xref: /freebsd/sys/dev/e1000/e1000_api.c (revision f5f47d5068fb97df18eb114a66ae8ef51a0b3c8c)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2012, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_82575EB_COPPER:
293 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
294 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
295 		mac->type = e1000_82575;
296 		break;
297 	case E1000_DEV_ID_82576:
298 	case E1000_DEV_ID_82576_FIBER:
299 	case E1000_DEV_ID_82576_SERDES:
300 	case E1000_DEV_ID_82576_QUAD_COPPER:
301 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
302 	case E1000_DEV_ID_82576_NS:
303 	case E1000_DEV_ID_82576_NS_SERDES:
304 	case E1000_DEV_ID_82576_SERDES_QUAD:
305 		mac->type = e1000_82576;
306 		break;
307 	case E1000_DEV_ID_82580_COPPER:
308 	case E1000_DEV_ID_82580_FIBER:
309 	case E1000_DEV_ID_82580_SERDES:
310 	case E1000_DEV_ID_82580_SGMII:
311 	case E1000_DEV_ID_82580_COPPER_DUAL:
312 	case E1000_DEV_ID_82580_QUAD_FIBER:
313 	case E1000_DEV_ID_DH89XXCC_SGMII:
314 	case E1000_DEV_ID_DH89XXCC_SERDES:
315 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
316 	case E1000_DEV_ID_DH89XXCC_SFP:
317 		mac->type = e1000_82580;
318 		break;
319 	case E1000_DEV_ID_I350_COPPER:
320 	case E1000_DEV_ID_I350_FIBER:
321 	case E1000_DEV_ID_I350_SERDES:
322 	case E1000_DEV_ID_I350_SGMII:
323 	case E1000_DEV_ID_I350_DA4:
324 		mac->type = e1000_i350;
325 		break;
326 	case E1000_DEV_ID_I210_COPPER:
327 	case E1000_DEV_ID_I210_COPPER_OEM1:
328 	case E1000_DEV_ID_I210_COPPER_IT:
329 	case E1000_DEV_ID_I210_FIBER:
330 	case E1000_DEV_ID_I210_SERDES:
331 	case E1000_DEV_ID_I210_SGMII:
332 		mac->type = e1000_i210;
333 		break;
334 	case E1000_DEV_ID_I211_COPPER:
335 	mac->type = e1000_i211;
336 	break;
337 	case E1000_DEV_ID_82576_VF:
338 		mac->type = e1000_vfadapt;
339 		break;
340 	case E1000_DEV_ID_I350_VF:
341 		mac->type = e1000_vfadapt_i350;
342 		break;
343 	default:
344 		/* Should never have loaded on this device */
345 		ret_val = -E1000_ERR_MAC_INIT;
346 		break;
347 	}
348 
349 	return ret_val;
350 }
351 
352 /**
353  *  e1000_setup_init_funcs - Initializes function pointers
354  *  @hw: pointer to the HW structure
355  *  @init_device: TRUE will initialize the rest of the function pointers
356  *		  getting the device ready for use.  FALSE will only set
357  *		  MAC type and the function pointers for the other init
358  *		  functions.  Passing FALSE will not generate any hardware
359  *		  reads or writes.
360  *
361  *  This function must be called by a driver in order to use the rest
362  *  of the 'shared' code files. Called by drivers only.
363  **/
364 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
365 {
366 	s32 ret_val;
367 
368 	/* Can't do much good without knowing the MAC type. */
369 	ret_val = e1000_set_mac_type(hw);
370 	if (ret_val) {
371 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
372 		goto out;
373 	}
374 
375 	if (!hw->hw_addr) {
376 		DEBUGOUT("ERROR: Registers not mapped\n");
377 		ret_val = -E1000_ERR_CONFIG;
378 		goto out;
379 	}
380 
381 	/*
382 	 * Init function pointers to generic implementations. We do this first
383 	 * allowing a driver module to override it afterward.
384 	 */
385 	e1000_init_mac_ops_generic(hw);
386 	e1000_init_phy_ops_generic(hw);
387 	e1000_init_nvm_ops_generic(hw);
388 	e1000_init_mbx_ops_generic(hw);
389 
390 	/*
391 	 * Set up the init function pointers. These are functions within the
392 	 * adapter family file that sets up function pointers for the rest of
393 	 * the functions in that family.
394 	 */
395 	switch (hw->mac.type) {
396 	case e1000_82542:
397 		e1000_init_function_pointers_82542(hw);
398 		break;
399 	case e1000_82543:
400 	case e1000_82544:
401 		e1000_init_function_pointers_82543(hw);
402 		break;
403 	case e1000_82540:
404 	case e1000_82545:
405 	case e1000_82545_rev_3:
406 	case e1000_82546:
407 	case e1000_82546_rev_3:
408 		e1000_init_function_pointers_82540(hw);
409 		break;
410 	case e1000_82541:
411 	case e1000_82541_rev_2:
412 	case e1000_82547:
413 	case e1000_82547_rev_2:
414 		e1000_init_function_pointers_82541(hw);
415 		break;
416 	case e1000_82571:
417 	case e1000_82572:
418 	case e1000_82573:
419 	case e1000_82574:
420 	case e1000_82583:
421 		e1000_init_function_pointers_82571(hw);
422 		break;
423 	case e1000_80003es2lan:
424 		e1000_init_function_pointers_80003es2lan(hw);
425 		break;
426 	case e1000_ich8lan:
427 	case e1000_ich9lan:
428 	case e1000_ich10lan:
429 	case e1000_pchlan:
430 	case e1000_pch2lan:
431 		e1000_init_function_pointers_ich8lan(hw);
432 		break;
433 	case e1000_82575:
434 	case e1000_82576:
435 	case e1000_82580:
436 	case e1000_i350:
437 		e1000_init_function_pointers_82575(hw);
438 		break;
439 	case e1000_i210:
440 	case e1000_i211:
441 		e1000_init_function_pointers_i210(hw);
442 		break;
443 	case e1000_vfadapt:
444 		e1000_init_function_pointers_vf(hw);
445 		break;
446 	case e1000_vfadapt_i350:
447 		e1000_init_function_pointers_vf(hw);
448 		break;
449 	default:
450 		DEBUGOUT("Hardware not supported\n");
451 		ret_val = -E1000_ERR_CONFIG;
452 		break;
453 	}
454 
455 	/*
456 	 * Initialize the rest of the function pointers. These require some
457 	 * register reads/writes in some cases.
458 	 */
459 	if (!(ret_val) && init_device) {
460 		ret_val = e1000_init_mac_params(hw);
461 		if (ret_val)
462 			goto out;
463 
464 		ret_val = e1000_init_nvm_params(hw);
465 		if (ret_val)
466 			goto out;
467 
468 		ret_val = e1000_init_phy_params(hw);
469 		if (ret_val)
470 			goto out;
471 
472 		ret_val = e1000_init_mbx_params(hw);
473 		if (ret_val)
474 			goto out;
475 	}
476 
477 out:
478 	return ret_val;
479 }
480 
481 /**
482  *  e1000_get_bus_info - Obtain bus information for adapter
483  *  @hw: pointer to the HW structure
484  *
485  *  This will obtain information about the HW bus for which the
486  *  adapter is attached and stores it in the hw structure. This is a
487  *  function pointer entry point called by drivers.
488  **/
489 s32 e1000_get_bus_info(struct e1000_hw *hw)
490 {
491 	if (hw->mac.ops.get_bus_info)
492 		return hw->mac.ops.get_bus_info(hw);
493 
494 	return E1000_SUCCESS;
495 }
496 
497 /**
498  *  e1000_clear_vfta - Clear VLAN filter table
499  *  @hw: pointer to the HW structure
500  *
501  *  This clears the VLAN filter table on the adapter. This is a function
502  *  pointer entry point called by drivers.
503  **/
504 void e1000_clear_vfta(struct e1000_hw *hw)
505 {
506 	if (hw->mac.ops.clear_vfta)
507 		hw->mac.ops.clear_vfta(hw);
508 }
509 
510 /**
511  *  e1000_write_vfta - Write value to VLAN filter table
512  *  @hw: pointer to the HW structure
513  *  @offset: the 32-bit offset in which to write the value to.
514  *  @value: the 32-bit value to write at location offset.
515  *
516  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
517  *  table. This is a function pointer entry point called by drivers.
518  **/
519 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
520 {
521 	if (hw->mac.ops.write_vfta)
522 		hw->mac.ops.write_vfta(hw, offset, value);
523 }
524 
525 /**
526  *  e1000_update_mc_addr_list - Update Multicast addresses
527  *  @hw: pointer to the HW structure
528  *  @mc_addr_list: array of multicast addresses to program
529  *  @mc_addr_count: number of multicast addresses to program
530  *
531  *  Updates the Multicast Table Array.
532  *  The caller must have a packed mc_addr_list of multicast addresses.
533  **/
534 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
535 			       u32 mc_addr_count)
536 {
537 	if (hw->mac.ops.update_mc_addr_list)
538 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
539 						mc_addr_count);
540 }
541 
542 /**
543  *  e1000_force_mac_fc - Force MAC flow control
544  *  @hw: pointer to the HW structure
545  *
546  *  Force the MAC's flow control settings. Currently no func pointer exists
547  *  and all implementations are handled in the generic version of this
548  *  function.
549  **/
550 s32 e1000_force_mac_fc(struct e1000_hw *hw)
551 {
552 	return e1000_force_mac_fc_generic(hw);
553 }
554 
555 /**
556  *  e1000_check_for_link - Check/Store link connection
557  *  @hw: pointer to the HW structure
558  *
559  *  This checks the link condition of the adapter and stores the
560  *  results in the hw->mac structure. This is a function pointer entry
561  *  point called by drivers.
562  **/
563 s32 e1000_check_for_link(struct e1000_hw *hw)
564 {
565 	if (hw->mac.ops.check_for_link)
566 		return hw->mac.ops.check_for_link(hw);
567 
568 	return -E1000_ERR_CONFIG;
569 }
570 
571 /**
572  *  e1000_check_mng_mode - Check management mode
573  *  @hw: pointer to the HW structure
574  *
575  *  This checks if the adapter has manageability enabled.
576  *  This is a function pointer entry point called by drivers.
577  **/
578 bool e1000_check_mng_mode(struct e1000_hw *hw)
579 {
580 	if (hw->mac.ops.check_mng_mode)
581 		return hw->mac.ops.check_mng_mode(hw);
582 
583 	return FALSE;
584 }
585 
586 /**
587  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
588  *  @hw: pointer to the HW structure
589  *  @buffer: pointer to the host interface
590  *  @length: size of the buffer
591  *
592  *  Writes the DHCP information to the host interface.
593  **/
594 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
595 {
596 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
597 }
598 
599 /**
600  *  e1000_reset_hw - Reset hardware
601  *  @hw: pointer to the HW structure
602  *
603  *  This resets the hardware into a known state. This is a function pointer
604  *  entry point called by drivers.
605  **/
606 s32 e1000_reset_hw(struct e1000_hw *hw)
607 {
608 	if (hw->mac.ops.reset_hw)
609 		return hw->mac.ops.reset_hw(hw);
610 
611 	return -E1000_ERR_CONFIG;
612 }
613 
614 /**
615  *  e1000_init_hw - Initialize hardware
616  *  @hw: pointer to the HW structure
617  *
618  *  This inits the hardware readying it for operation. This is a function
619  *  pointer entry point called by drivers.
620  **/
621 s32 e1000_init_hw(struct e1000_hw *hw)
622 {
623 	if (hw->mac.ops.init_hw)
624 		return hw->mac.ops.init_hw(hw);
625 
626 	return -E1000_ERR_CONFIG;
627 }
628 
629 /**
630  *  e1000_setup_link - Configures link and flow control
631  *  @hw: pointer to the HW structure
632  *
633  *  This configures link and flow control settings for the adapter. This
634  *  is a function pointer entry point called by drivers. While modules can
635  *  also call this, they probably call their own version of this function.
636  **/
637 s32 e1000_setup_link(struct e1000_hw *hw)
638 {
639 	if (hw->mac.ops.setup_link)
640 		return hw->mac.ops.setup_link(hw);
641 
642 	return -E1000_ERR_CONFIG;
643 }
644 
645 /**
646  *  e1000_get_speed_and_duplex - Returns current speed and duplex
647  *  @hw: pointer to the HW structure
648  *  @speed: pointer to a 16-bit value to store the speed
649  *  @duplex: pointer to a 16-bit value to store the duplex.
650  *
651  *  This returns the speed and duplex of the adapter in the two 'out'
652  *  variables passed in. This is a function pointer entry point called
653  *  by drivers.
654  **/
655 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
656 {
657 	if (hw->mac.ops.get_link_up_info)
658 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
659 
660 	return -E1000_ERR_CONFIG;
661 }
662 
663 /**
664  *  e1000_setup_led - Configures SW controllable LED
665  *  @hw: pointer to the HW structure
666  *
667  *  This prepares the SW controllable LED for use and saves the current state
668  *  of the LED so it can be later restored. This is a function pointer entry
669  *  point called by drivers.
670  **/
671 s32 e1000_setup_led(struct e1000_hw *hw)
672 {
673 	if (hw->mac.ops.setup_led)
674 		return hw->mac.ops.setup_led(hw);
675 
676 	return E1000_SUCCESS;
677 }
678 
679 /**
680  *  e1000_cleanup_led - Restores SW controllable LED
681  *  @hw: pointer to the HW structure
682  *
683  *  This restores the SW controllable LED to the value saved off by
684  *  e1000_setup_led. This is a function pointer entry point called by drivers.
685  **/
686 s32 e1000_cleanup_led(struct e1000_hw *hw)
687 {
688 	if (hw->mac.ops.cleanup_led)
689 		return hw->mac.ops.cleanup_led(hw);
690 
691 	return E1000_SUCCESS;
692 }
693 
694 /**
695  *  e1000_blink_led - Blink SW controllable LED
696  *  @hw: pointer to the HW structure
697  *
698  *  This starts the adapter LED blinking. Request the LED to be setup first
699  *  and cleaned up after. This is a function pointer entry point called by
700  *  drivers.
701  **/
702 s32 e1000_blink_led(struct e1000_hw *hw)
703 {
704 	if (hw->mac.ops.blink_led)
705 		return hw->mac.ops.blink_led(hw);
706 
707 	return E1000_SUCCESS;
708 }
709 
710 /**
711  *  e1000_id_led_init - store LED configurations in SW
712  *  @hw: pointer to the HW structure
713  *
714  *  Initializes the LED config in SW. This is a function pointer entry point
715  *  called by drivers.
716  **/
717 s32 e1000_id_led_init(struct e1000_hw *hw)
718 {
719 	if (hw->mac.ops.id_led_init)
720 		return hw->mac.ops.id_led_init(hw);
721 
722 	return E1000_SUCCESS;
723 }
724 
725 /**
726  *  e1000_led_on - Turn on SW controllable LED
727  *  @hw: pointer to the HW structure
728  *
729  *  Turns the SW defined LED on. This is a function pointer entry point
730  *  called by drivers.
731  **/
732 s32 e1000_led_on(struct e1000_hw *hw)
733 {
734 	if (hw->mac.ops.led_on)
735 		return hw->mac.ops.led_on(hw);
736 
737 	return E1000_SUCCESS;
738 }
739 
740 /**
741  *  e1000_led_off - Turn off SW controllable LED
742  *  @hw: pointer to the HW structure
743  *
744  *  Turns the SW defined LED off. This is a function pointer entry point
745  *  called by drivers.
746  **/
747 s32 e1000_led_off(struct e1000_hw *hw)
748 {
749 	if (hw->mac.ops.led_off)
750 		return hw->mac.ops.led_off(hw);
751 
752 	return E1000_SUCCESS;
753 }
754 
755 /**
756  *  e1000_reset_adaptive - Reset adaptive IFS
757  *  @hw: pointer to the HW structure
758  *
759  *  Resets the adaptive IFS. Currently no func pointer exists and all
760  *  implementations are handled in the generic version of this function.
761  **/
762 void e1000_reset_adaptive(struct e1000_hw *hw)
763 {
764 	e1000_reset_adaptive_generic(hw);
765 }
766 
767 /**
768  *  e1000_update_adaptive - Update adaptive IFS
769  *  @hw: pointer to the HW structure
770  *
771  *  Updates adapter IFS. Currently no func pointer exists and all
772  *  implementations are handled in the generic version of this function.
773  **/
774 void e1000_update_adaptive(struct e1000_hw *hw)
775 {
776 	e1000_update_adaptive_generic(hw);
777 }
778 
779 /**
780  *  e1000_disable_pcie_master - Disable PCI-Express master access
781  *  @hw: pointer to the HW structure
782  *
783  *  Disables PCI-Express master access and verifies there are no pending
784  *  requests. Currently no func pointer exists and all implementations are
785  *  handled in the generic version of this function.
786  **/
787 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
788 {
789 	return e1000_disable_pcie_master_generic(hw);
790 }
791 
792 /**
793  *  e1000_config_collision_dist - Configure collision distance
794  *  @hw: pointer to the HW structure
795  *
796  *  Configures the collision distance to the default value and is used
797  *  during link setup.
798  **/
799 void e1000_config_collision_dist(struct e1000_hw *hw)
800 {
801 	if (hw->mac.ops.config_collision_dist)
802 		hw->mac.ops.config_collision_dist(hw);
803 }
804 
805 /**
806  *  e1000_rar_set - Sets a receive address register
807  *  @hw: pointer to the HW structure
808  *  @addr: address to set the RAR to
809  *  @index: the RAR to set
810  *
811  *  Sets a Receive Address Register (RAR) to the specified address.
812  **/
813 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
814 {
815 	if (hw->mac.ops.rar_set)
816 		hw->mac.ops.rar_set(hw, addr, index);
817 }
818 
819 /**
820  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
821  *  @hw: pointer to the HW structure
822  *
823  *  Ensures that the MDI/MDIX SW state is valid.
824  **/
825 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
826 {
827 	if (hw->mac.ops.validate_mdi_setting)
828 		return hw->mac.ops.validate_mdi_setting(hw);
829 
830 	return E1000_SUCCESS;
831 }
832 
833 /**
834  *  e1000_hash_mc_addr - Determines address location in multicast table
835  *  @hw: pointer to the HW structure
836  *  @mc_addr: Multicast address to hash.
837  *
838  *  This hashes an address to determine its location in the multicast
839  *  table. Currently no func pointer exists and all implementations
840  *  are handled in the generic version of this function.
841  **/
842 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
843 {
844 	return e1000_hash_mc_addr_generic(hw, mc_addr);
845 }
846 
847 /**
848  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
849  *  @hw: pointer to the HW structure
850  *
851  *  Enables packet filtering on transmit packets if manageability is enabled
852  *  and host interface is enabled.
853  *  Currently no func pointer exists and all implementations are handled in the
854  *  generic version of this function.
855  **/
856 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
857 {
858 	return e1000_enable_tx_pkt_filtering_generic(hw);
859 }
860 
861 /**
862  *  e1000_mng_host_if_write - Writes to the manageability host interface
863  *  @hw: pointer to the HW structure
864  *  @buffer: pointer to the host interface buffer
865  *  @length: size of the buffer
866  *  @offset: location in the buffer to write to
867  *  @sum: sum of the data (not checksum)
868  *
869  *  This function writes the buffer content at the offset given on the host if.
870  *  It also does alignment considerations to do the writes in most efficient
871  *  way.  Also fills up the sum of the buffer in *buffer parameter.
872  **/
873 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
874 			    u16 offset, u8 *sum)
875 {
876 	if (hw->mac.ops.mng_host_if_write)
877 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
878 						     offset, sum);
879 
880 	return E1000_NOT_IMPLEMENTED;
881 }
882 
883 /**
884  *  e1000_mng_write_cmd_header - Writes manageability command header
885  *  @hw: pointer to the HW structure
886  *  @hdr: pointer to the host interface command header
887  *
888  *  Writes the command header after does the checksum calculation.
889  **/
890 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
891 			       struct e1000_host_mng_command_header *hdr)
892 {
893 	if (hw->mac.ops.mng_write_cmd_header)
894 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
895 
896 	return E1000_NOT_IMPLEMENTED;
897 }
898 
899 /**
900  *  e1000_mng_enable_host_if - Checks host interface is enabled
901  *  @hw: pointer to the HW structure
902  *
903  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
904  *
905  *  This function checks whether the HOST IF is enabled for command operation
906  *  and also checks whether the previous command is completed.  It busy waits
907  *  in case of previous command is not completed.
908  **/
909 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
910 {
911 	if (hw->mac.ops.mng_enable_host_if)
912 		return hw->mac.ops.mng_enable_host_if(hw);
913 
914 	return E1000_NOT_IMPLEMENTED;
915 }
916 
917 /**
918  *  e1000_wait_autoneg - Waits for autonegotiation completion
919  *  @hw: pointer to the HW structure
920  *
921  *  Waits for autoneg to complete. Currently no func pointer exists and all
922  *  implementations are handled in the generic version of this function.
923  **/
924 s32 e1000_wait_autoneg(struct e1000_hw *hw)
925 {
926 	if (hw->mac.ops.wait_autoneg)
927 		return hw->mac.ops.wait_autoneg(hw);
928 
929 	return E1000_SUCCESS;
930 }
931 
932 /**
933  *  e1000_check_reset_block - Verifies PHY can be reset
934  *  @hw: pointer to the HW structure
935  *
936  *  Checks if the PHY is in a state that can be reset or if manageability
937  *  has it tied up. This is a function pointer entry point called by drivers.
938  **/
939 s32 e1000_check_reset_block(struct e1000_hw *hw)
940 {
941 	if (hw->phy.ops.check_reset_block)
942 		return hw->phy.ops.check_reset_block(hw);
943 
944 	return E1000_SUCCESS;
945 }
946 
947 /**
948  *  e1000_read_phy_reg - Reads PHY register
949  *  @hw: pointer to the HW structure
950  *  @offset: the register to read
951  *  @data: the buffer to store the 16-bit read.
952  *
953  *  Reads the PHY register and returns the value in data.
954  *  This is a function pointer entry point called by drivers.
955  **/
956 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
957 {
958 	if (hw->phy.ops.read_reg)
959 		return hw->phy.ops.read_reg(hw, offset, data);
960 
961 	return E1000_SUCCESS;
962 }
963 
964 /**
965  *  e1000_write_phy_reg - Writes PHY register
966  *  @hw: pointer to the HW structure
967  *  @offset: the register to write
968  *  @data: the value to write.
969  *
970  *  Writes the PHY register at offset with the value in data.
971  *  This is a function pointer entry point called by drivers.
972  **/
973 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
974 {
975 	if (hw->phy.ops.write_reg)
976 		return hw->phy.ops.write_reg(hw, offset, data);
977 
978 	return E1000_SUCCESS;
979 }
980 
981 /**
982  *  e1000_release_phy - Generic release PHY
983  *  @hw: pointer to the HW structure
984  *
985  *  Return if silicon family does not require a semaphore when accessing the
986  *  PHY.
987  **/
988 void e1000_release_phy(struct e1000_hw *hw)
989 {
990 	if (hw->phy.ops.release)
991 		hw->phy.ops.release(hw);
992 }
993 
994 /**
995  *  e1000_acquire_phy - Generic acquire PHY
996  *  @hw: pointer to the HW structure
997  *
998  *  Return success if silicon family does not require a semaphore when
999  *  accessing the PHY.
1000  **/
1001 s32 e1000_acquire_phy(struct e1000_hw *hw)
1002 {
1003 	if (hw->phy.ops.acquire)
1004 		return hw->phy.ops.acquire(hw);
1005 
1006 	return E1000_SUCCESS;
1007 }
1008 
1009 /**
1010  *  e1000_cfg_on_link_up - Configure PHY upon link up
1011  *  @hw: pointer to the HW structure
1012  **/
1013 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1014 {
1015 	if (hw->phy.ops.cfg_on_link_up)
1016 		return hw->phy.ops.cfg_on_link_up(hw);
1017 
1018 	return E1000_SUCCESS;
1019 }
1020 
1021 /**
1022  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1023  *  @hw: pointer to the HW structure
1024  *  @offset: the register to read
1025  *  @data: the location to store the 16-bit value read.
1026  *
1027  *  Reads a register out of the Kumeran interface. Currently no func pointer
1028  *  exists and all implementations are handled in the generic version of
1029  *  this function.
1030  **/
1031 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1032 {
1033 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1034 }
1035 
1036 /**
1037  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1038  *  @hw: pointer to the HW structure
1039  *  @offset: the register to write
1040  *  @data: the value to write.
1041  *
1042  *  Writes a register to the Kumeran interface. Currently no func pointer
1043  *  exists and all implementations are handled in the generic version of
1044  *  this function.
1045  **/
1046 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1047 {
1048 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1049 }
1050 
1051 /**
1052  *  e1000_get_cable_length - Retrieves cable length estimation
1053  *  @hw: pointer to the HW structure
1054  *
1055  *  This function estimates the cable length and stores them in
1056  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1057  *  entry point called by drivers.
1058  **/
1059 s32 e1000_get_cable_length(struct e1000_hw *hw)
1060 {
1061 	if (hw->phy.ops.get_cable_length)
1062 		return hw->phy.ops.get_cable_length(hw);
1063 
1064 	return E1000_SUCCESS;
1065 }
1066 
1067 /**
1068  *  e1000_get_phy_info - Retrieves PHY information from registers
1069  *  @hw: pointer to the HW structure
1070  *
1071  *  This function gets some information from various PHY registers and
1072  *  populates hw->phy values with it. This is a function pointer entry
1073  *  point called by drivers.
1074  **/
1075 s32 e1000_get_phy_info(struct e1000_hw *hw)
1076 {
1077 	if (hw->phy.ops.get_info)
1078 		return hw->phy.ops.get_info(hw);
1079 
1080 	return E1000_SUCCESS;
1081 }
1082 
1083 /**
1084  *  e1000_phy_hw_reset - Hard PHY reset
1085  *  @hw: pointer to the HW structure
1086  *
1087  *  Performs a hard PHY reset. This is a function pointer entry point called
1088  *  by drivers.
1089  **/
1090 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1091 {
1092 	if (hw->phy.ops.reset)
1093 		return hw->phy.ops.reset(hw);
1094 
1095 	return E1000_SUCCESS;
1096 }
1097 
1098 /**
1099  *  e1000_phy_commit - Soft PHY reset
1100  *  @hw: pointer to the HW structure
1101  *
1102  *  Performs a soft PHY reset on those that apply. This is a function pointer
1103  *  entry point called by drivers.
1104  **/
1105 s32 e1000_phy_commit(struct e1000_hw *hw)
1106 {
1107 	if (hw->phy.ops.commit)
1108 		return hw->phy.ops.commit(hw);
1109 
1110 	return E1000_SUCCESS;
1111 }
1112 
1113 /**
1114  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1115  *  @hw: pointer to the HW structure
1116  *  @active: boolean used to enable/disable lplu
1117  *
1118  *  Success returns 0, Failure returns 1
1119  *
1120  *  The low power link up (lplu) state is set to the power management level D0
1121  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1122  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1123  *  is used during Dx states where the power conservation is most important.
1124  *  During driver activity, SmartSpeed should be enabled so performance is
1125  *  maintained.  This is a function pointer entry point called by drivers.
1126  **/
1127 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1128 {
1129 	if (hw->phy.ops.set_d0_lplu_state)
1130 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1131 
1132 	return E1000_SUCCESS;
1133 }
1134 
1135 /**
1136  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1137  *  @hw: pointer to the HW structure
1138  *  @active: boolean used to enable/disable lplu
1139  *
1140  *  Success returns 0, Failure returns 1
1141  *
1142  *  The low power link up (lplu) state is set to the power management level D3
1143  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1144  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1145  *  is used during Dx states where the power conservation is most important.
1146  *  During driver activity, SmartSpeed should be enabled so performance is
1147  *  maintained.  This is a function pointer entry point called by drivers.
1148  **/
1149 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1150 {
1151 	if (hw->phy.ops.set_d3_lplu_state)
1152 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1153 
1154 	return E1000_SUCCESS;
1155 }
1156 
1157 /**
1158  *  e1000_read_mac_addr - Reads MAC address
1159  *  @hw: pointer to the HW structure
1160  *
1161  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1162  *  Currently no func pointer exists and all implementations are handled in the
1163  *  generic version of this function.
1164  **/
1165 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1166 {
1167 	if (hw->mac.ops.read_mac_addr)
1168 		return hw->mac.ops.read_mac_addr(hw);
1169 
1170 	return e1000_read_mac_addr_generic(hw);
1171 }
1172 
1173 /**
1174  *  e1000_read_pba_string - Read device part number string
1175  *  @hw: pointer to the HW structure
1176  *  @pba_num: pointer to device part number
1177  *  @pba_num_size: size of part number buffer
1178  *
1179  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1180  *  the value in pba_num.
1181  *  Currently no func pointer exists and all implementations are handled in the
1182  *  generic version of this function.
1183  **/
1184 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1185 {
1186 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1187 }
1188 
1189 /**
1190  *  e1000_read_pba_length - Read device part number string length
1191  *  @hw: pointer to the HW structure
1192  *  @pba_num_size: size of part number buffer
1193  *
1194  *  Reads the product board assembly (PBA) number length from the EEPROM and
1195  *  stores the value in pba_num.
1196  *  Currently no func pointer exists and all implementations are handled in the
1197  *  generic version of this function.
1198  **/
1199 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1200 {
1201 	return e1000_read_pba_length_generic(hw, pba_num_size);
1202 }
1203 
1204 /**
1205  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1206  *  @hw: pointer to the HW structure
1207  *
1208  *  Validates the NVM checksum is correct. This is a function pointer entry
1209  *  point called by drivers.
1210  **/
1211 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1212 {
1213 	if (hw->nvm.ops.validate)
1214 		return hw->nvm.ops.validate(hw);
1215 
1216 	return -E1000_ERR_CONFIG;
1217 }
1218 
1219 /**
1220  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1221  *  @hw: pointer to the HW structure
1222  *
1223  *  Updates the NVM checksum. Currently no func pointer exists and all
1224  *  implementations are handled in the generic version of this function.
1225  **/
1226 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1227 {
1228 	if (hw->nvm.ops.update)
1229 		return hw->nvm.ops.update(hw);
1230 
1231 	return -E1000_ERR_CONFIG;
1232 }
1233 
1234 /**
1235  *  e1000_reload_nvm - Reloads EEPROM
1236  *  @hw: pointer to the HW structure
1237  *
1238  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1239  *  extended control register.
1240  **/
1241 void e1000_reload_nvm(struct e1000_hw *hw)
1242 {
1243 	if (hw->nvm.ops.reload)
1244 		hw->nvm.ops.reload(hw);
1245 }
1246 
1247 /**
1248  *  e1000_read_nvm - Reads NVM (EEPROM)
1249  *  @hw: pointer to the HW structure
1250  *  @offset: the word offset to read
1251  *  @words: number of 16-bit words to read
1252  *  @data: pointer to the properly sized buffer for the data.
1253  *
1254  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1255  *  pointer entry point called by drivers.
1256  **/
1257 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1258 {
1259 	if (hw->nvm.ops.read)
1260 		return hw->nvm.ops.read(hw, offset, words, data);
1261 
1262 	return -E1000_ERR_CONFIG;
1263 }
1264 
1265 /**
1266  *  e1000_write_nvm - Writes to NVM (EEPROM)
1267  *  @hw: pointer to the HW structure
1268  *  @offset: the word offset to read
1269  *  @words: number of 16-bit words to write
1270  *  @data: pointer to the properly sized buffer for the data.
1271  *
1272  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1273  *  pointer entry point called by drivers.
1274  **/
1275 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1276 {
1277 	if (hw->nvm.ops.write)
1278 		return hw->nvm.ops.write(hw, offset, words, data);
1279 
1280 	return E1000_SUCCESS;
1281 }
1282 
1283 /**
1284  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1285  *  @hw: pointer to the HW structure
1286  *  @reg: 32bit register offset
1287  *  @offset: the register to write
1288  *  @data: the value to write.
1289  *
1290  *  Writes the PHY register at offset with the value in data.
1291  *  This is a function pointer entry point called by drivers.
1292  **/
1293 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1294 			      u8 data)
1295 {
1296 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1297 }
1298 
1299 /**
1300  * e1000_power_up_phy - Restores link in case of PHY power down
1301  * @hw: pointer to the HW structure
1302  *
1303  * The phy may be powered down to save power, to turn off link when the
1304  * driver is unloaded, or wake on lan is not enabled (among others).
1305  **/
1306 void e1000_power_up_phy(struct e1000_hw *hw)
1307 {
1308 	if (hw->phy.ops.power_up)
1309 		hw->phy.ops.power_up(hw);
1310 
1311 	e1000_setup_link(hw);
1312 }
1313 
1314 /**
1315  * e1000_power_down_phy - Power down PHY
1316  * @hw: pointer to the HW structure
1317  *
1318  * The phy may be powered down to save power, to turn off link when the
1319  * driver is unloaded, or wake on lan is not enabled (among others).
1320  **/
1321 void e1000_power_down_phy(struct e1000_hw *hw)
1322 {
1323 	if (hw->phy.ops.power_down)
1324 		hw->phy.ops.power_down(hw);
1325 }
1326 
1327 /**
1328  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1329  *  @hw: pointer to the HW structure
1330  *
1331  *  Power on the optics and PCS.
1332  **/
1333 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1334 {
1335 	if (hw->mac.ops.power_up_serdes)
1336 		hw->mac.ops.power_up_serdes(hw);
1337 }
1338 
1339 /**
1340  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1341  *  @hw: pointer to the HW structure
1342  *
1343  *  Shutdown the optics and PCS on driver unload.
1344  **/
1345 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1346 {
1347 	if (hw->mac.ops.shutdown_serdes)
1348 		hw->mac.ops.shutdown_serdes(hw);
1349 }
1350 
1351