xref: /freebsd/sys/dev/e1000/e1000_82571.c (revision 8aac90f18aef7c9eea906c3ff9a001ca7b94f375)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 /* 82571EB Gigabit Ethernet Controller
36  * 82571EB Gigabit Ethernet Controller (Copper)
37  * 82571EB Gigabit Ethernet Controller (Fiber)
38  * 82571EB Dual Port Gigabit Mezzanine Adapter
39  * 82571EB Quad Port Gigabit Mezzanine Adapter
40  * 82571PT Gigabit PT Quad Port Server ExpressModule
41  * 82572EI Gigabit Ethernet Controller (Copper)
42  * 82572EI Gigabit Ethernet Controller (Fiber)
43  * 82572EI Gigabit Ethernet Controller
44  * 82573V Gigabit Ethernet Controller (Copper)
45  * 82573E Gigabit Ethernet Controller (Copper)
46  * 82573L Gigabit Ethernet Controller
47  * 82574L Gigabit Network Connection
48  * 82583V Gigabit Network Connection
49  */
50 
51 #include "e1000_api.h"
52 
53 static s32  e1000_acquire_nvm_82571(struct e1000_hw *hw);
54 static void e1000_release_nvm_82571(struct e1000_hw *hw);
55 static s32  e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
56 				  u16 words, u16 *data);
57 static s32  e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
58 static s32  e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
59 static s32  e1000_get_cfg_done_82571(struct e1000_hw *hw);
60 static s32  e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
61 					  bool active);
62 static s32  e1000_reset_hw_82571(struct e1000_hw *hw);
63 static s32  e1000_init_hw_82571(struct e1000_hw *hw);
64 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
65 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
66 static s32 e1000_led_on_82574(struct e1000_hw *hw);
67 static s32  e1000_setup_link_82571(struct e1000_hw *hw);
68 static s32  e1000_setup_copper_link_82571(struct e1000_hw *hw);
69 static s32  e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
70 static s32  e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
71 static s32  e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static s32  e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
74 static s32  e1000_get_phy_id_82571(struct e1000_hw *hw);
75 static s32  e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
77 static s32  e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
78 					  bool active);
79 static s32  e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
80 					  bool active);
81 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
82 static s32  e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
83 				       u16 words, u16 *data);
84 static s32  e1000_read_mac_addr_82571(struct e1000_hw *hw);
85 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
86 
87 /**
88  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
89  *  @hw: pointer to the HW structure
90  **/
91 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
92 {
93 	struct e1000_phy_info *phy = &hw->phy;
94 	s32 ret_val;
95 
96 	DEBUGFUNC("e1000_init_phy_params_82571");
97 
98 	if (hw->phy.media_type != e1000_media_type_copper) {
99 		phy->type = e1000_phy_none;
100 		return E1000_SUCCESS;
101 	}
102 
103 	phy->addr			= 1;
104 	phy->autoneg_mask		= AUTONEG_ADVERTISE_SPEED_DEFAULT;
105 	phy->reset_delay_us		= 100;
106 
107 	phy->ops.check_reset_block	= e1000_check_reset_block_generic;
108 	phy->ops.reset			= e1000_phy_hw_reset_generic;
109 	phy->ops.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571;
110 	phy->ops.set_d3_lplu_state	= e1000_set_d3_lplu_state_generic;
111 	phy->ops.power_up		= e1000_power_up_phy_copper;
112 	phy->ops.power_down		= e1000_power_down_phy_copper_82571;
113 
114 	switch (hw->mac.type) {
115 	case e1000_82571:
116 	case e1000_82572:
117 		phy->type		= e1000_phy_igp_2;
118 		phy->ops.get_cfg_done	= e1000_get_cfg_done_82571;
119 		phy->ops.get_info	= e1000_get_phy_info_igp;
120 		phy->ops.check_polarity	= e1000_check_polarity_igp;
121 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
122 		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
123 		phy->ops.read_reg	= e1000_read_phy_reg_igp;
124 		phy->ops.write_reg	= e1000_write_phy_reg_igp;
125 		phy->ops.acquire	= e1000_get_hw_semaphore;
126 		phy->ops.release	= e1000_put_hw_semaphore;
127 		break;
128 	case e1000_82573:
129 		phy->type		= e1000_phy_m88;
130 		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
131 		phy->ops.get_info	= e1000_get_phy_info_m88;
132 		phy->ops.check_polarity	= e1000_check_polarity_m88;
133 		phy->ops.commit		= e1000_phy_sw_reset_generic;
134 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
135 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
136 		phy->ops.read_reg	= e1000_read_phy_reg_m88;
137 		phy->ops.write_reg	= e1000_write_phy_reg_m88;
138 		phy->ops.acquire	= e1000_get_hw_semaphore;
139 		phy->ops.release	= e1000_put_hw_semaphore;
140 		break;
141 	case e1000_82574:
142 	case e1000_82583:
143 
144 		phy->type		= e1000_phy_bm;
145 		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
146 		phy->ops.get_info	= e1000_get_phy_info_m88;
147 		phy->ops.check_polarity	= e1000_check_polarity_m88;
148 		phy->ops.commit		= e1000_phy_sw_reset_generic;
149 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
150 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
151 		phy->ops.read_reg	= e1000_read_phy_reg_bm2;
152 		phy->ops.write_reg	= e1000_write_phy_reg_bm2;
153 		phy->ops.acquire	= e1000_get_hw_semaphore_82574;
154 		phy->ops.release	= e1000_put_hw_semaphore_82574;
155 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
156 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
157 		break;
158 	default:
159 		return -E1000_ERR_PHY;
160 		break;
161 	}
162 
163 	/* This can only be done after all function pointers are setup. */
164 	ret_val = e1000_get_phy_id_82571(hw);
165 	if (ret_val) {
166 		DEBUGOUT("Error getting PHY ID\n");
167 		return ret_val;
168 	}
169 
170 	/* Verify phy id */
171 	switch (hw->mac.type) {
172 	case e1000_82571:
173 	case e1000_82572:
174 		if (phy->id != IGP01E1000_I_PHY_ID)
175 			ret_val = -E1000_ERR_PHY;
176 		break;
177 	case e1000_82573:
178 		if (phy->id != M88E1111_I_PHY_ID)
179 			ret_val = -E1000_ERR_PHY;
180 		break;
181 	case e1000_82574:
182 	case e1000_82583:
183 		if (phy->id != BME1000_E_PHY_ID_R2)
184 			ret_val = -E1000_ERR_PHY;
185 		break;
186 	default:
187 		ret_val = -E1000_ERR_PHY;
188 		break;
189 	}
190 
191 	if (ret_val)
192 		DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
193 
194 	return ret_val;
195 }
196 
197 /**
198  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
199  *  @hw: pointer to the HW structure
200  **/
201 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
202 {
203 	struct e1000_nvm_info *nvm = &hw->nvm;
204 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
205 	u16 size;
206 
207 	DEBUGFUNC("e1000_init_nvm_params_82571");
208 
209 	nvm->opcode_bits = 8;
210 	nvm->delay_usec = 1;
211 	switch (nvm->override) {
212 	case e1000_nvm_override_spi_large:
213 		nvm->page_size = 32;
214 		nvm->address_bits = 16;
215 		break;
216 	case e1000_nvm_override_spi_small:
217 		nvm->page_size = 8;
218 		nvm->address_bits = 8;
219 		break;
220 	default:
221 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
222 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
223 		break;
224 	}
225 
226 	switch (hw->mac.type) {
227 	case e1000_82573:
228 	case e1000_82574:
229 	case e1000_82583:
230 		if (((eecd >> 15) & 0x3) == 0x3) {
231 			nvm->type = e1000_nvm_flash_hw;
232 			nvm->word_size = 2048;
233 			/* Autonomous Flash update bit must be cleared due
234 			 * to Flash update issue.
235 			 */
236 			eecd &= ~E1000_EECD_AUPDEN;
237 			E1000_WRITE_REG(hw, E1000_EECD, eecd);
238 			break;
239 		}
240 		/* FALLTHROUGH */
241 	default:
242 		nvm->type = e1000_nvm_eeprom_spi;
243 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
244 			     E1000_EECD_SIZE_EX_SHIFT);
245 		/* Added to a constant, "size" becomes the left-shift value
246 		 * for setting word_size.
247 		 */
248 		size += NVM_WORD_SIZE_BASE_SHIFT;
249 
250 		/* EEPROM access above 16k is unsupported */
251 		if (size > 14)
252 			size = 14;
253 		nvm->word_size = 1 << size;
254 		break;
255 	}
256 
257 	/* Function Pointers */
258 	switch (hw->mac.type) {
259 	case e1000_82574:
260 	case e1000_82583:
261 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
262 		nvm->ops.release = e1000_put_hw_semaphore_82574;
263 		break;
264 	default:
265 		nvm->ops.acquire = e1000_acquire_nvm_82571;
266 		nvm->ops.release = e1000_release_nvm_82571;
267 		break;
268 	}
269 	nvm->ops.read = e1000_read_nvm_eerd;
270 	nvm->ops.update = e1000_update_nvm_checksum_82571;
271 	nvm->ops.validate = e1000_validate_nvm_checksum_82571;
272 	nvm->ops.valid_led_default = e1000_valid_led_default_82571;
273 	nvm->ops.write = e1000_write_nvm_82571;
274 
275 	return E1000_SUCCESS;
276 }
277 
278 /**
279  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
280  *  @hw: pointer to the HW structure
281  **/
282 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
283 {
284 	struct e1000_mac_info *mac = &hw->mac;
285 	u32 swsm = 0;
286 	u32 swsm2 = 0;
287 	bool force_clear_smbi = false;
288 
289 	DEBUGFUNC("e1000_init_mac_params_82571");
290 
291 	/* Set media type and media-dependent function pointers */
292 	switch (hw->device_id) {
293 	case E1000_DEV_ID_82571EB_FIBER:
294 	case E1000_DEV_ID_82572EI_FIBER:
295 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
296 		hw->phy.media_type = e1000_media_type_fiber;
297 		mac->ops.setup_physical_interface =
298 			e1000_setup_fiber_serdes_link_82571;
299 		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
300 		mac->ops.get_link_up_info =
301 			e1000_get_speed_and_duplex_fiber_serdes_generic;
302 		break;
303 	case E1000_DEV_ID_82571EB_SERDES:
304 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
305 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
306 	case E1000_DEV_ID_82572EI_SERDES:
307 		hw->phy.media_type = e1000_media_type_internal_serdes;
308 		mac->ops.setup_physical_interface =
309 			e1000_setup_fiber_serdes_link_82571;
310 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
311 		mac->ops.get_link_up_info =
312 			e1000_get_speed_and_duplex_fiber_serdes_generic;
313 		break;
314 	default:
315 		hw->phy.media_type = e1000_media_type_copper;
316 		mac->ops.setup_physical_interface =
317 			e1000_setup_copper_link_82571;
318 		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
319 		mac->ops.get_link_up_info =
320 			e1000_get_speed_and_duplex_copper_generic;
321 		break;
322 	}
323 
324 	/* Set mta register count */
325 	mac->mta_reg_count = 128;
326 	/* Set rar entry count */
327 	mac->rar_entry_count = E1000_RAR_ENTRIES;
328 	/* Set if part includes ASF firmware */
329 	mac->asf_firmware_present = true;
330 	/* Adaptive IFS supported */
331 	mac->adaptive_ifs = true;
332 
333 	/* Function pointers */
334 
335 	/* bus type/speed/width */
336 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
337 	/* reset */
338 	mac->ops.reset_hw = e1000_reset_hw_82571;
339 	/* hw initialization */
340 	mac->ops.init_hw = e1000_init_hw_82571;
341 	/* link setup */
342 	mac->ops.setup_link = e1000_setup_link_82571;
343 	/* multicast address update */
344 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
345 	/* writing VFTA */
346 	mac->ops.write_vfta = e1000_write_vfta_generic;
347 	/* clearing VFTA */
348 	mac->ops.clear_vfta = e1000_clear_vfta_82571;
349 	/* read mac address */
350 	mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
351 	/* ID LED init */
352 	mac->ops.id_led_init = e1000_id_led_init_generic;
353 	/* setup LED */
354 	mac->ops.setup_led = e1000_setup_led_generic;
355 	/* cleanup LED */
356 	mac->ops.cleanup_led = e1000_cleanup_led_generic;
357 	/* turn off LED */
358 	mac->ops.led_off = e1000_led_off_generic;
359 	/* clear hardware counters */
360 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
361 
362 	/* MAC-specific function pointers */
363 	switch (hw->mac.type) {
364 	case e1000_82573:
365 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
366 		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
367 		mac->ops.led_on = e1000_led_on_generic;
368 		mac->ops.blink_led = e1000_blink_led_generic;
369 
370 		/* FWSM register */
371 		mac->has_fwsm = true;
372 		/* ARC supported; valid only if manageability features are
373 		 * enabled.
374 		 */
375 		mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
376 					      E1000_FWSM_MODE_MASK);
377 		break;
378 	case e1000_82574:
379 	case e1000_82583:
380 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
381 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
382 		mac->ops.led_on = e1000_led_on_82574;
383 		break;
384 	default:
385 		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
386 		mac->ops.led_on = e1000_led_on_generic;
387 		mac->ops.blink_led = e1000_blink_led_generic;
388 
389 		/* FWSM register */
390 		mac->has_fwsm = true;
391 		break;
392 	}
393 
394 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
395 	 * first NVM or PHY access. This should be done for single-port
396 	 * devices, and for one port only on dual-port devices so that
397 	 * for those devices we can still use the SMBI lock to synchronize
398 	 * inter-port accesses to the PHY & NVM.
399 	 */
400 	switch (hw->mac.type) {
401 	case e1000_82571:
402 	case e1000_82572:
403 		swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
404 
405 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
406 			/* Only do this for the first interface on this card */
407 			E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
408 					E1000_SWSM2_LOCK);
409 			force_clear_smbi = true;
410 		} else {
411 			force_clear_smbi = false;
412 		}
413 		break;
414 	default:
415 		force_clear_smbi = true;
416 		break;
417 	}
418 
419 	if (force_clear_smbi) {
420 		/* Make sure SWSM.SMBI is clear */
421 		swsm = E1000_READ_REG(hw, E1000_SWSM);
422 		if (swsm & E1000_SWSM_SMBI) {
423 			/* This bit should not be set on a first interface, and
424 			 * indicates that the bootagent or EFI code has
425 			 * improperly left this bit enabled
426 			 */
427 			DEBUGOUT("Please update your 82571 Bootagent\n");
428 		}
429 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
430 	}
431 
432 	/* Initialze device specific counter of SMBI acquisition timeouts. */
433 	 hw->dev_spec._82571.smb_counter = 0;
434 
435 	return E1000_SUCCESS;
436 }
437 
438 /**
439  *  e1000_init_function_pointers_82571 - Init func ptrs.
440  *  @hw: pointer to the HW structure
441  *
442  *  Called to initialize all function pointers and parameters.
443  **/
444 void e1000_init_function_pointers_82571(struct e1000_hw *hw)
445 {
446 	DEBUGFUNC("e1000_init_function_pointers_82571");
447 
448 	hw->mac.ops.init_params = e1000_init_mac_params_82571;
449 	hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
450 	hw->phy.ops.init_params = e1000_init_phy_params_82571;
451 }
452 
453 /**
454  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
455  *  @hw: pointer to the HW structure
456  *
457  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
458  *  revision in the hardware structure.
459  **/
460 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
461 {
462 	struct e1000_phy_info *phy = &hw->phy;
463 	s32 ret_val;
464 	u16 phy_id = 0;
465 
466 	DEBUGFUNC("e1000_get_phy_id_82571");
467 
468 	switch (hw->mac.type) {
469 	case e1000_82571:
470 	case e1000_82572:
471 		/* The 82571 firmware may still be configuring the PHY.
472 		 * In this case, we cannot access the PHY until the
473 		 * configuration is done.  So we explicitly set the
474 		 * PHY ID.
475 		 */
476 		phy->id = IGP01E1000_I_PHY_ID;
477 		break;
478 	case e1000_82573:
479 		return e1000_get_phy_id(hw);
480 		break;
481 	case e1000_82574:
482 	case e1000_82583:
483 		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
484 		if (ret_val)
485 			return ret_val;
486 
487 		phy->id = (u32)(phy_id << 16);
488 		usec_delay(20);
489 		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
490 		if (ret_val)
491 			return ret_val;
492 
493 		phy->id |= (u32)(phy_id);
494 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
495 		break;
496 	default:
497 		return -E1000_ERR_PHY;
498 		break;
499 	}
500 
501 	return E1000_SUCCESS;
502 }
503 
504 /**
505  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
506  *  @hw: pointer to the HW structure
507  *
508  *  Acquire the HW semaphore during reset.
509  *
510  **/
511 static s32
512 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
513 {
514 	u32 extcnf_ctrl;
515 	s32 i = 0;
516 	/* XXX assert that mutex is held */
517 	DEBUGFUNC("e1000_get_hw_semaphore_82574");
518 
519 	ASSERT_CTX_LOCK_HELD(hw);
520 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
521 	do {
522 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
523 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
524 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
525 
526 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
527 			break;
528 
529 		msec_delay(2);
530 		i++;
531 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
532 
533 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
534 		/* Release semaphores */
535 		e1000_put_hw_semaphore_82574(hw);
536 		DEBUGOUT("Driver can't access the PHY\n");
537 		return -E1000_ERR_PHY;
538 	}
539 
540 	return E1000_SUCCESS;
541 }
542 
543 /**
544  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
545  *  @hw: pointer to the HW structure
546  *
547  *  Release hardware semaphore used during reset.
548  *
549  **/
550 static void
551 e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
552 {
553 	u32 extcnf_ctrl;
554 
555 	DEBUGFUNC("e1000_put_hw_semaphore_82574");
556 
557 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
558 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
559 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
560 }
561 
562 /**
563  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
564  *  @hw: pointer to the HW structure
565  *  @active: true to enable LPLU, false to disable
566  *
567  *  Sets the LPLU D0 state according to the active flag.
568  *  LPLU will not be activated unless the
569  *  device autonegotiation advertisement meets standards of
570  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
571  *  This is a function pointer entry point only called by
572  *  PHY setup routines.
573  **/
574 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
575 {
576 	u32 data = E1000_READ_REG(hw, E1000_POEMB);
577 
578 	DEBUGFUNC("e1000_set_d0_lplu_state_82574");
579 
580 	if (active)
581 		data |= E1000_PHY_CTRL_D0A_LPLU;
582 	else
583 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
584 
585 	E1000_WRITE_REG(hw, E1000_POEMB, data);
586 	return E1000_SUCCESS;
587 }
588 
589 /**
590  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
591  *  @hw: pointer to the HW structure
592  *  @active: boolean used to enable/disable lplu
593  *
594  *  The low power link up (lplu) state is set to the power management level D3
595  *  when active is true, else clear lplu for D3. LPLU
596  *  is used during Dx states where the power conservation is most important.
597  *  During driver activity, SmartSpeed should be enabled so performance is
598  *  maintained.
599  **/
600 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
601 {
602 	u32 data = E1000_READ_REG(hw, E1000_POEMB);
603 
604 	DEBUGFUNC("e1000_set_d3_lplu_state_82574");
605 
606 	if (!active) {
607 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
608 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
609 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
610 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
611 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
612 	}
613 
614 	E1000_WRITE_REG(hw, E1000_POEMB, data);
615 	return E1000_SUCCESS;
616 }
617 
618 /**
619  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
620  *  @hw: pointer to the HW structure
621  *
622  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
623  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
624  *  for EEPROM access grant bit.  If the access grant bit is not set, release
625  *  hardware semaphore.
626  **/
627 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
628 {
629 	s32 ret_val;
630 
631 	DEBUGFUNC("e1000_acquire_nvm_82571");
632 
633 	ret_val = e1000_get_hw_semaphore(hw);
634 	if (ret_val)
635 		return ret_val;
636 
637 	switch (hw->mac.type) {
638 	case e1000_82573:
639 		break;
640 	default:
641 		ret_val = e1000_acquire_nvm_generic(hw);
642 		break;
643 	}
644 
645 	if (ret_val)
646 		e1000_put_hw_semaphore(hw);
647 
648 	return ret_val;
649 }
650 
651 /**
652  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
653  *  @hw: pointer to the HW structure
654  *
655  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
656  **/
657 static void e1000_release_nvm_82571(struct e1000_hw *hw)
658 {
659 	DEBUGFUNC("e1000_release_nvm_82571");
660 
661 	e1000_release_nvm_generic(hw);
662 	e1000_put_hw_semaphore(hw);
663 }
664 
665 /**
666  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
667  *  @hw: pointer to the HW structure
668  *  @offset: offset within the EEPROM to be written to
669  *  @words: number of words to write
670  *  @data: 16 bit word(s) to be written to the EEPROM
671  *
672  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
673  *
674  *  If e1000_update_nvm_checksum is not called after this function, the
675  *  EEPROM will most likely contain an invalid checksum.
676  **/
677 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
678 				 u16 *data)
679 {
680 	s32 ret_val;
681 
682 	DEBUGFUNC("e1000_write_nvm_82571");
683 
684 	switch (hw->mac.type) {
685 	case e1000_82573:
686 	case e1000_82574:
687 	case e1000_82583:
688 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
689 		break;
690 	case e1000_82571:
691 	case e1000_82572:
692 		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
693 		break;
694 	default:
695 		ret_val = -E1000_ERR_NVM;
696 		break;
697 	}
698 
699 	return ret_val;
700 }
701 
702 /**
703  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
704  *  @hw: pointer to the HW structure
705  *
706  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
707  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
708  *  value to the EEPROM.
709  **/
710 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
711 {
712 	u32 eecd;
713 	s32 ret_val;
714 	u16 i;
715 
716 	DEBUGFUNC("e1000_update_nvm_checksum_82571");
717 
718 	ret_val = e1000_update_nvm_checksum_generic(hw);
719 	if (ret_val)
720 		return ret_val;
721 
722 	/* If our nvm is an EEPROM, then we're done
723 	 * otherwise, commit the checksum to the flash NVM.
724 	 */
725 	if (hw->nvm.type != e1000_nvm_flash_hw)
726 		return E1000_SUCCESS;
727 
728 	/* Check for pending operations. */
729 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
730 		msec_delay(1);
731 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
732 			break;
733 	}
734 
735 	if (i == E1000_FLASH_UPDATES)
736 		return -E1000_ERR_NVM;
737 
738 	/* Reset the firmware if using STM opcode. */
739 	if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
740 		/* The enabling of and the actual reset must be done
741 		 * in two write cycles.
742 		 */
743 		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
744 		E1000_WRITE_FLUSH(hw);
745 		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
746 	}
747 
748 	/* Commit the write to flash */
749 	eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
750 	E1000_WRITE_REG(hw, E1000_EECD, eecd);
751 
752 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
753 		msec_delay(1);
754 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
755 			break;
756 	}
757 
758 	if (i == E1000_FLASH_UPDATES)
759 		return -E1000_ERR_NVM;
760 
761 	return E1000_SUCCESS;
762 }
763 
764 /**
765  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
766  *  @hw: pointer to the HW structure
767  *
768  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
769  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
770  **/
771 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
772 {
773 	DEBUGFUNC("e1000_validate_nvm_checksum_82571");
774 
775 	if (hw->nvm.type == e1000_nvm_flash_hw)
776 		e1000_fix_nvm_checksum_82571(hw);
777 
778 	return e1000_validate_nvm_checksum_generic(hw);
779 }
780 
781 /**
782  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
783  *  @hw: pointer to the HW structure
784  *  @offset: offset within the EEPROM to be written to
785  *  @words: number of words to write
786  *  @data: 16 bit word(s) to be written to the EEPROM
787  *
788  *  After checking for invalid values, poll the EEPROM to ensure the previous
789  *  command has completed before trying to write the next word.  After write
790  *  poll for completion.
791  *
792  *  If e1000_update_nvm_checksum is not called after this function, the
793  *  EEPROM will most likely contain an invalid checksum.
794  **/
795 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
796 				      u16 words, u16 *data)
797 {
798 	struct e1000_nvm_info *nvm = &hw->nvm;
799 	u32 i, eewr = 0;
800 	s32 ret_val = E1000_SUCCESS;
801 
802 	DEBUGFUNC("e1000_write_nvm_eewr_82571");
803 
804 	/* A check for invalid values:  offset too large, too many words,
805 	 * and not enough words.
806 	 */
807 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
808 	    (words == 0)) {
809 		DEBUGOUT("nvm parameter(s) out of bounds\n");
810 		return -E1000_ERR_NVM;
811 	}
812 
813 	for (i = 0; i < words; i++) {
814 		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
815 			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
816 			E1000_NVM_RW_REG_START);
817 
818 		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
819 		if (ret_val)
820 			break;
821 
822 		E1000_WRITE_REG(hw, E1000_EEWR, eewr);
823 
824 		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
825 		if (ret_val)
826 			break;
827 	}
828 
829 	return ret_val;
830 }
831 
832 /**
833  *  e1000_get_cfg_done_82571 - Poll for configuration done
834  *  @hw: pointer to the HW structure
835  *
836  *  Reads the management control register for the config done bit to be set.
837  **/
838 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
839 {
840 	s32 timeout = PHY_CFG_TIMEOUT;
841 
842 	DEBUGFUNC("e1000_get_cfg_done_82571");
843 
844 	while (timeout) {
845 		if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
846 		    E1000_NVM_CFG_DONE_PORT_0)
847 			break;
848 		msec_delay(1);
849 		timeout--;
850 	}
851 	if (!timeout) {
852 		DEBUGOUT("MNG configuration cycle has not completed.\n");
853 		return -E1000_ERR_RESET;
854 	}
855 
856 	return E1000_SUCCESS;
857 }
858 
859 /**
860  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
861  *  @hw: pointer to the HW structure
862  *  @active: true to enable LPLU, false to disable
863  *
864  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
865  *  this function also disables smart speed and vice versa.  LPLU will not be
866  *  activated unless the device autonegotiation advertisement meets standards
867  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
868  *  pointer entry point only called by PHY setup routines.
869  **/
870 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
871 {
872 	struct e1000_phy_info *phy = &hw->phy;
873 	s32 ret_val;
874 	u16 data;
875 
876 	DEBUGFUNC("e1000_set_d0_lplu_state_82571");
877 
878 	if (!(phy->ops.read_reg))
879 		return E1000_SUCCESS;
880 
881 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
882 	if (ret_val)
883 		return ret_val;
884 
885 	if (active) {
886 		data |= IGP02E1000_PM_D0_LPLU;
887 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
888 					     data);
889 		if (ret_val)
890 			return ret_val;
891 
892 		/* When LPLU is enabled, we should disable SmartSpeed */
893 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
894 					    &data);
895 		if (ret_val)
896 			return ret_val;
897 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
898 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
899 					     data);
900 		if (ret_val)
901 			return ret_val;
902 	} else {
903 		data &= ~IGP02E1000_PM_D0_LPLU;
904 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
905 					     data);
906 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
907 		 * during Dx states where the power conservation is most
908 		 * important.  During driver activity we should enable
909 		 * SmartSpeed, so performance is maintained.
910 		 */
911 		if (phy->smart_speed == e1000_smart_speed_on) {
912 			ret_val = phy->ops.read_reg(hw,
913 						    IGP01E1000_PHY_PORT_CONFIG,
914 						    &data);
915 			if (ret_val)
916 				return ret_val;
917 
918 			data |= IGP01E1000_PSCFR_SMART_SPEED;
919 			ret_val = phy->ops.write_reg(hw,
920 						     IGP01E1000_PHY_PORT_CONFIG,
921 						     data);
922 			if (ret_val)
923 				return ret_val;
924 		} else if (phy->smart_speed == e1000_smart_speed_off) {
925 			ret_val = phy->ops.read_reg(hw,
926 						    IGP01E1000_PHY_PORT_CONFIG,
927 						    &data);
928 			if (ret_val)
929 				return ret_val;
930 
931 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
932 			ret_val = phy->ops.write_reg(hw,
933 						     IGP01E1000_PHY_PORT_CONFIG,
934 						     data);
935 			if (ret_val)
936 				return ret_val;
937 		}
938 	}
939 
940 	return E1000_SUCCESS;
941 }
942 
943 /**
944  *  e1000_reset_hw_82571 - Reset hardware
945  *  @hw: pointer to the HW structure
946  *
947  *  This resets the hardware into a known state.
948  **/
949 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
950 {
951 	u32 ctrl, ctrl_ext, eecd, tctl;
952 	s32 ret_val;
953 
954 	DEBUGFUNC("e1000_reset_hw_82571");
955 
956 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
957 	 * on the last TLP read/write transaction when MAC is reset.
958 	 */
959 	ret_val = e1000_disable_pcie_master_generic(hw);
960 	if (ret_val)
961 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
962 
963 	DEBUGOUT("Masking off all interrupts\n");
964 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
965 
966 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
967 	tctl = E1000_READ_REG(hw, E1000_TCTL);
968 	tctl &= ~E1000_TCTL_EN;
969 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
970 	E1000_WRITE_FLUSH(hw);
971 
972 	msec_delay(10);
973 
974 	/* Must acquire the MDIO ownership before MAC reset.
975 	 * Ownership defaults to firmware after a reset.
976 	 */
977 	switch (hw->mac.type) {
978 	case e1000_82573:
979 	case e1000_82574:
980 	case e1000_82583:
981 		ret_val = e1000_get_hw_semaphore_82574(hw);
982 		break;
983 	default:
984 		break;
985 	}
986 
987 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
988 
989 	DEBUGOUT("Issuing a global reset to MAC\n");
990 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
991 
992 	/* Must release MDIO ownership and mutex after MAC reset. */
993 	switch (hw->mac.type) {
994 	case e1000_82573:
995 	case e1000_82574:
996 	case e1000_82583:
997 		/* Release mutex only if the hw semaphore is acquired */
998 		if (!ret_val)
999 			e1000_put_hw_semaphore_82574(hw);
1000 		break;
1001 	default:
1002 		/* we didn't get the semaphore no need to put it */
1003 		break;
1004 	}
1005 
1006 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1007 		usec_delay(10);
1008 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1009 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1010 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1011 		E1000_WRITE_FLUSH(hw);
1012 	}
1013 
1014 	ret_val = e1000_get_auto_rd_done_generic(hw);
1015 	if (ret_val)
1016 		/* We don't want to continue accessing MAC registers. */
1017 		return ret_val;
1018 
1019 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1020 	 * Need to wait for Phy configuration completion before accessing
1021 	 * NVM and Phy.
1022 	 */
1023 
1024 	switch (hw->mac.type) {
1025 	case e1000_82571:
1026 	case e1000_82572:
1027 		/* REQ and GNT bits need to be cleared when using AUTO_RD
1028 		 * to access the EEPROM.
1029 		 */
1030 		eecd = E1000_READ_REG(hw, E1000_EECD);
1031 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1032 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
1033 		break;
1034 	case e1000_82573:
1035 	case e1000_82574:
1036 	case e1000_82583:
1037 		msec_delay(25);
1038 		break;
1039 	default:
1040 		break;
1041 	}
1042 
1043 	/* Clear any pending interrupt events. */
1044 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1045 	E1000_READ_REG(hw, E1000_ICR);
1046 
1047 	if (hw->mac.type == e1000_82571) {
1048 		/* Install any alternate MAC address into RAR0 */
1049 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1050 		if (ret_val)
1051 			return ret_val;
1052 
1053 		e1000_set_laa_state_82571(hw, true);
1054 	}
1055 
1056 	/* Reinitialize the 82571 serdes link state machine */
1057 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1058 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1059 
1060 	return E1000_SUCCESS;
1061 }
1062 
1063 /**
1064  *  e1000_init_hw_82571 - Initialize hardware
1065  *  @hw: pointer to the HW structure
1066  *
1067  *  This inits the hardware readying it for operation.
1068  **/
1069 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1070 {
1071 	struct e1000_mac_info *mac = &hw->mac;
1072 	u32 reg_data;
1073 	s32 ret_val;
1074 	u16 i, rar_count = mac->rar_entry_count;
1075 
1076 	DEBUGFUNC("e1000_init_hw_82571");
1077 
1078 	e1000_initialize_hw_bits_82571(hw);
1079 
1080 	/* Initialize identification LED */
1081 	ret_val = mac->ops.id_led_init(hw);
1082 	/* An error is not fatal and we should not stop init due to this */
1083 	if (ret_val)
1084 		DEBUGOUT("Error initializing identification LED\n");
1085 
1086 	/* Disabling VLAN filtering */
1087 	DEBUGOUT("Initializing the IEEE VLAN\n");
1088 	mac->ops.clear_vfta(hw);
1089 
1090 	/* Setup the receive address.
1091 	 * If, however, a locally administered address was assigned to the
1092 	 * 82571, we must reserve a RAR for it to work around an issue where
1093 	 * resetting one port will reload the MAC on the other port.
1094 	 */
1095 	if (e1000_get_laa_state_82571(hw))
1096 		rar_count--;
1097 	e1000_init_rx_addrs_generic(hw, rar_count);
1098 
1099 	/* Zero out the Multicast HASH table */
1100 	DEBUGOUT("Zeroing the MTA\n");
1101 	for (i = 0; i < mac->mta_reg_count; i++)
1102 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1103 
1104 	/* Setup link and flow control */
1105 	ret_val = mac->ops.setup_link(hw);
1106 
1107 	/* Set the transmit descriptor write-back policy */
1108 	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
1109 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1110 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1111 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
1112 
1113 	/* ...for both queues. */
1114 	switch (mac->type) {
1115 	case e1000_82573:
1116 		e1000_enable_tx_pkt_filtering_generic(hw);
1117 		/* FALLTHROUGH */
1118 	case e1000_82574:
1119 	case e1000_82583:
1120 		reg_data = E1000_READ_REG(hw, E1000_GCR);
1121 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1122 		E1000_WRITE_REG(hw, E1000_GCR, reg_data);
1123 		break;
1124 	default:
1125 		reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
1126 		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1127 			    E1000_TXDCTL_FULL_TX_DESC_WB |
1128 			    E1000_TXDCTL_COUNT_DESC);
1129 		E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
1130 		break;
1131 	}
1132 
1133 	/* Clear all of the statistics registers (clear on read).  It is
1134 	 * important that we do this after we have tried to establish link
1135 	 * because the symbol error count will increment wildly if there
1136 	 * is no link.
1137 	 */
1138 	e1000_clear_hw_cntrs_82571(hw);
1139 
1140 	return ret_val;
1141 }
1142 
1143 /**
1144  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1145  *  @hw: pointer to the HW structure
1146  *
1147  *  Initializes required hardware-dependent bits needed for normal operation.
1148  **/
1149 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1150 {
1151 	u32 reg;
1152 
1153 	DEBUGFUNC("e1000_initialize_hw_bits_82571");
1154 
1155 	/* Transmit Descriptor Control 0 */
1156 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
1157 	reg |= (1 << 22);
1158 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
1159 
1160 	/* Transmit Descriptor Control 1 */
1161 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
1162 	reg |= (1 << 22);
1163 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
1164 
1165 	/* Transmit Arbitration Control 0 */
1166 	reg = E1000_READ_REG(hw, E1000_TARC(0));
1167 	reg &= ~(0xF << 27); /* 30:27 */
1168 	switch (hw->mac.type) {
1169 	case e1000_82571:
1170 	case e1000_82572:
1171 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1172 		break;
1173 	case e1000_82574:
1174 	case e1000_82583:
1175 		reg |= (1 << 26);
1176 		break;
1177 	default:
1178 		break;
1179 	}
1180 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
1181 
1182 	/* Transmit Arbitration Control 1 */
1183 	reg = E1000_READ_REG(hw, E1000_TARC(1));
1184 	switch (hw->mac.type) {
1185 	case e1000_82571:
1186 	case e1000_82572:
1187 		reg &= ~((1 << 29) | (1 << 30));
1188 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1189 		if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
1190 			reg &= ~(1 << 28);
1191 		else
1192 			reg |= (1 << 28);
1193 		E1000_WRITE_REG(hw, E1000_TARC(1), reg);
1194 		break;
1195 	default:
1196 		break;
1197 	}
1198 
1199 	/* Device Control */
1200 	switch (hw->mac.type) {
1201 	case e1000_82573:
1202 	case e1000_82574:
1203 	case e1000_82583:
1204 		reg = E1000_READ_REG(hw, E1000_CTRL);
1205 		reg &= ~(1 << 29);
1206 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
1207 		break;
1208 	default:
1209 		break;
1210 	}
1211 
1212 	/* Extended Device Control */
1213 	switch (hw->mac.type) {
1214 	case e1000_82573:
1215 	case e1000_82574:
1216 	case e1000_82583:
1217 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1218 		reg &= ~(1 << 23);
1219 		reg |= (1 << 22);
1220 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1221 		break;
1222 	default:
1223 		break;
1224 	}
1225 
1226 	if (hw->mac.type == e1000_82571) {
1227 		reg = E1000_READ_REG(hw, E1000_PBA_ECC);
1228 		reg |= E1000_PBA_ECC_CORR_EN;
1229 		E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
1230 	}
1231 
1232 	/* Workaround for hardware errata.
1233 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1234 	 */
1235 	if ((hw->mac.type == e1000_82571) ||
1236 	   (hw->mac.type == e1000_82572)) {
1237 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1238 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1239 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1240 	}
1241 
1242 	/* Disable IPv6 extension header parsing because some malformed
1243 	 * IPv6 headers can hang the Rx.
1244 	 */
1245 	if (hw->mac.type <= e1000_82573) {
1246 		reg = E1000_READ_REG(hw, E1000_RFCTL);
1247 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1248 		E1000_WRITE_REG(hw, E1000_RFCTL, reg);
1249 	}
1250 
1251 	/* PCI-Ex Control Registers */
1252 	switch (hw->mac.type) {
1253 	case e1000_82574:
1254 	case e1000_82583:
1255 		reg = E1000_READ_REG(hw, E1000_GCR);
1256 		reg |= (1 << 22);
1257 		E1000_WRITE_REG(hw, E1000_GCR, reg);
1258 
1259 		/* Workaround for hardware errata.
1260 		 * apply workaround for hardware errata documented in errata
1261 		 * docs Fixes issue where some error prone or unreliable PCIe
1262 		 * completions are occurring, particularly with ASPM enabled.
1263 		 * Without fix, issue can cause Tx timeouts.
1264 		 */
1265 		reg = E1000_READ_REG(hw, E1000_GCR2);
1266 		reg |= 1;
1267 		E1000_WRITE_REG(hw, E1000_GCR2, reg);
1268 		break;
1269 	default:
1270 		break;
1271 	}
1272 
1273 	return;
1274 }
1275 
1276 /**
1277  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1278  *  @hw: pointer to the HW structure
1279  *
1280  *  Clears the register array which contains the VLAN filter table by
1281  *  setting all the values to 0.
1282  **/
1283 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1284 {
1285 	u32 offset;
1286 	u32 vfta_value = 0;
1287 	u32 vfta_offset = 0;
1288 	u32 vfta_bit_in_reg = 0;
1289 
1290 	DEBUGFUNC("e1000_clear_vfta_82571");
1291 
1292 	switch (hw->mac.type) {
1293 	case e1000_82573:
1294 	case e1000_82574:
1295 	case e1000_82583:
1296 		if (hw->mng_cookie.vlan_id != 0) {
1297 			/* The VFTA is a 4096b bit-field, each identifying
1298 			 * a single VLAN ID.  The following operations
1299 			 * determine which 32b entry (i.e. offset) into the
1300 			 * array we want to set the VLAN ID (i.e. bit) of
1301 			 * the manageability unit.
1302 			 */
1303 			vfta_offset = (hw->mng_cookie.vlan_id >>
1304 				       E1000_VFTA_ENTRY_SHIFT) &
1305 			    E1000_VFTA_ENTRY_MASK;
1306 			vfta_bit_in_reg =
1307 			    1 << (hw->mng_cookie.vlan_id &
1308 				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1309 		}
1310 		break;
1311 	default:
1312 		break;
1313 	}
1314 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1315 		/* If the offset we want to clear is the same offset of the
1316 		 * manageability VLAN ID, then clear all bits except that of
1317 		 * the manageability unit.
1318 		 */
1319 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1320 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1321 		E1000_WRITE_FLUSH(hw);
1322 	}
1323 }
1324 
1325 /**
1326  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1327  *  @hw: pointer to the HW structure
1328  *
1329  *  Reads the NVM Initialization Control Word 2 and returns true
1330  *  (>0) if any manageability is enabled, else false (0).
1331  **/
1332 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1333 {
1334 	u16 data;
1335 	s32 ret_val;
1336 
1337 	DEBUGFUNC("e1000_check_mng_mode_82574");
1338 
1339 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1340 	if (ret_val)
1341 		return false;
1342 
1343 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1344 }
1345 
1346 /**
1347  *  e1000_led_on_82574 - Turn LED on
1348  *  @hw: pointer to the HW structure
1349  *
1350  *  Turn LED on.
1351  **/
1352 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1353 {
1354 	u32 ctrl;
1355 	u32 i;
1356 
1357 	DEBUGFUNC("e1000_led_on_82574");
1358 
1359 	ctrl = hw->mac.ledctl_mode2;
1360 	if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
1361 		/* If no link, then turn LED on by setting the invert bit
1362 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1363 		 */
1364 		for (i = 0; i < 4; i++)
1365 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1366 			    E1000_LEDCTL_MODE_LED_ON)
1367 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1368 	}
1369 	E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
1370 
1371 	return E1000_SUCCESS;
1372 }
1373 
1374 /**
1375  *  e1000_check_phy_82574 - check 82574 phy hung state
1376  *  @hw: pointer to the HW structure
1377  *
1378  *  Returns whether phy is hung or not
1379  **/
1380 bool e1000_check_phy_82574(struct e1000_hw *hw)
1381 {
1382 	u16 status_1kbt = 0;
1383 	u16 receive_errors = 0;
1384 	s32 ret_val;
1385 
1386 	DEBUGFUNC("e1000_check_phy_82574");
1387 
1388 	/* Read PHY Receive Error counter first, if its is max - all F's then
1389 	 * read the Base1000T status register If both are max then PHY is hung.
1390 	 */
1391 	ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
1392 				       &receive_errors);
1393 	if (ret_val)
1394 		return false;
1395 	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1396 		ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
1397 					       &status_1kbt);
1398 		if (ret_val)
1399 			return false;
1400 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1401 		    E1000_IDLE_ERROR_COUNT_MASK)
1402 			return true;
1403 	}
1404 
1405 	return false;
1406 }
1407 
1408 
1409 /**
1410  *  e1000_setup_link_82571 - Setup flow control and link settings
1411  *  @hw: pointer to the HW structure
1412  *
1413  *  Determines which flow control settings to use, then configures flow
1414  *  control.  Calls the appropriate media-specific link configuration
1415  *  function.  Assuming the adapter has a valid link partner, a valid link
1416  *  should be established.  Assumes the hardware has previously been reset
1417  *  and the transmitter and receiver are not enabled.
1418  **/
1419 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1420 {
1421 	DEBUGFUNC("e1000_setup_link_82571");
1422 
1423 	/* 82573 does not have a word in the NVM to determine
1424 	 * the default flow control setting, so we explicitly
1425 	 * set it to full.
1426 	 */
1427 	switch (hw->mac.type) {
1428 	case e1000_82573:
1429 	case e1000_82574:
1430 	case e1000_82583:
1431 		if (hw->fc.requested_mode == e1000_fc_default)
1432 			hw->fc.requested_mode = e1000_fc_full;
1433 		break;
1434 	default:
1435 		break;
1436 	}
1437 
1438 	return e1000_setup_link_generic(hw);
1439 }
1440 
1441 /**
1442  *  e1000_setup_copper_link_82571 - Configure copper link settings
1443  *  @hw: pointer to the HW structure
1444  *
1445  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1446  *  for link, once link is established calls to configure collision distance
1447  *  and flow control are called.
1448  **/
1449 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1450 {
1451 	u32 ctrl;
1452 	s32 ret_val;
1453 
1454 	DEBUGFUNC("e1000_setup_copper_link_82571");
1455 
1456 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1457 	ctrl |= E1000_CTRL_SLU;
1458 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1459 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1460 
1461 	switch (hw->phy.type) {
1462 	case e1000_phy_m88:
1463 	case e1000_phy_bm:
1464 		ret_val = e1000_copper_link_setup_m88(hw);
1465 		break;
1466 	case e1000_phy_igp_2:
1467 		ret_val = e1000_copper_link_setup_igp(hw);
1468 		break;
1469 	default:
1470 		return -E1000_ERR_PHY;
1471 		break;
1472 	}
1473 
1474 	if (ret_val)
1475 		return ret_val;
1476 
1477 	return e1000_setup_copper_link_generic(hw);
1478 }
1479 
1480 /**
1481  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1482  *  @hw: pointer to the HW structure
1483  *
1484  *  Configures collision distance and flow control for fiber and serdes links.
1485  *  Upon successful setup, poll for link.
1486  **/
1487 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1488 {
1489 	DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
1490 
1491 	switch (hw->mac.type) {
1492 	case e1000_82571:
1493 	case e1000_82572:
1494 		/* If SerDes loopback mode is entered, there is no form
1495 		 * of reset to take the adapter out of that mode.  So we
1496 		 * have to explicitly take the adapter out of loopback
1497 		 * mode.  This prevents drivers from twiddling their thumbs
1498 		 * if another tool failed to take it out of loopback mode.
1499 		 */
1500 		E1000_WRITE_REG(hw, E1000_SCTL,
1501 				E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1502 		break;
1503 	default:
1504 		break;
1505 	}
1506 
1507 	return e1000_setup_fiber_serdes_link_generic(hw);
1508 }
1509 
1510 /**
1511  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1512  *  @hw: pointer to the HW structure
1513  *
1514  *  Reports the link state as up or down.
1515  *
1516  *  If autonegotiation is supported by the link partner, the link state is
1517  *  determined by the result of autonegotiation. This is the most likely case.
1518  *  If autonegotiation is not supported by the link partner, and the link
1519  *  has a valid signal, force the link up.
1520  *
1521  *  The link state is represented internally here by 4 states:
1522  *
1523  *  1) down
1524  *  2) autoneg_progress
1525  *  3) autoneg_complete (the link successfully autonegotiated)
1526  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1527  *
1528  **/
1529 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1530 {
1531 	struct e1000_mac_info *mac = &hw->mac;
1532 	u32 rxcw;
1533 	u32 ctrl;
1534 	u32 status;
1535 	u32 txcw;
1536 	u32 i;
1537 	s32 ret_val = E1000_SUCCESS;
1538 
1539 	DEBUGFUNC("e1000_check_for_serdes_link_82571");
1540 
1541 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1542 	status = E1000_READ_REG(hw, E1000_STATUS);
1543 	E1000_READ_REG(hw, E1000_RXCW);
1544 	/* SYNCH bit and IV bit are sticky */
1545 	usec_delay(10);
1546 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1547 
1548 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1549 		/* Receiver is synchronized with no invalid bits.  */
1550 		switch (mac->serdes_link_state) {
1551 		case e1000_serdes_link_autoneg_complete:
1552 			if (!(status & E1000_STATUS_LU)) {
1553 				/* We have lost link, retry autoneg before
1554 				 * reporting link failure
1555 				 */
1556 				mac->serdes_link_state =
1557 				    e1000_serdes_link_autoneg_progress;
1558 				mac->serdes_has_link = false;
1559 				DEBUGOUT("AN_UP     -> AN_PROG\n");
1560 			} else {
1561 				mac->serdes_has_link = true;
1562 			}
1563 			break;
1564 
1565 		case e1000_serdes_link_forced_up:
1566 			/* If we are receiving /C/ ordered sets, re-enable
1567 			 * auto-negotiation in the TXCW register and disable
1568 			 * forced link in the Device Control register in an
1569 			 * attempt to auto-negotiate with our link partner.
1570 			 */
1571 			if (rxcw & E1000_RXCW_C) {
1572 				/* Enable autoneg, and unforce link up */
1573 				E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1574 				E1000_WRITE_REG(hw, E1000_CTRL,
1575 				    (ctrl & ~E1000_CTRL_SLU));
1576 				mac->serdes_link_state =
1577 				    e1000_serdes_link_autoneg_progress;
1578 				mac->serdes_has_link = false;
1579 				DEBUGOUT("FORCED_UP -> AN_PROG\n");
1580 			} else {
1581 				mac->serdes_has_link = true;
1582 			}
1583 			break;
1584 
1585 		case e1000_serdes_link_autoneg_progress:
1586 			if (rxcw & E1000_RXCW_C) {
1587 				/* We received /C/ ordered sets, meaning the
1588 				 * link partner has autonegotiated, and we can
1589 				 * trust the Link Up (LU) status bit.
1590 				 */
1591 				if (status & E1000_STATUS_LU) {
1592 					mac->serdes_link_state =
1593 					    e1000_serdes_link_autoneg_complete;
1594 					DEBUGOUT("AN_PROG   -> AN_UP\n");
1595 					mac->serdes_has_link = true;
1596 				} else {
1597 					/* Autoneg completed, but failed. */
1598 					mac->serdes_link_state =
1599 					    e1000_serdes_link_down;
1600 					DEBUGOUT("AN_PROG   -> DOWN\n");
1601 				}
1602 			} else {
1603 				/* The link partner did not autoneg.
1604 				 * Force link up and full duplex, and change
1605 				 * state to forced.
1606 				 */
1607 				E1000_WRITE_REG(hw, E1000_TXCW,
1608 				(mac->txcw & ~E1000_TXCW_ANE));
1609 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1610 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1611 
1612 				/* Configure Flow Control after link up. */
1613 				ret_val =
1614 				    e1000_config_fc_after_link_up_generic(hw);
1615 				if (ret_val) {
1616 					DEBUGOUT("Error config flow control\n");
1617 					break;
1618 				}
1619 				mac->serdes_link_state =
1620 						e1000_serdes_link_forced_up;
1621 				mac->serdes_has_link = true;
1622 				DEBUGOUT("AN_PROG   -> FORCED_UP\n");
1623 			}
1624 			break;
1625 
1626 		case e1000_serdes_link_down:
1627 		default:
1628 			/* The link was down but the receiver has now gained
1629 			 * valid sync, so lets see if we can bring the link
1630 			 * up.
1631 			 */
1632 			E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1633 			E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
1634 					~E1000_CTRL_SLU));
1635 			mac->serdes_link_state =
1636 					e1000_serdes_link_autoneg_progress;
1637 			mac->serdes_has_link = false;
1638 			DEBUGOUT("DOWN      -> AN_PROG\n");
1639 			break;
1640 		}
1641 	} else {
1642 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1643 			mac->serdes_has_link = false;
1644 			mac->serdes_link_state = e1000_serdes_link_down;
1645 			DEBUGOUT("ANYSTATE  -> DOWN\n");
1646 		} else {
1647 			/* Check several times, if SYNCH bit and CONFIG
1648 			 * bit both are consistently 1 then simply ignore
1649 			 * the IV bit and restart Autoneg
1650 			 */
1651 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1652 				usec_delay(10);
1653 				rxcw = E1000_READ_REG(hw, E1000_RXCW);
1654 				if ((rxcw & E1000_RXCW_SYNCH) &&
1655 				    (rxcw & E1000_RXCW_C))
1656 					continue;
1657 
1658 				if (rxcw & E1000_RXCW_IV) {
1659 					mac->serdes_has_link = false;
1660 					mac->serdes_link_state =
1661 							e1000_serdes_link_down;
1662 					DEBUGOUT("ANYSTATE  -> DOWN\n");
1663 					break;
1664 				}
1665 			}
1666 
1667 			if (i == AN_RETRY_COUNT) {
1668 				txcw = E1000_READ_REG(hw, E1000_TXCW);
1669 				txcw |= E1000_TXCW_ANE;
1670 				E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1671 				mac->serdes_link_state =
1672 					e1000_serdes_link_autoneg_progress;
1673 				mac->serdes_has_link = false;
1674 				DEBUGOUT("ANYSTATE  -> AN_PROG\n");
1675 			}
1676 		}
1677 	}
1678 
1679 	return ret_val;
1680 }
1681 
1682 /**
1683  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1684  *  @hw: pointer to the HW structure
1685  *  @data: pointer to the NVM (EEPROM)
1686  *
1687  *  Read the EEPROM for the current default LED configuration.  If the
1688  *  LED configuration is not valid, set to a valid LED configuration.
1689  **/
1690 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1691 {
1692 	s32 ret_val;
1693 
1694 	DEBUGFUNC("e1000_valid_led_default_82571");
1695 
1696 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1697 	if (ret_val) {
1698 		DEBUGOUT("NVM Read Error\n");
1699 		return ret_val;
1700 	}
1701 
1702 	switch (hw->mac.type) {
1703 	case e1000_82573:
1704 	case e1000_82574:
1705 	case e1000_82583:
1706 		if (*data == ID_LED_RESERVED_F746)
1707 			*data = ID_LED_DEFAULT_82573;
1708 		break;
1709 	default:
1710 		if (*data == ID_LED_RESERVED_0000 ||
1711 		    *data == ID_LED_RESERVED_FFFF)
1712 			*data = ID_LED_DEFAULT;
1713 		break;
1714 	}
1715 
1716 	return E1000_SUCCESS;
1717 }
1718 
1719 /**
1720  *  e1000_get_laa_state_82571 - Get locally administered address state
1721  *  @hw: pointer to the HW structure
1722  *
1723  *  Retrieve and return the current locally administered address state.
1724  **/
1725 bool e1000_get_laa_state_82571(struct e1000_hw *hw)
1726 {
1727 	DEBUGFUNC("e1000_get_laa_state_82571");
1728 
1729 	if (hw->mac.type != e1000_82571)
1730 		return false;
1731 
1732 	return hw->dev_spec._82571.laa_is_present;
1733 }
1734 
1735 /**
1736  *  e1000_set_laa_state_82571 - Set locally administered address state
1737  *  @hw: pointer to the HW structure
1738  *  @state: enable/disable locally administered address
1739  *
1740  *  Enable/Disable the current locally administered address state.
1741  **/
1742 void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
1743 {
1744 	DEBUGFUNC("e1000_set_laa_state_82571");
1745 
1746 	if (hw->mac.type != e1000_82571)
1747 		return;
1748 
1749 	hw->dev_spec._82571.laa_is_present = state;
1750 
1751 	/* If workaround is activated... */
1752 	if (state)
1753 		/* Hold a copy of the LAA in RAR[14] This is done so that
1754 		 * between the time RAR[0] gets clobbered and the time it
1755 		 * gets fixed, the actual LAA is in one of the RARs and no
1756 		 * incoming packets directed to this port are dropped.
1757 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1758 		 */
1759 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1760 				    hw->mac.rar_entry_count - 1);
1761 	return;
1762 }
1763 
1764 /**
1765  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1766  *  @hw: pointer to the HW structure
1767  *
1768  *  Verifies that the EEPROM has completed the update.  After updating the
1769  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1770  *  the checksum fix is not implemented, we need to set the bit and update
1771  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1772  *  we need to return bad checksum.
1773  **/
1774 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1775 {
1776 	struct e1000_nvm_info *nvm = &hw->nvm;
1777 	s32 ret_val;
1778 	u16 data;
1779 
1780 	DEBUGFUNC("e1000_fix_nvm_checksum_82571");
1781 
1782 	if (nvm->type != e1000_nvm_flash_hw)
1783 		return E1000_SUCCESS;
1784 
1785 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1786 	 * 10h-12h.  Checksum may need to be fixed.
1787 	 */
1788 	ret_val = nvm->ops.read(hw, 0x10, 1, &data);
1789 	if (ret_val)
1790 		return ret_val;
1791 
1792 	if (!(data & 0x10)) {
1793 		/* Read 0x23 and check bit 15.  This bit is a 1
1794 		 * when the checksum has already been fixed.  If
1795 		 * the checksum is still wrong and this bit is a
1796 		 * 1, we need to return bad checksum.  Otherwise,
1797 		 * we need to set this bit to a 1 and update the
1798 		 * checksum.
1799 		 */
1800 		ret_val = nvm->ops.read(hw, 0x23, 1, &data);
1801 		if (ret_val)
1802 			return ret_val;
1803 
1804 		if (!(data & 0x8000)) {
1805 			data |= 0x8000;
1806 			ret_val = nvm->ops.write(hw, 0x23, 1, &data);
1807 			if (ret_val)
1808 				return ret_val;
1809 			ret_val = nvm->ops.update(hw);
1810 			if (ret_val)
1811 				return ret_val;
1812 		}
1813 	}
1814 
1815 	return E1000_SUCCESS;
1816 }
1817 
1818 
1819 /**
1820  *  e1000_read_mac_addr_82571 - Read device MAC address
1821  *  @hw: pointer to the HW structure
1822  **/
1823 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1824 {
1825 	DEBUGFUNC("e1000_read_mac_addr_82571");
1826 
1827 	if (hw->mac.type == e1000_82571) {
1828 		s32 ret_val;
1829 
1830 		/* If there's an alternate MAC address place it in RAR0
1831 		 * so that it will override the Si installed default perm
1832 		 * address.
1833 		 */
1834 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1835 		if (ret_val)
1836 			return ret_val;
1837 	}
1838 
1839 	return e1000_read_mac_addr_generic(hw);
1840 }
1841 
1842 /**
1843  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1844  * @hw: pointer to the HW structure
1845  *
1846  * In the case of a PHY power down to save power, or to turn off link during a
1847  * driver unload, or wake on lan is not enabled, remove the link.
1848  **/
1849 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1850 {
1851 	struct e1000_phy_info *phy = &hw->phy;
1852 	struct e1000_mac_info *mac = &hw->mac;
1853 
1854 	if (!phy->ops.check_reset_block)
1855 		return;
1856 
1857 	/* If the management interface is not enabled, then power down */
1858 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1859 		e1000_power_down_phy_copper(hw);
1860 
1861 	return;
1862 }
1863 
1864 /**
1865  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1866  *  @hw: pointer to the HW structure
1867  *
1868  *  Clears the hardware counters by reading the counter registers.
1869  **/
1870 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1871 {
1872 	DEBUGFUNC("e1000_clear_hw_cntrs_82571");
1873 
1874 	e1000_clear_hw_cntrs_base_generic(hw);
1875 
1876 	E1000_READ_REG(hw, E1000_PRC64);
1877 	E1000_READ_REG(hw, E1000_PRC127);
1878 	E1000_READ_REG(hw, E1000_PRC255);
1879 	E1000_READ_REG(hw, E1000_PRC511);
1880 	E1000_READ_REG(hw, E1000_PRC1023);
1881 	E1000_READ_REG(hw, E1000_PRC1522);
1882 	E1000_READ_REG(hw, E1000_PTC64);
1883 	E1000_READ_REG(hw, E1000_PTC127);
1884 	E1000_READ_REG(hw, E1000_PTC255);
1885 	E1000_READ_REG(hw, E1000_PTC511);
1886 	E1000_READ_REG(hw, E1000_PTC1023);
1887 	E1000_READ_REG(hw, E1000_PTC1522);
1888 
1889 	E1000_READ_REG(hw, E1000_ALGNERRC);
1890 	E1000_READ_REG(hw, E1000_RXERRC);
1891 	E1000_READ_REG(hw, E1000_TNCRS);
1892 	E1000_READ_REG(hw, E1000_CEXTERR);
1893 	E1000_READ_REG(hw, E1000_TSCTC);
1894 	E1000_READ_REG(hw, E1000_TSCTFC);
1895 
1896 	E1000_READ_REG(hw, E1000_MGTPRC);
1897 	E1000_READ_REG(hw, E1000_MGTPDC);
1898 	E1000_READ_REG(hw, E1000_MGTPTC);
1899 
1900 	E1000_READ_REG(hw, E1000_IAC);
1901 	E1000_READ_REG(hw, E1000_ICRXOC);
1902 
1903 	E1000_READ_REG(hw, E1000_ICRXPTC);
1904 	E1000_READ_REG(hw, E1000_ICRXATC);
1905 	E1000_READ_REG(hw, E1000_ICTXPTC);
1906 	E1000_READ_REG(hw, E1000_ICTXATC);
1907 	E1000_READ_REG(hw, E1000_ICTXQEC);
1908 	E1000_READ_REG(hw, E1000_ICTXQMTC);
1909 	E1000_READ_REG(hw, E1000_ICRXDMTC);
1910 }
1911