1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 35 #include <sys/param.h> 36 #include <sys/aio.h> 37 #include <sys/bio.h> 38 #include <sys/file.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/ktr.h> 42 #include <sys/module.h> 43 #include <sys/protosw.h> 44 #include <sys/proc.h> 45 #include <sys/domain.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/taskqueue.h> 49 #include <sys/uio.h> 50 #include <netinet/in.h> 51 #include <netinet/in_pcb.h> 52 #include <netinet/ip.h> 53 #include <netinet/tcp_var.h> 54 #define TCPSTATES 55 #include <netinet/tcp_fsm.h> 56 #include <netinet/toecore.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_extern.h> 60 #include <vm/vm_param.h> 61 #include <vm/pmap.h> 62 #include <vm/vm_map.h> 63 #include <vm/vm_page.h> 64 #include <vm/vm_object.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/ctl/ctl_io.h> 68 69 #ifdef TCP_OFFLOAD 70 #include "common/common.h" 71 #include "common/t4_msg.h" 72 #include "common/t4_regs.h" 73 #include "common/t4_tcb.h" 74 #include "tom/t4_tom.h" 75 76 /* 77 * Use the 'backend3' field in AIO jobs to store the amount of data 78 * received by the AIO job so far. 79 */ 80 #define aio_received backend3 81 82 static void aio_ddp_requeue_task(void *context, int pending); 83 static void ddp_complete_all(struct toepcb *toep, int error); 84 static void t4_aio_cancel_active(struct kaiocb *job); 85 static void t4_aio_cancel_queued(struct kaiocb *job); 86 87 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 88 static struct mtx ddp_orphan_pagesets_lock; 89 static struct task ddp_orphan_task; 90 91 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 92 93 /* 94 * A page set holds information about a buffer used for DDP. The page 95 * set holds resources such as the VM pages backing the buffer (either 96 * held or wired) and the page pods associated with the buffer. 97 * Recently used page sets are cached to allow for efficient reuse of 98 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 99 * Note that cached page sets keep the backing pages wired. The 100 * number of wired pages is capped by only allowing for two wired 101 * pagesets per connection. This is not a perfect cap, but is a 102 * trade-off for performance. 103 * 104 * If an application ping-pongs two buffers for a connection via 105 * aio_read(2) then those buffers should remain wired and expensive VM 106 * fault lookups should be avoided after each buffer has been used 107 * once. If an application uses more than two buffers then this will 108 * fall back to doing expensive VM fault lookups for each operation. 109 */ 110 static void 111 free_pageset(struct tom_data *td, struct pageset *ps) 112 { 113 vm_page_t p; 114 int i; 115 116 if (ps->prsv.prsv_nppods > 0) 117 t4_free_page_pods(&ps->prsv); 118 119 for (i = 0; i < ps->npages; i++) { 120 p = ps->pages[i]; 121 vm_page_unwire(p, PQ_INACTIVE); 122 } 123 mtx_lock(&ddp_orphan_pagesets_lock); 124 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 125 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 126 mtx_unlock(&ddp_orphan_pagesets_lock); 127 } 128 129 static void 130 ddp_free_orphan_pagesets(void *context, int pending) 131 { 132 struct pageset *ps; 133 134 mtx_lock(&ddp_orphan_pagesets_lock); 135 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 136 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 137 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 138 mtx_unlock(&ddp_orphan_pagesets_lock); 139 if (ps->vm) 140 vmspace_free(ps->vm); 141 free(ps, M_CXGBE); 142 mtx_lock(&ddp_orphan_pagesets_lock); 143 } 144 mtx_unlock(&ddp_orphan_pagesets_lock); 145 } 146 147 static void 148 recycle_pageset(struct toepcb *toep, struct pageset *ps) 149 { 150 151 DDP_ASSERT_LOCKED(toep); 152 if (!(toep->ddp.flags & DDP_DEAD)) { 153 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 154 nitems(toep->ddp.db), ("too many wired pagesets")); 155 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 156 toep->ddp.cached_count++; 157 } else 158 free_pageset(toep->td, ps); 159 } 160 161 static void 162 ddp_complete_one(struct kaiocb *job, int error) 163 { 164 long copied; 165 166 /* 167 * If this job had copied data out of the socket buffer before 168 * it was cancelled, report it as a short read rather than an 169 * error. 170 */ 171 copied = job->aio_received; 172 if (copied != 0 || error == 0) 173 aio_complete(job, copied, 0); 174 else 175 aio_complete(job, -1, error); 176 } 177 178 static void 179 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 180 { 181 182 if (db->job) { 183 /* 184 * XXX: If we are un-offloading the socket then we 185 * should requeue these on the socket somehow. If we 186 * got a FIN from the remote end, then this completes 187 * any remaining requests with an EOF read. 188 */ 189 if (!aio_clear_cancel_function(db->job)) 190 ddp_complete_one(db->job, 0); 191 } 192 193 if (db->ps) 194 free_pageset(td, db->ps); 195 } 196 197 void 198 ddp_init_toep(struct toepcb *toep) 199 { 200 201 TAILQ_INIT(&toep->ddp.aiojobq); 202 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 203 toep->ddp.flags = DDP_OK; 204 toep->ddp.active_id = -1; 205 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 206 } 207 208 void 209 ddp_uninit_toep(struct toepcb *toep) 210 { 211 212 mtx_destroy(&toep->ddp.lock); 213 } 214 215 void 216 release_ddp_resources(struct toepcb *toep) 217 { 218 struct pageset *ps; 219 int i; 220 221 DDP_LOCK(toep); 222 toep->ddp.flags |= DDP_DEAD; 223 for (i = 0; i < nitems(toep->ddp.db); i++) { 224 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 225 } 226 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 227 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 228 free_pageset(toep->td, ps); 229 } 230 ddp_complete_all(toep, 0); 231 DDP_UNLOCK(toep); 232 } 233 234 #ifdef INVARIANTS 235 void 236 ddp_assert_empty(struct toepcb *toep) 237 { 238 int i; 239 240 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 241 for (i = 0; i < nitems(toep->ddp.db); i++) { 242 MPASS(toep->ddp.db[i].job == NULL); 243 MPASS(toep->ddp.db[i].ps == NULL); 244 } 245 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 246 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 247 } 248 #endif 249 250 static void 251 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 252 unsigned int db_idx) 253 { 254 unsigned int db_flag; 255 256 toep->ddp.active_count--; 257 if (toep->ddp.active_id == db_idx) { 258 if (toep->ddp.active_count == 0) { 259 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 260 ("%s: active_count mismatch", __func__)); 261 toep->ddp.active_id = -1; 262 } else 263 toep->ddp.active_id ^= 1; 264 #ifdef VERBOSE_TRACES 265 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 266 toep->tid, toep->ddp.active_id); 267 #endif 268 } else { 269 KASSERT(toep->ddp.active_count != 0 && 270 toep->ddp.active_id != -1, 271 ("%s: active count mismatch", __func__)); 272 } 273 274 db->cancel_pending = 0; 275 db->job = NULL; 276 recycle_pageset(toep, db->ps); 277 db->ps = NULL; 278 279 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 280 KASSERT(toep->ddp.flags & db_flag, 281 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 282 __func__, toep, toep->ddp.flags)); 283 toep->ddp.flags &= ~db_flag; 284 } 285 286 /* XXX: handle_ddp_data code duplication */ 287 void 288 insert_ddp_data(struct toepcb *toep, uint32_t n) 289 { 290 struct inpcb *inp = toep->inp; 291 struct tcpcb *tp = intotcpcb(inp); 292 struct ddp_buffer *db; 293 struct kaiocb *job; 294 size_t placed; 295 long copied; 296 unsigned int db_idx; 297 #ifdef INVARIANTS 298 unsigned int db_flag; 299 #endif 300 301 INP_WLOCK_ASSERT(inp); 302 DDP_ASSERT_LOCKED(toep); 303 304 tp->rcv_nxt += n; 305 #ifndef USE_DDP_RX_FLOW_CONTROL 306 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 307 tp->rcv_wnd -= n; 308 #endif 309 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 310 __func__, n); 311 while (toep->ddp.active_count > 0) { 312 MPASS(toep->ddp.active_id != -1); 313 db_idx = toep->ddp.active_id; 314 #ifdef INVARIANTS 315 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 316 #endif 317 MPASS((toep->ddp.flags & db_flag) != 0); 318 db = &toep->ddp.db[db_idx]; 319 job = db->job; 320 copied = job->aio_received; 321 placed = n; 322 if (placed > job->uaiocb.aio_nbytes - copied) 323 placed = job->uaiocb.aio_nbytes - copied; 324 if (placed > 0) 325 job->msgrcv = 1; 326 if (!aio_clear_cancel_function(job)) { 327 /* 328 * Update the copied length for when 329 * t4_aio_cancel_active() completes this 330 * request. 331 */ 332 job->aio_received += placed; 333 } else if (copied + placed != 0) { 334 CTR4(KTR_CXGBE, 335 "%s: completing %p (copied %ld, placed %lu)", 336 __func__, job, copied, placed); 337 /* XXX: This always completes if there is some data. */ 338 aio_complete(job, copied + placed, 0); 339 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 340 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 341 toep->ddp.waiting_count++; 342 } else 343 aio_cancel(job); 344 n -= placed; 345 complete_ddp_buffer(toep, db, db_idx); 346 } 347 348 MPASS(n == 0); 349 } 350 351 /* SET_TCB_FIELD sent as a ULP command looks like this */ 352 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 353 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 354 355 /* RX_DATA_ACK sent as a ULP command looks like this */ 356 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 357 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 358 359 static inline void * 360 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 361 uint64_t word, uint64_t mask, uint64_t val) 362 { 363 struct ulptx_idata *ulpsc; 364 struct cpl_set_tcb_field_core *req; 365 366 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 367 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 368 369 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 370 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 371 ulpsc->len = htobe32(sizeof(*req)); 372 373 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 374 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 375 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 376 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 377 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 378 req->mask = htobe64(mask); 379 req->val = htobe64(val); 380 381 ulpsc = (struct ulptx_idata *)(req + 1); 382 if (LEN__SET_TCB_FIELD_ULP % 16) { 383 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 384 ulpsc->len = htobe32(0); 385 return (ulpsc + 1); 386 } 387 return (ulpsc); 388 } 389 390 static inline void * 391 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 392 { 393 struct ulptx_idata *ulpsc; 394 struct cpl_rx_data_ack_core *req; 395 396 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 397 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 398 399 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 400 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 401 ulpsc->len = htobe32(sizeof(*req)); 402 403 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 404 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 405 req->credit_dack = htobe32(F_RX_MODULATE_RX); 406 407 ulpsc = (struct ulptx_idata *)(req + 1); 408 if (LEN__RX_DATA_ACK_ULP % 16) { 409 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 410 ulpsc->len = htobe32(0); 411 return (ulpsc + 1); 412 } 413 return (ulpsc); 414 } 415 416 static struct wrqe * 417 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 418 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 419 { 420 struct wrqe *wr; 421 struct work_request_hdr *wrh; 422 struct ulp_txpkt *ulpmc; 423 int len; 424 425 KASSERT(db_idx == 0 || db_idx == 1, 426 ("%s: bad DDP buffer index %d", __func__, db_idx)); 427 428 /* 429 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 430 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 431 * 432 * The work request header is 16B and always ends at a 16B boundary. 433 * The ULPTX master commands that follow must all end at 16B boundaries 434 * too so we round up the size to 16. 435 */ 436 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 437 roundup2(LEN__RX_DATA_ACK_ULP, 16); 438 439 wr = alloc_wrqe(len, toep->ctrlq); 440 if (wr == NULL) 441 return (NULL); 442 wrh = wrtod(wr); 443 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 444 ulpmc = (struct ulp_txpkt *)(wrh + 1); 445 446 /* Write the buffer's tag */ 447 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 448 W_TCB_RX_DDP_BUF0_TAG + db_idx, 449 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 450 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 451 452 /* Update the current offset in the DDP buffer and its total length */ 453 if (db_idx == 0) 454 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 455 W_TCB_RX_DDP_BUF0_OFFSET, 456 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 457 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 458 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 459 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 460 else 461 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 462 W_TCB_RX_DDP_BUF1_OFFSET, 463 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 464 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 465 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 466 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 467 468 /* Update DDP flags */ 469 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 470 ddp_flags_mask, ddp_flags); 471 472 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 473 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 474 475 return (wr); 476 } 477 478 static int 479 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 480 { 481 uint32_t report = be32toh(ddp_report); 482 unsigned int db_idx; 483 struct inpcb *inp = toep->inp; 484 struct ddp_buffer *db; 485 struct tcpcb *tp; 486 struct socket *so; 487 struct sockbuf *sb; 488 struct kaiocb *job; 489 long copied; 490 491 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 492 493 if (__predict_false(!(report & F_DDP_INV))) 494 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 495 496 INP_WLOCK(inp); 497 so = inp_inpcbtosocket(inp); 498 sb = &so->so_rcv; 499 DDP_LOCK(toep); 500 501 KASSERT(toep->ddp.active_id == db_idx, 502 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 503 toep->ddp.active_id, toep->tid)); 504 db = &toep->ddp.db[db_idx]; 505 job = db->job; 506 507 if (__predict_false(inp->inp_flags & INP_DROPPED)) { 508 /* 509 * This can happen due to an administrative tcpdrop(8). 510 * Just fail the request with ECONNRESET. 511 */ 512 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 513 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 514 if (aio_clear_cancel_function(job)) 515 ddp_complete_one(job, ECONNRESET); 516 goto completed; 517 } 518 519 tp = intotcpcb(inp); 520 521 /* 522 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 523 * sequence number of the next byte to receive. The length of 524 * the data received for this message must be computed by 525 * comparing the new and old values of rcv_nxt. 526 * 527 * For RX_DATA_DDP, len might be non-zero, but it is only the 528 * length of the most recent DMA. It does not include the 529 * total length of the data received since the previous update 530 * for this DDP buffer. rcv_nxt is the sequence number of the 531 * first received byte from the most recent DMA. 532 */ 533 len += be32toh(rcv_nxt) - tp->rcv_nxt; 534 tp->rcv_nxt += len; 535 tp->t_rcvtime = ticks; 536 #ifndef USE_DDP_RX_FLOW_CONTROL 537 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 538 tp->rcv_wnd -= len; 539 #endif 540 #ifdef VERBOSE_TRACES 541 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 542 toep->tid, db_idx, len, report); 543 #endif 544 545 /* receive buffer autosize */ 546 MPASS(toep->vnet == so->so_vnet); 547 CURVNET_SET(toep->vnet); 548 SOCKBUF_LOCK(sb); 549 if (sb->sb_flags & SB_AUTOSIZE && 550 V_tcp_do_autorcvbuf && 551 sb->sb_hiwat < V_tcp_autorcvbuf_max && 552 len > (sbspace(sb) / 8 * 7)) { 553 struct adapter *sc = td_adapter(toep->td); 554 unsigned int hiwat = sb->sb_hiwat; 555 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 556 V_tcp_autorcvbuf_max); 557 558 if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) 559 sb->sb_flags &= ~SB_AUTOSIZE; 560 } 561 SOCKBUF_UNLOCK(sb); 562 CURVNET_RESTORE(); 563 564 job->msgrcv = 1; 565 if (db->cancel_pending) { 566 /* 567 * Update the job's length but defer completion to the 568 * TCB_RPL callback. 569 */ 570 job->aio_received += len; 571 goto out; 572 } else if (!aio_clear_cancel_function(job)) { 573 /* 574 * Update the copied length for when 575 * t4_aio_cancel_active() completes this request. 576 */ 577 job->aio_received += len; 578 } else { 579 copied = job->aio_received; 580 #ifdef VERBOSE_TRACES 581 CTR5(KTR_CXGBE, 582 "%s: tid %u, completing %p (copied %ld, placed %d)", 583 __func__, toep->tid, job, copied, len); 584 #endif 585 aio_complete(job, copied + len, 0); 586 t4_rcvd(&toep->td->tod, tp); 587 } 588 589 completed: 590 complete_ddp_buffer(toep, db, db_idx); 591 if (toep->ddp.waiting_count > 0) 592 ddp_queue_toep(toep); 593 out: 594 DDP_UNLOCK(toep); 595 INP_WUNLOCK(inp); 596 597 return (0); 598 } 599 600 void 601 handle_ddp_indicate(struct toepcb *toep) 602 { 603 604 DDP_ASSERT_LOCKED(toep); 605 MPASS(toep->ddp.active_count == 0); 606 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 607 if (toep->ddp.waiting_count == 0) { 608 /* 609 * The pending requests that triggered the request for an 610 * an indicate were cancelled. Those cancels should have 611 * already disabled DDP. Just ignore this as the data is 612 * going into the socket buffer anyway. 613 */ 614 return; 615 } 616 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 617 toep->tid, toep->ddp.waiting_count); 618 ddp_queue_toep(toep); 619 } 620 621 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 622 623 static int 624 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 625 { 626 struct adapter *sc = iq->adapter; 627 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 628 unsigned int tid = GET_TID(cpl); 629 unsigned int db_idx; 630 struct toepcb *toep; 631 struct inpcb *inp; 632 struct ddp_buffer *db; 633 struct kaiocb *job; 634 long copied; 635 636 if (cpl->status != CPL_ERR_NONE) 637 panic("XXX: tcp_rpl failed: %d", cpl->status); 638 639 toep = lookup_tid(sc, tid); 640 inp = toep->inp; 641 switch (cpl->cookie) { 642 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 643 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 644 /* 645 * XXX: This duplicates a lot of code with handle_ddp_data(). 646 */ 647 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 648 MPASS(db_idx < nitems(toep->ddp.db)); 649 INP_WLOCK(inp); 650 DDP_LOCK(toep); 651 db = &toep->ddp.db[db_idx]; 652 653 /* 654 * handle_ddp_data() should leave the job around until 655 * this callback runs once a cancel is pending. 656 */ 657 MPASS(db != NULL); 658 MPASS(db->job != NULL); 659 MPASS(db->cancel_pending); 660 661 /* 662 * XXX: It's not clear what happens if there is data 663 * placed when the buffer is invalidated. I suspect we 664 * need to read the TCB to see how much data was placed. 665 * 666 * For now this just pretends like nothing was placed. 667 * 668 * XXX: Note that if we did check the PCB we would need to 669 * also take care of updating the tp, etc. 670 */ 671 job = db->job; 672 copied = job->aio_received; 673 if (copied == 0) { 674 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 675 aio_cancel(job); 676 } else { 677 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 678 __func__, job, copied); 679 aio_complete(job, copied, 0); 680 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 681 } 682 683 complete_ddp_buffer(toep, db, db_idx); 684 if (toep->ddp.waiting_count > 0) 685 ddp_queue_toep(toep); 686 DDP_UNLOCK(toep); 687 INP_WUNLOCK(inp); 688 break; 689 default: 690 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 691 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 692 } 693 694 return (0); 695 } 696 697 void 698 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 699 { 700 struct ddp_buffer *db; 701 struct kaiocb *job; 702 long copied; 703 unsigned int db_idx; 704 #ifdef INVARIANTS 705 unsigned int db_flag; 706 #endif 707 int len, placed; 708 709 INP_WLOCK_ASSERT(toep->inp); 710 DDP_ASSERT_LOCKED(toep); 711 712 /* - 1 is to ignore the byte for FIN */ 713 len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; 714 tp->rcv_nxt += len; 715 716 while (toep->ddp.active_count > 0) { 717 MPASS(toep->ddp.active_id != -1); 718 db_idx = toep->ddp.active_id; 719 #ifdef INVARIANTS 720 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 721 #endif 722 MPASS((toep->ddp.flags & db_flag) != 0); 723 db = &toep->ddp.db[db_idx]; 724 job = db->job; 725 copied = job->aio_received; 726 placed = len; 727 if (placed > job->uaiocb.aio_nbytes - copied) 728 placed = job->uaiocb.aio_nbytes - copied; 729 if (placed > 0) 730 job->msgrcv = 1; 731 if (!aio_clear_cancel_function(job)) { 732 /* 733 * Update the copied length for when 734 * t4_aio_cancel_active() completes this 735 * request. 736 */ 737 job->aio_received += placed; 738 } else { 739 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 740 __func__, toep->tid, db_idx, placed); 741 aio_complete(job, copied + placed, 0); 742 } 743 len -= placed; 744 complete_ddp_buffer(toep, db, db_idx); 745 } 746 747 MPASS(len == 0); 748 ddp_complete_all(toep, 0); 749 } 750 751 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 752 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 753 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 754 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 755 756 extern cpl_handler_t t4_cpl_handler[]; 757 758 static int 759 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 760 { 761 struct adapter *sc = iq->adapter; 762 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 763 unsigned int tid = GET_TID(cpl); 764 uint32_t vld; 765 struct toepcb *toep = lookup_tid(sc, tid); 766 767 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 768 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 769 KASSERT(!(toep->flags & TPF_SYNQE), 770 ("%s: toep %p claims to be a synq entry", __func__, toep)); 771 772 vld = be32toh(cpl->ddpvld); 773 if (__predict_false(vld & DDP_ERR)) { 774 panic("%s: DDP error 0x%x (tid %d, toep %p)", 775 __func__, vld, tid, toep); 776 } 777 778 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 779 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 780 return (0); 781 } 782 783 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 784 785 return (0); 786 } 787 788 static int 789 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 790 struct mbuf *m) 791 { 792 struct adapter *sc = iq->adapter; 793 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 794 unsigned int tid = GET_TID(cpl); 795 struct toepcb *toep = lookup_tid(sc, tid); 796 797 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 798 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 799 KASSERT(!(toep->flags & TPF_SYNQE), 800 ("%s: toep %p claims to be a synq entry", __func__, toep)); 801 802 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 803 804 return (0); 805 } 806 807 static void 808 enable_ddp(struct adapter *sc, struct toepcb *toep) 809 { 810 811 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 812 ("%s: toep %p has bad ddp_flags 0x%x", 813 __func__, toep, toep->ddp.flags)); 814 815 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 816 __func__, toep->tid, time_uptime); 817 818 DDP_ASSERT_LOCKED(toep); 819 toep->ddp.flags |= DDP_SC_REQ; 820 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 821 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 822 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 823 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 824 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 825 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 826 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 827 } 828 829 static int 830 calculate_hcf(int n1, int n2) 831 { 832 int a, b, t; 833 834 if (n1 <= n2) { 835 a = n1; 836 b = n2; 837 } else { 838 a = n2; 839 b = n1; 840 } 841 842 while (a != 0) { 843 t = a; 844 a = b % a; 845 b = t; 846 } 847 848 return (b); 849 } 850 851 static inline int 852 pages_to_nppods(int npages, int ddp_page_shift) 853 { 854 855 MPASS(ddp_page_shift >= PAGE_SHIFT); 856 857 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 858 } 859 860 static int 861 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 862 struct ppod_reservation *prsv) 863 { 864 vmem_addr_t addr; /* relative to start of region */ 865 866 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 867 &addr) != 0) 868 return (ENOMEM); 869 870 #ifdef VERBOSE_TRACES 871 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 872 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 873 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 874 #endif 875 876 /* 877 * The hardware tagmask includes an extra invalid bit but the arena was 878 * seeded with valid values only. An allocation out of this arena will 879 * fit inside the tagmask but won't have the invalid bit set. 880 */ 881 MPASS((addr & pr->pr_tag_mask) == addr); 882 MPASS((addr & pr->pr_invalid_bit) == 0); 883 884 prsv->prsv_pr = pr; 885 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 886 prsv->prsv_nppods = nppods; 887 888 return (0); 889 } 890 891 static int 892 t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages, 893 int npages, struct ppod_reservation *prsv) 894 { 895 int i, hcf, seglen, idx, nppods; 896 897 /* 898 * The DDP page size is unrelated to the VM page size. We combine 899 * contiguous physical pages into larger segments to get the best DDP 900 * page size possible. This is the largest of the four sizes in 901 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 902 * the page list. 903 */ 904 hcf = 0; 905 for (i = 0; i < npages; i++) { 906 seglen = PAGE_SIZE; 907 while (i < npages - 1 && 908 VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE == 909 VM_PAGE_TO_PHYS(pages[i + 1])) { 910 seglen += PAGE_SIZE; 911 i++; 912 } 913 914 hcf = calculate_hcf(hcf, seglen); 915 if (hcf < (1 << pr->pr_page_shift[1])) { 916 idx = 0; 917 goto have_pgsz; /* give up, short circuit */ 918 } 919 } 920 921 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 922 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 923 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 924 if ((hcf & PR_PAGE_MASK(idx)) == 0) 925 break; 926 } 927 #undef PR_PAGE_MASK 928 929 have_pgsz: 930 MPASS(idx <= M_PPOD_PGSZ); 931 932 nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]); 933 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 934 return (ENOMEM); 935 MPASS(prsv->prsv_nppods > 0); 936 937 return (0); 938 } 939 940 int 941 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 942 { 943 struct ppod_reservation *prsv = &ps->prsv; 944 945 KASSERT(prsv->prsv_nppods == 0, 946 ("%s: page pods already allocated", __func__)); 947 948 return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages, 949 prsv)); 950 } 951 952 int 953 t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp, 954 struct ppod_reservation *prsv) 955 { 956 957 MPASS(bp->bio_flags & BIO_UNMAPPED); 958 959 return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n, 960 prsv)); 961 } 962 963 int 964 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 965 struct ppod_reservation *prsv) 966 { 967 int hcf, seglen, idx, npages, nppods; 968 uintptr_t start_pva, end_pva, pva, p1; 969 970 MPASS(buf > 0); 971 MPASS(len > 0); 972 973 /* 974 * The DDP page size is unrelated to the VM page size. We combine 975 * contiguous physical pages into larger segments to get the best DDP 976 * page size possible. This is the largest of the four sizes in 977 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 978 * in the page list. 979 */ 980 hcf = 0; 981 start_pva = trunc_page(buf); 982 end_pva = trunc_page(buf + len - 1); 983 pva = start_pva; 984 while (pva <= end_pva) { 985 seglen = PAGE_SIZE; 986 p1 = pmap_kextract(pva); 987 pva += PAGE_SIZE; 988 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 989 seglen += PAGE_SIZE; 990 pva += PAGE_SIZE; 991 } 992 993 hcf = calculate_hcf(hcf, seglen); 994 if (hcf < (1 << pr->pr_page_shift[1])) { 995 idx = 0; 996 goto have_pgsz; /* give up, short circuit */ 997 } 998 } 999 1000 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1001 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1002 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1003 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1004 break; 1005 } 1006 #undef PR_PAGE_MASK 1007 1008 have_pgsz: 1009 MPASS(idx <= M_PPOD_PGSZ); 1010 1011 npages = 1; 1012 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1013 nppods = howmany(npages, PPOD_PAGES); 1014 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1015 return (ENOMEM); 1016 MPASS(prsv->prsv_nppods > 0); 1017 1018 return (0); 1019 } 1020 1021 int 1022 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 1023 int entries, struct ppod_reservation *prsv) 1024 { 1025 int hcf, seglen, idx = 0, npages, nppods, i, len; 1026 uintptr_t start_pva, end_pva, pva, p1 ; 1027 vm_offset_t buf; 1028 struct ctl_sg_entry *sge; 1029 1030 MPASS(entries > 0); 1031 MPASS(sgl); 1032 1033 /* 1034 * The DDP page size is unrelated to the VM page size. We combine 1035 * contiguous physical pages into larger segments to get the best DDP 1036 * page size possible. This is the largest of the four sizes in 1037 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1038 * in the page list. 1039 */ 1040 hcf = 0; 1041 for (i = entries - 1; i >= 0; i--) { 1042 sge = sgl + i; 1043 buf = (vm_offset_t)sge->addr; 1044 len = sge->len; 1045 start_pva = trunc_page(buf); 1046 end_pva = trunc_page(buf + len - 1); 1047 pva = start_pva; 1048 while (pva <= end_pva) { 1049 seglen = PAGE_SIZE; 1050 p1 = pmap_kextract(pva); 1051 pva += PAGE_SIZE; 1052 while (pva <= end_pva && p1 + seglen == 1053 pmap_kextract(pva)) { 1054 seglen += PAGE_SIZE; 1055 pva += PAGE_SIZE; 1056 } 1057 1058 hcf = calculate_hcf(hcf, seglen); 1059 if (hcf < (1 << pr->pr_page_shift[1])) { 1060 idx = 0; 1061 goto have_pgsz; /* give up, short circuit */ 1062 } 1063 } 1064 } 1065 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1066 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1067 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1068 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1069 break; 1070 } 1071 #undef PR_PAGE_MASK 1072 1073 have_pgsz: 1074 MPASS(idx <= M_PPOD_PGSZ); 1075 1076 npages = 0; 1077 while (entries--) { 1078 npages++; 1079 start_pva = trunc_page((vm_offset_t)sgl->addr); 1080 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1081 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1082 sgl = sgl + 1; 1083 } 1084 nppods = howmany(npages, PPOD_PAGES); 1085 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1086 return (ENOMEM); 1087 MPASS(prsv->prsv_nppods > 0); 1088 return (0); 1089 } 1090 1091 void 1092 t4_free_page_pods(struct ppod_reservation *prsv) 1093 { 1094 struct ppod_region *pr = prsv->prsv_pr; 1095 vmem_addr_t addr; 1096 1097 MPASS(prsv != NULL); 1098 MPASS(prsv->prsv_nppods != 0); 1099 1100 addr = prsv->prsv_tag & pr->pr_tag_mask; 1101 MPASS((addr & pr->pr_invalid_bit) == 0); 1102 1103 #ifdef VERBOSE_TRACES 1104 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1105 pr->pr_arena, addr, prsv->prsv_nppods); 1106 #endif 1107 1108 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1109 prsv->prsv_nppods = 0; 1110 } 1111 1112 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1113 1114 int 1115 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1116 struct pageset *ps) 1117 { 1118 struct wrqe *wr; 1119 struct ulp_mem_io *ulpmc; 1120 struct ulptx_idata *ulpsc; 1121 struct pagepod *ppod; 1122 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1123 u_int ppod_addr; 1124 uint32_t cmd; 1125 struct ppod_reservation *prsv = &ps->prsv; 1126 struct ppod_region *pr = prsv->prsv_pr; 1127 vm_paddr_t pa; 1128 1129 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1130 ("%s: page pods already written", __func__)); 1131 MPASS(prsv->prsv_nppods > 0); 1132 1133 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1134 if (is_t4(sc)) 1135 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1136 else 1137 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1138 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1139 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1140 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1141 1142 /* How many page pods are we writing in this cycle */ 1143 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1144 chunk = PPOD_SZ(n); 1145 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1146 1147 wr = alloc_wrqe(len, wrq); 1148 if (wr == NULL) 1149 return (ENOMEM); /* ok to just bail out */ 1150 ulpmc = wrtod(wr); 1151 1152 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1153 ulpmc->cmd = cmd; 1154 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1155 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1156 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1157 1158 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1159 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1160 ulpsc->len = htobe32(chunk); 1161 1162 ppod = (struct pagepod *)(ulpsc + 1); 1163 for (j = 0; j < n; i++, j++, ppod++) { 1164 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1165 V_PPOD_TID(tid) | prsv->prsv_tag); 1166 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1167 V_PPOD_OFST(ps->offset)); 1168 ppod->rsvd = 0; 1169 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1170 for (k = 0; k < nitems(ppod->addr); k++) { 1171 if (idx < ps->npages) { 1172 pa = VM_PAGE_TO_PHYS(ps->pages[idx]); 1173 ppod->addr[k] = htobe64(pa); 1174 idx += ddp_pgsz / PAGE_SIZE; 1175 } else 1176 ppod->addr[k] = 0; 1177 #if 0 1178 CTR5(KTR_CXGBE, 1179 "%s: tid %d ppod[%d]->addr[%d] = %p", 1180 __func__, tid, i, k, 1181 be64toh(ppod->addr[k])); 1182 #endif 1183 } 1184 1185 } 1186 1187 t4_wrq_tx(sc, wr); 1188 } 1189 ps->flags |= PS_PPODS_WRITTEN; 1190 1191 return (0); 1192 } 1193 1194 static struct mbuf * 1195 alloc_raw_wr_mbuf(int len) 1196 { 1197 struct mbuf *m; 1198 1199 if (len <= MHLEN) 1200 m = m_gethdr(M_NOWAIT, MT_DATA); 1201 else if (len <= MCLBYTES) 1202 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1203 else 1204 m = NULL; 1205 if (m == NULL) 1206 return (NULL); 1207 m->m_pkthdr.len = len; 1208 m->m_len = len; 1209 set_mbuf_raw_wr(m, true); 1210 return (m); 1211 } 1212 1213 int 1214 t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep, 1215 struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq) 1216 { 1217 struct ulp_mem_io *ulpmc; 1218 struct ulptx_idata *ulpsc; 1219 struct pagepod *ppod; 1220 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1221 u_int ppod_addr; 1222 uint32_t cmd; 1223 struct ppod_region *pr = prsv->prsv_pr; 1224 vm_paddr_t pa; 1225 struct mbuf *m; 1226 1227 MPASS(bp->bio_flags & BIO_UNMAPPED); 1228 1229 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1230 if (is_t4(sc)) 1231 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1232 else 1233 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1234 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1235 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1236 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1237 1238 /* How many page pods are we writing in this cycle */ 1239 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1240 MPASS(n > 0); 1241 chunk = PPOD_SZ(n); 1242 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1243 1244 m = alloc_raw_wr_mbuf(len); 1245 if (m == NULL) 1246 return (ENOMEM); 1247 1248 ulpmc = mtod(m, struct ulp_mem_io *); 1249 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1250 ulpmc->cmd = cmd; 1251 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1252 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1253 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1254 1255 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1256 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1257 ulpsc->len = htobe32(chunk); 1258 1259 ppod = (struct pagepod *)(ulpsc + 1); 1260 for (j = 0; j < n; i++, j++, ppod++) { 1261 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1262 V_PPOD_TID(toep->tid) | 1263 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1264 ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) | 1265 V_PPOD_OFST(bp->bio_ma_offset)); 1266 ppod->rsvd = 0; 1267 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1268 for (k = 0; k < nitems(ppod->addr); k++) { 1269 if (idx < bp->bio_ma_n) { 1270 pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]); 1271 ppod->addr[k] = htobe64(pa); 1272 idx += ddp_pgsz / PAGE_SIZE; 1273 } else 1274 ppod->addr[k] = 0; 1275 #if 0 1276 CTR5(KTR_CXGBE, 1277 "%s: tid %d ppod[%d]->addr[%d] = %p", 1278 __func__, toep->tid, i, k, 1279 be64toh(ppod->addr[k])); 1280 #endif 1281 } 1282 } 1283 1284 mbufq_enqueue(wrq, m); 1285 } 1286 1287 return (0); 1288 } 1289 1290 int 1291 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1292 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1293 struct mbufq *wrq) 1294 { 1295 struct ulp_mem_io *ulpmc; 1296 struct ulptx_idata *ulpsc; 1297 struct pagepod *ppod; 1298 int i, j, k, n, chunk, len, ddp_pgsz; 1299 u_int ppod_addr, offset; 1300 uint32_t cmd; 1301 struct ppod_region *pr = prsv->prsv_pr; 1302 uintptr_t end_pva, pva; 1303 vm_paddr_t pa; 1304 struct mbuf *m; 1305 1306 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1307 if (is_t4(sc)) 1308 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1309 else 1310 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1311 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1312 offset = buf & PAGE_MASK; 1313 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1314 pva = trunc_page(buf); 1315 end_pva = trunc_page(buf + buflen - 1); 1316 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1317 1318 /* How many page pods are we writing in this cycle */ 1319 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1320 MPASS(n > 0); 1321 chunk = PPOD_SZ(n); 1322 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1323 1324 m = alloc_raw_wr_mbuf(len); 1325 if (m == NULL) 1326 return (ENOMEM); 1327 ulpmc = mtod(m, struct ulp_mem_io *); 1328 1329 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1330 ulpmc->cmd = cmd; 1331 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1332 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1333 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1334 1335 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1336 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1337 ulpsc->len = htobe32(chunk); 1338 1339 ppod = (struct pagepod *)(ulpsc + 1); 1340 for (j = 0; j < n; i++, j++, ppod++) { 1341 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1342 V_PPOD_TID(toep->tid) | 1343 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1344 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1345 V_PPOD_OFST(offset)); 1346 ppod->rsvd = 0; 1347 1348 for (k = 0; k < nitems(ppod->addr); k++) { 1349 if (pva > end_pva) 1350 ppod->addr[k] = 0; 1351 else { 1352 pa = pmap_kextract(pva); 1353 ppod->addr[k] = htobe64(pa); 1354 pva += ddp_pgsz; 1355 } 1356 #if 0 1357 CTR5(KTR_CXGBE, 1358 "%s: tid %d ppod[%d]->addr[%d] = %p", 1359 __func__, toep->tid, i, k, 1360 be64toh(ppod->addr[k])); 1361 #endif 1362 } 1363 1364 /* 1365 * Walk back 1 segment so that the first address in the 1366 * next pod is the same as the last one in the current 1367 * pod. 1368 */ 1369 pva -= ddp_pgsz; 1370 } 1371 1372 mbufq_enqueue(wrq, m); 1373 } 1374 1375 MPASS(pva <= end_pva); 1376 1377 return (0); 1378 } 1379 1380 int 1381 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 1382 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 1383 int xferlen, struct mbufq *wrq) 1384 { 1385 struct ulp_mem_io *ulpmc; 1386 struct ulptx_idata *ulpsc; 1387 struct pagepod *ppod; 1388 int i, j, k, n, chunk, len, ddp_pgsz; 1389 u_int ppod_addr, offset, sg_offset = 0; 1390 uint32_t cmd; 1391 struct ppod_region *pr = prsv->prsv_pr; 1392 uintptr_t pva; 1393 vm_paddr_t pa; 1394 struct mbuf *m; 1395 1396 MPASS(sgl != NULL); 1397 MPASS(entries > 0); 1398 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1399 if (is_t4(sc)) 1400 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1401 else 1402 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1403 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1404 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 1405 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1406 pva = trunc_page((vm_offset_t)sgl->addr); 1407 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1408 1409 /* How many page pods are we writing in this cycle */ 1410 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1411 MPASS(n > 0); 1412 chunk = PPOD_SZ(n); 1413 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1414 1415 m = alloc_raw_wr_mbuf(len); 1416 if (m == NULL) 1417 return (ENOMEM); 1418 ulpmc = mtod(m, struct ulp_mem_io *); 1419 1420 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1421 ulpmc->cmd = cmd; 1422 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1423 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1424 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1425 1426 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1427 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1428 ulpsc->len = htobe32(chunk); 1429 1430 ppod = (struct pagepod *)(ulpsc + 1); 1431 for (j = 0; j < n; i++, j++, ppod++) { 1432 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1433 V_PPOD_TID(toep->tid) | 1434 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1435 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 1436 V_PPOD_OFST(offset)); 1437 ppod->rsvd = 0; 1438 1439 for (k = 0; k < nitems(ppod->addr); k++) { 1440 if (entries != 0) { 1441 pa = pmap_kextract(pva + sg_offset); 1442 ppod->addr[k] = htobe64(pa); 1443 } else 1444 ppod->addr[k] = 0; 1445 1446 #if 0 1447 CTR5(KTR_CXGBE, 1448 "%s: tid %d ppod[%d]->addr[%d] = %p", 1449 __func__, toep->tid, i, k, 1450 be64toh(ppod->addr[k])); 1451 #endif 1452 1453 /* 1454 * If this is the last entry in a pod, 1455 * reuse the same entry for first address 1456 * in the next pod. 1457 */ 1458 if (k + 1 == nitems(ppod->addr)) 1459 break; 1460 1461 /* 1462 * Don't move to the next DDP page if the 1463 * sgl is already finished. 1464 */ 1465 if (entries == 0) 1466 continue; 1467 1468 sg_offset += ddp_pgsz; 1469 if (sg_offset == sgl->len) { 1470 /* 1471 * This sgl entry is done. Go 1472 * to the next. 1473 */ 1474 entries--; 1475 sgl++; 1476 sg_offset = 0; 1477 if (entries != 0) 1478 pva = trunc_page( 1479 (vm_offset_t)sgl->addr); 1480 } 1481 } 1482 } 1483 1484 mbufq_enqueue(wrq, m); 1485 } 1486 1487 return (0); 1488 } 1489 1490 /* 1491 * Prepare a pageset for DDP. This sets up page pods. 1492 */ 1493 static int 1494 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1495 { 1496 struct tom_data *td = sc->tom_softc; 1497 1498 if (ps->prsv.prsv_nppods == 0 && 1499 t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) { 1500 return (0); 1501 } 1502 if (!(ps->flags & PS_PPODS_WRITTEN) && 1503 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1504 return (0); 1505 } 1506 1507 return (1); 1508 } 1509 1510 int 1511 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1512 const char *name) 1513 { 1514 int i; 1515 1516 MPASS(pr != NULL); 1517 MPASS(r->size > 0); 1518 1519 pr->pr_start = r->start; 1520 pr->pr_len = r->size; 1521 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1522 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1523 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1524 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1525 1526 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1527 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1528 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1529 return (ENXIO); 1530 } 1531 1532 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1533 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1534 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1535 return (ENXIO); 1536 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1537 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1538 1539 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1540 M_FIRSTFIT | M_NOWAIT); 1541 if (pr->pr_arena == NULL) 1542 return (ENOMEM); 1543 1544 return (0); 1545 } 1546 1547 void 1548 t4_free_ppod_region(struct ppod_region *pr) 1549 { 1550 1551 MPASS(pr != NULL); 1552 1553 if (pr->pr_arena) 1554 vmem_destroy(pr->pr_arena); 1555 bzero(pr, sizeof(*pr)); 1556 } 1557 1558 static int 1559 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1560 int pgoff, int len) 1561 { 1562 1563 if (ps->start != start || ps->npages != npages || 1564 ps->offset != pgoff || ps->len != len) 1565 return (1); 1566 1567 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1568 } 1569 1570 static int 1571 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1572 { 1573 struct vmspace *vm; 1574 vm_map_t map; 1575 vm_offset_t start, end, pgoff; 1576 struct pageset *ps; 1577 int n; 1578 1579 DDP_ASSERT_LOCKED(toep); 1580 1581 /* 1582 * The AIO subsystem will cancel and drain all requests before 1583 * permitting a process to exit or exec, so p_vmspace should 1584 * be stable here. 1585 */ 1586 vm = job->userproc->p_vmspace; 1587 map = &vm->vm_map; 1588 start = (uintptr_t)job->uaiocb.aio_buf; 1589 pgoff = start & PAGE_MASK; 1590 end = round_page(start + job->uaiocb.aio_nbytes); 1591 start = trunc_page(start); 1592 1593 if (end - start > MAX_DDP_BUFFER_SIZE) { 1594 /* 1595 * Truncate the request to a short read. 1596 * Alternatively, we could DDP in chunks to the larger 1597 * buffer, but that would be quite a bit more work. 1598 * 1599 * When truncating, round the request down to avoid 1600 * crossing a cache line on the final transaction. 1601 */ 1602 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1603 #ifdef VERBOSE_TRACES 1604 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1605 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1606 (unsigned long)(end - (start + pgoff))); 1607 job->uaiocb.aio_nbytes = end - (start + pgoff); 1608 #endif 1609 end = round_page(end); 1610 } 1611 1612 n = atop(end - start); 1613 1614 /* 1615 * Try to reuse a cached pageset. 1616 */ 1617 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1618 if (pscmp(ps, vm, start, n, pgoff, 1619 job->uaiocb.aio_nbytes) == 0) { 1620 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1621 toep->ddp.cached_count--; 1622 *pps = ps; 1623 return (0); 1624 } 1625 } 1626 1627 /* 1628 * If there are too many cached pagesets to create a new one, 1629 * free a pageset before creating a new one. 1630 */ 1631 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1632 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1633 if (toep->ddp.active_count + toep->ddp.cached_count == 1634 nitems(toep->ddp.db)) { 1635 KASSERT(toep->ddp.cached_count > 0, 1636 ("no cached pageset to free")); 1637 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1638 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1639 toep->ddp.cached_count--; 1640 free_pageset(toep->td, ps); 1641 } 1642 DDP_UNLOCK(toep); 1643 1644 /* Create a new pageset. */ 1645 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1646 M_ZERO); 1647 ps->pages = (vm_page_t *)(ps + 1); 1648 ps->vm_timestamp = map->timestamp; 1649 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1650 VM_PROT_WRITE, ps->pages, n); 1651 1652 DDP_LOCK(toep); 1653 if (ps->npages < 0) { 1654 free(ps, M_CXGBE); 1655 return (EFAULT); 1656 } 1657 1658 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1659 ps->npages, n)); 1660 1661 ps->offset = pgoff; 1662 ps->len = job->uaiocb.aio_nbytes; 1663 refcount_acquire(&vm->vm_refcnt); 1664 ps->vm = vm; 1665 ps->start = start; 1666 1667 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1668 __func__, toep->tid, ps, job, ps->npages); 1669 *pps = ps; 1670 return (0); 1671 } 1672 1673 static void 1674 ddp_complete_all(struct toepcb *toep, int error) 1675 { 1676 struct kaiocb *job; 1677 1678 DDP_ASSERT_LOCKED(toep); 1679 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1680 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1681 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1682 toep->ddp.waiting_count--; 1683 if (aio_clear_cancel_function(job)) 1684 ddp_complete_one(job, error); 1685 } 1686 } 1687 1688 static void 1689 aio_ddp_cancel_one(struct kaiocb *job) 1690 { 1691 long copied; 1692 1693 /* 1694 * If this job had copied data out of the socket buffer before 1695 * it was cancelled, report it as a short read rather than an 1696 * error. 1697 */ 1698 copied = job->aio_received; 1699 if (copied != 0) 1700 aio_complete(job, copied, 0); 1701 else 1702 aio_cancel(job); 1703 } 1704 1705 /* 1706 * Called when the main loop wants to requeue a job to retry it later. 1707 * Deals with the race of the job being cancelled while it was being 1708 * examined. 1709 */ 1710 static void 1711 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1712 { 1713 1714 DDP_ASSERT_LOCKED(toep); 1715 if (!(toep->ddp.flags & DDP_DEAD) && 1716 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1717 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1718 toep->ddp.waiting_count++; 1719 } else 1720 aio_ddp_cancel_one(job); 1721 } 1722 1723 static void 1724 aio_ddp_requeue(struct toepcb *toep) 1725 { 1726 struct adapter *sc = td_adapter(toep->td); 1727 struct socket *so; 1728 struct sockbuf *sb; 1729 struct inpcb *inp; 1730 struct kaiocb *job; 1731 struct ddp_buffer *db; 1732 size_t copied, offset, resid; 1733 struct pageset *ps; 1734 struct mbuf *m; 1735 uint64_t ddp_flags, ddp_flags_mask; 1736 struct wrqe *wr; 1737 int buf_flag, db_idx, error; 1738 1739 DDP_ASSERT_LOCKED(toep); 1740 1741 restart: 1742 if (toep->ddp.flags & DDP_DEAD) { 1743 MPASS(toep->ddp.waiting_count == 0); 1744 MPASS(toep->ddp.active_count == 0); 1745 return; 1746 } 1747 1748 if (toep->ddp.waiting_count == 0 || 1749 toep->ddp.active_count == nitems(toep->ddp.db)) { 1750 return; 1751 } 1752 1753 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1754 so = job->fd_file->f_data; 1755 sb = &so->so_rcv; 1756 SOCKBUF_LOCK(sb); 1757 1758 /* We will never get anything unless we are or were connected. */ 1759 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1760 SOCKBUF_UNLOCK(sb); 1761 ddp_complete_all(toep, ENOTCONN); 1762 return; 1763 } 1764 1765 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1766 ("%s: pending sockbuf data and DDP is active", __func__)); 1767 1768 /* Abort if socket has reported problems. */ 1769 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1770 if (so->so_error && sbavail(sb) == 0) { 1771 toep->ddp.waiting_count--; 1772 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1773 if (!aio_clear_cancel_function(job)) { 1774 SOCKBUF_UNLOCK(sb); 1775 goto restart; 1776 } 1777 1778 /* 1779 * If this job has previously copied some data, report 1780 * a short read and leave the error to be reported by 1781 * a future request. 1782 */ 1783 copied = job->aio_received; 1784 if (copied != 0) { 1785 SOCKBUF_UNLOCK(sb); 1786 aio_complete(job, copied, 0); 1787 goto restart; 1788 } 1789 error = so->so_error; 1790 so->so_error = 0; 1791 SOCKBUF_UNLOCK(sb); 1792 aio_complete(job, -1, error); 1793 goto restart; 1794 } 1795 1796 /* 1797 * Door is closed. If there is pending data in the socket buffer, 1798 * deliver it. If there are pending DDP requests, wait for those 1799 * to complete. Once they have completed, return EOF reads. 1800 */ 1801 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1802 SOCKBUF_UNLOCK(sb); 1803 if (toep->ddp.active_count != 0) 1804 return; 1805 ddp_complete_all(toep, 0); 1806 return; 1807 } 1808 1809 /* 1810 * If DDP is not enabled and there is no pending socket buffer 1811 * data, try to enable DDP. 1812 */ 1813 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1814 SOCKBUF_UNLOCK(sb); 1815 1816 /* 1817 * Wait for the card to ACK that DDP is enabled before 1818 * queueing any buffers. Currently this waits for an 1819 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1820 * message to know that DDP was enabled instead of waiting 1821 * for the indicate which would avoid copying the indicate 1822 * if no data is pending. 1823 * 1824 * XXX: Might want to limit the indicate size to the size 1825 * of the first queued request. 1826 */ 1827 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1828 enable_ddp(sc, toep); 1829 return; 1830 } 1831 SOCKBUF_UNLOCK(sb); 1832 1833 /* 1834 * If another thread is queueing a buffer for DDP, let it 1835 * drain any work and return. 1836 */ 1837 if (toep->ddp.queueing != NULL) 1838 return; 1839 1840 /* Take the next job to prep it for DDP. */ 1841 toep->ddp.waiting_count--; 1842 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1843 if (!aio_clear_cancel_function(job)) 1844 goto restart; 1845 toep->ddp.queueing = job; 1846 1847 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1848 error = hold_aio(toep, job, &ps); 1849 if (error != 0) { 1850 ddp_complete_one(job, error); 1851 toep->ddp.queueing = NULL; 1852 goto restart; 1853 } 1854 1855 SOCKBUF_LOCK(sb); 1856 if (so->so_error && sbavail(sb) == 0) { 1857 copied = job->aio_received; 1858 if (copied != 0) { 1859 SOCKBUF_UNLOCK(sb); 1860 recycle_pageset(toep, ps); 1861 aio_complete(job, copied, 0); 1862 toep->ddp.queueing = NULL; 1863 goto restart; 1864 } 1865 1866 error = so->so_error; 1867 so->so_error = 0; 1868 SOCKBUF_UNLOCK(sb); 1869 recycle_pageset(toep, ps); 1870 aio_complete(job, -1, error); 1871 toep->ddp.queueing = NULL; 1872 goto restart; 1873 } 1874 1875 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1876 SOCKBUF_UNLOCK(sb); 1877 recycle_pageset(toep, ps); 1878 if (toep->ddp.active_count != 0) { 1879 /* 1880 * The door is closed, but there are still pending 1881 * DDP buffers. Requeue. These jobs will all be 1882 * completed once those buffers drain. 1883 */ 1884 aio_ddp_requeue_one(toep, job); 1885 toep->ddp.queueing = NULL; 1886 return; 1887 } 1888 ddp_complete_one(job, 0); 1889 ddp_complete_all(toep, 0); 1890 toep->ddp.queueing = NULL; 1891 return; 1892 } 1893 1894 sbcopy: 1895 /* 1896 * If the toep is dead, there shouldn't be any data in the socket 1897 * buffer, so the above case should have handled this. 1898 */ 1899 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1900 1901 /* 1902 * If there is pending data in the socket buffer (either 1903 * from before the requests were queued or a DDP indicate), 1904 * copy those mbufs out directly. 1905 */ 1906 copied = 0; 1907 offset = ps->offset + job->aio_received; 1908 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1909 resid = job->uaiocb.aio_nbytes - job->aio_received; 1910 m = sb->sb_mb; 1911 KASSERT(m == NULL || toep->ddp.active_count == 0, 1912 ("%s: sockbuf data with active DDP", __func__)); 1913 while (m != NULL && resid > 0) { 1914 struct iovec iov[1]; 1915 struct uio uio; 1916 #ifdef INVARIANTS 1917 int error; 1918 #endif 1919 1920 iov[0].iov_base = mtod(m, void *); 1921 iov[0].iov_len = m->m_len; 1922 if (iov[0].iov_len > resid) 1923 iov[0].iov_len = resid; 1924 uio.uio_iov = iov; 1925 uio.uio_iovcnt = 1; 1926 uio.uio_offset = 0; 1927 uio.uio_resid = iov[0].iov_len; 1928 uio.uio_segflg = UIO_SYSSPACE; 1929 uio.uio_rw = UIO_WRITE; 1930 #ifdef INVARIANTS 1931 error = uiomove_fromphys(ps->pages, offset + copied, 1932 uio.uio_resid, &uio); 1933 #else 1934 uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); 1935 #endif 1936 MPASS(error == 0 && uio.uio_resid == 0); 1937 copied += uio.uio_offset; 1938 resid -= uio.uio_offset; 1939 m = m->m_next; 1940 } 1941 if (copied != 0) { 1942 sbdrop_locked(sb, copied); 1943 job->aio_received += copied; 1944 job->msgrcv = 1; 1945 copied = job->aio_received; 1946 inp = sotoinpcb(so); 1947 if (!INP_TRY_WLOCK(inp)) { 1948 /* 1949 * The reference on the socket file descriptor in 1950 * the AIO job should keep 'sb' and 'inp' stable. 1951 * Our caller has a reference on the 'toep' that 1952 * keeps it stable. 1953 */ 1954 SOCKBUF_UNLOCK(sb); 1955 DDP_UNLOCK(toep); 1956 INP_WLOCK(inp); 1957 DDP_LOCK(toep); 1958 SOCKBUF_LOCK(sb); 1959 1960 /* 1961 * If the socket has been closed, we should detect 1962 * that and complete this request if needed on 1963 * the next trip around the loop. 1964 */ 1965 } 1966 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1967 INP_WUNLOCK(inp); 1968 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1969 /* 1970 * We filled the entire buffer with socket 1971 * data, DDP is not being used, or the socket 1972 * is being shut down, so complete the 1973 * request. 1974 */ 1975 SOCKBUF_UNLOCK(sb); 1976 recycle_pageset(toep, ps); 1977 aio_complete(job, copied, 0); 1978 toep->ddp.queueing = NULL; 1979 goto restart; 1980 } 1981 1982 /* 1983 * If DDP is not enabled, requeue this request and restart. 1984 * This will either enable DDP or wait for more data to 1985 * arrive on the socket buffer. 1986 */ 1987 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1988 SOCKBUF_UNLOCK(sb); 1989 recycle_pageset(toep, ps); 1990 aio_ddp_requeue_one(toep, job); 1991 toep->ddp.queueing = NULL; 1992 goto restart; 1993 } 1994 1995 /* 1996 * An indicate might have arrived and been added to 1997 * the socket buffer while it was unlocked after the 1998 * copy to lock the INP. If so, restart the copy. 1999 */ 2000 if (sbavail(sb) != 0) 2001 goto sbcopy; 2002 } 2003 SOCKBUF_UNLOCK(sb); 2004 2005 if (prep_pageset(sc, toep, ps) == 0) { 2006 recycle_pageset(toep, ps); 2007 aio_ddp_requeue_one(toep, job); 2008 toep->ddp.queueing = NULL; 2009 2010 /* 2011 * XXX: Need to retry this later. Mostly need a trigger 2012 * when page pods are freed up. 2013 */ 2014 printf("%s: prep_pageset failed\n", __func__); 2015 return; 2016 } 2017 2018 /* Determine which DDP buffer to use. */ 2019 if (toep->ddp.db[0].job == NULL) { 2020 db_idx = 0; 2021 } else { 2022 MPASS(toep->ddp.db[1].job == NULL); 2023 db_idx = 1; 2024 } 2025 2026 ddp_flags = 0; 2027 ddp_flags_mask = 0; 2028 if (db_idx == 0) { 2029 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 2030 if (so->so_state & SS_NBIO) 2031 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 2032 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 2033 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 2034 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 2035 buf_flag = DDP_BUF0_ACTIVE; 2036 } else { 2037 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 2038 if (so->so_state & SS_NBIO) 2039 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 2040 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 2041 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 2042 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 2043 buf_flag = DDP_BUF1_ACTIVE; 2044 } 2045 MPASS((toep->ddp.flags & buf_flag) == 0); 2046 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 2047 MPASS(db_idx == 0); 2048 MPASS(toep->ddp.active_id == -1); 2049 MPASS(toep->ddp.active_count == 0); 2050 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 2051 } 2052 2053 /* 2054 * The TID for this connection should still be valid. If DDP_DEAD 2055 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 2056 * this far anyway. Even if the socket is closing on the other 2057 * end, the AIO job holds a reference on this end of the socket 2058 * which will keep it open and keep the TCP PCB attached until 2059 * after the job is completed. 2060 */ 2061 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 2062 ddp_flags, ddp_flags_mask); 2063 if (wr == NULL) { 2064 recycle_pageset(toep, ps); 2065 aio_ddp_requeue_one(toep, job); 2066 toep->ddp.queueing = NULL; 2067 2068 /* 2069 * XXX: Need a way to kick a retry here. 2070 * 2071 * XXX: We know the fixed size needed and could 2072 * preallocate this using a blocking request at the 2073 * start of the task to avoid having to handle this 2074 * edge case. 2075 */ 2076 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 2077 return; 2078 } 2079 2080 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 2081 free_wrqe(wr); 2082 recycle_pageset(toep, ps); 2083 aio_ddp_cancel_one(job); 2084 toep->ddp.queueing = NULL; 2085 goto restart; 2086 } 2087 2088 #ifdef VERBOSE_TRACES 2089 CTR6(KTR_CXGBE, 2090 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 2091 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 2092 #endif 2093 /* Give the chip the go-ahead. */ 2094 t4_wrq_tx(sc, wr); 2095 db = &toep->ddp.db[db_idx]; 2096 db->cancel_pending = 0; 2097 db->job = job; 2098 db->ps = ps; 2099 toep->ddp.queueing = NULL; 2100 toep->ddp.flags |= buf_flag; 2101 toep->ddp.active_count++; 2102 if (toep->ddp.active_count == 1) { 2103 MPASS(toep->ddp.active_id == -1); 2104 toep->ddp.active_id = db_idx; 2105 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 2106 toep->ddp.active_id); 2107 } 2108 goto restart; 2109 } 2110 2111 void 2112 ddp_queue_toep(struct toepcb *toep) 2113 { 2114 2115 DDP_ASSERT_LOCKED(toep); 2116 if (toep->ddp.flags & DDP_TASK_ACTIVE) 2117 return; 2118 toep->ddp.flags |= DDP_TASK_ACTIVE; 2119 hold_toepcb(toep); 2120 soaio_enqueue(&toep->ddp.requeue_task); 2121 } 2122 2123 static void 2124 aio_ddp_requeue_task(void *context, int pending) 2125 { 2126 struct toepcb *toep = context; 2127 2128 DDP_LOCK(toep); 2129 aio_ddp_requeue(toep); 2130 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2131 DDP_UNLOCK(toep); 2132 2133 free_toepcb(toep); 2134 } 2135 2136 static void 2137 t4_aio_cancel_active(struct kaiocb *job) 2138 { 2139 struct socket *so = job->fd_file->f_data; 2140 struct tcpcb *tp = sototcpcb(so); 2141 struct toepcb *toep = tp->t_toe; 2142 struct adapter *sc = td_adapter(toep->td); 2143 uint64_t valid_flag; 2144 int i; 2145 2146 DDP_LOCK(toep); 2147 if (aio_cancel_cleared(job)) { 2148 DDP_UNLOCK(toep); 2149 aio_ddp_cancel_one(job); 2150 return; 2151 } 2152 2153 for (i = 0; i < nitems(toep->ddp.db); i++) { 2154 if (toep->ddp.db[i].job == job) { 2155 /* Should only ever get one cancel request for a job. */ 2156 MPASS(toep->ddp.db[i].cancel_pending == 0); 2157 2158 /* 2159 * Invalidate this buffer. It will be 2160 * cancelled or partially completed once the 2161 * card ACKs the invalidate. 2162 */ 2163 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2164 V_TF_DDP_BUF1_VALID(1); 2165 t4_set_tcb_field(sc, toep->ctrlq, toep, 2166 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2167 CPL_COOKIE_DDP0 + i); 2168 toep->ddp.db[i].cancel_pending = 1; 2169 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2170 __func__, job); 2171 break; 2172 } 2173 } 2174 DDP_UNLOCK(toep); 2175 } 2176 2177 static void 2178 t4_aio_cancel_queued(struct kaiocb *job) 2179 { 2180 struct socket *so = job->fd_file->f_data; 2181 struct tcpcb *tp = sototcpcb(so); 2182 struct toepcb *toep = tp->t_toe; 2183 2184 DDP_LOCK(toep); 2185 if (!aio_cancel_cleared(job)) { 2186 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2187 toep->ddp.waiting_count--; 2188 if (toep->ddp.waiting_count == 0) 2189 ddp_queue_toep(toep); 2190 } 2191 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2192 DDP_UNLOCK(toep); 2193 2194 aio_ddp_cancel_one(job); 2195 } 2196 2197 int 2198 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2199 { 2200 struct tcpcb *tp = sototcpcb(so); 2201 struct toepcb *toep = tp->t_toe; 2202 2203 2204 /* Ignore writes. */ 2205 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2206 return (EOPNOTSUPP); 2207 2208 DDP_LOCK(toep); 2209 2210 /* 2211 * XXX: Think about possibly returning errors for ENOTCONN, 2212 * etc. Perhaps the caller would only queue the request 2213 * if it failed with EOPNOTSUPP? 2214 */ 2215 2216 #ifdef VERBOSE_TRACES 2217 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2218 #endif 2219 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2220 panic("new job was cancelled"); 2221 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2222 toep->ddp.waiting_count++; 2223 toep->ddp.flags |= DDP_OK; 2224 2225 /* 2226 * Try to handle this request synchronously. If this has 2227 * to block because the task is running, it will just bail 2228 * and let the task handle it instead. 2229 */ 2230 aio_ddp_requeue(toep); 2231 DDP_UNLOCK(toep); 2232 return (0); 2233 } 2234 2235 void 2236 t4_ddp_mod_load(void) 2237 { 2238 2239 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2240 CPL_COOKIE_DDP0); 2241 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2242 CPL_COOKIE_DDP1); 2243 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 2244 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 2245 TAILQ_INIT(&ddp_orphan_pagesets); 2246 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 2247 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 2248 } 2249 2250 void 2251 t4_ddp_mod_unload(void) 2252 { 2253 2254 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 2255 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 2256 mtx_destroy(&ddp_orphan_pagesets_lock); 2257 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 2258 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 2259 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 2260 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 2261 } 2262 #endif 2263