1, 783 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | 784 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC); 785 CSR_WRITE_4(sc, ET_MAC_CFG1, 0); 786 /* Disable interrupts. */ 787 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff); 788 } 789 790 struct et_dmamap_arg { 791 bus_addr_t et_busaddr; 792 }; 793 794 static void 795 et_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 796 { 797 struct et_dmamap_arg *ctx; 798 799 if (error) 800 return; 801 802 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 803 804 ctx = arg; 805 ctx->et_busaddr = segs->ds_addr; 806 } 807 808 static int 809 et_dma_ring_alloc(struct et_softc *sc, bus_size_t alignment, bus_size_t maxsize, 810 bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr, 811 const char *msg) 812 { 813 struct et_dmamap_arg ctx; 814 int error; 815 816 error = bus_dma_tag_create(sc->sc_dtag, alignment, 0, BUS_SPACE_MAXADDR, 817 BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, maxsize, 0, NULL, NULL, 818 tag); 819 if (error != 0) { 820 device_printf(sc->dev, "could not create %s dma tag\n", msg); 821 return (error); 822 } 823 /* Allocate DMA'able memory for ring. */ 824 error = bus_dmamem_alloc(*tag, (void **)ring, 825 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 826 if (error != 0) { 827 device_printf(sc->dev, 828 "could not allocate DMA'able memory for %s\n", msg); 829 return (error); 830 } 831 /* Load the address of the ring. */ 832 ctx.et_busaddr = 0; 833 error = bus_dmamap_load(*tag, *map, *ring, maxsize, et_dma_map_addr, 834 &ctx, BUS_DMA_NOWAIT); 835 if (error != 0) { 836 device_printf(sc->dev, 837 "could not load DMA'able memory for %s\n", msg); 838 return (error); 839 } 840 *paddr = ctx.et_busaddr; 841 return (0); 842 } 843 844 static void 845 et_dma_ring_free(struct et_softc *sc, bus_dma_tag_t *tag, uint8_t **ring, 846 bus_dmamap_t map, bus_addr_t *paddr) 847 { 848 849 if (*paddr != 0) { 850 bus_dmamap_unload(*tag, map); 851 *paddr = 0; 852 } 853 if (*ring != NULL) { 854 bus_dmamem_free(*tag, *ring, map); 855 *ring = NULL; 856 } 857 if (*tag) { 858 bus_dma_tag_destroy(*tag); 859 *tag = NULL; 860 } 861 } 862 863 static int 864 et_dma_alloc(struct et_softc *sc) 865 { 866 struct et_txdesc_ring *tx_ring; 867 struct et_rxdesc_ring *rx_ring; 868 struct et_rxstat_ring *rxst_ring; 869 struct et_rxstatus_data *rxsd; 870 struct et_rxbuf_data *rbd; 871 struct et_txbuf_data *tbd; 872 struct et_txstatus_data *txsd; 873 int i, error; 874 875 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 876 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 877 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 878 &sc->sc_dtag); 879 if (error != 0) { 880 device_printf(sc->dev, "could not allocate parent dma tag\n"); 881 return (error); 882 } 883 884 /* TX ring. */ 885 tx_ring = &sc->sc_tx_ring; 886 error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_TX_RING_SIZE, 887 &tx_ring->tr_dtag, (uint8_t **)&tx_ring->tr_desc, &tx_ring->tr_dmap, 888 &tx_ring->tr_paddr, "TX ring"); 889 if (error) 890 return (error); 891 892 /* TX status block. */ 893 txsd = &sc->sc_tx_status; 894 error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN, sizeof(uint32_t), 895 &txsd->txsd_dtag, (uint8_t **)&txsd->txsd_status, &txsd->txsd_dmap, 896 &txsd->txsd_paddr, "TX status block"); 897 if (error) 898 return (error); 899 900 /* RX ring 0, used as to recive small sized frames. */ 901 rx_ring = &sc->sc_rx_ring[0]; 902 error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE, 903 &rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap, 904 &rx_ring->rr_paddr, "RX ring 0"); 905 rx_ring->rr_posreg = ET_RX_RING0_POS; 906 if (error) 907 return (error); 908 909 /* RX ring 1, used as to store normal sized frames. */ 910 rx_ring = &sc->sc_rx_ring[1]; 911 error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE, 912 &rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap, 913 &rx_ring->rr_paddr, "RX ring 1"); 914 rx_ring->rr_posreg = ET_RX_RING1_POS; 915 if (error) 916 return (error); 917 918 /* RX stat ring. */ 919 rxst_ring = &sc->sc_rxstat_ring; 920 error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RXSTAT_RING_SIZE, 921 &rxst_ring->rsr_dtag, (uint8_t **)&rxst_ring->rsr_stat, 922 &rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr, "RX stat ring"); 923 if (error) 924 return (error); 925 926 /* RX status block. */ 927 rxsd = &sc->sc_rx_status; 928 error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN, 929 sizeof(struct et_rxstatus), &rxsd->rxsd_dtag, 930 (uint8_t **)&rxsd->rxsd_status, &rxsd->rxsd_dmap, 931 &rxsd->rxsd_paddr, "RX status block"); 932 if (error) 933 return (error); 934 935 /* Create parent DMA tag for mbufs. */ 936 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 937 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 938 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 939 &sc->sc_mbuf_dtag); 940 if (error != 0) { 941 device_printf(sc->dev, 942 "could not allocate parent dma tag for mbuf\n"); 943 return (error); 944 } 945 946 /* Create DMA tag for mini RX mbufs to use RX ring 0. */ 947 error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0, 948 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1, 949 MHLEN, 0, NULL, NULL, &sc->sc_rx_mini_tag); 950 if (error) { 951 device_printf(sc->dev, "could not create mini RX dma tag\n"); 952 return (error); 953 } 954 955 /* Create DMA tag for standard RX mbufs to use RX ring 1. */ 956 error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0, 957 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 958 MCLBYTES, 0, NULL, NULL, &sc->sc_rx_tag); 959 if (error) { 960 device_printf(sc->dev, "could not create RX dma tag\n"); 961 return (error); 962 } 963 964 /* Create DMA tag for TX mbufs. */ 965 error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0, 966 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 967 MCLBYTES * ET_NSEG_MAX, ET_NSEG_MAX, MCLBYTES, 0, NULL, NULL, 968 &sc->sc_tx_tag); 969 if (error) { 970 device_printf(sc->dev, "could not create TX dma tag\n"); 971 return (error); 972 } 973 974 /* Initialize RX ring 0. */ 975 rbd = &sc->sc_rx_data[0]; 976 rbd->rbd_bufsize = ET_RXDMA_CTRL_RING0_128; 977 rbd->rbd_newbuf = et_newbuf_hdr; 978 rbd->rbd_discard = et_rxbuf_discard; 979 rbd->rbd_softc = sc; 980 rbd->rbd_ring = &sc->sc_rx_ring[0]; 981 /* Create DMA maps for mini RX buffers, ring 0. */ 982 for (i = 0; i < ET_RX_NDESC; i++) { 983 error = bus_dmamap_create(sc->sc_rx_mini_tag, 0, 984 &rbd->rbd_buf[i].rb_dmap); 985 if (error) { 986 device_printf(sc->dev, 987 "could not create DMA map for mini RX mbufs\n"); 988 return (error); 989 } 990 } 991 992 /* Create a spare DMA map for mini RX buffers, ring 0. */ 993 error = bus_dmamap_create(sc->sc_rx_mini_tag, 0, 994 &sc->sc_rx_mini_sparemap); 995 if (error) { 996 device_printf(sc->dev, 997 "could not create spare DMA map for mini RX mbuf\n"); 998 return (error); 999 } 1000 1001 /* Initialize RX ring 1. */ 1002 rbd = &sc->sc_rx_data[1]; 1003 rbd->rbd_bufsize = ET_RXDMA_CTRL_RING1_2048; 1004 rbd->rbd_newbuf = et_newbuf_cluster; 1005 rbd->rbd_discard = et_rxbuf_discard; 1006 rbd->rbd_softc = sc; 1007 rbd->rbd_ring = &sc->sc_rx_ring[1]; 1008 /* Create DMA maps for standard RX buffers, ring 1. */ 1009 for (i = 0; i < ET_RX_NDESC; i++) { 1010 error = bus_dmamap_create(sc->sc_rx_tag, 0, 1011 &rbd->rbd_buf[i].rb_dmap); 1012 if (error) { 1013 device_printf(sc->dev, 1014 "could not create DMA map for mini RX mbufs\n"); 1015 return (error); 1016 } 1017 } 1018 1019 /* Create a spare DMA map for standard RX buffers, ring 1. */ 1020 error = bus_dmamap_create(sc->sc_rx_tag, 0, &sc->sc_rx_sparemap); 1021 if (error) { 1022 device_printf(sc->dev, 1023 "could not create spare DMA map for RX mbuf\n"); 1024 return (error); 1025 } 1026 1027 /* Create DMA maps for TX buffers. */ 1028 tbd = &sc->sc_tx_data; 1029 for (i = 0; i < ET_TX_NDESC; i++) { 1030 error = bus_dmamap_create(sc->sc_tx_tag, 0, 1031 &tbd->tbd_buf[i].tb_dmap); 1032 if (error) { 1033 device_printf(sc->dev, 1034 "could not create DMA map for TX mbufs\n"); 1035 return (error); 1036 } 1037 } 1038 1039 return (0); 1040 } 1041 1042 static void 1043 et_dma_free(struct et_softc *sc) 1044 { 1045 struct et_txdesc_ring *tx_ring; 1046 struct et_rxdesc_ring *rx_ring; 1047 struct et_txstatus_data *txsd; 1048 struct et_rxstat_ring *rxst_ring; 1049 struct et_rxstatus_data *rxsd; 1050 struct et_rxbuf_data *rbd; 1051 struct et_txbuf_data *tbd; 1052 int i; 1053 1054 /* Destroy DMA maps for mini RX buffers, ring 0. */ 1055 rbd = &sc->sc_rx_data[0]; 1056 for (i = 0; i < ET_RX_NDESC; i++) { 1057 if (rbd->rbd_buf[i].rb_dmap) { 1058 bus_dmamap_destroy(sc->sc_rx_mini_tag, 1059 rbd->rbd_buf[i].rb_dmap); 1060 rbd->rbd_buf[i].rb_dmap = NULL; 1061 } 1062 } 1063 if (sc->sc_rx_mini_sparemap) { 1064 bus_dmamap_destroy(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap); 1065 sc->sc_rx_mini_sparemap = NULL; 1066 } 1067 if (sc->sc_rx_mini_tag) { 1068 bus_dma_tag_destroy(sc->sc_rx_mini_tag); 1069 sc->sc_rx_mini_tag = NULL; 1070 } 1071 1072 /* Destroy DMA maps for standard RX buffers, ring 1. */ 1073 rbd = &sc->sc_rx_data[1]; 1074 for (i = 0; i < ET_RX_NDESC; i++) { 1075 if (rbd->rbd_buf[i].rb_dmap) { 1076 bus_dmamap_destroy(sc->sc_rx_tag, 1077 rbd->rbd_buf[i].rb_dmap); 1078 rbd->rbd_buf[i].rb_dmap = NULL; 1079 } 1080 } 1081 if (sc->sc_rx_sparemap) { 1082 bus_dmamap_destroy(sc->sc_rx_tag, sc->sc_rx_sparemap); 1083 sc->sc_rx_sparemap = NULL; 1084 } 1085 if (sc->sc_rx_tag) { 1086 bus_dma_tag_destroy(sc->sc_rx_tag); 1087 sc->sc_rx_tag = NULL; 1088 } 1089 1090 /* Destroy DMA maps for TX buffers. */ 1091 tbd = &sc->sc_tx_data; 1092 for (i = 0; i < ET_TX_NDESC; i++) { 1093 if (tbd->tbd_buf[i].tb_dmap) { 1094 bus_dmamap_destroy(sc->sc_tx_tag, 1095 tbd->tbd_buf[i].tb_dmap); 1096 tbd->tbd_buf[i].tb_dmap = NULL; 1097 } 1098 } 1099 if (sc->sc_tx_tag) { 1100 bus_dma_tag_destroy(sc->sc_tx_tag); 1101 sc->sc_tx_tag = NULL; 1102 } 1103 1104 /* Destroy mini RX ring, ring 0. */ 1105 rx_ring = &sc->sc_rx_ring[0]; 1106 et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc, 1107 rx_ring->rr_dmap, &rx_ring->rr_paddr); 1108 /* Destroy standard RX ring, ring 1. */ 1109 rx_ring = &sc->sc_rx_ring[1]; 1110 et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc, 1111 rx_ring->rr_dmap, &rx_ring->rr_paddr); 1112 /* Destroy RX stat ring. */ 1113 rxst_ring = &sc->sc_rxstat_ring; 1114 et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat, 1115 rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr); 1116 /* Destroy RX status block. */ 1117 rxsd = &sc->sc_rx_status; 1118 et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat, 1119 rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr); 1120 /* Destroy TX ring. */ 1121 tx_ring = &sc->sc_tx_ring; 1122 et_dma_ring_free(sc, &tx_ring->tr_dtag, (void *)&tx_ring->tr_desc, 1123 tx_ring->tr_dmap, &tx_ring->tr_paddr); 1124 /* Destroy TX status block. */ 1125 txsd = &sc->sc_tx_status; 1126 et_dma_ring_free(sc, &txsd->txsd_dtag, (void *)&txsd->txsd_status, 1127 txsd->txsd_dmap, &txsd->txsd_paddr); 1128 1129 /* Destroy the parent tag. */ 1130 if (sc->sc_dtag) { 1131 bus_dma_tag_destroy(sc->sc_dtag); 1132 sc->sc_dtag = NULL; 1133 } 1134 } 1135 1136 static void 1137 et_chip_attach(struct et_softc *sc) 1138 { 1139 uint32_t val; 1140 1141 /* 1142 * Perform minimal initialization 1143 */ 1144 1145 /* Disable loopback */ 1146 CSR_WRITE_4(sc, ET_LOOPBACK, 0); 1147 1148 /* Reset MAC */ 1149 CSR_WRITE_4(sc, ET_MAC_CFG1, 1150 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | 1151 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | 1152 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); 1153 1154 /* 1155 * Setup half duplex mode 1156 */ 1157 val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) | 1158 (15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) | 1159 (55 << ET_MAC_HDX_COLLWIN_SHIFT) | 1160 ET_MAC_HDX_EXC_DEFER; 1161 CSR_WRITE_4(sc, ET_MAC_HDX, val); 1162 1163 /* Clear MAC control */ 1164 CSR_WRITE_4(sc, ET_MAC_CTRL, 0); 1165 1166 /* Reset MII */ 1167 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST); 1168 1169 /* Bring MAC out of reset state */ 1170 CSR_WRITE_4(sc, ET_MAC_CFG1, 0); 1171 1172 /* Enable memory controllers */ 1173 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE); 1174 } 1175 1176 static void 1177 et_intr(void *xsc) 1178 { 1179 struct et_softc *sc; 1180 struct ifnet *ifp; 1181 uint32_t status; 1182 1183 sc = xsc; 1184 ET_LOCK(sc); 1185 ifp = sc->ifp; 1186 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1187 goto done; 1188 1189 status = CSR_READ_4(sc, ET_INTR_STATUS); 1190 if ((status & ET_INTRS) == 0) 1191 goto done; 1192 1193 /* Disable further interrupts. */ 1194 CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff); 1195 1196 if (status & (ET_INTR_RXDMA_ERROR | ET_INTR_TXDMA_ERROR)) { 1197 device_printf(sc->dev, "DMA error(0x%08x) -- resetting\n", 1198 status); 1199 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1200 et_init_locked(sc); 1201 ET_UNLOCK(sc); 1202 return; 1203 } 1204 if (status & ET_INTR_RXDMA) 1205 et_rxeof(sc); 1206 if (status & (ET_INTR_TXDMA | ET_INTR_TIMER)) 1207 et_txeof(sc); 1208 if (status & ET_INTR_TIMER) 1209 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer); 1210 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1211 CSR_WRITE_4(sc, ET_INTR_MASK, ~ET_INTRS); 1212 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1213 et_start_locked(ifp); 1214 } 1215 done: 1216 ET_UNLOCK(sc); 1217 } 1218 1219 static void 1220 et_init_locked(struct et_softc *sc) 1221 { 1222 struct ifnet *ifp; 1223 int error; 1224 1225 ET_LOCK_ASSERT(sc); 1226 1227 ifp = sc->ifp; 1228 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1229 return; 1230 1231 et_stop(sc); 1232 et_reset(sc); 1233 1234 et_init_tx_ring(sc); 1235 error = et_init_rx_ring(sc); 1236 if (error) 1237 return; 1238 1239 error = et_chip_init(sc); 1240 if (error) 1241 goto fail; 1242 1243 /* 1244 * Start TX/RX DMA engine 1245 */ 1246 error = et_start_rxdma(sc); 1247 if (error) 1248 return; 1249 1250 error = et_start_txdma(sc); 1251 if (error) 1252 return; 1253 1254 /* Enable interrupts. */ 1255 CSR_WRITE_4(sc, ET_INTR_MASK, ~ET_INTRS); 1256 1257 CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer); 1258 1259 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1260 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1261 1262 sc->sc_flags &= ~ET_FLAG_LINK; 1263 et_ifmedia_upd_locked(ifp); 1264 1265 callout_reset(&sc->sc_tick, hz, et_tick, sc); 1266 1267 fail: 1268 if (error) 1269 et_stop(sc); 1270 } 1271 1272 static void 1273 et_init(void *xsc) 1274 { 1275 struct et_softc *sc = xsc; 1276 1277 ET_LOCK(sc); 1278 et_init_locked(sc); 1279 ET_UNLOCK(sc); 1280 } 1281 1282 static int 1283 et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1284 { 1285 struct et_softc *sc; 1286 struct mii_data *mii; 1287 struct ifreq *ifr; 1288 int error, mask, max_framelen; 1289 1290 sc = ifp->if_softc; 1291 ifr = (struct ifreq *)data; 1292 error = 0; 1293 1294 /* XXX LOCKSUSED */ 1295 switch (cmd) { 1296 case SIOCSIFFLAGS: 1297 ET_LOCK(sc); 1298 if (ifp->if_flags & IFF_UP) { 1299 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1300 if ((ifp->if_flags ^ sc->sc_if_flags) & 1301 (IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST)) 1302 et_setmulti(sc); 1303 } else { 1304 et_init_locked(sc); 1305 } 1306 } else { 1307 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1308 et_stop(sc); 1309 } 1310 sc->sc_if_flags = ifp->if_flags; 1311 ET_UNLOCK(sc); 1312 break; 1313 1314 case SIOCSIFMEDIA: 1315 case SIOCGIFMEDIA: 1316 mii = device_get_softc(sc->sc_miibus); 1317 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1318 break; 1319 1320 case SIOCADDMULTI: 1321 case SIOCDELMULTI: 1322 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1323 ET_LOCK(sc); 1324 et_setmulti(sc); 1325 ET_UNLOCK(sc); 1326 } 1327 break; 1328 1329 case SIOCSIFMTU: 1330 ET_LOCK(sc); 1331 #if 0 1332 if (sc->sc_flags & ET_FLAG_JUMBO) 1333 max_framelen = ET_JUMBO_FRAMELEN; 1334 else 1335 #endif 1336 max_framelen = MCLBYTES - 1; 1337 1338 if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) { 1339 error = EOPNOTSUPP; 1340 ET_UNLOCK(sc); 1341 break; 1342 } 1343 1344 if (ifp->if_mtu != ifr->ifr_mtu) { 1345 ifp->if_mtu = ifr->ifr_mtu; 1346 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1347 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1348 et_init_locked(sc); 1349 } 1350 } 1351 ET_UNLOCK(sc); 1352 break; 1353 1354 case SIOCSIFCAP: 1355 ET_LOCK(sc); 1356 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1357 if ((mask & IFCAP_TXCSUM) != 0 && 1358 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1359 ifp->if_capenable ^= IFCAP_TXCSUM; 1360 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 1361 ifp->if_hwassist |= ET_CSUM_FEATURES; 1362 else 1363 ifp->if_hwassist &= ~ET_CSUM_FEATURES; 1364 } 1365 ET_UNLOCK(sc); 1366 break; 1367 1368 default: 1369 error = ether_ioctl(ifp, cmd, data); 1370 break; 1371 } 1372 return (error); 1373 } 1374 1375 static void 1376 et_start_locked(struct ifnet *ifp) 1377 { 1378 struct et_softc *sc; 1379 struct mbuf *m_head = NULL; 1380 struct et_txdesc_ring *tx_ring; 1381 struct et_txbuf_data *tbd; 1382 uint32_t tx_ready_pos; 1383 int enq; 1384 1385 sc = ifp->if_softc; 1386 ET_LOCK_ASSERT(sc); 1387 1388 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1389 IFF_DRV_RUNNING || 1390 (sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) != 1391 (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) 1392 return; 1393 1394 /* 1395 * Driver does not request TX completion interrupt for every 1396 * queued frames to prevent generating excessive interrupts. 1397 * This means driver may wait for TX completion interrupt even 1398 * though some frames were successfully transmitted. Reclaiming 1399 * transmitted frames will ensure driver see all available 1400 * descriptors. 1401 */ 1402 tbd = &sc->sc_tx_data; 1403 if (tbd->tbd_used > (ET_TX_NDESC * 2) / 3) 1404 et_txeof(sc); 1405 1406 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1407 if (tbd->tbd_used + ET_NSEG_SPARE >= ET_TX_NDESC) { 1408 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1409 break; 1410 } 1411 1412 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1413 if (m_head == NULL) 1414 break; 1415 1416 if (et_encap(sc, &m_head)) { 1417 if (m_head == NULL) { 1418 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1419 break; 1420 } 1421 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1422 if (tbd->tbd_used > 0) 1423 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1424 break; 1425 } 1426 enq++; 1427 ETHER_BPF_MTAP(ifp, m_head); 1428 } 1429 1430 if (enq > 0) { 1431 tx_ring = &sc->sc_tx_ring; 1432 bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, 1433 BUS_DMASYNC_PREWRITE); 1434 tx_ready_pos = tx_ring->tr_ready_index & 1435 ET_TX_READY_POS_INDEX_MASK; 1436 if (tx_ring->tr_ready_wrap) 1437 tx_ready_pos |= ET_TX_READY_POS_WRAP; 1438 CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos); 1439 sc->watchdog_timer = 5; 1440 } 1441 } 1442 1443 static void 1444 et_start(struct ifnet *ifp) 1445 { 1446 struct et_softc *sc; 1447 1448 sc = ifp->if_softc; 1449 ET_LOCK(sc); 1450 et_start_locked(ifp); 1451 ET_UNLOCK(sc); 1452 } 1453 1454 static int 1455 et_watchdog(struct et_softc *sc) 1456 { 1457 uint32_t status; 1458 1459 ET_LOCK_ASSERT(sc); 1460 1461 if (sc->watchdog_timer == 0 || --sc->watchdog_timer) 1462 return (0); 1463 1464 bus_dmamap_sync(sc->sc_tx_status.txsd_dtag, sc->sc_tx_status.txsd_dmap, 1465 BUS_DMASYNC_POSTREAD); 1466 status = le32toh(*(sc->sc_tx_status.txsd_status)); 1467 if_printf(sc->ifp, "watchdog timed out (0x%08x) -- resetting\n", 1468 status); 1469 1470 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1); 1471 sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1472 et_init_locked(sc); 1473 return (EJUSTRETURN); 1474 } 1475 1476 static int 1477 et_stop_rxdma(struct et_softc *sc) 1478 { 1479 1480 CSR_WRITE_4(sc, ET_RXDMA_CTRL, 1481 ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE); 1482 1483 DELAY(5); 1484 if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) { 1485 if_printf(sc->ifp, "can't stop RX DMA engine\n"); 1486 return (ETIMEDOUT); 1487 } 1488 return (0); 1489 } 1490 1491 static int 1492 et_stop_txdma(struct et_softc *sc) 1493 { 1494 1495 CSR_WRITE_4(sc, ET_TXDMA_CTRL, 1496 ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT); 1497 return (0); 1498 } 1499 1500 static void 1501 et_free_tx_ring(struct et_softc *sc) 1502 { 1503 struct et_txdesc_ring *tx_ring; 1504 struct et_txbuf_data *tbd; 1505 struct et_txbuf *tb; 1506 int i; 1507 1508 tbd = &sc->sc_tx_data; 1509 tx_ring = &sc->sc_tx_ring; 1510 for (i = 0; i < ET_TX_NDESC; ++i) { 1511 tb = &tbd->tbd_buf[i]; 1512 if (tb->tb_mbuf != NULL) { 1513 bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap, 1514 BUS_DMASYNC_POSTWRITE); 1515 bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap); 1516 m_freem(tb->tb_mbuf); 1517 tb->tb_mbuf = NULL; 1518 } 1519 } 1520 } 1521 1522 static void 1523 et_free_rx_ring(struct et_softc *sc) 1524 { 1525 struct et_rxbuf_data *rbd; 1526 struct et_rxdesc_ring *rx_ring; 1527 struct et_rxbuf *rb; 1528 int i; 1529 1530 /* Ring 0 */ 1531 rx_ring = &sc->sc_rx_ring[0]; 1532 rbd = &sc->sc_rx_data[0]; 1533 for (i = 0; i < ET_RX_NDESC; ++i) { 1534 rb = &rbd->rbd_buf[i]; 1535 if (rb->rb_mbuf != NULL) { 1536 bus_dmamap_sync(sc->sc_rx_mini_tag, rx_ring->rr_dmap, 1537 BUS_DMASYNC_POSTREAD); 1538 bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap); 1539 m_freem(rb->rb_mbuf); 1540 rb->rb_mbuf = NULL; 1541 } 1542 } 1543 1544 /* Ring 1 */ 1545 rx_ring = &sc->sc_rx_ring[1]; 1546 rbd = &sc->sc_rx_data[1]; 1547 for (i = 0; i < ET_RX_NDESC; ++i) { 1548 rb = &rbd->rbd_buf[i]; 1549 if (rb->rb_mbuf != NULL) { 1550 bus_dmamap_sync(sc->sc_rx_tag, rx_ring->rr_dmap, 1551 BUS_DMASYNC_POSTREAD); 1552 bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap); 1553 m_freem(rb->rb_mbuf); 1554 rb->rb_mbuf = NULL; 1555 } 1556 } 1557 } 1558 1559 static void 1560 et_setmulti(struct et_softc *sc) 1561 { 1562 struct ifnet *ifp; 1563 uint32_t hash[4] = { 0, 0, 0, 0 }; 1564 uint32_t rxmac_ctrl, pktfilt; 1565 struct ifmultiaddr *ifma; 1566 int i, count; 1567 1568 ET_LOCK_ASSERT(sc); 1569 ifp = sc->ifp; 1570 1571 pktfilt = CSR_READ_4(sc, ET_PKTFILT); 1572 rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL); 1573 1574 pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST); 1575 if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) { 1576 rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT; 1577 goto back; 1578 } 1579 1580 count = 0; 1581 if_maddr_rlock(ifp); 1582 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1583 uint32_t *hp, h; 1584 1585 if (ifma->ifma_addr->sa_family != AF_LINK) 1586 continue; 1587 1588 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 1589 ifma->ifma_addr), ETHER_ADDR_LEN); 1590 h = (h & 0x3f800000) >> 23; 1591 1592 hp = &hash[0]; 1593 if (h >= 32 && h < 64) { 1594 h -= 32; 1595 hp = &hash[1]; 1596 } else if (h >= 64 && h < 96) { 1597 h -= 64; 1598 hp = &hash[2]; 1599 } else if (h >= 96) { 1600 h -= 96; 1601 hp = &hash[3]; 1602 } 1603 *hp |= (1 << h); 1604 1605 ++count; 1606 } 1607 if_maddr_runlock(ifp); 1608 1609 for (i = 0; i < 4; ++i) 1610 CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]); 1611 1612 if (count > 0) 1613 pktfilt |= ET_PKTFILT_MCAST; 1614 rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT; 1615 back: 1616 CSR_WRITE_4(sc, ET_PKTFILT, pktfilt); 1617 CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl); 1618 } 1619 1620 static int 1621 et_chip_init(struct et_softc *sc) 1622 { 1623 struct ifnet *ifp; 1624 uint32_t rxq_end; 1625 int error, frame_len, rxmem_size; 1626 1627 ifp = sc->ifp; 1628 /* 1629 * Split 16Kbytes internal memory between TX and RX 1630 * according to frame length. 1631 */ 1632 frame_len = ET_FRAMELEN(ifp->if_mtu); 1633 if (frame_len < 2048) { 1634 rxmem_size = ET_MEM_RXSIZE_DEFAULT; 1635 } else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) { 1636 rxmem_size = ET_MEM_SIZE / 2; 1637 } else { 1638 rxmem_size = ET_MEM_SIZE - 1639 roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT); 1640 } 1641 rxq_end = ET_QUEUE_ADDR(rxmem_size); 1642 1643 CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START); 1644 CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end); 1645 CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1); 1646 CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END); 1647 1648 /* No loopback */ 1649 CSR_WRITE_4(sc, ET_LOOPBACK, 0); 1650 1651 /* Clear MSI configure */ 1652 if ((sc->sc_flags & ET_FLAG_MSI) == 0) 1653 CSR_WRITE_4(sc, ET_MSI_CFG, 0); 1654 1655 /* Disable timer */ 1656 CSR_WRITE_4(sc, ET_TIMER, 0); 1657 1658 /* Initialize MAC */ 1659 et_init_mac(sc); 1660 1661 /* Enable memory controllers */ 1662 CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE); 1663 1664 /* Initialize RX MAC */ 1665 et_init_rxmac(sc); 1666 1667 /* Initialize TX MAC */ 1668 et_init_txmac(sc); 1669 1670 /* Initialize RX DMA engine */ 1671 error = et_init_rxdma(sc); 1672 if (error) 1673 return (error); 1674 1675 /* Initialize TX DMA engine */ 1676 error = et_init_txdma(sc); 1677 if (error) 1678 return (error); 1679 1680 return (0); 1681 } 1682 1683 static void 1684 et_init_tx_ring(struct et_softc *sc) 1685 { 1686 struct et_txdesc_ring *tx_ring; 1687 struct et_txbuf_data *tbd; 1688 struct et_txstatus_data *txsd; 1689 1690 tx_ring = &sc->sc_tx_ring; 1691 bzero(tx_ring->tr_desc, ET_TX_RING_SIZE); 1692 bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, 1693 BUS_DMASYNC_PREWRITE); 1694 1695 tbd = &sc->sc_tx_data; 1696 tbd->tbd_start_index = 0; 1697 tbd->tbd_start_wrap = 0; 1698 tbd->tbd_used = 0; 1699 1700 txsd = &sc->sc_tx_status; 1701 bzero(txsd->txsd_status, sizeof(uint32_t)); 1702 bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap, 1703 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1704 } 1705 1706 static int 1707 et_init_rx_ring(struct et_softc *sc) 1708 { 1709 struct et_rxstatus_data *rxsd; 1710 struct et_rxstat_ring *rxst_ring; 1711 struct et_rxbuf_data *rbd; 1712 int i, error, n; 1713 1714 for (n = 0; n < ET_RX_NRING; ++n) { 1715 rbd = &sc->sc_rx_data[n]; 1716 for (i = 0; i < ET_RX_NDESC; ++i) { 1717 error = rbd->rbd_newbuf(rbd, i); 1718 if (error) { 1719 if_printf(sc->ifp, "%d ring %d buf, " 1720 "newbuf failed: %d\n", n, i, error); 1721 return (error); 1722 } 1723 } 1724 } 1725 1726 rxsd = &sc->sc_rx_status; 1727 bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus)); 1728 bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, 1729 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1730 1731 rxst_ring = &sc->sc_rxstat_ring; 1732 bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE); 1733 bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, 1734 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1735 1736 return (0); 1737 } 1738 1739 static int 1740 et_init_rxdma(struct et_softc *sc) 1741 { 1742 struct et_rxstatus_data *rxsd; 1743 struct et_rxstat_ring *rxst_ring; 1744 struct et_rxdesc_ring *rx_ring; 1745 int error; 1746 1747 error = et_stop_rxdma(sc); 1748 if (error) { 1749 if_printf(sc->ifp, "can't init RX DMA engine\n"); 1750 return (error); 1751 } 1752 1753 /* 1754 * Install RX status 1755 */ 1756 rxsd = &sc->sc_rx_status; 1757 CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr)); 1758 CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr)); 1759 1760 /* 1761 * Install RX stat ring 1762 */ 1763 rxst_ring = &sc->sc_rxstat_ring; 1764 CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr)); 1765 CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr)); 1766 CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1); 1767 CSR_WRITE_4(sc, ET_RXSTAT_POS, 0); 1768 CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1); 1769 1770 /* Match ET_RXSTAT_POS */ 1771 rxst_ring->rsr_index = 0; 1772 rxst_ring->rsr_wrap = 0; 1773 1774 /* 1775 * Install the 2nd RX descriptor ring 1776 */ 1777 rx_ring = &sc->sc_rx_ring[1]; 1778 CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr)); 1779 CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr)); 1780 CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1); 1781 CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP); 1782 CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1); 1783 1784 /* Match ET_RX_RING1_POS */ 1785 rx_ring->rr_index = 0; 1786 rx_ring->rr_wrap = 1; 1787 1788 /* 1789 * Install the 1st RX descriptor ring 1790 */ 1791 rx_ring = &sc->sc_rx_ring[0]; 1792 CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr)); 1793 CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr)); 1794 CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1); 1795 CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP); 1796 CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1); 1797 1798 /* Match ET_RX_RING0_POS */ 1799 rx_ring->rr_index = 0; 1800 rx_ring->rr_wrap = 1; 1801 1802 /* 1803 * RX intr moderation 1804 */ 1805 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts); 1806 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay); 1807 1808 return (0); 1809 } 1810 1811 static int 1812 et_init_txdma(struct et_softc *sc) 1813 { 1814 struct et_txdesc_ring *tx_ring; 1815 struct et_txstatus_data *txsd; 1816 int error; 1817 1818 error = et_stop_txdma(sc); 1819 if (error) { 1820 if_printf(sc->ifp, "can't init TX DMA engine\n"); 1821 return (error); 1822 } 1823 1824 /* 1825 * Install TX descriptor ring 1826 */ 1827 tx_ring = &sc->sc_tx_ring; 1828 CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr)); 1829 CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr)); 1830 CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1); 1831 1832 /* 1833 * Install TX status 1834 */ 1835 txsd = &sc->sc_tx_status; 1836 CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr)); 1837 CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr)); 1838 1839 CSR_WRITE_4(sc, ET_TX_READY_POS, 0); 1840 1841 /* Match ET_TX_READY_POS */ 1842 tx_ring->tr_ready_index = 0; 1843 tx_ring->tr_ready_wrap = 0; 1844 1845 return (0); 1846 } 1847 1848 static void 1849 et_init_mac(struct et_softc *sc) 1850 { 1851 struct ifnet *ifp; 1852 const uint8_t *eaddr; 1853 uint32_t val; 1854 1855 /* Reset MAC */ 1856 CSR_WRITE_4(sc, ET_MAC_CFG1, 1857 ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | 1858 ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | 1859 ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); 1860 1861 /* 1862 * Setup inter packet gap 1863 */ 1864 val = (56 << ET_IPG_NONB2B_1_SHIFT) | 1865 (88 << ET_IPG_NONB2B_2_SHIFT) | 1866 (80 << ET_IPG_MINIFG_SHIFT) | 1867 (96 << ET_IPG_B2B_SHIFT); 1868 CSR_WRITE_4(sc, ET_IPG, val); 1869 1870 /* 1871 * Setup half duplex mode 1872 */ 1873 val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) | 1874 (15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) | 1875 (55 << ET_MAC_HDX_COLLWIN_SHIFT) | 1876 ET_MAC_HDX_EXC_DEFER; 1877 CSR_WRITE_4(sc, ET_MAC_HDX, val); 1878 1879 /* Clear MAC control */ 1880 CSR_WRITE_4(sc, ET_MAC_CTRL, 0); 1881 1882 /* Reset MII */ 1883 CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST); 1884 1885 /* 1886 * Set MAC address 1887 */ 1888 ifp = sc->ifp; 1889 eaddr = IF_LLADDR(ifp); 1890 val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24); 1891 CSR_WRITE_4(sc, ET_MAC_ADDR1, val); 1892 val = (eaddr[0] << 16) | (eaddr[1] << 24); 1893 CSR_WRITE_4(sc, ET_MAC_ADDR2, val); 1894 1895 /* Set max frame length */ 1896 CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu)); 1897 1898 /* Bring MAC out of reset state */ 1899 CSR_WRITE_4(sc, ET_MAC_CFG1, 0); 1900 } 1901 1902 static void 1903 et_init_rxmac(struct et_softc *sc) 1904 { 1905 struct ifnet *ifp; 1906 const uint8_t *eaddr; 1907 uint32_t val; 1908 int i; 1909 1910 /* Disable RX MAC and WOL */ 1911 CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE); 1912 1913 /* 1914 * Clear all WOL related registers 1915 */ 1916 for (i = 0; i < 3; ++i) 1917 CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0); 1918 for (i = 0; i < 20; ++i) 1919 CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0); 1920 1921 /* 1922 * Set WOL source address. XXX is this necessary? 1923 */ 1924 ifp = sc->ifp; 1925 eaddr = IF_LLADDR(ifp); 1926 val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5]; 1927 CSR_WRITE_4(sc, ET_WOL_SA_LO, val); 1928 val = (eaddr[0] << 8) | eaddr[1]; 1929 CSR_WRITE_4(sc, ET_WOL_SA_HI, val); 1930 1931 /* Clear packet filters */ 1932 CSR_WRITE_4(sc, ET_PKTFILT, 0); 1933 1934 /* No ucast filtering */ 1935 CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0); 1936 CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0); 1937 CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0); 1938 1939 if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) { 1940 /* 1941 * In order to transmit jumbo packets greater than 1942 * ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between 1943 * RX MAC and RX DMA needs to be reduced in size to 1944 * (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen). In 1945 * order to implement this, we must use "cut through" 1946 * mode in the RX MAC, which chops packets down into 1947 * segments. In this case we selected 256 bytes, 1948 * since this is the size of the PCI-Express TLP's 1949 * that the ET1310 uses. 1950 */ 1951 val = (ET_RXMAC_SEGSZ(256) & ET_RXMAC_MC_SEGSZ_MAX_MASK) | 1952 ET_RXMAC_MC_SEGSZ_ENABLE; 1953 } else { 1954 val = 0; 1955 } 1956 CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val); 1957 1958 CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0); 1959 1960 /* Initialize RX MAC management register */ 1961 CSR_WRITE_4(sc, ET_RXMAC_MGT, 0); 1962 1963 CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0); 1964 1965 CSR_WRITE_4(sc, ET_RXMAC_MGT, 1966 ET_RXMAC_MGT_PASS_ECRC | 1967 ET_RXMAC_MGT_PASS_ELEN | 1968 ET_RXMAC_MGT_PASS_ETRUNC | 1969 ET_RXMAC_MGT_CHECK_PKT); 1970 1971 /* 1972 * Configure runt filtering (may not work on certain chip generation) 1973 */ 1974 val = (ETHER_MIN_LEN << ET_PKTFILT_MINLEN_SHIFT) & 1975 ET_PKTFILT_MINLEN_MASK; 1976 val |= ET_PKTFILT_FRAG; 1977 CSR_WRITE_4(sc, ET_PKTFILT, val); 1978 1979 /* Enable RX MAC but leave WOL disabled */ 1980 CSR_WRITE_4(sc, ET_RXMAC_CTRL, 1981 ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE); 1982 1983 /* 1984 * Setup multicast hash and allmulti/promisc mode 1985 */ 1986 et_setmulti(sc); 1987 } 1988 1989 static void 1990 et_init_txmac(struct et_softc *sc) 1991 { 1992 1993 /* Disable TX MAC and FC(?) */ 1994 CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE); 1995 1996 /* 1997 * Initialize pause time. 1998 * This register should be set before XON/XOFF frame is 1999 * sent by driver. 2000 */ 2001 CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0 << ET_TXMAC_FLOWCTRL_CFPT_SHIFT); 2002 2003 /* Enable TX MAC but leave FC(?) diabled */ 2004 CSR_WRITE_4(sc, ET_TXMAC_CTRL, 2005 ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE); 2006 } 2007 2008 static int 2009 et_start_rxdma(struct et_softc *sc) 2010 { 2011 uint32_t val; 2012 2013 val = (sc->sc_rx_data[0].rbd_bufsize & ET_RXDMA_CTRL_RING0_SIZE_MASK) | 2014 ET_RXDMA_CTRL_RING0_ENABLE; 2015 val |= (sc->sc_rx_data[1].rbd_bufsize & ET_RXDMA_CTRL_RING1_SIZE_MASK) | 2016 ET_RXDMA_CTRL_RING1_ENABLE; 2017 2018 CSR_WRITE_4(sc, ET_RXDMA_CTRL, val); 2019 2020 DELAY(5); 2021 2022 if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) { 2023 if_printf(sc->ifp, "can't start RX DMA engine\n"); 2024 return (ETIMEDOUT); 2025 } 2026 return (0); 2027 } 2028 2029 static int 2030 et_start_txdma(struct et_softc *sc) 2031 { 2032 2033 CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT); 2034 return (0); 2035 } 2036 2037 static void 2038 et_rxeof(struct et_softc *sc) 2039 { 2040 struct et_rxstatus_data *rxsd; 2041 struct et_rxstat_ring *rxst_ring; 2042 struct et_rxbuf_data *rbd; 2043 struct et_rxdesc_ring *rx_ring; 2044 struct et_rxstat *st; 2045 struct ifnet *ifp; 2046 struct mbuf *m; 2047 uint32_t rxstat_pos, rxring_pos; 2048 uint32_t rxst_info1, rxst_info2, rxs_stat_ring; 2049 int buflen, buf_idx, npost[2], ring_idx; 2050 int rxst_index, rxst_wrap; 2051 2052 ET_LOCK_ASSERT(sc); 2053 2054 ifp = sc->ifp; 2055 rxsd = &sc->sc_rx_status; 2056 rxst_ring = &sc->sc_rxstat_ring; 2057 2058 if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) 2059 return; 2060 2061 bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, 2062 BUS_DMASYNC_POSTREAD); 2063 bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, 2064 BUS_DMASYNC_POSTREAD); 2065 2066 npost[0] = npost[1] = 0; 2067 rxs_stat_ring = le32toh(rxsd->rxsd_status->rxs_stat_ring); 2068 rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0; 2069 rxst_index = (rxs_stat_ring & ET_RXS_STATRING_INDEX_MASK) >> 2070 ET_RXS_STATRING_INDEX_SHIFT; 2071 2072 while (rxst_index != rxst_ring->rsr_index || 2073 rxst_wrap != rxst_ring->rsr_wrap) { 2074 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2075 break; 2076 2077 MPASS(rxst_ring->rsr_index < ET_RX_NSTAT); 2078 st = &rxst_ring->rsr_stat[rxst_ring->rsr_index]; 2079 rxst_info1 = le32toh(st->rxst_info1); 2080 rxst_info2 = le32toh(st->rxst_info2); 2081 buflen = (rxst_info2 & ET_RXST_INFO2_LEN_MASK) >> 2082 ET_RXST_INFO2_LEN_SHIFT; 2083 buf_idx = (rxst_info2 & ET_RXST_INFO2_BUFIDX_MASK) >> 2084 ET_RXST_INFO2_BUFIDX_SHIFT; 2085 ring_idx = (rxst_info2 & ET_RXST_INFO2_RINGIDX_MASK) >> 2086 ET_RXST_INFO2_RINGIDX_SHIFT; 2087 2088 if (++rxst_ring->rsr_index == ET_RX_NSTAT) { 2089 rxst_ring->rsr_index = 0; 2090 rxst_ring->rsr_wrap ^= 1; 2091 } 2092 rxstat_pos = rxst_ring->rsr_index & ET_RXSTAT_POS_INDEX_MASK; 2093 if (rxst_ring->rsr_wrap) 2094 rxstat_pos |= ET_RXSTAT_POS_WRAP; 2095 CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos); 2096 2097 if (ring_idx >= ET_RX_NRING) { 2098 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2099 if_printf(ifp, "invalid ring index %d\n", ring_idx); 2100 continue; 2101 } 2102 if (buf_idx >= ET_RX_NDESC) { 2103 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2104 if_printf(ifp, "invalid buf index %d\n", buf_idx); 2105 continue; 2106 } 2107 2108 rbd = &sc->sc_rx_data[ring_idx]; 2109 m = rbd->rbd_buf[buf_idx].rb_mbuf; 2110 if ((rxst_info1 & ET_RXST_INFO1_OK) == 0){ 2111 /* Discard errored frame. */ 2112 rbd->rbd_discard(rbd, buf_idx); 2113 } else if (rbd->rbd_newbuf(rbd, buf_idx) != 0) { 2114 /* No available mbufs, discard it. */ 2115 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2116 rbd->rbd_discard(rbd, buf_idx); 2117 } else { 2118 buflen -= ETHER_CRC_LEN; 2119 if (buflen < ETHER_HDR_LEN) { 2120 m_freem(m); 2121 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2122 } else { 2123 m->m_pkthdr.len = m->m_len = buflen; 2124 m->m_pkthdr.rcvif = ifp; 2125 ET_UNLOCK(sc); 2126 ifp->if_input(ifp, m); 2127 ET_LOCK(sc); 2128 } 2129 } 2130 2131 rx_ring = &sc->sc_rx_ring[ring_idx]; 2132 if (buf_idx != rx_ring->rr_index) { 2133 if_printf(ifp, 2134 "WARNING!! ring %d, buf_idx %d, rr_idx %d\n", 2135 ring_idx, buf_idx, rx_ring->rr_index); 2136 } 2137 2138 MPASS(rx_ring->rr_index < ET_RX_NDESC); 2139 if (++rx_ring->rr_index == ET_RX_NDESC) { 2140 rx_ring->rr_index = 0; 2141 rx_ring->rr_wrap ^= 1; 2142 } 2143 rxring_pos = rx_ring->rr_index & ET_RX_RING_POS_INDEX_MASK; 2144 if (rx_ring->rr_wrap) 2145 rxring_pos |= ET_RX_RING_POS_WRAP; 2146 CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos); 2147 } 2148 2149 bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, 2150 BUS_DMASYNC_PREREAD); 2151 bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, 2152 BUS_DMASYNC_PREREAD); 2153 } 2154 2155 static int 2156 et_encap(struct et_softc *sc, struct mbuf **m0) 2157 { 2158 struct et_txdesc_ring *tx_ring; 2159 struct et_txbuf_data *tbd; 2160 struct et_txdesc *td; 2161 struct mbuf *m; 2162 bus_dma_segment_t segs[ET_NSEG_MAX]; 2163 bus_dmamap_t map; 2164 uint32_t csum_flags, last_td_ctrl2; 2165 int error, i, idx, first_idx, last_idx, nsegs; 2166 2167 tx_ring = &sc->sc_tx_ring; 2168 MPASS(tx_ring->tr_ready_index < ET_TX_NDESC); 2169 tbd = &sc->sc_tx_data; 2170 first_idx = tx_ring->tr_ready_index; 2171 map = tbd->tbd_buf[first_idx].tb_dmap; 2172 2173 error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs, &nsegs, 2174 0); 2175 if (error == EFBIG) { 2176 m = m_collapse(*m0, M_NOWAIT, ET_NSEG_MAX); 2177 if (m == NULL) { 2178 m_freem(*m0); 2179 *m0 = NULL; 2180 return (ENOMEM); 2181 } 2182 *m0 = m; 2183 error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs, 2184 &nsegs, 0); 2185 if (error != 0) { 2186 m_freem(*m0); 2187 *m0 = NULL; 2188 return (error); 2189 } 2190 } else if (error != 0) 2191 return (error); 2192 2193 /* Check for descriptor overruns. */ 2194 if (tbd->tbd_used + nsegs > ET_TX_NDESC - 1) { 2195 bus_dmamap_unload(sc->sc_tx_tag, map); 2196 return (ENOBUFS); 2197 } 2198 bus_dmamap_sync(sc->sc_tx_tag, map, BUS_DMASYNC_PREWRITE); 2199 2200 last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG; 2201 sc->sc_tx += nsegs; 2202 if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) { 2203 sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs; 2204 last_td_ctrl2 |= ET_TDCTRL2_INTR; 2205 } 2206 2207 m = *m0; 2208 csum_flags = 0; 2209 if ((m->m_pkthdr.csum_flags & ET_CSUM_FEATURES) != 0) { 2210 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 2211 csum_flags |= ET_TDCTRL2_CSUM_IP; 2212 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 2213 csum_flags |= ET_TDCTRL2_CSUM_UDP; 2214 else if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 2215 csum_flags |= ET_TDCTRL2_CSUM_TCP; 2216 } 2217 last_idx = -1; 2218 for (i = 0; i < nsegs; ++i) { 2219 idx = (first_idx + i) % ET_TX_NDESC; 2220 td = &tx_ring->tr_desc[idx]; 2221 td->td_addr_hi = htole32(ET_ADDR_HI(segs[i].ds_addr)); 2222 td->td_addr_lo = htole32(ET_ADDR_LO(segs[i].ds_addr)); 2223 td->td_ctrl1 = htole32(segs[i].ds_len & ET_TDCTRL1_LEN_MASK); 2224 if (i == nsegs - 1) { 2225 /* Last frag */ 2226 td->td_ctrl2 = htole32(last_td_ctrl2 | csum_flags); 2227 last_idx = idx; 2228 } else 2229 td->td_ctrl2 = htole32(csum_flags); 2230 2231 MPASS(tx_ring->tr_ready_index < ET_TX_NDESC); 2232 if (++tx_ring->tr_ready_index == ET_TX_NDESC) { 2233 tx_ring->tr_ready_index = 0; 2234 tx_ring->tr_ready_wrap ^= 1; 2235 } 2236 } 2237 td = &tx_ring->tr_desc[first_idx]; 2238 /* First frag */ 2239 td->td_ctrl2 |= htole32(ET_TDCTRL2_FIRST_FRAG); 2240 2241 MPASS(last_idx >= 0); 2242 tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap; 2243 tbd->tbd_buf[last_idx].tb_dmap = map; 2244 tbd->tbd_buf[last_idx].tb_mbuf = m; 2245 2246 tbd->tbd_used += nsegs; 2247 MPASS(tbd->tbd_used <= ET_TX_NDESC); 2248 2249 return (0); 2250 } 2251 2252 static void 2253 et_txeof(struct et_softc *sc) 2254 { 2255 struct et_txdesc_ring *tx_ring; 2256 struct et_txbuf_data *tbd; 2257 struct et_txbuf *tb; 2258 struct ifnet *ifp; 2259 uint32_t tx_done; 2260 int end, wrap; 2261 2262 ET_LOCK_ASSERT(sc); 2263 2264 ifp = sc->ifp; 2265 tx_ring = &sc->sc_tx_ring; 2266 tbd = &sc->sc_tx_data; 2267 2268 if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) 2269 return; 2270 2271 if (tbd->tbd_used == 0) 2272 return; 2273 2274 bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, 2275 BUS_DMASYNC_POSTWRITE); 2276 2277 tx_done = CSR_READ_4(sc, ET_TX_DONE_POS); 2278 end = tx_done & ET_TX_DONE_POS_INDEX_MASK; 2279 wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0; 2280 2281 while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) { 2282 MPASS(tbd->tbd_start_index < ET_TX_NDESC); 2283 tb = &tbd->tbd_buf[tbd->tbd_start_index]; 2284 if (tb->tb_mbuf != NULL) { 2285 bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap, 2286 BUS_DMASYNC_POSTWRITE); 2287 bus_dmamap_unload(sc->sc_tx_tag, tb->tb_dmap); 2288 m_freem(tb->tb_mbuf); 2289 tb->tb_mbuf = NULL; 2290 } 2291 2292 if (++tbd->tbd_start_index == ET_TX_NDESC) { 2293 tbd->tbd_start_index = 0; 2294 tbd->tbd_start_wrap ^= 1; 2295 } 2296 2297 MPASS(tbd->tbd_used > 0); 2298 tbd->tbd_used--; 2299 } 2300 2301 if (tbd->tbd_used == 0) 2302 sc->watchdog_timer = 0; 2303 if (tbd->tbd_used + ET_NSEG_SPARE < ET_TX_NDESC) 2304 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2305 } 2306 2307 static void 2308 et_tick(void *xsc) 2309 { 2310 struct et_softc *sc; 2311 struct ifnet *ifp; 2312 struct mii_data *mii; 2313 2314 sc = xsc; 2315 ET_LOCK_ASSERT(sc); 2316 ifp = sc->ifp; 2317 mii = device_get_softc(sc->sc_miibus); 2318 2319 mii_tick(mii); 2320 et_stats_update(sc); 2321 if (et_watchdog(sc) == EJUSTRETURN) 2322 return; 2323 callout_reset(&sc->sc_tick, hz, et_tick, sc); 2324 } 2325 2326 static int 2327 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx) 2328 { 2329 struct et_softc *sc; 2330 struct et_rxdesc *desc; 2331 struct et_rxbuf *rb; 2332 struct mbuf *m; 2333 bus_dma_segment_t segs[1]; 2334 bus_dmamap_t dmap; 2335 int nsegs; 2336 2337 MPASS(buf_idx < ET_RX_NDESC); 2338 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2339 if (m == NULL) 2340 return (ENOBUFS); 2341 m->m_len = m->m_pkthdr.len = MCLBYTES; 2342 m_adj(m, ETHER_ALIGN); 2343 2344 sc = rbd->rbd_softc; 2345 rb = &rbd->rbd_buf[buf_idx]; 2346 2347 if (bus_dmamap_load_mbuf_sg(sc->sc_rx_tag, sc->sc_rx_sparemap, m, 2348 segs, &nsegs, 0) != 0) { 2349 m_freem(m); 2350 return (ENOBUFS); 2351 } 2352 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 2353 2354 if (rb->rb_mbuf != NULL) { 2355 bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap, 2356 BUS_DMASYNC_POSTREAD); 2357 bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap); 2358 } 2359 dmap = rb->rb_dmap; 2360 rb->rb_dmap = sc->sc_rx_sparemap; 2361 sc->sc_rx_sparemap = dmap; 2362 bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD); 2363 2364 rb->rb_mbuf = m; 2365 desc = &rbd->rbd_ring->rr_desc[buf_idx]; 2366 desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr)); 2367 desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr)); 2368 desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK); 2369 bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap, 2370 BUS_DMASYNC_PREWRITE); 2371 return (0); 2372 } 2373 2374 static void 2375 et_rxbuf_discard(struct et_rxbuf_data *rbd, int buf_idx) 2376 { 2377 struct et_rxdesc *desc; 2378 2379 desc = &rbd->rbd_ring->rr_desc[buf_idx]; 2380 desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK); 2381 bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap, 2382 BUS_DMASYNC_PREWRITE); 2383 } 2384 2385 static int 2386 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx) 2387 { 2388 struct et_softc *sc; 2389 struct et_rxdesc *desc; 2390 struct et_rxbuf *rb; 2391 struct mbuf *m; 2392 bus_dma_segment_t segs[1]; 2393 bus_dmamap_t dmap; 2394 int nsegs; 2395 2396 MPASS(buf_idx < ET_RX_NDESC); 2397 MGETHDR(m, M_NOWAIT, MT_DATA); 2398 if (m == NULL) 2399 return (ENOBUFS); 2400 m->m_len = m->m_pkthdr.len = MHLEN; 2401 m_adj(m, ETHER_ALIGN); 2402 2403 sc = rbd->rbd_softc; 2404 rb = &rbd->rbd_buf[buf_idx]; 2405 2406 if (bus_dmamap_load_mbuf_sg(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap, 2407 m, segs, &nsegs, 0) != 0) { 2408 m_freem(m); 2409 return (ENOBUFS); 2410 } 2411 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 2412 2413 if (rb->rb_mbuf != NULL) { 2414 bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap, 2415 BUS_DMASYNC_POSTREAD); 2416 bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap); 2417 } 2418 dmap = rb->rb_dmap; 2419 rb->rb_dmap = sc->sc_rx_mini_sparemap; 2420 sc->sc_rx_mini_sparemap = dmap; 2421 bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD); 2422 2423 rb->rb_mbuf = m; 2424 desc = &rbd->rbd_ring->rr_desc[buf_idx]; 2425 desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr)); 2426 desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr)); 2427 desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK); 2428 bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap, 2429 BUS_DMASYNC_PREWRITE); 2430 return (0); 2431 } 2432 2433 #define ET_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2434 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2435 #define ET_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 2436 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 2437 2438 /* 2439 * Create sysctl tree 2440 */ 2441 static void 2442 et_add_sysctls(struct et_softc * sc) 2443 { 2444 struct sysctl_ctx_list *ctx; 2445 struct sysctl_oid_list *children, *parent; 2446 struct sysctl_oid *tree; 2447 struct et_hw_stats *stats; 2448 2449 ctx = device_get_sysctl_ctx(sc->dev); 2450 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 2451 2452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_npkts", 2453 CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_npkts, "I", 2454 "RX IM, # packets per RX interrupt"); 2455 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_delay", 2456 CTLTYPE_INT | CTLFLAG_RW, sc, 0, et_sysctl_rx_intr_delay, "I", 2457 "RX IM, RX interrupt delay (x10 usec)"); 2458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_intr_nsegs", 2459 CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0, 2460 "TX IM, # segments per TX interrupt"); 2461 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "timer", 2462 CTLFLAG_RW, &sc->sc_timer, 0, "TX timer"); 2463 2464 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 2465 NULL, "ET statistics"); 2466 parent = SYSCTL_CHILDREN(tree); 2467 2468 /* TX/RX statistics. */ 2469 stats = &sc->sc_stats; 2470 ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_64", &stats->pkts_64, 2471 "0 to 64 bytes frames"); 2472 ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_65_127", &stats->pkts_65, 2473 "65 to 127 bytes frames"); 2474 ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_128_255", &stats->pkts_128, 2475 "128 to 255 bytes frames"); 2476 ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_256_511", &stats->pkts_256, 2477 "256 to 511 bytes frames"); 2478 ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_512_1023", &stats->pkts_512, 2479 "512 to 1023 bytes frames"); 2480 ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_1024_1518", &stats->pkts_1024, 2481 "1024 to 1518 bytes frames"); 2482 ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_1519_1522", &stats->pkts_1519, 2483 "1519 to 1522 bytes frames"); 2484 2485 /* RX statistics. */ 2486 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 2487 NULL, "RX MAC statistics"); 2488 children = SYSCTL_CHILDREN(tree); 2489 ET_SYSCTL_STAT_ADD64(ctx, children, "bytes", 2490 &stats->rx_bytes, "Good bytes"); 2491 ET_SYSCTL_STAT_ADD64(ctx, children, "frames", 2492 &stats->rx_frames, "Good frames"); 2493 ET_SYSCTL_STAT_ADD32(ctx, children, "crc_errs", 2494 &stats->rx_crcerrs, "CRC errors"); 2495 ET_SYSCTL_STAT_ADD64(ctx, children, "mcast_frames", 2496 &stats->rx_mcast, "Multicast frames"); 2497 ET_SYSCTL_STAT_ADD64(ctx, children, "bcast_frames", 2498 &stats->rx_bcast, "Broadcast frames"); 2499 ET_SYSCTL_STAT_ADD32(ctx, children, "control", 2500 &stats->rx_control, "Control frames"); 2501 ET_SYSCTL_STAT_ADD32(ctx, children, "pause", 2502 &stats->rx_pause, "Pause frames"); 2503 ET_SYSCTL_STAT_ADD32(ctx, children, "unknown_control", 2504 &stats->rx_unknown_control, "Unknown control frames"); 2505 ET_SYSCTL_STAT_ADD32(ctx, children, "align_errs", 2506 &stats->rx_alignerrs, "Alignment errors"); 2507 ET_SYSCTL_STAT_ADD32(ctx, children, "len_errs", 2508 &stats->rx_lenerrs, "Frames with length mismatched"); 2509 ET_SYSCTL_STAT_ADD32(ctx, children, "code_errs", 2510 &stats->rx_codeerrs, "Frames with code error"); 2511 ET_SYSCTL_STAT_ADD32(ctx, children, "cs_errs", 2512 &stats->rx_cserrs, "Frames with carrier sense error"); 2513 ET_SYSCTL_STAT_ADD32(ctx, children, "runts", 2514 &stats->rx_runts, "Too short frames"); 2515 ET_SYSCTL_STAT_ADD64(ctx, children, "oversize", 2516 &stats->rx_oversize, "Oversized frames"); 2517 ET_SYSCTL_STAT_ADD32(ctx, children, "fragments", 2518 &stats->rx_fragments, "Fragmented frames"); 2519 ET_SYSCTL_STAT_ADD32(ctx, children, "jabbers", 2520 &stats->rx_jabbers, "Frames with jabber error"); 2521 ET_SYSCTL_STAT_ADD32(ctx, children, "drop", 2522 &stats->rx_drop, "Dropped frames"); 2523 2524 /* TX statistics. */ 2525 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 2526 NULL, "TX MAC statistics"); 2527 children = SYSCTL_CHILDREN(tree); 2528 ET_SYSCTL_STAT_ADD64(ctx, children, "bytes", 2529 &stats->tx_bytes, "Good bytes"); 2530 ET_SYSCTL_STAT_ADD64(ctx, children, "frames", 2531 &stats->tx_frames, "Good frames"); 2532 ET_SYSCTL_STAT_ADD64(ctx, children, "mcast_frames", 2533 &stats->tx_mcast, "Multicast frames"); 2534 ET_SYSCTL_STAT_ADD64(ctx, children, "bcast_frames", 2535 &stats->tx_bcast, "Broadcast frames"); 2536 ET_SYSCTL_STAT_ADD32(ctx, children, "pause", 2537 &stats->tx_pause, "Pause frames"); 2538 ET_SYSCTL_STAT_ADD32(ctx, children, "deferred", 2539 &stats->tx_deferred, "Deferred frames"); 2540 ET_SYSCTL_STAT_ADD32(ctx, children, "excess_deferred", 2541 &stats->tx_excess_deferred, "Excessively deferred frames"); 2542 ET_SYSCTL_STAT_ADD32(ctx, children, "single_colls", 2543 &stats->tx_single_colls, "Single collisions"); 2544 ET_SYSCTL_STAT_ADD32(ctx, children, "multi_colls", 2545 &stats->tx_multi_colls, "Multiple collisions"); 2546 ET_SYSCTL_STAT_ADD32(ctx, children, "late_colls", 2547 &stats->tx_late_colls, "Late collisions"); 2548 ET_SYSCTL_STAT_ADD32(ctx, children, "excess_colls", 2549 &stats->tx_excess_colls, "Excess collisions"); 2550 ET_SYSCTL_STAT_ADD32(ctx, children, "total_colls", 2551 &stats->tx_total_colls, "Total collisions"); 2552 ET_SYSCTL_STAT_ADD32(ctx, children, "pause_honored", 2553 &stats->tx_pause_honored, "Honored pause frames"); 2554 ET_SYSCTL_STAT_ADD32(ctx, children, "drop", 2555 &stats->tx_drop, "Dropped frames"); 2556 ET_SYSCTL_STAT_ADD32(ctx, children, "jabbers", 2557 &stats->tx_jabbers, "Frames with jabber errors"); 2558 ET_SYSCTL_STAT_ADD32(ctx, children, "crc_errs", 2559 &stats->tx_crcerrs, "Frames with CRC errors"); 2560 ET_SYSCTL_STAT_ADD32(ctx, children, "control", 2561 &stats->tx_control, "Control frames"); 2562 ET_SYSCTL_STAT_ADD64(ctx, children, "oversize", 2563 &stats->tx_oversize, "Oversized frames"); 2564 ET_SYSCTL_STAT_ADD32(ctx, children, "undersize", 2565 &stats->tx_undersize, "Undersized frames"); 2566 ET_SYSCTL_STAT_ADD32(ctx, children, "fragments", 2567 &stats->tx_fragments, "Fragmented frames"); 2568 } 2569 2570 #undef ET_SYSCTL_STAT_ADD32 2571 #undef ET_SYSCTL_STAT_ADD64 2572 2573 static int 2574 et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS) 2575 { 2576 struct et_softc *sc; 2577 struct ifnet *ifp; 2578 int error, v; 2579 2580 sc = arg1; 2581 ifp = sc->ifp; 2582 v = sc->sc_rx_intr_npkts; 2583 error = sysctl_handle_int(oidp, &v, 0, req); 2584 if (error || req->newptr == NULL) 2585 goto back; 2586 if (v <= 0) { 2587 error = EINVAL; 2588 goto back; 2589 } 2590 2591 if (sc->sc_rx_intr_npkts != v) { 2592 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2593 CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v); 2594 sc->sc_rx_intr_npkts = v; 2595 } 2596 back: 2597 return (error); 2598 } 2599 2600 static int 2601 et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS) 2602 { 2603 struct et_softc *sc; 2604 struct ifnet *ifp; 2605 int error, v; 2606 2607 sc = arg1; 2608 ifp = sc->ifp; 2609 v = sc->sc_rx_intr_delay; 2610 error = sysctl_handle_int(oidp, &v, 0, req); 2611 if (error || req->newptr == NULL) 2612 goto back; 2613 if (v <= 0) { 2614 error = EINVAL; 2615 goto back; 2616 } 2617 2618 if (sc->sc_rx_intr_delay != v) { 2619 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2620 CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v); 2621 sc->sc_rx_intr_delay = v; 2622 } 2623 back: 2624 return (error); 2625 } 2626 2627 static void 2628 et_stats_update(struct et_softc *sc) 2629 { 2630 struct et_hw_stats *stats; 2631 2632 stats = &sc->sc_stats; 2633 stats->pkts_64 += CSR_READ_4(sc, ET_STAT_PKTS_64); 2634 stats->pkts_65 += CSR_READ_4(sc, ET_STAT_PKTS_65_127); 2635 stats->pkts_128 += CSR_READ_4(sc, ET_STAT_PKTS_128_255); 2636 stats->pkts_256 += CSR_READ_4(sc, ET_STAT_PKTS_256_511); 2637 stats->pkts_512 += CSR_READ_4(sc, ET_STAT_PKTS_512_1023); 2638 stats->pkts_1024 += CSR_READ_4(sc, ET_STAT_PKTS_1024_1518); 2639 stats->pkts_1519 += CSR_READ_4(sc, ET_STAT_PKTS_1519_1522); 2640 2641 stats->rx_bytes += CSR_READ_4(sc, ET_STAT_RX_BYTES); 2642 stats->rx_frames += CSR_READ_4(sc, ET_STAT_RX_FRAMES); 2643 stats->rx_crcerrs += CSR_READ_4(sc, ET_STAT_RX_CRC_ERR); 2644 stats->rx_mcast += CSR_READ_4(sc, ET_STAT_RX_MCAST); 2645 stats->rx_bcast += CSR_READ_4(sc, ET_STAT_RX_BCAST); 2646 stats->rx_control += CSR_READ_4(sc, ET_STAT_RX_CTL); 2647 stats->rx_pause += CSR_READ_4(sc, ET_STAT_RX_PAUSE); 2648 stats->rx_unknown_control += CSR_READ_4(sc, ET_STAT_RX_UNKNOWN_CTL); 2649 stats->rx_alignerrs += CSR_READ_4(sc, ET_STAT_RX_ALIGN_ERR); 2650 stats->rx_lenerrs += CSR_READ_4(sc, ET_STAT_RX_LEN_ERR); 2651 stats->rx_codeerrs += CSR_READ_4(sc, ET_STAT_RX_CODE_ERR); 2652 stats->rx_cserrs += CSR_READ_4(sc, ET_STAT_RX_CS_ERR); 2653 stats->rx_runts += CSR_READ_4(sc, ET_STAT_RX_RUNT); 2654 stats->rx_oversize += CSR_READ_4(sc, ET_STAT_RX_OVERSIZE); 2655 stats->rx_fragments += CSR_READ_4(sc, ET_STAT_RX_FRAG); 2656 stats->rx_jabbers += CSR_READ_4(sc, ET_STAT_RX_JABBER); 2657 stats->rx_drop += CSR_READ_4(sc, ET_STAT_RX_DROP); 2658 2659 stats->tx_bytes += CSR_READ_4(sc, ET_STAT_TX_BYTES); 2660 stats->tx_frames += CSR_READ_4(sc, ET_STAT_TX_FRAMES); 2661 stats->tx_mcast += CSR_READ_4(sc, ET_STAT_TX_MCAST); 2662 stats->tx_bcast += CSR_READ_4(sc, ET_STAT_TX_BCAST); 2663 stats->tx_pause += CSR_READ_4(sc, ET_STAT_TX_PAUSE); 2664 stats->tx_deferred += CSR_READ_4(sc, ET_STAT_TX_DEFER); 2665 stats->tx_excess_deferred += CSR_READ_4(sc, ET_STAT_TX_EXCESS_DEFER); 2666 stats->tx_single_colls += CSR_READ_4(sc, ET_STAT_TX_SINGLE_COL); 2667 stats->tx_multi_colls += CSR_READ_4(sc, ET_STAT_TX_MULTI_COL); 2668 stats->tx_late_colls += CSR_READ_4(sc, ET_STAT_TX_LATE_COL); 2669 stats->tx_excess_colls += CSR_READ_4(sc, ET_STAT_TX_EXCESS_COL); 2670 stats->tx_total_colls += CSR_READ_4(sc, ET_STAT_TX_TOTAL_COL); 2671 stats->tx_pause_honored += CSR_READ_4(sc, ET_STAT_TX_PAUSE_HONOR); 2672 stats->tx_drop += CSR_READ_4(sc, ET_STAT_TX_DROP); 2673 stats->tx_jabbers += CSR_READ_4(sc, ET_STAT_TX_JABBER); 2674 stats->tx_crcerrs += CSR_READ_4(sc, ET_STAT_TX_CRC_ERR); 2675 stats->tx_control += CSR_READ_4(sc, ET_STAT_TX_CTL); 2676 stats->tx_oversize += CSR_READ_4(sc, ET_STAT_TX_OVERSIZE); 2677 stats->tx_undersize += CSR_READ_4(sc, ET_STAT_TX_UNDERSIZE); 2678 stats->tx_fragments += CSR_READ_4(sc, ET_STAT_TX_FRAG); 2679 } 2680 2681 static uint64_t 2682 et_get_counter(struct ifnet *ifp, ift_counter cnt) 2683 { 2684 struct et_softc *sc; 2685 struct et_hw_stats *stats; 2686 2687 sc = if_getsoftc(ifp); 2688 stats = &sc->sc_stats; 2689 2690 switch (cnt) { 2691 case IFCOUNTER_OPACKETS: 2692 return (stats->tx_frames); 2693 case IFCOUNTER_COLLISIONS: 2694 return (stats->tx_total_colls); 2695 case IFCOUNTER_OERRORS: 2696 return (stats->tx_drop + stats->tx_jabbers + 2697 stats->tx_crcerrs + stats->tx_excess_deferred + 2698 stats->tx_late_colls); 2699 case IFCOUNTER_IPACKETS: 2700 return (stats->rx_frames); 2701 case IFCOUNTER_IERRORS: 2702 return (stats->rx_crcerrs + stats->rx_alignerrs + 2703 stats->rx_lenerrs + stats->rx_codeerrs + stats->rx_cserrs + 2704 stats->rx_runts + stats->rx_jabbers + stats->rx_drop); 2705 default: 2706 return (if_get_counter_default(ifp, cnt)); 2707 } 2708 } 2709 2710 static int 2711 et_suspend(device_t dev) 2712 { 2713 struct et_softc *sc; 2714 uint32_t pmcfg; 2715 2716 sc = device_get_softc(dev); 2717 ET_LOCK(sc); 2718 if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2719 et_stop(sc); 2720 /* Diable all clocks and put PHY into COMA. */ 2721 pmcfg = CSR_READ_4(sc, ET_PM); 2722 pmcfg &= ~(EM_PM_GIGEPHY_ENB | ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | 2723 ET_PM_RXCLK_GATE); 2724 pmcfg |= ET_PM_PHY_SW_COMA; 2725 CSR_WRITE_4(sc, ET_PM, pmcfg); 2726 ET_UNLOCK(sc); 2727 return (0); 2728 } 2729 2730 static int 2731 et_resume(device_t dev) 2732 { 2733 struct et_softc *sc; 2734 uint32_t pmcfg; 2735 2736 sc = device_get_softc(dev); 2737 ET_LOCK(sc); 2738 /* Take PHY out of COMA and enable clocks. */ 2739 pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE; 2740 if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0) 2741 pmcfg |= EM_PM_GIGEPHY_ENB; 2742 CSR_WRITE_4(sc, ET_PM, pmcfg); 2743 if ((sc->ifp->if_flags & IFF_UP) != 0) 2744 et_init_locked(sc); 2745 ET_UNLOCK(sc); 2746 return (0); 2747 } 2748