1 /****************************************************************************** 2 3 Copyright (c) 2001-2012, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_82575EB_COPPER: 293 case E1000_DEV_ID_82575EB_FIBER_SERDES: 294 case E1000_DEV_ID_82575GB_QUAD_COPPER: 295 mac->type = e1000_82575; 296 break; 297 case E1000_DEV_ID_82576: 298 case E1000_DEV_ID_82576_FIBER: 299 case E1000_DEV_ID_82576_SERDES: 300 case E1000_DEV_ID_82576_QUAD_COPPER: 301 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 302 case E1000_DEV_ID_82576_NS: 303 case E1000_DEV_ID_82576_NS_SERDES: 304 case E1000_DEV_ID_82576_SERDES_QUAD: 305 mac->type = e1000_82576; 306 break; 307 case E1000_DEV_ID_82580_COPPER: 308 case E1000_DEV_ID_82580_FIBER: 309 case E1000_DEV_ID_82580_SERDES: 310 case E1000_DEV_ID_82580_SGMII: 311 case E1000_DEV_ID_82580_COPPER_DUAL: 312 case E1000_DEV_ID_82580_QUAD_FIBER: 313 case E1000_DEV_ID_DH89XXCC_SGMII: 314 case E1000_DEV_ID_DH89XXCC_SERDES: 315 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 316 case E1000_DEV_ID_DH89XXCC_SFP: 317 mac->type = e1000_82580; 318 break; 319 case E1000_DEV_ID_I350_COPPER: 320 case E1000_DEV_ID_I350_FIBER: 321 case E1000_DEV_ID_I350_SERDES: 322 case E1000_DEV_ID_I350_SGMII: 323 case E1000_DEV_ID_I350_DA4: 324 mac->type = e1000_i350; 325 break; 326 case E1000_DEV_ID_I210_COPPER: 327 case E1000_DEV_ID_I210_COPPER_OEM1: 328 case E1000_DEV_ID_I210_COPPER_IT: 329 case E1000_DEV_ID_I210_FIBER: 330 case E1000_DEV_ID_I210_SERDES: 331 case E1000_DEV_ID_I210_SGMII: 332 mac->type = e1000_i210; 333 break; 334 case E1000_DEV_ID_I211_COPPER: 335 mac->type = e1000_i211; 336 break; 337 case E1000_DEV_ID_82576_VF: 338 mac->type = e1000_vfadapt; 339 break; 340 case E1000_DEV_ID_I350_VF: 341 mac->type = e1000_vfadapt_i350; 342 break; 343 default: 344 /* Should never have loaded on this device */ 345 ret_val = -E1000_ERR_MAC_INIT; 346 break; 347 } 348 349 return ret_val; 350 } 351 352 /** 353 * e1000_setup_init_funcs - Initializes function pointers 354 * @hw: pointer to the HW structure 355 * @init_device: TRUE will initialize the rest of the function pointers 356 * getting the device ready for use. FALSE will only set 357 * MAC type and the function pointers for the other init 358 * functions. Passing FALSE will not generate any hardware 359 * reads or writes. 360 * 361 * This function must be called by a driver in order to use the rest 362 * of the 'shared' code files. Called by drivers only. 363 **/ 364 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 365 { 366 s32 ret_val; 367 368 /* Can't do much good without knowing the MAC type. */ 369 ret_val = e1000_set_mac_type(hw); 370 if (ret_val) { 371 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 372 goto out; 373 } 374 375 if (!hw->hw_addr) { 376 DEBUGOUT("ERROR: Registers not mapped\n"); 377 ret_val = -E1000_ERR_CONFIG; 378 goto out; 379 } 380 381 /* 382 * Init function pointers to generic implementations. We do this first 383 * allowing a driver module to override it afterward. 384 */ 385 e1000_init_mac_ops_generic(hw); 386 e1000_init_phy_ops_generic(hw); 387 e1000_init_nvm_ops_generic(hw); 388 e1000_init_mbx_ops_generic(hw); 389 390 /* 391 * Set up the init function pointers. These are functions within the 392 * adapter family file that sets up function pointers for the rest of 393 * the functions in that family. 394 */ 395 switch (hw->mac.type) { 396 case e1000_82542: 397 e1000_init_function_pointers_82542(hw); 398 break; 399 case e1000_82543: 400 case e1000_82544: 401 e1000_init_function_pointers_82543(hw); 402 break; 403 case e1000_82540: 404 case e1000_82545: 405 case e1000_82545_rev_3: 406 case e1000_82546: 407 case e1000_82546_rev_3: 408 e1000_init_function_pointers_82540(hw); 409 break; 410 case e1000_82541: 411 case e1000_82541_rev_2: 412 case e1000_82547: 413 case e1000_82547_rev_2: 414 e1000_init_function_pointers_82541(hw); 415 break; 416 case e1000_82571: 417 case e1000_82572: 418 case e1000_82573: 419 case e1000_82574: 420 case e1000_82583: 421 e1000_init_function_pointers_82571(hw); 422 break; 423 case e1000_80003es2lan: 424 e1000_init_function_pointers_80003es2lan(hw); 425 break; 426 case e1000_ich8lan: 427 case e1000_ich9lan: 428 case e1000_ich10lan: 429 case e1000_pchlan: 430 case e1000_pch2lan: 431 e1000_init_function_pointers_ich8lan(hw); 432 break; 433 case e1000_82575: 434 case e1000_82576: 435 case e1000_82580: 436 case e1000_i350: 437 e1000_init_function_pointers_82575(hw); 438 break; 439 case e1000_i210: 440 case e1000_i211: 441 e1000_init_function_pointers_i210(hw); 442 break; 443 case e1000_vfadapt: 444 e1000_init_function_pointers_vf(hw); 445 break; 446 case e1000_vfadapt_i350: 447 e1000_init_function_pointers_vf(hw); 448 break; 449 default: 450 DEBUGOUT("Hardware not supported\n"); 451 ret_val = -E1000_ERR_CONFIG; 452 break; 453 } 454 455 /* 456 * Initialize the rest of the function pointers. These require some 457 * register reads/writes in some cases. 458 */ 459 if (!(ret_val) && init_device) { 460 ret_val = e1000_init_mac_params(hw); 461 if (ret_val) 462 goto out; 463 464 ret_val = e1000_init_nvm_params(hw); 465 if (ret_val) 466 goto out; 467 468 ret_val = e1000_init_phy_params(hw); 469 if (ret_val) 470 goto out; 471 472 ret_val = e1000_init_mbx_params(hw); 473 if (ret_val) 474 goto out; 475 } 476 477 out: 478 return ret_val; 479 } 480 481 /** 482 * e1000_get_bus_info - Obtain bus information for adapter 483 * @hw: pointer to the HW structure 484 * 485 * This will obtain information about the HW bus for which the 486 * adapter is attached and stores it in the hw structure. This is a 487 * function pointer entry point called by drivers. 488 **/ 489 s32 e1000_get_bus_info(struct e1000_hw *hw) 490 { 491 if (hw->mac.ops.get_bus_info) 492 return hw->mac.ops.get_bus_info(hw); 493 494 return E1000_SUCCESS; 495 } 496 497 /** 498 * e1000_clear_vfta - Clear VLAN filter table 499 * @hw: pointer to the HW structure 500 * 501 * This clears the VLAN filter table on the adapter. This is a function 502 * pointer entry point called by drivers. 503 **/ 504 void e1000_clear_vfta(struct e1000_hw *hw) 505 { 506 if (hw->mac.ops.clear_vfta) 507 hw->mac.ops.clear_vfta(hw); 508 } 509 510 /** 511 * e1000_write_vfta - Write value to VLAN filter table 512 * @hw: pointer to the HW structure 513 * @offset: the 32-bit offset in which to write the value to. 514 * @value: the 32-bit value to write at location offset. 515 * 516 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 517 * table. This is a function pointer entry point called by drivers. 518 **/ 519 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 520 { 521 if (hw->mac.ops.write_vfta) 522 hw->mac.ops.write_vfta(hw, offset, value); 523 } 524 525 /** 526 * e1000_update_mc_addr_list - Update Multicast addresses 527 * @hw: pointer to the HW structure 528 * @mc_addr_list: array of multicast addresses to program 529 * @mc_addr_count: number of multicast addresses to program 530 * 531 * Updates the Multicast Table Array. 532 * The caller must have a packed mc_addr_list of multicast addresses. 533 **/ 534 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 535 u32 mc_addr_count) 536 { 537 if (hw->mac.ops.update_mc_addr_list) 538 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 539 mc_addr_count); 540 } 541 542 /** 543 * e1000_force_mac_fc - Force MAC flow control 544 * @hw: pointer to the HW structure 545 * 546 * Force the MAC's flow control settings. Currently no func pointer exists 547 * and all implementations are handled in the generic version of this 548 * function. 549 **/ 550 s32 e1000_force_mac_fc(struct e1000_hw *hw) 551 { 552 return e1000_force_mac_fc_generic(hw); 553 } 554 555 /** 556 * e1000_check_for_link - Check/Store link connection 557 * @hw: pointer to the HW structure 558 * 559 * This checks the link condition of the adapter and stores the 560 * results in the hw->mac structure. This is a function pointer entry 561 * point called by drivers. 562 **/ 563 s32 e1000_check_for_link(struct e1000_hw *hw) 564 { 565 if (hw->mac.ops.check_for_link) 566 return hw->mac.ops.check_for_link(hw); 567 568 return -E1000_ERR_CONFIG; 569 } 570 571 /** 572 * e1000_check_mng_mode - Check management mode 573 * @hw: pointer to the HW structure 574 * 575 * This checks if the adapter has manageability enabled. 576 * This is a function pointer entry point called by drivers. 577 **/ 578 bool e1000_check_mng_mode(struct e1000_hw *hw) 579 { 580 if (hw->mac.ops.check_mng_mode) 581 return hw->mac.ops.check_mng_mode(hw); 582 583 return FALSE; 584 } 585 586 /** 587 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 588 * @hw: pointer to the HW structure 589 * @buffer: pointer to the host interface 590 * @length: size of the buffer 591 * 592 * Writes the DHCP information to the host interface. 593 **/ 594 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 595 { 596 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 597 } 598 599 /** 600 * e1000_reset_hw - Reset hardware 601 * @hw: pointer to the HW structure 602 * 603 * This resets the hardware into a known state. This is a function pointer 604 * entry point called by drivers. 605 **/ 606 s32 e1000_reset_hw(struct e1000_hw *hw) 607 { 608 if (hw->mac.ops.reset_hw) 609 return hw->mac.ops.reset_hw(hw); 610 611 return -E1000_ERR_CONFIG; 612 } 613 614 /** 615 * e1000_init_hw - Initialize hardware 616 * @hw: pointer to the HW structure 617 * 618 * This inits the hardware readying it for operation. This is a function 619 * pointer entry point called by drivers. 620 **/ 621 s32 e1000_init_hw(struct e1000_hw *hw) 622 { 623 if (hw->mac.ops.init_hw) 624 return hw->mac.ops.init_hw(hw); 625 626 return -E1000_ERR_CONFIG; 627 } 628 629 /** 630 * e1000_setup_link - Configures link and flow control 631 * @hw: pointer to the HW structure 632 * 633 * This configures link and flow control settings for the adapter. This 634 * is a function pointer entry point called by drivers. While modules can 635 * also call this, they probably call their own version of this function. 636 **/ 637 s32 e1000_setup_link(struct e1000_hw *hw) 638 { 639 if (hw->mac.ops.setup_link) 640 return hw->mac.ops.setup_link(hw); 641 642 return -E1000_ERR_CONFIG; 643 } 644 645 /** 646 * e1000_get_speed_and_duplex - Returns current speed and duplex 647 * @hw: pointer to the HW structure 648 * @speed: pointer to a 16-bit value to store the speed 649 * @duplex: pointer to a 16-bit value to store the duplex. 650 * 651 * This returns the speed and duplex of the adapter in the two 'out' 652 * variables passed in. This is a function pointer entry point called 653 * by drivers. 654 **/ 655 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 656 { 657 if (hw->mac.ops.get_link_up_info) 658 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 659 660 return -E1000_ERR_CONFIG; 661 } 662 663 /** 664 * e1000_setup_led - Configures SW controllable LED 665 * @hw: pointer to the HW structure 666 * 667 * This prepares the SW controllable LED for use and saves the current state 668 * of the LED so it can be later restored. This is a function pointer entry 669 * point called by drivers. 670 **/ 671 s32 e1000_setup_led(struct e1000_hw *hw) 672 { 673 if (hw->mac.ops.setup_led) 674 return hw->mac.ops.setup_led(hw); 675 676 return E1000_SUCCESS; 677 } 678 679 /** 680 * e1000_cleanup_led - Restores SW controllable LED 681 * @hw: pointer to the HW structure 682 * 683 * This restores the SW controllable LED to the value saved off by 684 * e1000_setup_led. This is a function pointer entry point called by drivers. 685 **/ 686 s32 e1000_cleanup_led(struct e1000_hw *hw) 687 { 688 if (hw->mac.ops.cleanup_led) 689 return hw->mac.ops.cleanup_led(hw); 690 691 return E1000_SUCCESS; 692 } 693 694 /** 695 * e1000_blink_led - Blink SW controllable LED 696 * @hw: pointer to the HW structure 697 * 698 * This starts the adapter LED blinking. Request the LED to be setup first 699 * and cleaned up after. This is a function pointer entry point called by 700 * drivers. 701 **/ 702 s32 e1000_blink_led(struct e1000_hw *hw) 703 { 704 if (hw->mac.ops.blink_led) 705 return hw->mac.ops.blink_led(hw); 706 707 return E1000_SUCCESS; 708 } 709 710 /** 711 * e1000_id_led_init - store LED configurations in SW 712 * @hw: pointer to the HW structure 713 * 714 * Initializes the LED config in SW. This is a function pointer entry point 715 * called by drivers. 716 **/ 717 s32 e1000_id_led_init(struct e1000_hw *hw) 718 { 719 if (hw->mac.ops.id_led_init) 720 return hw->mac.ops.id_led_init(hw); 721 722 return E1000_SUCCESS; 723 } 724 725 /** 726 * e1000_led_on - Turn on SW controllable LED 727 * @hw: pointer to the HW structure 728 * 729 * Turns the SW defined LED on. This is a function pointer entry point 730 * called by drivers. 731 **/ 732 s32 e1000_led_on(struct e1000_hw *hw) 733 { 734 if (hw->mac.ops.led_on) 735 return hw->mac.ops.led_on(hw); 736 737 return E1000_SUCCESS; 738 } 739 740 /** 741 * e1000_led_off - Turn off SW controllable LED 742 * @hw: pointer to the HW structure 743 * 744 * Turns the SW defined LED off. This is a function pointer entry point 745 * called by drivers. 746 **/ 747 s32 e1000_led_off(struct e1000_hw *hw) 748 { 749 if (hw->mac.ops.led_off) 750 return hw->mac.ops.led_off(hw); 751 752 return E1000_SUCCESS; 753 } 754 755 /** 756 * e1000_reset_adaptive - Reset adaptive IFS 757 * @hw: pointer to the HW structure 758 * 759 * Resets the adaptive IFS. Currently no func pointer exists and all 760 * implementations are handled in the generic version of this function. 761 **/ 762 void e1000_reset_adaptive(struct e1000_hw *hw) 763 { 764 e1000_reset_adaptive_generic(hw); 765 } 766 767 /** 768 * e1000_update_adaptive - Update adaptive IFS 769 * @hw: pointer to the HW structure 770 * 771 * Updates adapter IFS. Currently no func pointer exists and all 772 * implementations are handled in the generic version of this function. 773 **/ 774 void e1000_update_adaptive(struct e1000_hw *hw) 775 { 776 e1000_update_adaptive_generic(hw); 777 } 778 779 /** 780 * e1000_disable_pcie_master - Disable PCI-Express master access 781 * @hw: pointer to the HW structure 782 * 783 * Disables PCI-Express master access and verifies there are no pending 784 * requests. Currently no func pointer exists and all implementations are 785 * handled in the generic version of this function. 786 **/ 787 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 788 { 789 return e1000_disable_pcie_master_generic(hw); 790 } 791 792 /** 793 * e1000_config_collision_dist - Configure collision distance 794 * @hw: pointer to the HW structure 795 * 796 * Configures the collision distance to the default value and is used 797 * during link setup. 798 **/ 799 void e1000_config_collision_dist(struct e1000_hw *hw) 800 { 801 if (hw->mac.ops.config_collision_dist) 802 hw->mac.ops.config_collision_dist(hw); 803 } 804 805 /** 806 * e1000_rar_set - Sets a receive address register 807 * @hw: pointer to the HW structure 808 * @addr: address to set the RAR to 809 * @index: the RAR to set 810 * 811 * Sets a Receive Address Register (RAR) to the specified address. 812 **/ 813 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 814 { 815 if (hw->mac.ops.rar_set) 816 hw->mac.ops.rar_set(hw, addr, index); 817 } 818 819 /** 820 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 821 * @hw: pointer to the HW structure 822 * 823 * Ensures that the MDI/MDIX SW state is valid. 824 **/ 825 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 826 { 827 if (hw->mac.ops.validate_mdi_setting) 828 return hw->mac.ops.validate_mdi_setting(hw); 829 830 return E1000_SUCCESS; 831 } 832 833 /** 834 * e1000_hash_mc_addr - Determines address location in multicast table 835 * @hw: pointer to the HW structure 836 * @mc_addr: Multicast address to hash. 837 * 838 * This hashes an address to determine its location in the multicast 839 * table. Currently no func pointer exists and all implementations 840 * are handled in the generic version of this function. 841 **/ 842 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 843 { 844 return e1000_hash_mc_addr_generic(hw, mc_addr); 845 } 846 847 /** 848 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 849 * @hw: pointer to the HW structure 850 * 851 * Enables packet filtering on transmit packets if manageability is enabled 852 * and host interface is enabled. 853 * Currently no func pointer exists and all implementations are handled in the 854 * generic version of this function. 855 **/ 856 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 857 { 858 return e1000_enable_tx_pkt_filtering_generic(hw); 859 } 860 861 /** 862 * e1000_mng_host_if_write - Writes to the manageability host interface 863 * @hw: pointer to the HW structure 864 * @buffer: pointer to the host interface buffer 865 * @length: size of the buffer 866 * @offset: location in the buffer to write to 867 * @sum: sum of the data (not checksum) 868 * 869 * This function writes the buffer content at the offset given on the host if. 870 * It also does alignment considerations to do the writes in most efficient 871 * way. Also fills up the sum of the buffer in *buffer parameter. 872 **/ 873 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 874 u16 offset, u8 *sum) 875 { 876 if (hw->mac.ops.mng_host_if_write) 877 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 878 offset, sum); 879 880 return E1000_NOT_IMPLEMENTED; 881 } 882 883 /** 884 * e1000_mng_write_cmd_header - Writes manageability command header 885 * @hw: pointer to the HW structure 886 * @hdr: pointer to the host interface command header 887 * 888 * Writes the command header after does the checksum calculation. 889 **/ 890 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 891 struct e1000_host_mng_command_header *hdr) 892 { 893 if (hw->mac.ops.mng_write_cmd_header) 894 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 895 896 return E1000_NOT_IMPLEMENTED; 897 } 898 899 /** 900 * e1000_mng_enable_host_if - Checks host interface is enabled 901 * @hw: pointer to the HW structure 902 * 903 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 904 * 905 * This function checks whether the HOST IF is enabled for command operation 906 * and also checks whether the previous command is completed. It busy waits 907 * in case of previous command is not completed. 908 **/ 909 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 910 { 911 if (hw->mac.ops.mng_enable_host_if) 912 return hw->mac.ops.mng_enable_host_if(hw); 913 914 return E1000_NOT_IMPLEMENTED; 915 } 916 917 /** 918 * e1000_wait_autoneg - Waits for autonegotiation completion 919 * @hw: pointer to the HW structure 920 * 921 * Waits for autoneg to complete. Currently no func pointer exists and all 922 * implementations are handled in the generic version of this function. 923 **/ 924 s32 e1000_wait_autoneg(struct e1000_hw *hw) 925 { 926 if (hw->mac.ops.wait_autoneg) 927 return hw->mac.ops.wait_autoneg(hw); 928 929 return E1000_SUCCESS; 930 } 931 932 /** 933 * e1000_check_reset_block - Verifies PHY can be reset 934 * @hw: pointer to the HW structure 935 * 936 * Checks if the PHY is in a state that can be reset or if manageability 937 * has it tied up. This is a function pointer entry point called by drivers. 938 **/ 939 s32 e1000_check_reset_block(struct e1000_hw *hw) 940 { 941 if (hw->phy.ops.check_reset_block) 942 return hw->phy.ops.check_reset_block(hw); 943 944 return E1000_SUCCESS; 945 } 946 947 /** 948 * e1000_read_phy_reg - Reads PHY register 949 * @hw: pointer to the HW structure 950 * @offset: the register to read 951 * @data: the buffer to store the 16-bit read. 952 * 953 * Reads the PHY register and returns the value in data. 954 * This is a function pointer entry point called by drivers. 955 **/ 956 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 957 { 958 if (hw->phy.ops.read_reg) 959 return hw->phy.ops.read_reg(hw, offset, data); 960 961 return E1000_SUCCESS; 962 } 963 964 /** 965 * e1000_write_phy_reg - Writes PHY register 966 * @hw: pointer to the HW structure 967 * @offset: the register to write 968 * @data: the value to write. 969 * 970 * Writes the PHY register at offset with the value in data. 971 * This is a function pointer entry point called by drivers. 972 **/ 973 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 974 { 975 if (hw->phy.ops.write_reg) 976 return hw->phy.ops.write_reg(hw, offset, data); 977 978 return E1000_SUCCESS; 979 } 980 981 /** 982 * e1000_release_phy - Generic release PHY 983 * @hw: pointer to the HW structure 984 * 985 * Return if silicon family does not require a semaphore when accessing the 986 * PHY. 987 **/ 988 void e1000_release_phy(struct e1000_hw *hw) 989 { 990 if (hw->phy.ops.release) 991 hw->phy.ops.release(hw); 992 } 993 994 /** 995 * e1000_acquire_phy - Generic acquire PHY 996 * @hw: pointer to the HW structure 997 * 998 * Return success if silicon family does not require a semaphore when 999 * accessing the PHY. 1000 **/ 1001 s32 e1000_acquire_phy(struct e1000_hw *hw) 1002 { 1003 if (hw->phy.ops.acquire) 1004 return hw->phy.ops.acquire(hw); 1005 1006 return E1000_SUCCESS; 1007 } 1008 1009 /** 1010 * e1000_cfg_on_link_up - Configure PHY upon link up 1011 * @hw: pointer to the HW structure 1012 **/ 1013 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1014 { 1015 if (hw->phy.ops.cfg_on_link_up) 1016 return hw->phy.ops.cfg_on_link_up(hw); 1017 1018 return E1000_SUCCESS; 1019 } 1020 1021 /** 1022 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1023 * @hw: pointer to the HW structure 1024 * @offset: the register to read 1025 * @data: the location to store the 16-bit value read. 1026 * 1027 * Reads a register out of the Kumeran interface. Currently no func pointer 1028 * exists and all implementations are handled in the generic version of 1029 * this function. 1030 **/ 1031 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1032 { 1033 return e1000_read_kmrn_reg_generic(hw, offset, data); 1034 } 1035 1036 /** 1037 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1038 * @hw: pointer to the HW structure 1039 * @offset: the register to write 1040 * @data: the value to write. 1041 * 1042 * Writes a register to the Kumeran interface. Currently no func pointer 1043 * exists and all implementations are handled in the generic version of 1044 * this function. 1045 **/ 1046 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1047 { 1048 return e1000_write_kmrn_reg_generic(hw, offset, data); 1049 } 1050 1051 /** 1052 * e1000_get_cable_length - Retrieves cable length estimation 1053 * @hw: pointer to the HW structure 1054 * 1055 * This function estimates the cable length and stores them in 1056 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1057 * entry point called by drivers. 1058 **/ 1059 s32 e1000_get_cable_length(struct e1000_hw *hw) 1060 { 1061 if (hw->phy.ops.get_cable_length) 1062 return hw->phy.ops.get_cable_length(hw); 1063 1064 return E1000_SUCCESS; 1065 } 1066 1067 /** 1068 * e1000_get_phy_info - Retrieves PHY information from registers 1069 * @hw: pointer to the HW structure 1070 * 1071 * This function gets some information from various PHY registers and 1072 * populates hw->phy values with it. This is a function pointer entry 1073 * point called by drivers. 1074 **/ 1075 s32 e1000_get_phy_info(struct e1000_hw *hw) 1076 { 1077 if (hw->phy.ops.get_info) 1078 return hw->phy.ops.get_info(hw); 1079 1080 return E1000_SUCCESS; 1081 } 1082 1083 /** 1084 * e1000_phy_hw_reset - Hard PHY reset 1085 * @hw: pointer to the HW structure 1086 * 1087 * Performs a hard PHY reset. This is a function pointer entry point called 1088 * by drivers. 1089 **/ 1090 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1091 { 1092 if (hw->phy.ops.reset) 1093 return hw->phy.ops.reset(hw); 1094 1095 return E1000_SUCCESS; 1096 } 1097 1098 /** 1099 * e1000_phy_commit - Soft PHY reset 1100 * @hw: pointer to the HW structure 1101 * 1102 * Performs a soft PHY reset on those that apply. This is a function pointer 1103 * entry point called by drivers. 1104 **/ 1105 s32 e1000_phy_commit(struct e1000_hw *hw) 1106 { 1107 if (hw->phy.ops.commit) 1108 return hw->phy.ops.commit(hw); 1109 1110 return E1000_SUCCESS; 1111 } 1112 1113 /** 1114 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1115 * @hw: pointer to the HW structure 1116 * @active: boolean used to enable/disable lplu 1117 * 1118 * Success returns 0, Failure returns 1 1119 * 1120 * The low power link up (lplu) state is set to the power management level D0 1121 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1122 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1123 * is used during Dx states where the power conservation is most important. 1124 * During driver activity, SmartSpeed should be enabled so performance is 1125 * maintained. This is a function pointer entry point called by drivers. 1126 **/ 1127 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1128 { 1129 if (hw->phy.ops.set_d0_lplu_state) 1130 return hw->phy.ops.set_d0_lplu_state(hw, active); 1131 1132 return E1000_SUCCESS; 1133 } 1134 1135 /** 1136 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1137 * @hw: pointer to the HW structure 1138 * @active: boolean used to enable/disable lplu 1139 * 1140 * Success returns 0, Failure returns 1 1141 * 1142 * The low power link up (lplu) state is set to the power management level D3 1143 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1144 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1145 * is used during Dx states where the power conservation is most important. 1146 * During driver activity, SmartSpeed should be enabled so performance is 1147 * maintained. This is a function pointer entry point called by drivers. 1148 **/ 1149 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1150 { 1151 if (hw->phy.ops.set_d3_lplu_state) 1152 return hw->phy.ops.set_d3_lplu_state(hw, active); 1153 1154 return E1000_SUCCESS; 1155 } 1156 1157 /** 1158 * e1000_read_mac_addr - Reads MAC address 1159 * @hw: pointer to the HW structure 1160 * 1161 * Reads the MAC address out of the adapter and stores it in the HW structure. 1162 * Currently no func pointer exists and all implementations are handled in the 1163 * generic version of this function. 1164 **/ 1165 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1166 { 1167 if (hw->mac.ops.read_mac_addr) 1168 return hw->mac.ops.read_mac_addr(hw); 1169 1170 return e1000_read_mac_addr_generic(hw); 1171 } 1172 1173 /** 1174 * e1000_read_pba_string - Read device part number string 1175 * @hw: pointer to the HW structure 1176 * @pba_num: pointer to device part number 1177 * @pba_num_size: size of part number buffer 1178 * 1179 * Reads the product board assembly (PBA) number from the EEPROM and stores 1180 * the value in pba_num. 1181 * Currently no func pointer exists and all implementations are handled in the 1182 * generic version of this function. 1183 **/ 1184 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1185 { 1186 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1187 } 1188 1189 /** 1190 * e1000_read_pba_length - Read device part number string length 1191 * @hw: pointer to the HW structure 1192 * @pba_num_size: size of part number buffer 1193 * 1194 * Reads the product board assembly (PBA) number length from the EEPROM and 1195 * stores the value in pba_num. 1196 * Currently no func pointer exists and all implementations are handled in the 1197 * generic version of this function. 1198 **/ 1199 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1200 { 1201 return e1000_read_pba_length_generic(hw, pba_num_size); 1202 } 1203 1204 /** 1205 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1206 * @hw: pointer to the HW structure 1207 * 1208 * Validates the NVM checksum is correct. This is a function pointer entry 1209 * point called by drivers. 1210 **/ 1211 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1212 { 1213 if (hw->nvm.ops.validate) 1214 return hw->nvm.ops.validate(hw); 1215 1216 return -E1000_ERR_CONFIG; 1217 } 1218 1219 /** 1220 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1221 * @hw: pointer to the HW structure 1222 * 1223 * Updates the NVM checksum. Currently no func pointer exists and all 1224 * implementations are handled in the generic version of this function. 1225 **/ 1226 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1227 { 1228 if (hw->nvm.ops.update) 1229 return hw->nvm.ops.update(hw); 1230 1231 return -E1000_ERR_CONFIG; 1232 } 1233 1234 /** 1235 * e1000_reload_nvm - Reloads EEPROM 1236 * @hw: pointer to the HW structure 1237 * 1238 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1239 * extended control register. 1240 **/ 1241 void e1000_reload_nvm(struct e1000_hw *hw) 1242 { 1243 if (hw->nvm.ops.reload) 1244 hw->nvm.ops.reload(hw); 1245 } 1246 1247 /** 1248 * e1000_read_nvm - Reads NVM (EEPROM) 1249 * @hw: pointer to the HW structure 1250 * @offset: the word offset to read 1251 * @words: number of 16-bit words to read 1252 * @data: pointer to the properly sized buffer for the data. 1253 * 1254 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1255 * pointer entry point called by drivers. 1256 **/ 1257 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1258 { 1259 if (hw->nvm.ops.read) 1260 return hw->nvm.ops.read(hw, offset, words, data); 1261 1262 return -E1000_ERR_CONFIG; 1263 } 1264 1265 /** 1266 * e1000_write_nvm - Writes to NVM (EEPROM) 1267 * @hw: pointer to the HW structure 1268 * @offset: the word offset to read 1269 * @words: number of 16-bit words to write 1270 * @data: pointer to the properly sized buffer for the data. 1271 * 1272 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1273 * pointer entry point called by drivers. 1274 **/ 1275 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1276 { 1277 if (hw->nvm.ops.write) 1278 return hw->nvm.ops.write(hw, offset, words, data); 1279 1280 return E1000_SUCCESS; 1281 } 1282 1283 /** 1284 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1285 * @hw: pointer to the HW structure 1286 * @reg: 32bit register offset 1287 * @offset: the register to write 1288 * @data: the value to write. 1289 * 1290 * Writes the PHY register at offset with the value in data. 1291 * This is a function pointer entry point called by drivers. 1292 **/ 1293 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1294 u8 data) 1295 { 1296 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1297 } 1298 1299 /** 1300 * e1000_power_up_phy - Restores link in case of PHY power down 1301 * @hw: pointer to the HW structure 1302 * 1303 * The phy may be powered down to save power, to turn off link when the 1304 * driver is unloaded, or wake on lan is not enabled (among others). 1305 **/ 1306 void e1000_power_up_phy(struct e1000_hw *hw) 1307 { 1308 if (hw->phy.ops.power_up) 1309 hw->phy.ops.power_up(hw); 1310 1311 e1000_setup_link(hw); 1312 } 1313 1314 /** 1315 * e1000_power_down_phy - Power down PHY 1316 * @hw: pointer to the HW structure 1317 * 1318 * The phy may be powered down to save power, to turn off link when the 1319 * driver is unloaded, or wake on lan is not enabled (among others). 1320 **/ 1321 void e1000_power_down_phy(struct e1000_hw *hw) 1322 { 1323 if (hw->phy.ops.power_down) 1324 hw->phy.ops.power_down(hw); 1325 } 1326 1327 /** 1328 * e1000_power_up_fiber_serdes_link - Power up serdes link 1329 * @hw: pointer to the HW structure 1330 * 1331 * Power on the optics and PCS. 1332 **/ 1333 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1334 { 1335 if (hw->mac.ops.power_up_serdes) 1336 hw->mac.ops.power_up_serdes(hw); 1337 } 1338 1339 /** 1340 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1341 * @hw: pointer to the HW structure 1342 * 1343 * Shutdown the optics and PCS on driver unload. 1344 **/ 1345 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1346 { 1347 if (hw->mac.ops.shutdown_serdes) 1348 hw->mac.ops.shutdown_serdes(hw); 1349 } 1350 1351