xref: /freebsd/sys/dev/efidev/efirt.c (revision 04dacd5691fb3de5fddd0868836c5a7ff9888370)
1 /*-
2  * Copyright (c) 2004 Marcel Moolenaar
3  * Copyright (c) 2001 Doug Rabson
4  * Copyright (c) 2016, 2018 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_acpi.h"
36 
37 #include <sys/param.h>
38 #include <sys/efi.h>
39 #include <sys/eventhandler.h>
40 #include <sys/kernel.h>
41 #include <sys/linker.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/msan.h>
46 #include <sys/mutex.h>
47 #include <sys/clock.h>
48 #include <sys/proc.h>
49 #include <sys/reboot.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/uio.h>
55 #include <sys/vmmeter.h>
56 
57 #include <machine/fpu.h>
58 #include <machine/efi.h>
59 #include <machine/metadata.h>
60 #include <machine/vmparam.h>
61 
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 
66 #ifdef DEV_ACPI
67 #include <contrib/dev/acpica/include/acpi.h>
68 #endif
69 
70 #define EFI_TABLE_ALLOC_MAX 0x800000
71 
72 static struct efi_systbl *efi_systbl;
73 static eventhandler_tag efi_shutdown_tag;
74 /*
75  * The following pointers point to tables in the EFI runtime service data pages.
76  * Care should be taken to make sure that we've properly entered the EFI runtime
77  * environment (efi_enter()) before dereferencing them.
78  */
79 static struct efi_cfgtbl *efi_cfgtbl;
80 static struct efi_rt *efi_runtime;
81 
82 static int efi_status2err[25] = {
83 	0,		/* EFI_SUCCESS */
84 	ENOEXEC,	/* EFI_LOAD_ERROR */
85 	EINVAL,		/* EFI_INVALID_PARAMETER */
86 	ENOSYS,		/* EFI_UNSUPPORTED */
87 	EMSGSIZE, 	/* EFI_BAD_BUFFER_SIZE */
88 	EOVERFLOW,	/* EFI_BUFFER_TOO_SMALL */
89 	EBUSY,		/* EFI_NOT_READY */
90 	EIO,		/* EFI_DEVICE_ERROR */
91 	EROFS,		/* EFI_WRITE_PROTECTED */
92 	EAGAIN,		/* EFI_OUT_OF_RESOURCES */
93 	EIO,		/* EFI_VOLUME_CORRUPTED */
94 	ENOSPC,		/* EFI_VOLUME_FULL */
95 	ENXIO,		/* EFI_NO_MEDIA */
96 	ESTALE,		/* EFI_MEDIA_CHANGED */
97 	ENOENT,		/* EFI_NOT_FOUND */
98 	EACCES,		/* EFI_ACCESS_DENIED */
99 	ETIMEDOUT,	/* EFI_NO_RESPONSE */
100 	EADDRNOTAVAIL,	/* EFI_NO_MAPPING */
101 	ETIMEDOUT,	/* EFI_TIMEOUT */
102 	EDOOFUS,	/* EFI_NOT_STARTED */
103 	EALREADY,	/* EFI_ALREADY_STARTED */
104 	ECANCELED,	/* EFI_ABORTED */
105 	EPROTO,		/* EFI_ICMP_ERROR */
106 	EPROTO,		/* EFI_TFTP_ERROR */
107 	EPROTO		/* EFI_PROTOCOL_ERROR */
108 };
109 
110 enum efi_table_type {
111 	TYPE_ESRT = 0,
112 	TYPE_PROP
113 };
114 
115 static int efi_enter(void);
116 static void efi_leave(void);
117 
118 int
119 efi_status_to_errno(efi_status status)
120 {
121 	u_long code;
122 
123 	code = status & 0x3ffffffffffffffful;
124 	return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
125 }
126 
127 static struct mtx efi_lock;
128 static SYSCTL_NODE(_hw, OID_AUTO, efi, CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL,
129     "EFI");
130 static bool efi_poweroff = true;
131 SYSCTL_BOOL(_hw_efi, OID_AUTO, poweroff, CTLFLAG_RWTUN, &efi_poweroff, 0,
132     "If true, use EFI runtime services to power off in preference to ACPI");
133 
134 static bool
135 efi_is_in_map(struct efi_md *map, int ndesc, int descsz, vm_offset_t addr)
136 {
137 	struct efi_md *p;
138 	int i;
139 
140 	for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
141 	    descsz)) {
142 		if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
143 			continue;
144 
145 		if (addr >= p->md_virt &&
146 		    addr < p->md_virt + p->md_pages * EFI_PAGE_SIZE)
147 			return (true);
148 	}
149 
150 	return (false);
151 }
152 
153 static void
154 efi_shutdown_final(void *dummy __unused, int howto)
155 {
156 
157 	/*
158 	 * On some systems, ACPI S5 is missing or does not function properly.
159 	 * When present, shutdown via EFI Runtime Services instead, unless
160 	 * disabled.
161 	 */
162 	if ((howto & RB_POWEROFF) != 0 && efi_poweroff)
163 		(void)efi_reset_system(EFI_RESET_SHUTDOWN);
164 }
165 
166 static int
167 efi_init(void)
168 {
169 	struct efi_map_header *efihdr;
170 	struct efi_md *map;
171 	struct efi_rt *rtdm;
172 	caddr_t kmdp;
173 	size_t efisz;
174 	int ndesc, rt_disabled;
175 
176 	rt_disabled = 0;
177 	TUNABLE_INT_FETCH("efi.rt.disabled", &rt_disabled);
178 	if (rt_disabled == 1)
179 		return (0);
180 	mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
181 
182 	if (efi_systbl_phys == 0) {
183 		if (bootverbose)
184 			printf("EFI systbl not available\n");
185 		return (0);
186 	}
187 
188 	efi_systbl = (struct efi_systbl *)efi_phys_to_kva(efi_systbl_phys);
189 	if (efi_systbl == NULL || efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
190 		efi_systbl = NULL;
191 		if (bootverbose)
192 			printf("EFI systbl signature invalid\n");
193 		return (0);
194 	}
195 	efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
196 	    (struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
197 	if (efi_cfgtbl == NULL) {
198 		if (bootverbose)
199 			printf("EFI config table is not present\n");
200 	}
201 
202 	kmdp = preload_search_by_type("elf kernel");
203 	if (kmdp == NULL)
204 		kmdp = preload_search_by_type("elf64 kernel");
205 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
206 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
207 	if (efihdr == NULL) {
208 		if (bootverbose)
209 			printf("EFI map is not present\n");
210 		return (0);
211 	}
212 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
213 	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
214 	if (efihdr->descriptor_size == 0)
215 		return (ENOMEM);
216 
217 	ndesc = efihdr->memory_size / efihdr->descriptor_size;
218 	if (!efi_create_1t1_map(map, ndesc, efihdr->descriptor_size)) {
219 		if (bootverbose)
220 			printf("EFI cannot create runtime map\n");
221 		return (ENOMEM);
222 	}
223 
224 	efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
225 	    (struct efi_rt *)efi_systbl->st_rt;
226 	if (efi_runtime == NULL) {
227 		if (bootverbose)
228 			printf("EFI runtime services table is not present\n");
229 		efi_destroy_1t1_map();
230 		return (ENXIO);
231 	}
232 
233 #if defined(__aarch64__) || defined(__amd64__)
234 	/*
235 	 * Some UEFI implementations have multiple implementations of the
236 	 * RS->GetTime function. They switch from one we can only use early
237 	 * in the boot process to one valid as a RunTime service only when we
238 	 * call RS->SetVirtualAddressMap. As this is not always the case, e.g.
239 	 * with an old loader.efi, check if the RS->GetTime function is within
240 	 * the EFI map, and fail to attach if not.
241 	 */
242 	rtdm = (struct efi_rt *)efi_phys_to_kva((uintptr_t)efi_runtime);
243 	if (rtdm == NULL || !efi_is_in_map(map, ndesc, efihdr->descriptor_size,
244 	    (vm_offset_t)rtdm->rt_gettime)) {
245 		if (bootverbose)
246 			printf(
247 			 "EFI runtime services table has an invalid pointer\n");
248 		efi_runtime = NULL;
249 		efi_destroy_1t1_map();
250 		return (ENXIO);
251 	}
252 #endif
253 
254 	/*
255 	 * We use SHUTDOWN_PRI_LAST - 1 to trigger after IPMI, but before ACPI.
256 	 */
257 	efi_shutdown_tag = EVENTHANDLER_REGISTER(shutdown_final,
258 	    efi_shutdown_final, NULL, SHUTDOWN_PRI_LAST - 1);
259 
260 	return (0);
261 }
262 
263 static void
264 efi_uninit(void)
265 {
266 
267 	/* Most likely disabled by tunable */
268 	if (efi_runtime == NULL)
269 		return;
270 	if (efi_shutdown_tag != NULL)
271 		EVENTHANDLER_DEREGISTER(shutdown_final, efi_shutdown_tag);
272 	efi_destroy_1t1_map();
273 
274 	efi_systbl = NULL;
275 	efi_cfgtbl = NULL;
276 	efi_runtime = NULL;
277 
278 	mtx_destroy(&efi_lock);
279 }
280 
281 static int
282 rt_ok(void)
283 {
284 
285 	if (efi_runtime == NULL)
286 		return (ENXIO);
287 	return (0);
288 }
289 
290 static int
291 efi_enter(void)
292 {
293 	struct thread *td;
294 	pmap_t curpmap;
295 	int error;
296 
297 	if (efi_runtime == NULL)
298 		return (ENXIO);
299 	td = curthread;
300 	curpmap = &td->td_proc->p_vmspace->vm_pmap;
301 	PMAP_LOCK(curpmap);
302 	mtx_lock(&efi_lock);
303 	fpu_kern_enter(td, NULL, FPU_KERN_NOCTX);
304 	error = efi_arch_enter();
305 	if (error != 0) {
306 		fpu_kern_leave(td, NULL);
307 		mtx_unlock(&efi_lock);
308 		PMAP_UNLOCK(curpmap);
309 	}
310 	return (error);
311 }
312 
313 static void
314 efi_leave(void)
315 {
316 	struct thread *td;
317 	pmap_t curpmap;
318 
319 	efi_arch_leave();
320 
321 	curpmap = &curproc->p_vmspace->vm_pmap;
322 	td = curthread;
323 	fpu_kern_leave(td, NULL);
324 	mtx_unlock(&efi_lock);
325 	PMAP_UNLOCK(curpmap);
326 }
327 
328 static int
329 get_table(struct uuid *uuid, void **ptr)
330 {
331 	struct efi_cfgtbl *ct;
332 	u_long count;
333 	int error;
334 
335 	if (efi_cfgtbl == NULL || efi_systbl == NULL)
336 		return (ENXIO);
337 	error = efi_enter();
338 	if (error != 0)
339 		return (error);
340 	count = efi_systbl->st_entries;
341 	ct = efi_cfgtbl;
342 	while (count--) {
343 		if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
344 			*ptr = ct->ct_data;
345 			efi_leave();
346 			return (0);
347 		}
348 		ct++;
349 	}
350 
351 	efi_leave();
352 	return (ENOENT);
353 }
354 
355 static int
356 get_table_length(enum efi_table_type type, size_t *table_len, void **taddr)
357 {
358 	switch (type) {
359 	case TYPE_ESRT:
360 	{
361 		struct efi_esrt_table *esrt = NULL;
362 		struct uuid uuid = EFI_TABLE_ESRT;
363 		uint32_t fw_resource_count = 0;
364 		size_t len = sizeof(*esrt);
365 		int error;
366 		void *buf;
367 
368 		error = efi_get_table(&uuid, (void **)&esrt);
369 		if (error != 0)
370 			return (error);
371 
372 		buf = malloc(len, M_TEMP, M_WAITOK);
373 		error = physcopyout((vm_paddr_t)esrt, buf, len);
374 		if (error != 0) {
375 			free(buf, M_TEMP);
376 			return (error);
377 		}
378 
379 		/* Check ESRT version */
380 		if (((struct efi_esrt_table *)buf)->fw_resource_version !=
381 		    ESRT_FIRMWARE_RESOURCE_VERSION) {
382 			free(buf, M_TEMP);
383 			return (ENODEV);
384 		}
385 
386 		fw_resource_count = ((struct efi_esrt_table *)buf)->
387 		    fw_resource_count;
388 		if (fw_resource_count > EFI_TABLE_ALLOC_MAX /
389 		    sizeof(struct efi_esrt_entry_v1)) {
390 			free(buf, M_TEMP);
391 			return (ENOMEM);
392 		}
393 
394 		len += fw_resource_count * sizeof(struct efi_esrt_entry_v1);
395 		*table_len = len;
396 
397 		if (taddr != NULL)
398 			*taddr = esrt;
399 		free(buf, M_TEMP);
400 		return (0);
401 	}
402 	case TYPE_PROP:
403 	{
404 		struct uuid uuid = EFI_PROPERTIES_TABLE;
405 		struct efi_prop_table *prop;
406 		size_t len = sizeof(*prop);
407 		uint32_t prop_len;
408 		int error;
409 		void *buf;
410 
411 		error = efi_get_table(&uuid, (void **)&prop);
412 		if (error != 0)
413 			return (error);
414 
415 		buf = malloc(len, M_TEMP, M_WAITOK);
416 		error = physcopyout((vm_paddr_t)prop, buf, len);
417 		if (error != 0) {
418 			free(buf, M_TEMP);
419 			return (error);
420 		}
421 
422 		prop_len = ((struct efi_prop_table *)buf)->length;
423 		if (prop_len > EFI_TABLE_ALLOC_MAX) {
424 			free(buf, M_TEMP);
425 			return (ENOMEM);
426 		}
427 		*table_len = prop_len;
428 
429 		if (taddr != NULL)
430 			*taddr = prop;
431 		free(buf, M_TEMP);
432 		return (0);
433 	}
434 	}
435 	return (ENOENT);
436 }
437 
438 static int
439 copy_table(struct uuid *uuid, void **buf, size_t buf_len, size_t *table_len)
440 {
441 	static const struct known_table {
442 		struct uuid uuid;
443 		enum efi_table_type type;
444 	} tables[] = {
445 		{ EFI_TABLE_ESRT,       TYPE_ESRT },
446 		{ EFI_PROPERTIES_TABLE, TYPE_PROP }
447 	};
448 	size_t table_idx;
449 	void *taddr;
450 	int rc;
451 
452 	for (table_idx = 0; table_idx < nitems(tables); table_idx++) {
453 		if (!bcmp(&tables[table_idx].uuid, uuid, sizeof(*uuid)))
454 			break;
455 	}
456 
457 	if (table_idx == nitems(tables))
458 		return (EINVAL);
459 
460 	rc = get_table_length(tables[table_idx].type, table_len, &taddr);
461 	if (rc != 0)
462 		return rc;
463 
464 	/* return table length to userspace */
465 	if (buf == NULL)
466 		return (0);
467 
468 	*buf = malloc(*table_len, M_TEMP, M_WAITOK);
469 	rc = physcopyout((vm_paddr_t)taddr, *buf, *table_len);
470 	return (rc);
471 }
472 
473 static int efi_rt_handle_faults = EFI_RT_HANDLE_FAULTS_DEFAULT;
474 SYSCTL_INT(_machdep, OID_AUTO, efi_rt_handle_faults, CTLFLAG_RWTUN,
475     &efi_rt_handle_faults, 0,
476     "Call EFI RT methods with fault handler wrapper around");
477 
478 static int
479 efi_rt_arch_call_nofault(struct efirt_callinfo *ec)
480 {
481 
482 	switch (ec->ec_argcnt) {
483 	case 0:
484 		ec->ec_efi_status = ((register_t (*)(void))ec->ec_fptr)();
485 		break;
486 	case 1:
487 		ec->ec_efi_status = ((register_t (*)(register_t))ec->ec_fptr)
488 		    (ec->ec_arg1);
489 		break;
490 	case 2:
491 		ec->ec_efi_status = ((register_t (*)(register_t, register_t))
492 		    ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2);
493 		break;
494 	case 3:
495 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
496 		    register_t))ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2,
497 		    ec->ec_arg3);
498 		break;
499 	case 4:
500 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
501 		    register_t, register_t))ec->ec_fptr)(ec->ec_arg1,
502 		    ec->ec_arg2, ec->ec_arg3, ec->ec_arg4);
503 		break;
504 	case 5:
505 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
506 		    register_t, register_t, register_t))ec->ec_fptr)(
507 		    ec->ec_arg1, ec->ec_arg2, ec->ec_arg3, ec->ec_arg4,
508 		    ec->ec_arg5);
509 		break;
510 	default:
511 		panic("efi_rt_arch_call: %d args", (int)ec->ec_argcnt);
512 	}
513 
514 	return (0);
515 }
516 
517 static int
518 efi_call(struct efirt_callinfo *ecp)
519 {
520 	int error;
521 
522 	error = efi_enter();
523 	if (error != 0)
524 		return (error);
525 	error = efi_rt_handle_faults ? efi_rt_arch_call(ecp) :
526 	    efi_rt_arch_call_nofault(ecp);
527 	efi_leave();
528 	if (error == 0)
529 		error = efi_status_to_errno(ecp->ec_efi_status);
530 	else if (bootverbose)
531 		printf("EFI %s call faulted, error %d\n", ecp->ec_name, error);
532 	return (error);
533 }
534 
535 #define	EFI_RT_METHOD_PA(method)				\
536     ((uintptr_t)((struct efi_rt *)efi_phys_to_kva((uintptr_t)	\
537     efi_runtime))->method)
538 
539 static int
540 efi_get_time_locked(struct efi_tm *tm, struct efi_tmcap *tmcap)
541 {
542 	struct efirt_callinfo ec;
543 	int error;
544 
545 	EFI_TIME_OWNED();
546 	if (efi_runtime == NULL)
547 		return (ENXIO);
548 	bzero(&ec, sizeof(ec));
549 	ec.ec_name = "rt_gettime";
550 	ec.ec_argcnt = 2;
551 	ec.ec_arg1 = (uintptr_t)tm;
552 	ec.ec_arg2 = (uintptr_t)tmcap;
553 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_gettime);
554 	error = efi_call(&ec);
555 	if (error == 0)
556 		kmsan_mark(tm, sizeof(*tm), KMSAN_STATE_INITED);
557 	return (error);
558 }
559 
560 static int
561 get_time(struct efi_tm *tm)
562 {
563 	struct efi_tmcap dummy;
564 	int error;
565 
566 	if (efi_runtime == NULL)
567 		return (ENXIO);
568 	EFI_TIME_LOCK();
569 	/*
570 	 * UEFI spec states that the Capabilities argument to GetTime is
571 	 * optional, but some UEFI implementations choke when passed a NULL
572 	 * pointer. Pass a dummy efi_tmcap, even though we won't use it,
573 	 * to workaround such implementations.
574 	 */
575 	error = efi_get_time_locked(tm, &dummy);
576 	EFI_TIME_UNLOCK();
577 	return (error);
578 }
579 
580 static int
581 get_waketime(uint8_t *enabled, uint8_t *pending, struct efi_tm *tm)
582 {
583 	struct efirt_callinfo ec;
584 	int error;
585 #ifdef DEV_ACPI
586 	UINT32 acpiRtcEnabled;
587 #endif
588 
589 	if (efi_runtime == NULL)
590 		return (ENXIO);
591 
592 	EFI_TIME_LOCK();
593 	bzero(&ec, sizeof(ec));
594 	ec.ec_name = "rt_getwaketime";
595 	ec.ec_argcnt = 3;
596 	ec.ec_arg1 = (uintptr_t)enabled;
597 	ec.ec_arg2 = (uintptr_t)pending;
598 	ec.ec_arg3 = (uintptr_t)tm;
599 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_getwaketime);
600 	error = efi_call(&ec);
601 	EFI_TIME_UNLOCK();
602 
603 #ifdef DEV_ACPI
604 	if (error == 0) {
605 		error = AcpiReadBitRegister(ACPI_BITREG_RT_CLOCK_ENABLE,
606 		    &acpiRtcEnabled);
607 		if (ACPI_SUCCESS(error)) {
608 			*enabled = *enabled && acpiRtcEnabled;
609 		} else
610 			error = EIO;
611 	}
612 #endif
613 
614 	return (error);
615 }
616 
617 static int
618 set_waketime(uint8_t enable, struct efi_tm *tm)
619 {
620 	struct efirt_callinfo ec;
621 	int error;
622 
623 	if (efi_runtime == NULL)
624 		return (ENXIO);
625 
626 	EFI_TIME_LOCK();
627 	bzero(&ec, sizeof(ec));
628 	ec.ec_name = "rt_setwaketime";
629 	ec.ec_argcnt = 2;
630 	ec.ec_arg1 = (uintptr_t)enable;
631 	ec.ec_arg2 = (uintptr_t)tm;
632 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_setwaketime);
633 	error = efi_call(&ec);
634 	EFI_TIME_UNLOCK();
635 
636 #ifdef DEV_ACPI
637 	if (error == 0) {
638 		error = AcpiWriteBitRegister(ACPI_BITREG_RT_CLOCK_ENABLE,
639 		    (enable != 0) ? 1 : 0);
640 		if (ACPI_FAILURE(error))
641 			error = EIO;
642 	}
643 #endif
644 
645 	return (error);
646 }
647 
648 static int
649 get_time_capabilities(struct efi_tmcap *tmcap)
650 {
651 	struct efi_tm dummy;
652 	int error;
653 
654 	if (efi_runtime == NULL)
655 		return (ENXIO);
656 	EFI_TIME_LOCK();
657 	error = efi_get_time_locked(&dummy, tmcap);
658 	EFI_TIME_UNLOCK();
659 	return (error);
660 }
661 
662 static int
663 reset_system(enum efi_reset type)
664 {
665 	struct efirt_callinfo ec;
666 
667 	switch (type) {
668 	case EFI_RESET_COLD:
669 	case EFI_RESET_WARM:
670 	case EFI_RESET_SHUTDOWN:
671 		break;
672 	default:
673 		return (EINVAL);
674 	}
675 	if (efi_runtime == NULL)
676 		return (ENXIO);
677 	bzero(&ec, sizeof(ec));
678 	ec.ec_name = "rt_reset";
679 	ec.ec_argcnt = 4;
680 	ec.ec_arg1 = (uintptr_t)type;
681 	ec.ec_arg2 = (uintptr_t)0;
682 	ec.ec_arg3 = (uintptr_t)0;
683 	ec.ec_arg4 = (uintptr_t)NULL;
684 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_reset);
685 	return (efi_call(&ec));
686 }
687 
688 static int
689 efi_set_time_locked(struct efi_tm *tm)
690 {
691 	struct efirt_callinfo ec;
692 
693 	EFI_TIME_OWNED();
694 	if (efi_runtime == NULL)
695 		return (ENXIO);
696 	bzero(&ec, sizeof(ec));
697 	ec.ec_name = "rt_settime";
698 	ec.ec_argcnt = 1;
699 	ec.ec_arg1 = (uintptr_t)tm;
700 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_settime);
701 	return (efi_call(&ec));
702 }
703 
704 static int
705 set_time(struct efi_tm *tm)
706 {
707 	int error;
708 
709 	if (efi_runtime == NULL)
710 		return (ENXIO);
711 	EFI_TIME_LOCK();
712 	error = efi_set_time_locked(tm);
713 	EFI_TIME_UNLOCK();
714 	return (error);
715 }
716 
717 static int
718 var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
719     size_t *datasize, void *data)
720 {
721 	struct efirt_callinfo ec;
722 	int error;
723 
724 	if (efi_runtime == NULL)
725 		return (ENXIO);
726 	bzero(&ec, sizeof(ec));
727 	ec.ec_argcnt = 5;
728 	ec.ec_name = "rt_getvar";
729 	ec.ec_arg1 = (uintptr_t)name;
730 	ec.ec_arg2 = (uintptr_t)vendor;
731 	ec.ec_arg3 = (uintptr_t)attrib;
732 	ec.ec_arg4 = (uintptr_t)datasize;
733 	ec.ec_arg5 = (uintptr_t)data;
734 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_getvar);
735 	error = efi_call(&ec);
736 	if (error == 0)
737 		kmsan_mark(data, *datasize, KMSAN_STATE_INITED);
738 	return (error);
739 }
740 
741 static int
742 var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
743 {
744 	struct efirt_callinfo ec;
745 	int error;
746 
747 	if (efi_runtime == NULL)
748 		return (ENXIO);
749 	bzero(&ec, sizeof(ec));
750 	ec.ec_argcnt = 3;
751 	ec.ec_name = "rt_scanvar";
752 	ec.ec_arg1 = (uintptr_t)namesize;
753 	ec.ec_arg2 = (uintptr_t)name;
754 	ec.ec_arg3 = (uintptr_t)vendor;
755 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_scanvar);
756 	error = efi_call(&ec);
757 	if (error == 0)
758 		kmsan_mark(name, *namesize, KMSAN_STATE_INITED);
759 	return (error);
760 }
761 
762 static int
763 var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
764     size_t datasize, void *data)
765 {
766 	struct efirt_callinfo ec;
767 
768 	if (efi_runtime == NULL)
769 		return (ENXIO);
770 	bzero(&ec, sizeof(ec));
771 	ec.ec_argcnt = 5;
772 	ec.ec_name = "rt_setvar";
773 	ec.ec_arg1 = (uintptr_t)name;
774 	ec.ec_arg2 = (uintptr_t)vendor;
775 	ec.ec_arg3 = (uintptr_t)attrib;
776 	ec.ec_arg4 = (uintptr_t)datasize;
777 	ec.ec_arg5 = (uintptr_t)data;
778 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_setvar);
779 	return (efi_call(&ec));
780 }
781 
782 const static struct efi_ops efi_ops = {
783 	.rt_ok = rt_ok,
784 	.get_table = get_table,
785 	.copy_table = copy_table,
786 	.get_time = get_time,
787 	.get_time_capabilities = get_time_capabilities,
788 	.reset_system = reset_system,
789 	.set_time = set_time,
790 	.get_waketime = get_waketime,
791 	.set_waketime = set_waketime,
792 	.var_get = var_get,
793 	.var_nextname = var_nextname,
794 	.var_set = var_set,
795 };
796 const struct efi_ops *active_efi_ops = &efi_ops;
797 
798 static int
799 efirt_modevents(module_t m, int event, void *arg __unused)
800 {
801 
802 	switch (event) {
803 	case MOD_LOAD:
804 		return (efi_init());
805 
806 	case MOD_UNLOAD:
807 		efi_uninit();
808 		return (0);
809 
810 	case MOD_SHUTDOWN:
811 		return (0);
812 
813 	default:
814 		return (EOPNOTSUPP);
815 	}
816 }
817 
818 static moduledata_t efirt_moddata = {
819 	.name = "efirt",
820 	.evhand = efirt_modevents,
821 	.priv = NULL,
822 };
823 /* After fpuinitstate, before efidev */
824 DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_DRIVERS, SI_ORDER_SECOND);
825 MODULE_VERSION(efirt, 1);
826