1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2021 Alstom Group. 5 * Copyright (c) 2021 Semihalf. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/endian.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/rman.h> 37 #include <sys/socket.h> 38 #include <sys/sockio.h> 39 40 #include <machine/bus.h> 41 #include <machine/resource.h> 42 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_dl.h> 46 #include <net/if_var.h> 47 #include <net/if_types.h> 48 #include <net/if_media.h> 49 #include <net/iflib.h> 50 51 #include <dev/enetc/enetc_hw.h> 52 #include <dev/enetc/enetc.h> 53 #include <dev/enetc/enetc_mdio.h> 54 #include <dev/mii/mii.h> 55 #include <dev/mii/miivar.h> 56 #include <dev/pci/pcireg.h> 57 #include <dev/pci/pcivar.h> 58 59 #include <dev/ofw/ofw_bus.h> 60 #include <dev/ofw/ofw_bus_subr.h> 61 62 #include "ifdi_if.h" 63 #include "miibus_if.h" 64 65 static device_register_t enetc_register; 66 67 static ifdi_attach_pre_t enetc_attach_pre; 68 static ifdi_attach_post_t enetc_attach_post; 69 static ifdi_detach_t enetc_detach; 70 71 static ifdi_tx_queues_alloc_t enetc_tx_queues_alloc; 72 static ifdi_rx_queues_alloc_t enetc_rx_queues_alloc; 73 static ifdi_queues_free_t enetc_queues_free; 74 75 static ifdi_init_t enetc_init; 76 static ifdi_stop_t enetc_stop; 77 78 static ifdi_msix_intr_assign_t enetc_msix_intr_assign; 79 static ifdi_tx_queue_intr_enable_t enetc_tx_queue_intr_enable; 80 static ifdi_rx_queue_intr_enable_t enetc_rx_queue_intr_enable; 81 static ifdi_intr_enable_t enetc_intr_enable; 82 static ifdi_intr_disable_t enetc_intr_disable; 83 84 static int enetc_isc_txd_encap(void*, if_pkt_info_t); 85 static void enetc_isc_txd_flush(void*, uint16_t, qidx_t); 86 static int enetc_isc_txd_credits_update(void*, uint16_t, bool); 87 static int enetc_isc_rxd_available(void*, uint16_t, qidx_t, qidx_t); 88 static int enetc_isc_rxd_pkt_get(void*, if_rxd_info_t); 89 static void enetc_isc_rxd_refill(void*, if_rxd_update_t); 90 static void enetc_isc_rxd_flush(void*, uint16_t, uint8_t, qidx_t); 91 92 static void enetc_vlan_register(if_ctx_t, uint16_t); 93 static void enetc_vlan_unregister(if_ctx_t, uint16_t); 94 95 static uint64_t enetc_get_counter(if_ctx_t, ift_counter); 96 static int enetc_promisc_set(if_ctx_t, int); 97 static int enetc_mtu_set(if_ctx_t, uint32_t); 98 static void enetc_setup_multicast(if_ctx_t); 99 static void enetc_timer(if_ctx_t, uint16_t); 100 static void enetc_update_admin_status(if_ctx_t); 101 102 static miibus_readreg_t enetc_miibus_readreg; 103 static miibus_writereg_t enetc_miibus_writereg; 104 static miibus_linkchg_t enetc_miibus_linkchg; 105 static miibus_statchg_t enetc_miibus_statchg; 106 107 static int enetc_media_change(if_t); 108 static void enetc_media_status(if_t, struct ifmediareq*); 109 110 static int enetc_fixed_media_change(if_t); 111 static void enetc_fixed_media_status(if_t, struct ifmediareq*); 112 113 static void enetc_max_nqueues(struct enetc_softc*, int*, int*); 114 static int enetc_setup_phy(struct enetc_softc*); 115 116 static void enetc_get_hwaddr(struct enetc_softc*); 117 static void enetc_set_hwaddr(struct enetc_softc*); 118 static int enetc_setup_rss(struct enetc_softc*); 119 120 static void enetc_init_hw(struct enetc_softc*); 121 static void enetc_init_ctrl(struct enetc_softc*); 122 static void enetc_init_tx(struct enetc_softc*); 123 static void enetc_init_rx(struct enetc_softc*); 124 125 static int enetc_ctrl_send(struct enetc_softc*, 126 uint16_t, uint16_t, iflib_dma_info_t); 127 128 static const char enetc_driver_version[] = "1.0.0"; 129 130 static pci_vendor_info_t enetc_vendor_info_array[] = { 131 PVID(PCI_VENDOR_FREESCALE, ENETC_DEV_ID_PF, 132 "Freescale ENETC PCIe Gigabit Ethernet Controller"), 133 PVID_END 134 }; 135 136 #define ENETC_IFCAPS (IFCAP_VLAN_MTU | IFCAP_RXCSUM | IFCAP_JUMBO_MTU | \ 137 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER) 138 139 static device_method_t enetc_methods[] = { 140 DEVMETHOD(device_register, enetc_register), 141 DEVMETHOD(device_probe, iflib_device_probe), 142 DEVMETHOD(device_attach, iflib_device_attach), 143 DEVMETHOD(device_detach, iflib_device_detach), 144 DEVMETHOD(device_shutdown, iflib_device_shutdown), 145 DEVMETHOD(device_suspend, iflib_device_suspend), 146 DEVMETHOD(device_resume, iflib_device_resume), 147 148 DEVMETHOD(miibus_readreg, enetc_miibus_readreg), 149 DEVMETHOD(miibus_writereg, enetc_miibus_writereg), 150 DEVMETHOD(miibus_linkchg, enetc_miibus_linkchg), 151 DEVMETHOD(miibus_statchg, enetc_miibus_statchg), 152 153 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), 154 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), 155 DEVMETHOD(bus_release_resource, bus_generic_release_resource), 156 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 157 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), 158 DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), 159 DEVMETHOD(bus_alloc_resource, bus_generic_alloc_resource), 160 161 DEVMETHOD_END 162 }; 163 164 static driver_t enetc_driver = { 165 "enetc", enetc_methods, sizeof(struct enetc_softc) 166 }; 167 168 DRIVER_MODULE(miibus, enetc, miibus_fdt_driver, NULL, NULL); 169 /* Make sure miibus gets procesed first. */ 170 DRIVER_MODULE_ORDERED(enetc, pci, enetc_driver, NULL, NULL, SI_ORDER_ANY); 171 MODULE_VERSION(enetc, 1); 172 173 IFLIB_PNP_INFO(pci, enetc, enetc_vendor_info_array); 174 175 MODULE_DEPEND(enetc, ether, 1, 1, 1); 176 MODULE_DEPEND(enetc, iflib, 1, 1, 1); 177 MODULE_DEPEND(enetc, miibus, 1, 1, 1); 178 179 static device_method_t enetc_iflib_methods[] = { 180 DEVMETHOD(ifdi_attach_pre, enetc_attach_pre), 181 DEVMETHOD(ifdi_attach_post, enetc_attach_post), 182 DEVMETHOD(ifdi_detach, enetc_detach), 183 184 DEVMETHOD(ifdi_init, enetc_init), 185 DEVMETHOD(ifdi_stop, enetc_stop), 186 187 DEVMETHOD(ifdi_tx_queues_alloc, enetc_tx_queues_alloc), 188 DEVMETHOD(ifdi_rx_queues_alloc, enetc_rx_queues_alloc), 189 DEVMETHOD(ifdi_queues_free, enetc_queues_free), 190 191 DEVMETHOD(ifdi_msix_intr_assign, enetc_msix_intr_assign), 192 DEVMETHOD(ifdi_tx_queue_intr_enable, enetc_tx_queue_intr_enable), 193 DEVMETHOD(ifdi_rx_queue_intr_enable, enetc_rx_queue_intr_enable), 194 DEVMETHOD(ifdi_intr_enable, enetc_intr_enable), 195 DEVMETHOD(ifdi_intr_disable, enetc_intr_disable), 196 197 DEVMETHOD(ifdi_vlan_register, enetc_vlan_register), 198 DEVMETHOD(ifdi_vlan_unregister, enetc_vlan_unregister), 199 200 DEVMETHOD(ifdi_get_counter, enetc_get_counter), 201 DEVMETHOD(ifdi_mtu_set, enetc_mtu_set), 202 DEVMETHOD(ifdi_multi_set, enetc_setup_multicast), 203 DEVMETHOD(ifdi_promisc_set, enetc_promisc_set), 204 DEVMETHOD(ifdi_timer, enetc_timer), 205 DEVMETHOD(ifdi_update_admin_status, enetc_update_admin_status), 206 207 DEVMETHOD_END 208 }; 209 210 static driver_t enetc_iflib_driver = { 211 "enetc", enetc_iflib_methods, sizeof(struct enetc_softc) 212 }; 213 214 static struct if_txrx enetc_txrx = { 215 .ift_txd_encap = enetc_isc_txd_encap, 216 .ift_txd_flush = enetc_isc_txd_flush, 217 .ift_txd_credits_update = enetc_isc_txd_credits_update, 218 .ift_rxd_available = enetc_isc_rxd_available, 219 .ift_rxd_pkt_get = enetc_isc_rxd_pkt_get, 220 .ift_rxd_refill = enetc_isc_rxd_refill, 221 .ift_rxd_flush = enetc_isc_rxd_flush 222 }; 223 224 static struct if_shared_ctx enetc_sctx_init = { 225 .isc_magic = IFLIB_MAGIC, 226 227 .isc_q_align = ENETC_RING_ALIGN, 228 229 .isc_tx_maxsize = ENETC_MAX_FRAME_LEN, 230 .isc_tx_maxsegsize = PAGE_SIZE, 231 232 .isc_rx_maxsize = ENETC_MAX_FRAME_LEN, 233 .isc_rx_maxsegsize = ENETC_MAX_FRAME_LEN, 234 .isc_rx_nsegments = ENETC_MAX_SCATTER, 235 236 .isc_admin_intrcnt = 0, 237 238 .isc_nfl = 1, 239 .isc_nrxqs = 1, 240 .isc_ntxqs = 1, 241 242 .isc_vendor_info = enetc_vendor_info_array, 243 .isc_driver_version = enetc_driver_version, 244 .isc_driver = &enetc_iflib_driver, 245 246 .isc_flags = IFLIB_DRIVER_MEDIA | IFLIB_PRESERVE_TX_INDICES, 247 .isc_ntxd_min = {ENETC_MIN_DESC}, 248 .isc_ntxd_max = {ENETC_MAX_DESC}, 249 .isc_ntxd_default = {ENETC_DEFAULT_DESC}, 250 .isc_nrxd_min = {ENETC_MIN_DESC}, 251 .isc_nrxd_max = {ENETC_MAX_DESC}, 252 .isc_nrxd_default = {ENETC_DEFAULT_DESC} 253 }; 254 255 static void* 256 enetc_register(device_t dev) 257 { 258 259 if (!ofw_bus_status_okay(dev)) 260 return (NULL); 261 262 return (&enetc_sctx_init); 263 } 264 265 static void 266 enetc_max_nqueues(struct enetc_softc *sc, int *max_tx_nqueues, 267 int *max_rx_nqueues) 268 { 269 uint32_t val; 270 271 val = ENETC_PORT_RD4(sc, ENETC_PCAPR0); 272 *max_tx_nqueues = MIN(ENETC_PCAPR0_TXBDR(val), ENETC_MAX_QUEUES); 273 *max_rx_nqueues = MIN(ENETC_PCAPR0_RXBDR(val), ENETC_MAX_QUEUES); 274 } 275 276 static int 277 enetc_setup_fixed(struct enetc_softc *sc, phandle_t node) 278 { 279 ssize_t size; 280 int speed; 281 282 size = OF_getencprop(node, "speed", &speed, sizeof(speed)); 283 if (size <= 0) { 284 device_printf(sc->dev, 285 "Device has fixed-link node without link speed specified\n"); 286 return (ENXIO); 287 } 288 switch (speed) { 289 case 10: 290 speed = IFM_10_T; 291 break; 292 case 100: 293 speed = IFM_100_TX; 294 break; 295 case 1000: 296 speed = IFM_1000_T; 297 break; 298 case 2500: 299 speed = IFM_2500_T; 300 break; 301 default: 302 device_printf(sc->dev, "Unsupported link speed value of %d\n", 303 speed); 304 return (ENXIO); 305 } 306 speed |= IFM_ETHER; 307 308 if (OF_hasprop(node, "full-duplex")) 309 speed |= IFM_FDX; 310 else 311 speed |= IFM_HDX; 312 313 sc->fixed_link = true; 314 315 ifmedia_init(&sc->fixed_ifmedia, 0, enetc_fixed_media_change, 316 enetc_fixed_media_status); 317 ifmedia_add(&sc->fixed_ifmedia, speed, 0, NULL); 318 ifmedia_set(&sc->fixed_ifmedia, speed); 319 sc->shared->isc_media = &sc->fixed_ifmedia; 320 321 return (0); 322 } 323 324 static int 325 enetc_setup_phy(struct enetc_softc *sc) 326 { 327 phandle_t node, fixed_link, phy_handle; 328 struct mii_data *miid; 329 int phy_addr, error; 330 ssize_t size; 331 332 node = ofw_bus_get_node(sc->dev); 333 fixed_link = ofw_bus_find_child(node, "fixed-link"); 334 if (fixed_link != 0) 335 return (enetc_setup_fixed(sc, fixed_link)); 336 337 size = OF_getencprop(node, "phy-handle", &phy_handle, sizeof(phy_handle)); 338 if (size <= 0) { 339 device_printf(sc->dev, 340 "Failed to acquire PHY handle from FDT.\n"); 341 return (ENXIO); 342 } 343 phy_handle = OF_node_from_xref(phy_handle); 344 size = OF_getencprop(phy_handle, "reg", &phy_addr, sizeof(phy_addr)); 345 if (size <= 0) { 346 device_printf(sc->dev, "Failed to obtain PHY address\n"); 347 return (ENXIO); 348 } 349 error = mii_attach(sc->dev, &sc->miibus, iflib_get_ifp(sc->ctx), 350 enetc_media_change, enetc_media_status, 351 BMSR_DEFCAPMASK, phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE); 352 if (error != 0) { 353 device_printf(sc->dev, "mii_attach failed\n"); 354 return (error); 355 } 356 miid = device_get_softc(sc->miibus); 357 sc->shared->isc_media = &miid->mii_media; 358 359 return (0); 360 } 361 362 static int 363 enetc_attach_pre(if_ctx_t ctx) 364 { 365 if_softc_ctx_t scctx; 366 struct enetc_softc *sc; 367 int error, rid; 368 369 sc = iflib_get_softc(ctx); 370 scctx = iflib_get_softc_ctx(ctx); 371 sc->ctx = ctx; 372 sc->dev = iflib_get_dev(ctx); 373 sc->shared = scctx; 374 375 mtx_init(&sc->mii_lock, "enetc_mdio", NULL, MTX_DEF); 376 377 pci_save_state(sc->dev); 378 pcie_flr(sc->dev, 1000, false); 379 pci_restore_state(sc->dev); 380 381 rid = PCIR_BAR(ENETC_BAR_REGS); 382 sc->regs = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); 383 if (sc->regs == NULL) { 384 device_printf(sc->dev, 385 "Failed to allocate BAR %d\n", ENETC_BAR_REGS); 386 return (ENXIO); 387 } 388 389 error = iflib_dma_alloc_align(ctx, 390 ENETC_MIN_DESC * sizeof(struct enetc_cbd), 391 ENETC_RING_ALIGN, 392 &sc->ctrl_queue.dma, 393 0); 394 if (error != 0) { 395 device_printf(sc->dev, "Failed to allocate control ring\n"); 396 goto fail; 397 } 398 sc->ctrl_queue.ring = (struct enetc_cbd*)sc->ctrl_queue.dma.idi_vaddr; 399 400 scctx->isc_txrx = &enetc_txrx; 401 scctx->isc_tx_nsegments = ENETC_MAX_SCATTER; 402 enetc_max_nqueues(sc, &scctx->isc_nrxqsets_max, &scctx->isc_ntxqsets_max); 403 404 if (scctx->isc_ntxd[0] % ENETC_DESC_ALIGN != 0) { 405 device_printf(sc->dev, 406 "The number of TX descriptors has to be a multiple of %d\n", 407 ENETC_DESC_ALIGN); 408 error = EINVAL; 409 goto fail; 410 } 411 if (scctx->isc_nrxd[0] % ENETC_DESC_ALIGN != 0) { 412 device_printf(sc->dev, 413 "The number of RX descriptors has to be a multiple of %d\n", 414 ENETC_DESC_ALIGN); 415 error = EINVAL; 416 goto fail; 417 } 418 scctx->isc_txqsizes[0] = scctx->isc_ntxd[0] * sizeof(union enetc_tx_bd); 419 scctx->isc_rxqsizes[0] = scctx->isc_nrxd[0] * sizeof(union enetc_rx_bd); 420 scctx->isc_txd_size[0] = sizeof(union enetc_tx_bd); 421 scctx->isc_rxd_size[0] = sizeof(union enetc_rx_bd); 422 scctx->isc_tx_csum_flags = 0; 423 scctx->isc_capabilities = scctx->isc_capenable = ENETC_IFCAPS; 424 425 error = enetc_mtu_set(ctx, ETHERMTU); 426 if (error != 0) 427 goto fail; 428 429 scctx->isc_msix_bar = pci_msix_table_bar(sc->dev); 430 431 error = enetc_setup_phy(sc); 432 if (error != 0) 433 goto fail; 434 435 enetc_get_hwaddr(sc); 436 437 return (0); 438 fail: 439 enetc_detach(ctx); 440 return (error); 441 } 442 443 static int 444 enetc_attach_post(if_ctx_t ctx) 445 { 446 447 enetc_init_hw(iflib_get_softc(ctx)); 448 return (0); 449 } 450 451 static int 452 enetc_detach(if_ctx_t ctx) 453 { 454 struct enetc_softc *sc; 455 int error = 0, i; 456 457 sc = iflib_get_softc(ctx); 458 459 for (i = 0; i < sc->rx_num_queues; i++) 460 iflib_irq_free(ctx, &sc->rx_queues[i].irq); 461 462 if (sc->miibus != NULL) 463 device_delete_child(sc->dev, sc->miibus); 464 465 if (sc->regs != NULL) 466 error = bus_release_resource(sc->dev, SYS_RES_MEMORY, 467 rman_get_rid(sc->regs), sc->regs); 468 469 if (sc->ctrl_queue.dma.idi_size != 0) 470 iflib_dma_free(&sc->ctrl_queue.dma); 471 472 mtx_destroy(&sc->mii_lock); 473 474 return (error); 475 } 476 477 static int 478 enetc_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, 479 int ntxqs, int ntxqsets) 480 { 481 struct enetc_softc *sc; 482 struct enetc_tx_queue *queue; 483 int i; 484 485 sc = iflib_get_softc(ctx); 486 487 MPASS(ntxqs == 1); 488 489 sc->tx_queues = mallocarray(sc->tx_num_queues, 490 sizeof(struct enetc_tx_queue), M_DEVBUF, M_NOWAIT | M_ZERO); 491 if (sc->tx_queues == NULL) { 492 device_printf(sc->dev, 493 "Failed to allocate memory for TX queues.\n"); 494 return (ENOMEM); 495 } 496 497 for (i = 0; i < sc->tx_num_queues; i++) { 498 queue = &sc->tx_queues[i]; 499 queue->sc = sc; 500 queue->ring = (union enetc_tx_bd*)(vaddrs[i]); 501 queue->ring_paddr = paddrs[i]; 502 queue->cidx = 0; 503 } 504 505 return (0); 506 } 507 508 static int 509 enetc_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, 510 int nrxqs, int nrxqsets) 511 { 512 struct enetc_softc *sc; 513 struct enetc_rx_queue *queue; 514 int i; 515 516 sc = iflib_get_softc(ctx); 517 MPASS(nrxqs == 1); 518 519 sc->rx_queues = mallocarray(sc->rx_num_queues, 520 sizeof(struct enetc_rx_queue), M_DEVBUF, M_NOWAIT | M_ZERO); 521 if (sc->rx_queues == NULL) { 522 device_printf(sc->dev, 523 "Failed to allocate memory for RX queues.\n"); 524 return (ENOMEM); 525 } 526 527 for (i = 0; i < sc->rx_num_queues; i++) { 528 queue = &sc->rx_queues[i]; 529 queue->sc = sc; 530 queue->qid = i; 531 queue->ring = (union enetc_rx_bd*)(vaddrs[i]); 532 queue->ring_paddr = paddrs[i]; 533 } 534 535 return (0); 536 } 537 538 static void 539 enetc_queues_free(if_ctx_t ctx) 540 { 541 struct enetc_softc *sc; 542 543 sc = iflib_get_softc(ctx); 544 545 if (sc->tx_queues != NULL) { 546 free(sc->tx_queues, M_DEVBUF); 547 sc->tx_queues = NULL; 548 } 549 if (sc->rx_queues != NULL) { 550 free(sc->rx_queues, M_DEVBUF); 551 sc->rx_queues = NULL; 552 } 553 } 554 555 static void 556 enetc_get_hwaddr(struct enetc_softc *sc) 557 { 558 struct ether_addr hwaddr; 559 uint16_t high; 560 uint32_t low; 561 562 low = ENETC_PORT_RD4(sc, ENETC_PSIPMAR0(0)); 563 high = ENETC_PORT_RD2(sc, ENETC_PSIPMAR1(0)); 564 565 memcpy(&hwaddr.octet[0], &low, 4); 566 memcpy(&hwaddr.octet[4], &high, 2); 567 568 if (ETHER_IS_BROADCAST(hwaddr.octet) || 569 ETHER_IS_MULTICAST(hwaddr.octet) || 570 ETHER_IS_ZERO(hwaddr.octet)) { 571 ether_gen_addr(iflib_get_ifp(sc->ctx), &hwaddr); 572 device_printf(sc->dev, 573 "Failed to obtain MAC address, using a random one\n"); 574 memcpy(&low, &hwaddr.octet[0], 4); 575 memcpy(&high, &hwaddr.octet[4], 2); 576 } 577 578 iflib_set_mac(sc->ctx, hwaddr.octet); 579 } 580 581 static void 582 enetc_set_hwaddr(struct enetc_softc *sc) 583 { 584 if_t ifp; 585 uint16_t high; 586 uint32_t low; 587 uint8_t *hwaddr; 588 589 ifp = iflib_get_ifp(sc->ctx); 590 hwaddr = (uint8_t*)if_getlladdr(ifp); 591 low = *((uint32_t*)hwaddr); 592 high = *((uint16_t*)(hwaddr+4)); 593 594 ENETC_PORT_WR4(sc, ENETC_PSIPMAR0(0), low); 595 ENETC_PORT_WR2(sc, ENETC_PSIPMAR1(0), high); 596 } 597 598 static int 599 enetc_setup_rss(struct enetc_softc *sc) 600 { 601 struct iflib_dma_info dma; 602 int error, i, buckets_num = 0; 603 uint8_t *rss_table; 604 uint32_t reg; 605 606 reg = ENETC_RD4(sc, ENETC_SIPCAPR0); 607 if (reg & ENETC_SIPCAPR0_RSS) { 608 reg = ENETC_RD4(sc, ENETC_SIRSSCAPR); 609 buckets_num = ENETC_SIRSSCAPR_GET_NUM_RSS(reg); 610 } 611 if (buckets_num == 0) 612 return (ENOTSUP); 613 614 for (i = 0; i < ENETC_RSSHASH_KEY_SIZE / sizeof(uint32_t); i++) { 615 arc4rand((uint8_t *)®, sizeof(reg), 0); 616 ENETC_PORT_WR4(sc, ENETC_PRSSK(i), reg); 617 } 618 619 ENETC_WR4(sc, ENETC_SIRBGCR, sc->rx_num_queues); 620 621 error = iflib_dma_alloc_align(sc->ctx, 622 buckets_num * sizeof(*rss_table), 623 ENETC_RING_ALIGN, 624 &dma, 625 0); 626 if (error != 0) { 627 device_printf(sc->dev, "Failed to allocate DMA buffer for RSS\n"); 628 return (error); 629 } 630 rss_table = (uint8_t *)dma.idi_vaddr; 631 632 for (i = 0; i < buckets_num; i++) 633 rss_table[i] = i % sc->rx_num_queues; 634 635 error = enetc_ctrl_send(sc, (BDCR_CMD_RSS << 8) | BDCR_CMD_RSS_WRITE, 636 buckets_num * sizeof(*rss_table), &dma); 637 if (error != 0) 638 device_printf(sc->dev, "Failed to setup RSS table\n"); 639 640 iflib_dma_free(&dma); 641 642 return (error); 643 } 644 645 static int 646 enetc_ctrl_send(struct enetc_softc *sc, uint16_t cmd, uint16_t size, 647 iflib_dma_info_t dma) 648 { 649 struct enetc_ctrl_queue *queue; 650 struct enetc_cbd *desc; 651 int timeout = 1000; 652 653 queue = &sc->ctrl_queue; 654 desc = &queue->ring[queue->pidx]; 655 656 if (++queue->pidx == ENETC_MIN_DESC) 657 queue->pidx = 0; 658 659 desc->addr[0] = (uint32_t)dma->idi_paddr; 660 desc->addr[1] = (uint32_t)(dma->idi_paddr >> 32); 661 desc->index = 0; 662 desc->length = (uint16_t)size; 663 desc->cmd = (uint8_t)cmd; 664 desc->cls = (uint8_t)(cmd >> 8); 665 desc->status_flags = 0; 666 667 /* Sync command packet, */ 668 bus_dmamap_sync(dma->idi_tag, dma->idi_map, BUS_DMASYNC_PREWRITE); 669 /* and the control ring. */ 670 bus_dmamap_sync(queue->dma.idi_tag, queue->dma.idi_map, BUS_DMASYNC_PREWRITE); 671 ENETC_WR4(sc, ENETC_SICBDRPIR, queue->pidx); 672 673 while (--timeout != 0) { 674 DELAY(20); 675 if (ENETC_RD4(sc, ENETC_SICBDRCIR) == queue->pidx) 676 break; 677 } 678 679 if (timeout == 0) 680 return (ETIMEDOUT); 681 682 bus_dmamap_sync(dma->idi_tag, dma->idi_map, BUS_DMASYNC_POSTREAD); 683 return (0); 684 } 685 686 static void 687 enetc_init_hw(struct enetc_softc *sc) 688 { 689 uint32_t val; 690 int error; 691 692 ENETC_PORT_WR4(sc, ENETC_PM0_CMD_CFG, 693 ENETC_PM0_CMD_TXP | ENETC_PM0_PROMISC | 694 ENETC_PM0_TX_EN | ENETC_PM0_RX_EN); 695 ENETC_PORT_WR4(sc, ENETC_PM0_RX_FIFO, ENETC_PM0_RX_FIFO_VAL); 696 val = ENETC_PSICFGR0_SET_TXBDR(sc->tx_num_queues); 697 val |= ENETC_PSICFGR0_SET_RXBDR(sc->rx_num_queues); 698 val |= ENETC_PSICFGR0_SIVC(ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S); 699 ENETC_PORT_WR4(sc, ENETC_PSICFGR0(0), val); 700 ENETC_PORT_WR4(sc, ENETC_PSIPVMR, ENETC_PSIPVMR_SET_VUTA(1)); 701 ENETC_PORT_WR4(sc, ENETC_PVCLCTR, ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S); 702 ENETC_PORT_WR4(sc, ENETC_PSIVLANFMR, ENETC_PSIVLANFMR_VS); 703 ENETC_PORT_WR4(sc, ENETC_PAR_PORT_CFG, ENETC_PAR_PORT_L4CD); 704 ENETC_PORT_WR4(sc, ENETC_PMR, ENETC_PMR_SI0EN | ENETC_PMR_PSPEED_1000M); 705 706 ENETC_WR4(sc, ENETC_SICAR0, 707 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT); 708 ENETC_WR4(sc, ENETC_SICAR1, ENETC_SICAR_MSI); 709 ENETC_WR4(sc, ENETC_SICAR2, 710 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT); 711 712 enetc_init_ctrl(sc); 713 error = enetc_setup_rss(sc); 714 if (error != 0) 715 ENETC_WR4(sc, ENETC_SIMR, ENETC_SIMR_EN); 716 else 717 ENETC_WR4(sc, ENETC_SIMR, ENETC_SIMR_EN | ENETC_SIMR_RSSE); 718 719 } 720 721 static void 722 enetc_init_ctrl(struct enetc_softc *sc) 723 { 724 struct enetc_ctrl_queue *queue = &sc->ctrl_queue; 725 726 ENETC_WR4(sc, ENETC_SICBDRBAR0, 727 (uint32_t)queue->dma.idi_paddr); 728 ENETC_WR4(sc, ENETC_SICBDRBAR1, 729 (uint32_t)(queue->dma.idi_paddr >> 32)); 730 ENETC_WR4(sc, ENETC_SICBDRLENR, 731 queue->dma.idi_size / sizeof(struct enetc_cbd)); 732 733 queue->pidx = 0; 734 ENETC_WR4(sc, ENETC_SICBDRPIR, queue->pidx); 735 ENETC_WR4(sc, ENETC_SICBDRCIR, queue->pidx); 736 ENETC_WR4(sc, ENETC_SICBDRMR, ENETC_SICBDRMR_EN); 737 } 738 739 static void 740 enetc_init_tx(struct enetc_softc *sc) 741 { 742 struct enetc_tx_queue *queue; 743 int i; 744 745 for (i = 0; i < sc->tx_num_queues; i++) { 746 queue = &sc->tx_queues[i]; 747 748 ENETC_TXQ_WR4(sc, i, ENETC_TBBAR0, 749 (uint32_t)queue->ring_paddr); 750 ENETC_TXQ_WR4(sc, i, ENETC_TBBAR1, 751 (uint32_t)(queue->ring_paddr >> 32)); 752 ENETC_TXQ_WR4(sc, i, ENETC_TBLENR, sc->tx_queue_size); 753 754 /* 755 * Even though it is undoccumented resetting the TX ring 756 * indices results in TX hang. 757 * Do the same as Linux and simply keep those unchanged 758 * for the drivers lifetime. 759 */ 760 #if 0 761 ENETC_TXQ_WR4(sc, i, ENETC_TBPIR, 0); 762 ENETC_TXQ_WR4(sc, i, ENETC_TBCIR, 0); 763 #endif 764 ENETC_TXQ_WR4(sc, i, ENETC_TBMR, ENETC_TBMR_EN); 765 } 766 767 } 768 769 static void 770 enetc_init_rx(struct enetc_softc *sc) 771 { 772 struct enetc_rx_queue *queue; 773 uint32_t rx_buf_size; 774 int i; 775 776 rx_buf_size = iflib_get_rx_mbuf_sz(sc->ctx); 777 778 for (i = 0; i < sc->rx_num_queues; i++) { 779 queue = &sc->rx_queues[i]; 780 781 ENETC_RXQ_WR4(sc, i, ENETC_RBBAR0, 782 (uint32_t)queue->ring_paddr); 783 ENETC_RXQ_WR4(sc, i, ENETC_RBBAR1, 784 (uint32_t)(queue->ring_paddr >> 32)); 785 ENETC_RXQ_WR4(sc, i, ENETC_RBLENR, sc->rx_queue_size); 786 ENETC_RXQ_WR4(sc, i, ENETC_RBBSR, rx_buf_size); 787 ENETC_RXQ_WR4(sc, i, ENETC_RBPIR, 0); 788 ENETC_RXQ_WR4(sc, i, ENETC_RBCIR, 0); 789 queue->enabled = false; 790 } 791 } 792 793 static u_int 794 enetc_hash_mac(void *arg, struct sockaddr_dl *sdl, u_int cnt) 795 { 796 uint64_t *bitmap = arg; 797 uint64_t address = 0; 798 uint8_t hash = 0; 799 bool bit; 800 int i, j; 801 802 bcopy(LLADDR(sdl), &address, ETHER_ADDR_LEN); 803 804 /* 805 * The six bit hash is calculated by xoring every 806 * 6th bit of the address. 807 * It is then used as an index in a bitmap that is 808 * written to the device. 809 */ 810 for (i = 0; i < 6; i++) { 811 bit = 0; 812 for (j = 0; j < 8; j++) 813 bit ^= !!(address & BIT(i + j*6)); 814 815 hash |= bit << i; 816 } 817 818 *bitmap |= (1 << hash); 819 return (1); 820 } 821 822 static void 823 enetc_setup_multicast(if_ctx_t ctx) 824 { 825 struct enetc_softc *sc; 826 if_t ifp; 827 uint64_t bitmap = 0; 828 uint8_t revid; 829 830 sc = iflib_get_softc(ctx); 831 ifp = iflib_get_ifp(ctx); 832 revid = pci_get_revid(sc->dev); 833 834 if_foreach_llmaddr(ifp, enetc_hash_mac, &bitmap); 835 836 /* 837 * In revid 1 of this chip the positions multicast and unicast 838 * hash filter registers are flipped. 839 */ 840 ENETC_PORT_WR4(sc, ENETC_PSIMMHFR0(0, revid == 1), bitmap & UINT32_MAX); 841 ENETC_PORT_WR4(sc, ENETC_PSIMMHFR1(0), bitmap >> 32); 842 843 } 844 845 static uint8_t 846 enetc_hash_vid(uint16_t vid) 847 { 848 uint8_t hash = 0; 849 bool bit; 850 int i; 851 852 for (i = 0;i < 6;i++) { 853 bit = vid & BIT(i); 854 bit ^= !!(vid & BIT(i + 6)); 855 hash |= bit << i; 856 } 857 858 return (hash); 859 } 860 861 static void 862 enetc_vlan_register(if_ctx_t ctx, uint16_t vid) 863 { 864 struct enetc_softc *sc; 865 uint8_t hash; 866 uint64_t bitmap; 867 868 sc = iflib_get_softc(ctx); 869 hash = enetc_hash_vid(vid); 870 871 /* Check if hash is already present in the bitmap. */ 872 if (++sc->vlan_bitmap[hash] != 1) 873 return; 874 875 bitmap = ENETC_PORT_RD4(sc, ENETC_PSIVHFR0(0)); 876 bitmap |= (uint64_t)ENETC_PORT_RD4(sc, ENETC_PSIVHFR1(0)) << 32; 877 bitmap |= BIT(hash); 878 ENETC_PORT_WR4(sc, ENETC_PSIVHFR0(0), bitmap & UINT32_MAX); 879 ENETC_PORT_WR4(sc, ENETC_PSIVHFR1(0), bitmap >> 32); 880 } 881 882 static void 883 enetc_vlan_unregister(if_ctx_t ctx, uint16_t vid) 884 { 885 struct enetc_softc *sc; 886 uint8_t hash; 887 uint64_t bitmap; 888 889 sc = iflib_get_softc(ctx); 890 hash = enetc_hash_vid(vid); 891 892 MPASS(sc->vlan_bitmap[hash] > 0); 893 if (--sc->vlan_bitmap[hash] != 0) 894 return; 895 896 bitmap = ENETC_PORT_RD4(sc, ENETC_PSIVHFR0(0)); 897 bitmap |= (uint64_t)ENETC_PORT_RD4(sc, ENETC_PSIVHFR1(0)) << 32; 898 bitmap &= ~BIT(hash); 899 ENETC_PORT_WR4(sc, ENETC_PSIVHFR0(0), bitmap & UINT32_MAX); 900 ENETC_PORT_WR4(sc, ENETC_PSIVHFR1(0), bitmap >> 32); 901 } 902 903 static void 904 enetc_init(if_ctx_t ctx) 905 { 906 struct enetc_softc *sc; 907 struct mii_data *miid; 908 if_t ifp; 909 uint16_t max_frame_length; 910 int baudrate; 911 912 sc = iflib_get_softc(ctx); 913 ifp = iflib_get_ifp(ctx); 914 915 max_frame_length = sc->shared->isc_max_frame_size; 916 MPASS(max_frame_length < ENETC_MAX_FRAME_LEN); 917 918 /* Set max RX and TX frame lengths. */ 919 ENETC_PORT_WR4(sc, ENETC_PM0_MAXFRM, max_frame_length); 920 ENETC_PORT_WR4(sc, ENETC_PTCMSDUR(0), max_frame_length); 921 ENETC_PORT_WR4(sc, ENETC_PTXMBAR, 2 * max_frame_length); 922 923 /* Set "VLAN promiscious" mode if filtering is disabled. */ 924 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) == 0) 925 ENETC_PORT_WR4(sc, ENETC_PSIPVMR, 926 ENETC_PSIPVMR_SET_VUTA(1) | ENETC_PSIPVMR_SET_VP(1)); 927 else 928 ENETC_PORT_WR4(sc, ENETC_PSIPVMR, 929 ENETC_PSIPVMR_SET_VUTA(1)); 930 931 sc->rbmr = ENETC_RBMR_EN; 932 933 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) 934 sc->rbmr |= ENETC_RBMR_VTE; 935 936 /* Write MAC address to hardware. */ 937 enetc_set_hwaddr(sc); 938 939 enetc_init_tx(sc); 940 enetc_init_rx(sc); 941 942 if (sc->fixed_link) { 943 baudrate = ifmedia_baudrate(sc->fixed_ifmedia.ifm_cur->ifm_media); 944 iflib_link_state_change(sc->ctx, LINK_STATE_UP, baudrate); 945 } else { 946 /* 947 * Can't return an error from this function, there is not much 948 * we can do if this fails. 949 */ 950 miid = device_get_softc(sc->miibus); 951 (void)mii_mediachg(miid); 952 } 953 954 enetc_promisc_set(ctx, if_getflags(ifp)); 955 } 956 957 static void 958 enetc_disable_txq(struct enetc_softc *sc, int qid) 959 { 960 qidx_t cidx, pidx; 961 int timeout = 10000; /* this * DELAY(100) = 1s */ 962 963 /* At this point iflib shouldn't be enquing any more frames. */ 964 pidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBPIR); 965 cidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBCIR); 966 967 while (pidx != cidx && timeout--) { 968 DELAY(100); 969 cidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBCIR); 970 } 971 972 if (timeout == 0) 973 device_printf(sc->dev, 974 "Timeout while waiting for txq%d to stop transmitting packets\n", 975 qid); 976 977 ENETC_TXQ_WR4(sc, qid, ENETC_TBMR, 0); 978 } 979 980 static void 981 enetc_stop(if_ctx_t ctx) 982 { 983 struct enetc_softc *sc; 984 int i; 985 986 sc = iflib_get_softc(ctx); 987 988 for (i = 0; i < sc->rx_num_queues; i++) 989 ENETC_RXQ_WR4(sc, i, ENETC_RBMR, 0); 990 991 for (i = 0; i < sc->tx_num_queues; i++) 992 enetc_disable_txq(sc, i); 993 } 994 995 static int 996 enetc_msix_intr_assign(if_ctx_t ctx, int msix) 997 { 998 struct enetc_softc *sc; 999 struct enetc_rx_queue *rx_queue; 1000 struct enetc_tx_queue *tx_queue; 1001 int vector = 0, i, error; 1002 char irq_name[16]; 1003 1004 sc = iflib_get_softc(ctx); 1005 1006 MPASS(sc->rx_num_queues + 1 <= ENETC_MSIX_COUNT); 1007 MPASS(sc->rx_num_queues == sc->tx_num_queues); 1008 1009 for (i = 0; i < sc->rx_num_queues; i++, vector++) { 1010 rx_queue = &sc->rx_queues[i]; 1011 snprintf(irq_name, sizeof(irq_name), "rxtxq%d", i); 1012 error = iflib_irq_alloc_generic(ctx, 1013 &rx_queue->irq, vector + 1, IFLIB_INTR_RXTX, 1014 NULL, rx_queue, i, irq_name); 1015 if (error != 0) 1016 goto fail; 1017 1018 ENETC_WR4(sc, ENETC_SIMSIRRV(i), vector); 1019 ENETC_RXQ_WR4(sc, i, ENETC_RBICR1, ENETC_RX_INTR_TIME_THR); 1020 ENETC_RXQ_WR4(sc, i, ENETC_RBICR0, 1021 ENETC_RBICR0_ICEN | ENETC_RBICR0_SET_ICPT(ENETC_RX_INTR_PKT_THR)); 1022 } 1023 vector = 0; 1024 for (i = 0;i < sc->tx_num_queues; i++, vector++) { 1025 tx_queue = &sc->tx_queues[i]; 1026 snprintf(irq_name, sizeof(irq_name), "txq%d", i); 1027 iflib_softirq_alloc_generic(ctx, &tx_queue->irq, 1028 IFLIB_INTR_TX, tx_queue, i, irq_name); 1029 1030 ENETC_WR4(sc, ENETC_SIMSITRV(i), vector); 1031 } 1032 1033 return (0); 1034 fail: 1035 for (i = 0; i < sc->rx_num_queues; i++) { 1036 rx_queue = &sc->rx_queues[i]; 1037 iflib_irq_free(ctx, &rx_queue->irq); 1038 } 1039 return (error); 1040 } 1041 1042 static int 1043 enetc_tx_queue_intr_enable(if_ctx_t ctx, uint16_t qid) 1044 { 1045 struct enetc_softc *sc; 1046 1047 sc = iflib_get_softc(ctx); 1048 ENETC_TXQ_RD4(sc, qid, ENETC_TBIDR); 1049 return (0); 1050 } 1051 1052 static int 1053 enetc_rx_queue_intr_enable(if_ctx_t ctx, uint16_t qid) 1054 { 1055 struct enetc_softc *sc; 1056 1057 sc = iflib_get_softc(ctx); 1058 ENETC_RXQ_RD4(sc, qid, ENETC_RBIDR); 1059 return (0); 1060 } 1061 static void 1062 enetc_intr_enable(if_ctx_t ctx) 1063 { 1064 struct enetc_softc *sc; 1065 int i; 1066 1067 sc = iflib_get_softc(ctx); 1068 1069 for (i = 0; i < sc->rx_num_queues; i++) 1070 ENETC_RXQ_WR4(sc, i, ENETC_RBIER, ENETC_RBIER_RXTIE); 1071 1072 for (i = 0; i < sc->tx_num_queues; i++) 1073 ENETC_TXQ_WR4(sc, i, ENETC_TBIER, ENETC_TBIER_TXF); 1074 } 1075 1076 static void 1077 enetc_intr_disable(if_ctx_t ctx) 1078 { 1079 struct enetc_softc *sc; 1080 int i; 1081 1082 sc = iflib_get_softc(ctx); 1083 1084 for (i = 0; i < sc->rx_num_queues; i++) 1085 ENETC_RXQ_WR4(sc, i, ENETC_RBIER, 0); 1086 1087 for (i = 0; i < sc->tx_num_queues; i++) 1088 ENETC_TXQ_WR4(sc, i, ENETC_TBIER, 0); 1089 } 1090 1091 static int 1092 enetc_isc_txd_encap(void *data, if_pkt_info_t ipi) 1093 { 1094 struct enetc_softc *sc = data; 1095 struct enetc_tx_queue *queue; 1096 union enetc_tx_bd *desc; 1097 bus_dma_segment_t *segs; 1098 qidx_t pidx, queue_len; 1099 qidx_t i = 0; 1100 1101 queue = &sc->tx_queues[ipi->ipi_qsidx]; 1102 segs = ipi->ipi_segs; 1103 pidx = ipi->ipi_pidx; 1104 queue_len = sc->tx_queue_size; 1105 1106 /* 1107 * First descriptor is special. We use it to set frame 1108 * related information and offloads, e.g. VLAN tag. 1109 */ 1110 desc = &queue->ring[pidx]; 1111 bzero(desc, sizeof(*desc)); 1112 desc->frm_len = ipi->ipi_len; 1113 desc->addr = segs[i].ds_addr; 1114 desc->buf_len = segs[i].ds_len; 1115 if (ipi->ipi_flags & IPI_TX_INTR) 1116 desc->flags = ENETC_TXBD_FLAGS_FI; 1117 1118 i++; 1119 if (++pidx == queue_len) 1120 pidx = 0; 1121 1122 if (ipi->ipi_mflags & M_VLANTAG) { 1123 /* VLAN tag is inserted in a separate descriptor. */ 1124 desc->flags |= ENETC_TXBD_FLAGS_EX; 1125 desc = &queue->ring[pidx]; 1126 bzero(desc, sizeof(*desc)); 1127 desc->ext.vid = ipi->ipi_vtag; 1128 desc->ext.e_flags = ENETC_TXBD_E_FLAGS_VLAN_INS; 1129 if (++pidx == queue_len) 1130 pidx = 0; 1131 } 1132 1133 /* Now add remaining descriptors. */ 1134 for (;i < ipi->ipi_nsegs; i++) { 1135 desc = &queue->ring[pidx]; 1136 bzero(desc, sizeof(*desc)); 1137 desc->addr = segs[i].ds_addr; 1138 desc->buf_len = segs[i].ds_len; 1139 1140 if (++pidx == queue_len) 1141 pidx = 0; 1142 } 1143 1144 desc->flags |= ENETC_TXBD_FLAGS_F; 1145 ipi->ipi_new_pidx = pidx; 1146 1147 return (0); 1148 } 1149 1150 static void 1151 enetc_isc_txd_flush(void *data, uint16_t qid, qidx_t pidx) 1152 { 1153 struct enetc_softc *sc = data; 1154 1155 ENETC_TXQ_WR4(sc, qid, ENETC_TBPIR, pidx); 1156 } 1157 1158 static int 1159 enetc_isc_txd_credits_update(void *data, uint16_t qid, bool clear) 1160 { 1161 struct enetc_softc *sc = data; 1162 struct enetc_tx_queue *queue; 1163 int cidx, hw_cidx, count; 1164 1165 queue = &sc->tx_queues[qid]; 1166 hw_cidx = ENETC_TXQ_RD4(sc, qid, ENETC_TBCIR) & ENETC_TBCIR_IDX_MASK; 1167 cidx = queue->cidx; 1168 1169 /* 1170 * RM states that the ring can hold at most ring_size - 1 descriptors. 1171 * Thanks to that we can assume that the ring is empty if cidx == pidx. 1172 * This requirement is guaranteed implicitly by iflib as it will only 1173 * encap a new frame if we have at least nfrags + 2 descriptors available 1174 * on the ring. This driver uses at most one additional descriptor for 1175 * VLAN tag insertion. 1176 * Also RM states that the TBCIR register is only updated once all 1177 * descriptors in the chain have been processed. 1178 */ 1179 if (cidx == hw_cidx) 1180 return (0); 1181 1182 if (!clear) 1183 return (1); 1184 1185 count = hw_cidx - cidx; 1186 if (count < 0) 1187 count += sc->tx_queue_size; 1188 1189 queue->cidx = hw_cidx; 1190 1191 return (count); 1192 } 1193 1194 static int 1195 enetc_isc_rxd_available(void *data, uint16_t qid, qidx_t pidx, qidx_t budget) 1196 { 1197 struct enetc_softc *sc = data; 1198 struct enetc_rx_queue *queue; 1199 qidx_t hw_pidx, queue_len; 1200 union enetc_rx_bd *desc; 1201 int count = 0; 1202 1203 queue = &sc->rx_queues[qid]; 1204 desc = &queue->ring[pidx]; 1205 queue_len = sc->rx_queue_size; 1206 1207 if (desc->r.lstatus == 0) 1208 return (0); 1209 1210 if (budget == 1) 1211 return (1); 1212 1213 hw_pidx = ENETC_RXQ_RD4(sc, qid, ENETC_RBPIR); 1214 while (pidx != hw_pidx && count < budget) { 1215 desc = &queue->ring[pidx]; 1216 if (desc->r.lstatus & ENETC_RXBD_LSTATUS_F) 1217 count++; 1218 1219 if (++pidx == queue_len) 1220 pidx = 0; 1221 } 1222 1223 return (count); 1224 } 1225 1226 static int 1227 enetc_isc_rxd_pkt_get(void *data, if_rxd_info_t ri) 1228 { 1229 struct enetc_softc *sc = data; 1230 struct enetc_rx_queue *queue; 1231 union enetc_rx_bd *desc; 1232 uint16_t buf_len, pkt_size = 0; 1233 qidx_t cidx, queue_len; 1234 uint32_t status; 1235 int i; 1236 1237 cidx = ri->iri_cidx; 1238 queue = &sc->rx_queues[ri->iri_qsidx]; 1239 desc = &queue->ring[cidx]; 1240 status = desc->r.lstatus; 1241 queue_len = sc->rx_queue_size; 1242 1243 /* 1244 * Ready bit will be set only when all descriptors 1245 * in the chain have been processed. 1246 */ 1247 if ((status & ENETC_RXBD_LSTATUS_R) == 0) 1248 return (EAGAIN); 1249 1250 /* Pass RSS hash. */ 1251 if (status & ENETC_RXBD_FLAG_RSSV) { 1252 ri->iri_flowid = desc->r.rss_hash; 1253 ri->iri_rsstype = M_HASHTYPE_OPAQUE_HASH; 1254 } 1255 1256 /* Pass IP checksum status. */ 1257 ri->iri_csum_flags = CSUM_IP_CHECKED; 1258 if ((desc->r.parse_summary & ENETC_RXBD_PARSER_ERROR) == 0) 1259 ri->iri_csum_flags |= CSUM_IP_VALID; 1260 1261 /* Pass extracted VLAN tag. */ 1262 if (status & ENETC_RXBD_FLAG_VLAN) { 1263 ri->iri_vtag = desc->r.vlan_opt; 1264 ri->iri_flags = M_VLANTAG; 1265 } 1266 1267 for (i = 0; i < ENETC_MAX_SCATTER; i++) { 1268 buf_len = desc->r.buf_len; 1269 ri->iri_frags[i].irf_idx = cidx; 1270 ri->iri_frags[i].irf_len = buf_len; 1271 pkt_size += buf_len; 1272 if (desc->r.lstatus & ENETC_RXBD_LSTATUS_F) 1273 break; 1274 1275 if (++cidx == queue_len) 1276 cidx = 0; 1277 1278 desc = &queue->ring[cidx]; 1279 } 1280 ri->iri_nfrags = i + 1; 1281 ri->iri_len = pkt_size; 1282 1283 MPASS(desc->r.lstatus & ENETC_RXBD_LSTATUS_F); 1284 if (status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK)) 1285 return (EBADMSG); 1286 1287 return (0); 1288 } 1289 1290 static void 1291 enetc_isc_rxd_refill(void *data, if_rxd_update_t iru) 1292 { 1293 struct enetc_softc *sc = data; 1294 struct enetc_rx_queue *queue; 1295 union enetc_rx_bd *desc; 1296 qidx_t pidx, queue_len; 1297 uint64_t *paddrs; 1298 int i, count; 1299 1300 queue = &sc->rx_queues[iru->iru_qsidx]; 1301 paddrs = iru->iru_paddrs; 1302 pidx = iru->iru_pidx; 1303 count = iru->iru_count; 1304 queue_len = sc->rx_queue_size; 1305 1306 for (i = 0; i < count; i++) { 1307 desc = &queue->ring[pidx]; 1308 bzero(desc, sizeof(*desc)); 1309 1310 desc->w.addr = paddrs[i]; 1311 if (++pidx == queue_len) 1312 pidx = 0; 1313 } 1314 /* 1315 * After enabling the queue NIC will prefetch the first 1316 * 8 descriptors. It probably assumes that the RX is fully 1317 * refilled when cidx == pidx. 1318 * Enable it only if we have enough descriptors ready on the ring. 1319 */ 1320 if (!queue->enabled && pidx >= 8) { 1321 ENETC_RXQ_WR4(sc, iru->iru_qsidx, ENETC_RBMR, sc->rbmr); 1322 queue->enabled = true; 1323 } 1324 } 1325 1326 static void 1327 enetc_isc_rxd_flush(void *data, uint16_t qid, uint8_t flid, qidx_t pidx) 1328 { 1329 struct enetc_softc *sc = data; 1330 1331 ENETC_RXQ_WR4(sc, qid, ENETC_RBCIR, pidx); 1332 } 1333 1334 static uint64_t 1335 enetc_get_counter(if_ctx_t ctx, ift_counter cnt) 1336 { 1337 struct enetc_softc *sc; 1338 if_t ifp; 1339 1340 sc = iflib_get_softc(ctx); 1341 ifp = iflib_get_ifp(ctx); 1342 1343 switch (cnt) { 1344 case IFCOUNTER_IERRORS: 1345 return (ENETC_PORT_RD8(sc, ENETC_PM0_RERR)); 1346 case IFCOUNTER_OERRORS: 1347 return (ENETC_PORT_RD8(sc, ENETC_PM0_TERR)); 1348 default: 1349 return (if_get_counter_default(ifp, cnt)); 1350 } 1351 } 1352 1353 static int 1354 enetc_mtu_set(if_ctx_t ctx, uint32_t mtu) 1355 { 1356 struct enetc_softc *sc = iflib_get_softc(ctx); 1357 uint32_t max_frame_size; 1358 1359 max_frame_size = mtu + 1360 ETHER_HDR_LEN + 1361 ETHER_CRC_LEN + 1362 sizeof(struct ether_vlan_header); 1363 1364 if (max_frame_size > ENETC_MAX_FRAME_LEN) 1365 return (EINVAL); 1366 1367 sc->shared->isc_max_frame_size = max_frame_size; 1368 1369 return (0); 1370 } 1371 1372 static int 1373 enetc_promisc_set(if_ctx_t ctx, int flags) 1374 { 1375 struct enetc_softc *sc; 1376 uint32_t reg = 0; 1377 1378 sc = iflib_get_softc(ctx); 1379 1380 if (flags & IFF_PROMISC) 1381 reg = ENETC_PSIPMR_SET_UP(0) | ENETC_PSIPMR_SET_MP(0); 1382 else if (flags & IFF_ALLMULTI) 1383 reg = ENETC_PSIPMR_SET_MP(0); 1384 1385 ENETC_PORT_WR4(sc, ENETC_PSIPMR, reg); 1386 1387 return (0); 1388 } 1389 1390 static void 1391 enetc_timer(if_ctx_t ctx, uint16_t qid) 1392 { 1393 /* 1394 * Poll PHY status. Do this only for qid 0 to save 1395 * some cycles. 1396 */ 1397 if (qid == 0) 1398 iflib_admin_intr_deferred(ctx); 1399 } 1400 1401 static void 1402 enetc_update_admin_status(if_ctx_t ctx) 1403 { 1404 struct enetc_softc *sc; 1405 struct mii_data *miid; 1406 1407 sc = iflib_get_softc(ctx); 1408 1409 if (!sc->fixed_link) { 1410 miid = device_get_softc(sc->miibus); 1411 mii_tick(miid); 1412 } 1413 } 1414 1415 static int 1416 enetc_miibus_readreg(device_t dev, int phy, int reg) 1417 { 1418 struct enetc_softc *sc; 1419 int val; 1420 1421 sc = iflib_get_softc(device_get_softc(dev)); 1422 1423 mtx_lock(&sc->mii_lock); 1424 val = enetc_mdio_read(sc->regs, ENETC_PORT_BASE + ENETC_EMDIO_BASE, 1425 phy, reg); 1426 mtx_unlock(&sc->mii_lock); 1427 1428 return (val); 1429 } 1430 1431 static int 1432 enetc_miibus_writereg(device_t dev, int phy, int reg, int data) 1433 { 1434 struct enetc_softc *sc; 1435 int ret; 1436 1437 sc = iflib_get_softc(device_get_softc(dev)); 1438 1439 mtx_lock(&sc->mii_lock); 1440 ret = enetc_mdio_write(sc->regs, ENETC_PORT_BASE + ENETC_EMDIO_BASE, 1441 phy, reg, data); 1442 mtx_unlock(&sc->mii_lock); 1443 1444 return (ret); 1445 } 1446 1447 static void 1448 enetc_miibus_linkchg(device_t dev) 1449 { 1450 1451 enetc_miibus_statchg(dev); 1452 } 1453 1454 static void 1455 enetc_miibus_statchg(device_t dev) 1456 { 1457 struct enetc_softc *sc; 1458 struct mii_data *miid; 1459 int link_state, baudrate; 1460 1461 sc = iflib_get_softc(device_get_softc(dev)); 1462 miid = device_get_softc(sc->miibus); 1463 1464 baudrate = ifmedia_baudrate(miid->mii_media_active); 1465 if (miid->mii_media_status & IFM_AVALID) { 1466 if (miid->mii_media_status & IFM_ACTIVE) 1467 link_state = LINK_STATE_UP; 1468 else 1469 link_state = LINK_STATE_DOWN; 1470 } else { 1471 link_state = LINK_STATE_UNKNOWN; 1472 } 1473 1474 iflib_link_state_change(sc->ctx, link_state, baudrate); 1475 1476 } 1477 1478 static int 1479 enetc_media_change(if_t ifp) 1480 { 1481 struct enetc_softc *sc; 1482 struct mii_data *miid; 1483 1484 sc = iflib_get_softc(if_getsoftc(ifp)); 1485 miid = device_get_softc(sc->miibus); 1486 1487 mii_mediachg(miid); 1488 return (0); 1489 } 1490 1491 static void 1492 enetc_media_status(if_t ifp, struct ifmediareq* ifmr) 1493 { 1494 struct enetc_softc *sc; 1495 struct mii_data *miid; 1496 1497 sc = iflib_get_softc(if_getsoftc(ifp)); 1498 miid = device_get_softc(sc->miibus); 1499 1500 mii_pollstat(miid); 1501 1502 ifmr->ifm_active = miid->mii_media_active; 1503 ifmr->ifm_status = miid->mii_media_status; 1504 } 1505 1506 static int 1507 enetc_fixed_media_change(if_t ifp) 1508 { 1509 1510 if_printf(ifp, "Can't change media in fixed-link mode.\n"); 1511 return (0); 1512 } 1513 static void 1514 enetc_fixed_media_status(if_t ifp, struct ifmediareq* ifmr) 1515 { 1516 struct enetc_softc *sc; 1517 1518 sc = iflib_get_softc(if_getsoftc(ifp)); 1519 1520 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE; 1521 ifmr->ifm_active = sc->fixed_ifmedia.ifm_cur->ifm_media; 1522 return; 1523 } 1524