1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_inet.h" 34 35 #include <sys/param.h> 36 #include <sys/aio.h> 37 #include <sys/file.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/module.h> 42 #include <sys/protosw.h> 43 #include <sys/proc.h> 44 #include <sys/domain.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/taskqueue.h> 48 #include <sys/uio.h> 49 #include <netinet/in.h> 50 #include <netinet/in_pcb.h> 51 #include <netinet/ip.h> 52 #include <netinet/tcp_var.h> 53 #define TCPSTATES 54 #include <netinet/tcp_fsm.h> 55 #include <netinet/toecore.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_param.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_object.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/ctl/ctl_io.h> 67 68 #ifdef TCP_OFFLOAD 69 #include "common/common.h" 70 #include "common/t4_msg.h" 71 #include "common/t4_regs.h" 72 #include "common/t4_tcb.h" 73 #include "tom/t4_tom.h" 74 75 /* 76 * Use the 'backend3' field in AIO jobs to store the amount of data 77 * received by the AIO job so far. 78 */ 79 #define aio_received backend3 80 81 static void aio_ddp_requeue_task(void *context, int pending); 82 static void ddp_complete_all(struct toepcb *toep, int error); 83 static void t4_aio_cancel_active(struct kaiocb *job); 84 static void t4_aio_cancel_queued(struct kaiocb *job); 85 86 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; 87 static struct mtx ddp_orphan_pagesets_lock; 88 static struct task ddp_orphan_task; 89 90 #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) 91 92 /* 93 * A page set holds information about a buffer used for DDP. The page 94 * set holds resources such as the VM pages backing the buffer (either 95 * held or wired) and the page pods associated with the buffer. 96 * Recently used page sets are cached to allow for efficient reuse of 97 * buffers (avoiding the need to re-fault in pages, hold them, etc.). 98 * Note that cached page sets keep the backing pages wired. The 99 * number of wired pages is capped by only allowing for two wired 100 * pagesets per connection. This is not a perfect cap, but is a 101 * trade-off for performance. 102 * 103 * If an application ping-pongs two buffers for a connection via 104 * aio_read(2) then those buffers should remain wired and expensive VM 105 * fault lookups should be avoided after each buffer has been used 106 * once. If an application uses more than two buffers then this will 107 * fall back to doing expensive VM fault lookups for each operation. 108 */ 109 static void 110 free_pageset(struct tom_data *td, struct pageset *ps) 111 { 112 vm_page_t p; 113 int i; 114 115 if (ps->prsv.prsv_nppods > 0) 116 t4_free_page_pods(&ps->prsv); 117 118 for (i = 0; i < ps->npages; i++) { 119 p = ps->pages[i]; 120 vm_page_unwire(p, PQ_INACTIVE); 121 } 122 mtx_lock(&ddp_orphan_pagesets_lock); 123 TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); 124 taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); 125 mtx_unlock(&ddp_orphan_pagesets_lock); 126 } 127 128 static void 129 ddp_free_orphan_pagesets(void *context, int pending) 130 { 131 struct pageset *ps; 132 133 mtx_lock(&ddp_orphan_pagesets_lock); 134 while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { 135 ps = TAILQ_FIRST(&ddp_orphan_pagesets); 136 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); 137 mtx_unlock(&ddp_orphan_pagesets_lock); 138 if (ps->vm) 139 vmspace_free(ps->vm); 140 free(ps, M_CXGBE); 141 mtx_lock(&ddp_orphan_pagesets_lock); 142 } 143 mtx_unlock(&ddp_orphan_pagesets_lock); 144 } 145 146 static void 147 recycle_pageset(struct toepcb *toep, struct pageset *ps) 148 { 149 150 DDP_ASSERT_LOCKED(toep); 151 if (!(toep->ddp.flags & DDP_DEAD)) { 152 KASSERT(toep->ddp.cached_count + toep->ddp.active_count < 153 nitems(toep->ddp.db), ("too many wired pagesets")); 154 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); 155 toep->ddp.cached_count++; 156 } else 157 free_pageset(toep->td, ps); 158 } 159 160 static void 161 ddp_complete_one(struct kaiocb *job, int error) 162 { 163 long copied; 164 165 /* 166 * If this job had copied data out of the socket buffer before 167 * it was cancelled, report it as a short read rather than an 168 * error. 169 */ 170 copied = job->aio_received; 171 if (copied != 0 || error == 0) 172 aio_complete(job, copied, 0); 173 else 174 aio_complete(job, -1, error); 175 } 176 177 static void 178 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) 179 { 180 181 if (db->job) { 182 /* 183 * XXX: If we are un-offloading the socket then we 184 * should requeue these on the socket somehow. If we 185 * got a FIN from the remote end, then this completes 186 * any remaining requests with an EOF read. 187 */ 188 if (!aio_clear_cancel_function(db->job)) 189 ddp_complete_one(db->job, 0); 190 } 191 192 if (db->ps) 193 free_pageset(td, db->ps); 194 } 195 196 void 197 ddp_init_toep(struct toepcb *toep) 198 { 199 200 TAILQ_INIT(&toep->ddp.aiojobq); 201 TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); 202 toep->ddp.flags = DDP_OK; 203 toep->ddp.active_id = -1; 204 mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); 205 } 206 207 void 208 ddp_uninit_toep(struct toepcb *toep) 209 { 210 211 mtx_destroy(&toep->ddp.lock); 212 } 213 214 void 215 release_ddp_resources(struct toepcb *toep) 216 { 217 struct pageset *ps; 218 int i; 219 220 DDP_LOCK(toep); 221 toep->ddp.flags |= DDP_DEAD; 222 for (i = 0; i < nitems(toep->ddp.db); i++) { 223 free_ddp_buffer(toep->td, &toep->ddp.db[i]); 224 } 225 while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { 226 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 227 free_pageset(toep->td, ps); 228 } 229 ddp_complete_all(toep, 0); 230 DDP_UNLOCK(toep); 231 } 232 233 #ifdef INVARIANTS 234 void 235 ddp_assert_empty(struct toepcb *toep) 236 { 237 int i; 238 239 MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); 240 for (i = 0; i < nitems(toep->ddp.db); i++) { 241 MPASS(toep->ddp.db[i].job == NULL); 242 MPASS(toep->ddp.db[i].ps == NULL); 243 } 244 MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); 245 MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); 246 } 247 #endif 248 249 static void 250 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, 251 unsigned int db_idx) 252 { 253 unsigned int db_flag; 254 255 toep->ddp.active_count--; 256 if (toep->ddp.active_id == db_idx) { 257 if (toep->ddp.active_count == 0) { 258 KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, 259 ("%s: active_count mismatch", __func__)); 260 toep->ddp.active_id = -1; 261 } else 262 toep->ddp.active_id ^= 1; 263 #ifdef VERBOSE_TRACES 264 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, 265 toep->tid, toep->ddp.active_id); 266 #endif 267 } else { 268 KASSERT(toep->ddp.active_count != 0 && 269 toep->ddp.active_id != -1, 270 ("%s: active count mismatch", __func__)); 271 } 272 273 db->cancel_pending = 0; 274 db->job = NULL; 275 recycle_pageset(toep, db->ps); 276 db->ps = NULL; 277 278 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 279 KASSERT(toep->ddp.flags & db_flag, 280 ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", 281 __func__, toep, toep->ddp.flags)); 282 toep->ddp.flags &= ~db_flag; 283 } 284 285 /* XXX: handle_ddp_data code duplication */ 286 void 287 insert_ddp_data(struct toepcb *toep, uint32_t n) 288 { 289 struct inpcb *inp = toep->inp; 290 struct tcpcb *tp = intotcpcb(inp); 291 struct ddp_buffer *db; 292 struct kaiocb *job; 293 size_t placed; 294 long copied; 295 unsigned int db_flag, db_idx; 296 297 INP_WLOCK_ASSERT(inp); 298 DDP_ASSERT_LOCKED(toep); 299 300 tp->rcv_nxt += n; 301 #ifndef USE_DDP_RX_FLOW_CONTROL 302 KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); 303 tp->rcv_wnd -= n; 304 #endif 305 CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", 306 __func__, n); 307 while (toep->ddp.active_count > 0) { 308 MPASS(toep->ddp.active_id != -1); 309 db_idx = toep->ddp.active_id; 310 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 311 MPASS((toep->ddp.flags & db_flag) != 0); 312 db = &toep->ddp.db[db_idx]; 313 job = db->job; 314 copied = job->aio_received; 315 placed = n; 316 if (placed > job->uaiocb.aio_nbytes - copied) 317 placed = job->uaiocb.aio_nbytes - copied; 318 if (placed > 0) 319 job->msgrcv = 1; 320 if (!aio_clear_cancel_function(job)) { 321 /* 322 * Update the copied length for when 323 * t4_aio_cancel_active() completes this 324 * request. 325 */ 326 job->aio_received += placed; 327 } else if (copied + placed != 0) { 328 CTR4(KTR_CXGBE, 329 "%s: completing %p (copied %ld, placed %lu)", 330 __func__, job, copied, placed); 331 /* XXX: This always completes if there is some data. */ 332 aio_complete(job, copied + placed, 0); 333 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { 334 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 335 toep->ddp.waiting_count++; 336 } else 337 aio_cancel(job); 338 n -= placed; 339 complete_ddp_buffer(toep, db, db_idx); 340 } 341 342 MPASS(n == 0); 343 } 344 345 /* SET_TCB_FIELD sent as a ULP command looks like this */ 346 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ 347 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) 348 349 /* RX_DATA_ACK sent as a ULP command looks like this */ 350 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ 351 sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) 352 353 static inline void * 354 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, 355 uint64_t word, uint64_t mask, uint64_t val) 356 { 357 struct ulptx_idata *ulpsc; 358 struct cpl_set_tcb_field_core *req; 359 360 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 361 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); 362 363 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 364 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 365 ulpsc->len = htobe32(sizeof(*req)); 366 367 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); 368 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); 369 req->reply_ctrl = htobe16(V_NO_REPLY(1) | 370 V_QUEUENO(toep->ofld_rxq->iq.abs_id)); 371 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); 372 req->mask = htobe64(mask); 373 req->val = htobe64(val); 374 375 ulpsc = (struct ulptx_idata *)(req + 1); 376 if (LEN__SET_TCB_FIELD_ULP % 16) { 377 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 378 ulpsc->len = htobe32(0); 379 return (ulpsc + 1); 380 } 381 return (ulpsc); 382 } 383 384 static inline void * 385 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) 386 { 387 struct ulptx_idata *ulpsc; 388 struct cpl_rx_data_ack_core *req; 389 390 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 391 ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); 392 393 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 394 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 395 ulpsc->len = htobe32(sizeof(*req)); 396 397 req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); 398 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); 399 req->credit_dack = htobe32(F_RX_MODULATE_RX); 400 401 ulpsc = (struct ulptx_idata *)(req + 1); 402 if (LEN__RX_DATA_ACK_ULP % 16) { 403 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); 404 ulpsc->len = htobe32(0); 405 return (ulpsc + 1); 406 } 407 return (ulpsc); 408 } 409 410 static struct wrqe * 411 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, 412 struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) 413 { 414 struct wrqe *wr; 415 struct work_request_hdr *wrh; 416 struct ulp_txpkt *ulpmc; 417 int len; 418 419 KASSERT(db_idx == 0 || db_idx == 1, 420 ("%s: bad DDP buffer index %d", __func__, db_idx)); 421 422 /* 423 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an 424 * RX_DATA_ACK (with RX_MODULATE to speed up delivery). 425 * 426 * The work request header is 16B and always ends at a 16B boundary. 427 * The ULPTX master commands that follow must all end at 16B boundaries 428 * too so we round up the size to 16. 429 */ 430 len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + 431 roundup2(LEN__RX_DATA_ACK_ULP, 16); 432 433 wr = alloc_wrqe(len, toep->ctrlq); 434 if (wr == NULL) 435 return (NULL); 436 wrh = wrtod(wr); 437 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 438 ulpmc = (struct ulp_txpkt *)(wrh + 1); 439 440 /* Write the buffer's tag */ 441 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 442 W_TCB_RX_DDP_BUF0_TAG + db_idx, 443 V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), 444 V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); 445 446 /* Update the current offset in the DDP buffer and its total length */ 447 if (db_idx == 0) 448 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 449 W_TCB_RX_DDP_BUF0_OFFSET, 450 V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | 451 V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), 452 V_TCB_RX_DDP_BUF0_OFFSET(offset) | 453 V_TCB_RX_DDP_BUF0_LEN(ps->len)); 454 else 455 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, 456 W_TCB_RX_DDP_BUF1_OFFSET, 457 V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | 458 V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), 459 V_TCB_RX_DDP_BUF1_OFFSET(offset) | 460 V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); 461 462 /* Update DDP flags */ 463 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, 464 ddp_flags_mask, ddp_flags); 465 466 /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ 467 ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); 468 469 return (wr); 470 } 471 472 static int 473 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) 474 { 475 uint32_t report = be32toh(ddp_report); 476 unsigned int db_idx; 477 struct inpcb *inp = toep->inp; 478 struct ddp_buffer *db; 479 struct tcpcb *tp; 480 struct socket *so; 481 struct sockbuf *sb; 482 struct kaiocb *job; 483 long copied; 484 485 db_idx = report & F_DDP_BUF_IDX ? 1 : 0; 486 487 if (__predict_false(!(report & F_DDP_INV))) 488 CXGBE_UNIMPLEMENTED("DDP buffer still valid"); 489 490 INP_WLOCK(inp); 491 so = inp_inpcbtosocket(inp); 492 sb = &so->so_rcv; 493 DDP_LOCK(toep); 494 495 KASSERT(toep->ddp.active_id == db_idx, 496 ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, 497 toep->ddp.active_id, toep->tid)); 498 db = &toep->ddp.db[db_idx]; 499 job = db->job; 500 501 if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) { 502 /* 503 * This can happen due to an administrative tcpdrop(8). 504 * Just fail the request with ECONNRESET. 505 */ 506 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", 507 __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); 508 if (aio_clear_cancel_function(job)) 509 ddp_complete_one(job, ECONNRESET); 510 goto completed; 511 } 512 513 tp = intotcpcb(inp); 514 515 /* 516 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the 517 * sequence number of the next byte to receive. The length of 518 * the data received for this message must be computed by 519 * comparing the new and old values of rcv_nxt. 520 * 521 * For RX_DATA_DDP, len might be non-zero, but it is only the 522 * length of the most recent DMA. It does not include the 523 * total length of the data received since the previous update 524 * for this DDP buffer. rcv_nxt is the sequence number of the 525 * first received byte from the most recent DMA. 526 */ 527 len += be32toh(rcv_nxt) - tp->rcv_nxt; 528 tp->rcv_nxt += len; 529 tp->t_rcvtime = ticks; 530 #ifndef USE_DDP_RX_FLOW_CONTROL 531 KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); 532 tp->rcv_wnd -= len; 533 #endif 534 #ifdef VERBOSE_TRACES 535 CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, 536 toep->tid, db_idx, len, report); 537 #endif 538 539 /* receive buffer autosize */ 540 MPASS(toep->vnet == so->so_vnet); 541 CURVNET_SET(toep->vnet); 542 SOCKBUF_LOCK(sb); 543 if (sb->sb_flags & SB_AUTOSIZE && 544 V_tcp_do_autorcvbuf && 545 sb->sb_hiwat < V_tcp_autorcvbuf_max && 546 len > (sbspace(sb) / 8 * 7)) { 547 struct adapter *sc = td_adapter(toep->td); 548 unsigned int hiwat = sb->sb_hiwat; 549 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, 550 V_tcp_autorcvbuf_max); 551 552 if (!sbreserve_locked(sb, newsize, so, NULL)) 553 sb->sb_flags &= ~SB_AUTOSIZE; 554 } 555 SOCKBUF_UNLOCK(sb); 556 CURVNET_RESTORE(); 557 558 job->msgrcv = 1; 559 if (db->cancel_pending) { 560 /* 561 * Update the job's length but defer completion to the 562 * TCB_RPL callback. 563 */ 564 job->aio_received += len; 565 goto out; 566 } else if (!aio_clear_cancel_function(job)) { 567 /* 568 * Update the copied length for when 569 * t4_aio_cancel_active() completes this request. 570 */ 571 job->aio_received += len; 572 } else { 573 copied = job->aio_received; 574 #ifdef VERBOSE_TRACES 575 CTR5(KTR_CXGBE, 576 "%s: tid %u, completing %p (copied %ld, placed %d)", 577 __func__, toep->tid, job, copied, len); 578 #endif 579 aio_complete(job, copied + len, 0); 580 t4_rcvd(&toep->td->tod, tp); 581 } 582 583 completed: 584 complete_ddp_buffer(toep, db, db_idx); 585 if (toep->ddp.waiting_count > 0) 586 ddp_queue_toep(toep); 587 out: 588 DDP_UNLOCK(toep); 589 INP_WUNLOCK(inp); 590 591 return (0); 592 } 593 594 void 595 handle_ddp_indicate(struct toepcb *toep) 596 { 597 598 DDP_ASSERT_LOCKED(toep); 599 MPASS(toep->ddp.active_count == 0); 600 MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); 601 if (toep->ddp.waiting_count == 0) { 602 /* 603 * The pending requests that triggered the request for an 604 * an indicate were cancelled. Those cancels should have 605 * already disabled DDP. Just ignore this as the data is 606 * going into the socket buffer anyway. 607 */ 608 return; 609 } 610 CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, 611 toep->tid, toep->ddp.waiting_count); 612 ddp_queue_toep(toep); 613 } 614 615 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); 616 617 static int 618 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 619 { 620 struct adapter *sc = iq->adapter; 621 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); 622 unsigned int tid = GET_TID(cpl); 623 unsigned int db_idx; 624 struct toepcb *toep; 625 struct inpcb *inp; 626 struct ddp_buffer *db; 627 struct kaiocb *job; 628 long copied; 629 630 if (cpl->status != CPL_ERR_NONE) 631 panic("XXX: tcp_rpl failed: %d", cpl->status); 632 633 toep = lookup_tid(sc, tid); 634 inp = toep->inp; 635 switch (cpl->cookie) { 636 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): 637 case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): 638 /* 639 * XXX: This duplicates a lot of code with handle_ddp_data(). 640 */ 641 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; 642 MPASS(db_idx < nitems(toep->ddp.db)); 643 INP_WLOCK(inp); 644 DDP_LOCK(toep); 645 db = &toep->ddp.db[db_idx]; 646 647 /* 648 * handle_ddp_data() should leave the job around until 649 * this callback runs once a cancel is pending. 650 */ 651 MPASS(db != NULL); 652 MPASS(db->job != NULL); 653 MPASS(db->cancel_pending); 654 655 /* 656 * XXX: It's not clear what happens if there is data 657 * placed when the buffer is invalidated. I suspect we 658 * need to read the TCB to see how much data was placed. 659 * 660 * For now this just pretends like nothing was placed. 661 * 662 * XXX: Note that if we did check the PCB we would need to 663 * also take care of updating the tp, etc. 664 */ 665 job = db->job; 666 copied = job->aio_received; 667 if (copied == 0) { 668 CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); 669 aio_cancel(job); 670 } else { 671 CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", 672 __func__, job, copied); 673 aio_complete(job, copied, 0); 674 t4_rcvd(&toep->td->tod, intotcpcb(inp)); 675 } 676 677 complete_ddp_buffer(toep, db, db_idx); 678 if (toep->ddp.waiting_count > 0) 679 ddp_queue_toep(toep); 680 DDP_UNLOCK(toep); 681 INP_WUNLOCK(inp); 682 break; 683 default: 684 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", 685 G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); 686 } 687 688 return (0); 689 } 690 691 void 692 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) 693 { 694 struct ddp_buffer *db; 695 struct kaiocb *job; 696 long copied; 697 unsigned int db_flag, db_idx; 698 int len, placed; 699 700 INP_WLOCK_ASSERT(toep->inp); 701 DDP_ASSERT_LOCKED(toep); 702 703 len = be32toh(rcv_nxt) - tp->rcv_nxt; 704 tp->rcv_nxt += len; 705 706 while (toep->ddp.active_count > 0) { 707 MPASS(toep->ddp.active_id != -1); 708 db_idx = toep->ddp.active_id; 709 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; 710 MPASS((toep->ddp.flags & db_flag) != 0); 711 db = &toep->ddp.db[db_idx]; 712 job = db->job; 713 copied = job->aio_received; 714 placed = len; 715 if (placed > job->uaiocb.aio_nbytes - copied) 716 placed = job->uaiocb.aio_nbytes - copied; 717 if (placed > 0) 718 job->msgrcv = 1; 719 if (!aio_clear_cancel_function(job)) { 720 /* 721 * Update the copied length for when 722 * t4_aio_cancel_active() completes this 723 * request. 724 */ 725 job->aio_received += placed; 726 } else { 727 CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", 728 __func__, toep->tid, db_idx, placed); 729 aio_complete(job, copied + placed, 0); 730 } 731 len -= placed; 732 complete_ddp_buffer(toep, db, db_idx); 733 } 734 735 MPASS(len == 0); 736 ddp_complete_all(toep, 0); 737 } 738 739 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ 740 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ 741 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ 742 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) 743 744 extern cpl_handler_t t4_cpl_handler[]; 745 746 static int 747 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 748 { 749 struct adapter *sc = iq->adapter; 750 const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); 751 unsigned int tid = GET_TID(cpl); 752 uint32_t vld; 753 struct toepcb *toep = lookup_tid(sc, tid); 754 755 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 756 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 757 KASSERT(!(toep->flags & TPF_SYNQE), 758 ("%s: toep %p claims to be a synq entry", __func__, toep)); 759 760 vld = be32toh(cpl->ddpvld); 761 if (__predict_false(vld & DDP_ERR)) { 762 panic("%s: DDP error 0x%x (tid %d, toep %p)", 763 __func__, vld, tid, toep); 764 } 765 766 if (ulp_mode(toep) == ULP_MODE_ISCSI) { 767 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); 768 return (0); 769 } 770 771 handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); 772 773 return (0); 774 } 775 776 static int 777 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, 778 struct mbuf *m) 779 { 780 struct adapter *sc = iq->adapter; 781 const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); 782 unsigned int tid = GET_TID(cpl); 783 struct toepcb *toep = lookup_tid(sc, tid); 784 785 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); 786 KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); 787 KASSERT(!(toep->flags & TPF_SYNQE), 788 ("%s: toep %p claims to be a synq entry", __func__, toep)); 789 790 handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); 791 792 return (0); 793 } 794 795 static void 796 enable_ddp(struct adapter *sc, struct toepcb *toep) 797 { 798 799 KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, 800 ("%s: toep %p has bad ddp_flags 0x%x", 801 __func__, toep, toep->ddp.flags)); 802 803 CTR3(KTR_CXGBE, "%s: tid %u (time %u)", 804 __func__, toep->tid, time_uptime); 805 806 DDP_ASSERT_LOCKED(toep); 807 toep->ddp.flags |= DDP_SC_REQ; 808 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, 809 V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | 810 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | 811 V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), 812 V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); 813 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 814 V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); 815 } 816 817 static int 818 calculate_hcf(int n1, int n2) 819 { 820 int a, b, t; 821 822 if (n1 <= n2) { 823 a = n1; 824 b = n2; 825 } else { 826 a = n2; 827 b = n1; 828 } 829 830 while (a != 0) { 831 t = a; 832 a = b % a; 833 b = t; 834 } 835 836 return (b); 837 } 838 839 static inline int 840 pages_to_nppods(int npages, int ddp_page_shift) 841 { 842 843 MPASS(ddp_page_shift >= PAGE_SHIFT); 844 845 return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); 846 } 847 848 static int 849 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, 850 struct ppod_reservation *prsv) 851 { 852 vmem_addr_t addr; /* relative to start of region */ 853 854 if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, 855 &addr) != 0) 856 return (ENOMEM); 857 858 CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", 859 __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, 860 nppods, 1 << pr->pr_page_shift[pgsz_idx]); 861 862 /* 863 * The hardware tagmask includes an extra invalid bit but the arena was 864 * seeded with valid values only. An allocation out of this arena will 865 * fit inside the tagmask but won't have the invalid bit set. 866 */ 867 MPASS((addr & pr->pr_tag_mask) == addr); 868 MPASS((addr & pr->pr_invalid_bit) == 0); 869 870 prsv->prsv_pr = pr; 871 prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; 872 prsv->prsv_nppods = nppods; 873 874 return (0); 875 } 876 877 int 878 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) 879 { 880 int i, hcf, seglen, idx, nppods; 881 struct ppod_reservation *prsv = &ps->prsv; 882 883 KASSERT(prsv->prsv_nppods == 0, 884 ("%s: page pods already allocated", __func__)); 885 886 /* 887 * The DDP page size is unrelated to the VM page size. We combine 888 * contiguous physical pages into larger segments to get the best DDP 889 * page size possible. This is the largest of the four sizes in 890 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in 891 * the page list. 892 */ 893 hcf = 0; 894 for (i = 0; i < ps->npages; i++) { 895 seglen = PAGE_SIZE; 896 while (i < ps->npages - 1 && 897 ps->pages[i]->phys_addr + PAGE_SIZE == 898 ps->pages[i + 1]->phys_addr) { 899 seglen += PAGE_SIZE; 900 i++; 901 } 902 903 hcf = calculate_hcf(hcf, seglen); 904 if (hcf < (1 << pr->pr_page_shift[1])) { 905 idx = 0; 906 goto have_pgsz; /* give up, short circuit */ 907 } 908 } 909 910 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 911 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 912 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 913 if ((hcf & PR_PAGE_MASK(idx)) == 0) 914 break; 915 } 916 #undef PR_PAGE_MASK 917 918 have_pgsz: 919 MPASS(idx <= M_PPOD_PGSZ); 920 921 nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]); 922 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 923 return (0); 924 MPASS(prsv->prsv_nppods > 0); 925 926 return (1); 927 } 928 929 int 930 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, 931 struct ppod_reservation *prsv) 932 { 933 int hcf, seglen, idx, npages, nppods; 934 uintptr_t start_pva, end_pva, pva, p1; 935 936 MPASS(buf > 0); 937 MPASS(len > 0); 938 939 /* 940 * The DDP page size is unrelated to the VM page size. We combine 941 * contiguous physical pages into larger segments to get the best DDP 942 * page size possible. This is the largest of the four sizes in 943 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 944 * in the page list. 945 */ 946 hcf = 0; 947 start_pva = trunc_page(buf); 948 end_pva = trunc_page(buf + len - 1); 949 pva = start_pva; 950 while (pva <= end_pva) { 951 seglen = PAGE_SIZE; 952 p1 = pmap_kextract(pva); 953 pva += PAGE_SIZE; 954 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { 955 seglen += PAGE_SIZE; 956 pva += PAGE_SIZE; 957 } 958 959 hcf = calculate_hcf(hcf, seglen); 960 if (hcf < (1 << pr->pr_page_shift[1])) { 961 idx = 0; 962 goto have_pgsz; /* give up, short circuit */ 963 } 964 } 965 966 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 967 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 968 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 969 if ((hcf & PR_PAGE_MASK(idx)) == 0) 970 break; 971 } 972 #undef PR_PAGE_MASK 973 974 have_pgsz: 975 MPASS(idx <= M_PPOD_PGSZ); 976 977 npages = 1; 978 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 979 nppods = howmany(npages, PPOD_PAGES); 980 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 981 return (ENOMEM); 982 MPASS(prsv->prsv_nppods > 0); 983 984 return (0); 985 } 986 987 int 988 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, 989 int entries, struct ppod_reservation *prsv) 990 { 991 int hcf, seglen, idx = 0, npages, nppods, i, len; 992 uintptr_t start_pva, end_pva, pva, p1 ; 993 vm_offset_t buf; 994 struct ctl_sg_entry *sge; 995 996 MPASS(entries > 0); 997 MPASS(sgl); 998 999 /* 1000 * The DDP page size is unrelated to the VM page size. We combine 1001 * contiguous physical pages into larger segments to get the best DDP 1002 * page size possible. This is the largest of the four sizes in 1003 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes 1004 * in the page list. 1005 */ 1006 hcf = 0; 1007 for (i = entries - 1; i >= 0; i--) { 1008 sge = sgl + i; 1009 buf = (vm_offset_t)sge->addr; 1010 len = sge->len; 1011 start_pva = trunc_page(buf); 1012 end_pva = trunc_page(buf + len - 1); 1013 pva = start_pva; 1014 while (pva <= end_pva) { 1015 seglen = PAGE_SIZE; 1016 p1 = pmap_kextract(pva); 1017 pva += PAGE_SIZE; 1018 while (pva <= end_pva && p1 + seglen == 1019 pmap_kextract(pva)) { 1020 seglen += PAGE_SIZE; 1021 pva += PAGE_SIZE; 1022 } 1023 1024 hcf = calculate_hcf(hcf, seglen); 1025 if (hcf < (1 << pr->pr_page_shift[1])) { 1026 idx = 0; 1027 goto have_pgsz; /* give up, short circuit */ 1028 } 1029 } 1030 } 1031 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) 1032 MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ 1033 for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { 1034 if ((hcf & PR_PAGE_MASK(idx)) == 0) 1035 break; 1036 } 1037 #undef PR_PAGE_MASK 1038 1039 have_pgsz: 1040 MPASS(idx <= M_PPOD_PGSZ); 1041 1042 npages = 0; 1043 while (entries--) { 1044 npages++; 1045 start_pva = trunc_page((vm_offset_t)sgl->addr); 1046 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); 1047 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; 1048 sgl = sgl + 1; 1049 } 1050 nppods = howmany(npages, PPOD_PAGES); 1051 if (alloc_page_pods(pr, nppods, idx, prsv) != 0) 1052 return (ENOMEM); 1053 MPASS(prsv->prsv_nppods > 0); 1054 return (0); 1055 } 1056 1057 void 1058 t4_free_page_pods(struct ppod_reservation *prsv) 1059 { 1060 struct ppod_region *pr = prsv->prsv_pr; 1061 vmem_addr_t addr; 1062 1063 MPASS(prsv != NULL); 1064 MPASS(prsv->prsv_nppods != 0); 1065 1066 addr = prsv->prsv_tag & pr->pr_tag_mask; 1067 MPASS((addr & pr->pr_invalid_bit) == 0); 1068 1069 CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, 1070 pr->pr_arena, addr, prsv->prsv_nppods); 1071 1072 vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); 1073 prsv->prsv_nppods = 0; 1074 } 1075 1076 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) 1077 1078 int 1079 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, 1080 struct pageset *ps) 1081 { 1082 struct wrqe *wr; 1083 struct ulp_mem_io *ulpmc; 1084 struct ulptx_idata *ulpsc; 1085 struct pagepod *ppod; 1086 int i, j, k, n, chunk, len, ddp_pgsz, idx; 1087 u_int ppod_addr; 1088 uint32_t cmd; 1089 struct ppod_reservation *prsv = &ps->prsv; 1090 struct ppod_region *pr = prsv->prsv_pr; 1091 1092 KASSERT(!(ps->flags & PS_PPODS_WRITTEN), 1093 ("%s: page pods already written", __func__)); 1094 MPASS(prsv->prsv_nppods > 0); 1095 1096 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1097 if (is_t4(sc)) 1098 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1099 else 1100 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1101 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1102 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1103 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1104 1105 /* How many page pods are we writing in this cycle */ 1106 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1107 chunk = PPOD_SZ(n); 1108 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1109 1110 wr = alloc_wrqe(len, wrq); 1111 if (wr == NULL) 1112 return (ENOMEM); /* ok to just bail out */ 1113 ulpmc = wrtod(wr); 1114 1115 INIT_ULPTX_WR(ulpmc, len, 0, 0); 1116 ulpmc->cmd = cmd; 1117 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1118 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1119 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1120 1121 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1122 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1123 ulpsc->len = htobe32(chunk); 1124 1125 ppod = (struct pagepod *)(ulpsc + 1); 1126 for (j = 0; j < n; i++, j++, ppod++) { 1127 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1128 V_PPOD_TID(tid) | prsv->prsv_tag); 1129 ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | 1130 V_PPOD_OFST(ps->offset)); 1131 ppod->rsvd = 0; 1132 idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); 1133 for (k = 0; k < nitems(ppod->addr); k++) { 1134 if (idx < ps->npages) { 1135 ppod->addr[k] = 1136 htobe64(ps->pages[idx]->phys_addr); 1137 idx += ddp_pgsz / PAGE_SIZE; 1138 } else 1139 ppod->addr[k] = 0; 1140 #if 0 1141 CTR5(KTR_CXGBE, 1142 "%s: tid %d ppod[%d]->addr[%d] = %p", 1143 __func__, toep->tid, i, k, 1144 htobe64(ppod->addr[k])); 1145 #endif 1146 } 1147 1148 } 1149 1150 t4_wrq_tx(sc, wr); 1151 } 1152 ps->flags |= PS_PPODS_WRITTEN; 1153 1154 return (0); 1155 } 1156 1157 static struct mbuf * 1158 alloc_raw_wr_mbuf(int len) 1159 { 1160 struct mbuf *m; 1161 1162 if (len <= MHLEN) 1163 m = m_gethdr(M_NOWAIT, MT_DATA); 1164 else if (len <= MCLBYTES) 1165 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1166 else 1167 m = NULL; 1168 if (m == NULL) 1169 return (NULL); 1170 m->m_pkthdr.len = len; 1171 m->m_len = len; 1172 set_mbuf_raw_wr(m, true); 1173 return (m); 1174 } 1175 1176 int 1177 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, 1178 struct ppod_reservation *prsv, vm_offset_t buf, int buflen, 1179 struct mbufq *wrq) 1180 { 1181 struct ulp_mem_io *ulpmc; 1182 struct ulptx_idata *ulpsc; 1183 struct pagepod *ppod; 1184 int i, j, k, n, chunk, len, ddp_pgsz; 1185 u_int ppod_addr, offset; 1186 uint32_t cmd; 1187 struct ppod_region *pr = prsv->prsv_pr; 1188 uintptr_t end_pva, pva, pa; 1189 struct mbuf *m; 1190 1191 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1192 if (is_t4(sc)) 1193 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1194 else 1195 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1196 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1197 offset = buf & PAGE_MASK; 1198 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1199 pva = trunc_page(buf); 1200 end_pva = trunc_page(buf + buflen - 1); 1201 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1202 1203 /* How many page pods are we writing in this cycle */ 1204 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1205 MPASS(n > 0); 1206 chunk = PPOD_SZ(n); 1207 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1208 1209 m = alloc_raw_wr_mbuf(len); 1210 if (m == NULL) 1211 return (ENOMEM); 1212 ulpmc = mtod(m, struct ulp_mem_io *); 1213 1214 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1215 ulpmc->cmd = cmd; 1216 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1217 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1218 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1219 1220 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1221 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1222 ulpsc->len = htobe32(chunk); 1223 1224 ppod = (struct pagepod *)(ulpsc + 1); 1225 for (j = 0; j < n; i++, j++, ppod++) { 1226 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1227 V_PPOD_TID(toep->tid) | 1228 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1229 ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | 1230 V_PPOD_OFST(offset)); 1231 ppod->rsvd = 0; 1232 1233 for (k = 0; k < nitems(ppod->addr); k++) { 1234 if (pva > end_pva) 1235 ppod->addr[k] = 0; 1236 else { 1237 pa = pmap_kextract(pva); 1238 ppod->addr[k] = htobe64(pa); 1239 pva += ddp_pgsz; 1240 } 1241 #if 0 1242 CTR5(KTR_CXGBE, 1243 "%s: tid %d ppod[%d]->addr[%d] = %p", 1244 __func__, toep->tid, i, k, 1245 htobe64(ppod->addr[k])); 1246 #endif 1247 } 1248 1249 /* 1250 * Walk back 1 segment so that the first address in the 1251 * next pod is the same as the last one in the current 1252 * pod. 1253 */ 1254 pva -= ddp_pgsz; 1255 } 1256 1257 mbufq_enqueue(wrq, m); 1258 } 1259 1260 MPASS(pva <= end_pva); 1261 1262 return (0); 1263 } 1264 1265 int 1266 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, 1267 struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, 1268 int xferlen, struct mbufq *wrq) 1269 { 1270 struct ulp_mem_io *ulpmc; 1271 struct ulptx_idata *ulpsc; 1272 struct pagepod *ppod; 1273 int i, j, k, n, chunk, len, ddp_pgsz; 1274 u_int ppod_addr, offset, sg_offset = 0; 1275 uint32_t cmd; 1276 struct ppod_region *pr = prsv->prsv_pr; 1277 uintptr_t pva, pa; 1278 struct mbuf *m; 1279 1280 MPASS(sgl != NULL); 1281 MPASS(entries > 0); 1282 cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); 1283 if (is_t4(sc)) 1284 cmd |= htobe32(F_ULP_MEMIO_ORDER); 1285 else 1286 cmd |= htobe32(F_T5_ULP_MEMIO_IMM); 1287 ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; 1288 offset = (vm_offset_t)sgl->addr & PAGE_MASK; 1289 ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); 1290 pva = trunc_page((vm_offset_t)sgl->addr); 1291 for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { 1292 1293 /* How many page pods are we writing in this cycle */ 1294 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); 1295 MPASS(n > 0); 1296 chunk = PPOD_SZ(n); 1297 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); 1298 1299 m = alloc_raw_wr_mbuf(len); 1300 if (m == NULL) 1301 return (ENOMEM); 1302 ulpmc = mtod(m, struct ulp_mem_io *); 1303 1304 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); 1305 ulpmc->cmd = cmd; 1306 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); 1307 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); 1308 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); 1309 1310 ulpsc = (struct ulptx_idata *)(ulpmc + 1); 1311 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); 1312 ulpsc->len = htobe32(chunk); 1313 1314 ppod = (struct pagepod *)(ulpsc + 1); 1315 for (j = 0; j < n; i++, j++, ppod++) { 1316 ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | 1317 V_PPOD_TID(toep->tid) | 1318 (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); 1319 ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | 1320 V_PPOD_OFST(offset)); 1321 ppod->rsvd = 0; 1322 1323 for (k = 0; k < nitems(ppod->addr); k++) { 1324 if (entries != 0) { 1325 pa = pmap_kextract(pva + sg_offset); 1326 ppod->addr[k] = htobe64(pa); 1327 } else 1328 ppod->addr[k] = 0; 1329 1330 #if 0 1331 CTR5(KTR_CXGBE, 1332 "%s: tid %d ppod[%d]->addr[%d] = %p", 1333 __func__, toep->tid, i, k, 1334 htobe64(ppod->addr[k])); 1335 #endif 1336 1337 /* 1338 * If this is the last entry in a pod, 1339 * reuse the same entry for first address 1340 * in the next pod. 1341 */ 1342 if (k + 1 == nitems(ppod->addr)) 1343 break; 1344 1345 /* 1346 * Don't move to the next DDP page if the 1347 * sgl is already finished. 1348 */ 1349 if (entries == 0) 1350 continue; 1351 1352 sg_offset += ddp_pgsz; 1353 if (sg_offset == sgl->len) { 1354 /* 1355 * This sgl entry is done. Go 1356 * to the next. 1357 */ 1358 entries--; 1359 sgl++; 1360 sg_offset = 0; 1361 if (entries != 0) 1362 pva = trunc_page( 1363 (vm_offset_t)sgl->addr); 1364 } 1365 } 1366 } 1367 1368 mbufq_enqueue(wrq, m); 1369 } 1370 1371 return (0); 1372 } 1373 1374 /* 1375 * Prepare a pageset for DDP. This sets up page pods. 1376 */ 1377 static int 1378 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) 1379 { 1380 struct tom_data *td = sc->tom_softc; 1381 1382 if (ps->prsv.prsv_nppods == 0 && 1383 !t4_alloc_page_pods_for_ps(&td->pr, ps)) { 1384 return (0); 1385 } 1386 if (!(ps->flags & PS_PPODS_WRITTEN) && 1387 t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { 1388 return (0); 1389 } 1390 1391 return (1); 1392 } 1393 1394 int 1395 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, 1396 const char *name) 1397 { 1398 int i; 1399 1400 MPASS(pr != NULL); 1401 MPASS(r->size > 0); 1402 1403 pr->pr_start = r->start; 1404 pr->pr_len = r->size; 1405 pr->pr_page_shift[0] = 12 + G_HPZ0(psz); 1406 pr->pr_page_shift[1] = 12 + G_HPZ1(psz); 1407 pr->pr_page_shift[2] = 12 + G_HPZ2(psz); 1408 pr->pr_page_shift[3] = 12 + G_HPZ3(psz); 1409 1410 /* The SGL -> page pod algorithm requires the sizes to be in order. */ 1411 for (i = 1; i < nitems(pr->pr_page_shift); i++) { 1412 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) 1413 return (ENXIO); 1414 } 1415 1416 pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); 1417 pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; 1418 if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) 1419 return (ENXIO); 1420 pr->pr_alias_shift = fls(pr->pr_tag_mask); 1421 pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); 1422 1423 pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, 1424 M_FIRSTFIT | M_NOWAIT); 1425 if (pr->pr_arena == NULL) 1426 return (ENOMEM); 1427 1428 return (0); 1429 } 1430 1431 void 1432 t4_free_ppod_region(struct ppod_region *pr) 1433 { 1434 1435 MPASS(pr != NULL); 1436 1437 if (pr->pr_arena) 1438 vmem_destroy(pr->pr_arena); 1439 bzero(pr, sizeof(*pr)); 1440 } 1441 1442 static int 1443 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, 1444 int pgoff, int len) 1445 { 1446 1447 if (ps->start != start || ps->npages != npages || 1448 ps->offset != pgoff || ps->len != len) 1449 return (1); 1450 1451 return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); 1452 } 1453 1454 static int 1455 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) 1456 { 1457 struct vmspace *vm; 1458 vm_map_t map; 1459 vm_offset_t start, end, pgoff; 1460 struct pageset *ps; 1461 int n; 1462 1463 DDP_ASSERT_LOCKED(toep); 1464 1465 /* 1466 * The AIO subsystem will cancel and drain all requests before 1467 * permitting a process to exit or exec, so p_vmspace should 1468 * be stable here. 1469 */ 1470 vm = job->userproc->p_vmspace; 1471 map = &vm->vm_map; 1472 start = (uintptr_t)job->uaiocb.aio_buf; 1473 pgoff = start & PAGE_MASK; 1474 end = round_page(start + job->uaiocb.aio_nbytes); 1475 start = trunc_page(start); 1476 1477 if (end - start > MAX_DDP_BUFFER_SIZE) { 1478 /* 1479 * Truncate the request to a short read. 1480 * Alternatively, we could DDP in chunks to the larger 1481 * buffer, but that would be quite a bit more work. 1482 * 1483 * When truncating, round the request down to avoid 1484 * crossing a cache line on the final transaction. 1485 */ 1486 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); 1487 #ifdef VERBOSE_TRACES 1488 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", 1489 __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, 1490 (unsigned long)(end - (start + pgoff))); 1491 job->uaiocb.aio_nbytes = end - (start + pgoff); 1492 #endif 1493 end = round_page(end); 1494 } 1495 1496 n = atop(end - start); 1497 1498 /* 1499 * Try to reuse a cached pageset. 1500 */ 1501 TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { 1502 if (pscmp(ps, vm, start, n, pgoff, 1503 job->uaiocb.aio_nbytes) == 0) { 1504 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1505 toep->ddp.cached_count--; 1506 *pps = ps; 1507 return (0); 1508 } 1509 } 1510 1511 /* 1512 * If there are too many cached pagesets to create a new one, 1513 * free a pageset before creating a new one. 1514 */ 1515 KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= 1516 nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); 1517 if (toep->ddp.active_count + toep->ddp.cached_count == 1518 nitems(toep->ddp.db)) { 1519 KASSERT(toep->ddp.cached_count > 0, 1520 ("no cached pageset to free")); 1521 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); 1522 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); 1523 toep->ddp.cached_count--; 1524 free_pageset(toep->td, ps); 1525 } 1526 DDP_UNLOCK(toep); 1527 1528 /* Create a new pageset. */ 1529 ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | 1530 M_ZERO); 1531 ps->pages = (vm_page_t *)(ps + 1); 1532 ps->vm_timestamp = map->timestamp; 1533 ps->npages = vm_fault_quick_hold_pages(map, start, end - start, 1534 VM_PROT_WRITE, ps->pages, n); 1535 1536 DDP_LOCK(toep); 1537 if (ps->npages < 0) { 1538 free(ps, M_CXGBE); 1539 return (EFAULT); 1540 } 1541 1542 KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", 1543 ps->npages, n)); 1544 1545 ps->offset = pgoff; 1546 ps->len = job->uaiocb.aio_nbytes; 1547 refcount_acquire(&vm->vm_refcnt); 1548 ps->vm = vm; 1549 ps->start = start; 1550 1551 CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", 1552 __func__, toep->tid, ps, job, ps->npages); 1553 *pps = ps; 1554 return (0); 1555 } 1556 1557 static void 1558 ddp_complete_all(struct toepcb *toep, int error) 1559 { 1560 struct kaiocb *job; 1561 1562 DDP_ASSERT_LOCKED(toep); 1563 while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { 1564 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1565 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1566 toep->ddp.waiting_count--; 1567 if (aio_clear_cancel_function(job)) 1568 ddp_complete_one(job, error); 1569 } 1570 } 1571 1572 static void 1573 aio_ddp_cancel_one(struct kaiocb *job) 1574 { 1575 long copied; 1576 1577 /* 1578 * If this job had copied data out of the socket buffer before 1579 * it was cancelled, report it as a short read rather than an 1580 * error. 1581 */ 1582 copied = job->aio_received; 1583 if (copied != 0) 1584 aio_complete(job, copied, 0); 1585 else 1586 aio_cancel(job); 1587 } 1588 1589 /* 1590 * Called when the main loop wants to requeue a job to retry it later. 1591 * Deals with the race of the job being cancelled while it was being 1592 * examined. 1593 */ 1594 static void 1595 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) 1596 { 1597 1598 DDP_ASSERT_LOCKED(toep); 1599 if (!(toep->ddp.flags & DDP_DEAD) && 1600 aio_set_cancel_function(job, t4_aio_cancel_queued)) { 1601 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); 1602 toep->ddp.waiting_count++; 1603 } else 1604 aio_ddp_cancel_one(job); 1605 } 1606 1607 static void 1608 aio_ddp_requeue(struct toepcb *toep) 1609 { 1610 struct adapter *sc = td_adapter(toep->td); 1611 struct socket *so; 1612 struct sockbuf *sb; 1613 struct inpcb *inp; 1614 struct kaiocb *job; 1615 struct ddp_buffer *db; 1616 size_t copied, offset, resid; 1617 struct pageset *ps; 1618 struct mbuf *m; 1619 uint64_t ddp_flags, ddp_flags_mask; 1620 struct wrqe *wr; 1621 int buf_flag, db_idx, error; 1622 1623 DDP_ASSERT_LOCKED(toep); 1624 1625 restart: 1626 if (toep->ddp.flags & DDP_DEAD) { 1627 MPASS(toep->ddp.waiting_count == 0); 1628 MPASS(toep->ddp.active_count == 0); 1629 return; 1630 } 1631 1632 if (toep->ddp.waiting_count == 0 || 1633 toep->ddp.active_count == nitems(toep->ddp.db)) { 1634 return; 1635 } 1636 1637 job = TAILQ_FIRST(&toep->ddp.aiojobq); 1638 so = job->fd_file->f_data; 1639 sb = &so->so_rcv; 1640 SOCKBUF_LOCK(sb); 1641 1642 /* We will never get anything unless we are or were connected. */ 1643 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { 1644 SOCKBUF_UNLOCK(sb); 1645 ddp_complete_all(toep, ENOTCONN); 1646 return; 1647 } 1648 1649 KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, 1650 ("%s: pending sockbuf data and DDP is active", __func__)); 1651 1652 /* Abort if socket has reported problems. */ 1653 /* XXX: Wait for any queued DDP's to finish and/or flush them? */ 1654 if (so->so_error && sbavail(sb) == 0) { 1655 toep->ddp.waiting_count--; 1656 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1657 if (!aio_clear_cancel_function(job)) { 1658 SOCKBUF_UNLOCK(sb); 1659 goto restart; 1660 } 1661 1662 /* 1663 * If this job has previously copied some data, report 1664 * a short read and leave the error to be reported by 1665 * a future request. 1666 */ 1667 copied = job->aio_received; 1668 if (copied != 0) { 1669 SOCKBUF_UNLOCK(sb); 1670 aio_complete(job, copied, 0); 1671 goto restart; 1672 } 1673 error = so->so_error; 1674 so->so_error = 0; 1675 SOCKBUF_UNLOCK(sb); 1676 aio_complete(job, -1, error); 1677 goto restart; 1678 } 1679 1680 /* 1681 * Door is closed. If there is pending data in the socket buffer, 1682 * deliver it. If there are pending DDP requests, wait for those 1683 * to complete. Once they have completed, return EOF reads. 1684 */ 1685 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1686 SOCKBUF_UNLOCK(sb); 1687 if (toep->ddp.active_count != 0) 1688 return; 1689 ddp_complete_all(toep, 0); 1690 return; 1691 } 1692 1693 /* 1694 * If DDP is not enabled and there is no pending socket buffer 1695 * data, try to enable DDP. 1696 */ 1697 if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { 1698 SOCKBUF_UNLOCK(sb); 1699 1700 /* 1701 * Wait for the card to ACK that DDP is enabled before 1702 * queueing any buffers. Currently this waits for an 1703 * indicate to arrive. This could use a TCB_SET_FIELD_RPL 1704 * message to know that DDP was enabled instead of waiting 1705 * for the indicate which would avoid copying the indicate 1706 * if no data is pending. 1707 * 1708 * XXX: Might want to limit the indicate size to the size 1709 * of the first queued request. 1710 */ 1711 if ((toep->ddp.flags & DDP_SC_REQ) == 0) 1712 enable_ddp(sc, toep); 1713 return; 1714 } 1715 SOCKBUF_UNLOCK(sb); 1716 1717 /* 1718 * If another thread is queueing a buffer for DDP, let it 1719 * drain any work and return. 1720 */ 1721 if (toep->ddp.queueing != NULL) 1722 return; 1723 1724 /* Take the next job to prep it for DDP. */ 1725 toep->ddp.waiting_count--; 1726 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 1727 if (!aio_clear_cancel_function(job)) 1728 goto restart; 1729 toep->ddp.queueing = job; 1730 1731 /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ 1732 error = hold_aio(toep, job, &ps); 1733 if (error != 0) { 1734 ddp_complete_one(job, error); 1735 toep->ddp.queueing = NULL; 1736 goto restart; 1737 } 1738 1739 SOCKBUF_LOCK(sb); 1740 if (so->so_error && sbavail(sb) == 0) { 1741 copied = job->aio_received; 1742 if (copied != 0) { 1743 SOCKBUF_UNLOCK(sb); 1744 recycle_pageset(toep, ps); 1745 aio_complete(job, copied, 0); 1746 toep->ddp.queueing = NULL; 1747 goto restart; 1748 } 1749 1750 error = so->so_error; 1751 so->so_error = 0; 1752 SOCKBUF_UNLOCK(sb); 1753 recycle_pageset(toep, ps); 1754 aio_complete(job, -1, error); 1755 toep->ddp.queueing = NULL; 1756 goto restart; 1757 } 1758 1759 if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { 1760 SOCKBUF_UNLOCK(sb); 1761 recycle_pageset(toep, ps); 1762 if (toep->ddp.active_count != 0) { 1763 /* 1764 * The door is closed, but there are still pending 1765 * DDP buffers. Requeue. These jobs will all be 1766 * completed once those buffers drain. 1767 */ 1768 aio_ddp_requeue_one(toep, job); 1769 toep->ddp.queueing = NULL; 1770 return; 1771 } 1772 ddp_complete_one(job, 0); 1773 ddp_complete_all(toep, 0); 1774 toep->ddp.queueing = NULL; 1775 return; 1776 } 1777 1778 sbcopy: 1779 /* 1780 * If the toep is dead, there shouldn't be any data in the socket 1781 * buffer, so the above case should have handled this. 1782 */ 1783 MPASS(!(toep->ddp.flags & DDP_DEAD)); 1784 1785 /* 1786 * If there is pending data in the socket buffer (either 1787 * from before the requests were queued or a DDP indicate), 1788 * copy those mbufs out directly. 1789 */ 1790 copied = 0; 1791 offset = ps->offset + job->aio_received; 1792 MPASS(job->aio_received <= job->uaiocb.aio_nbytes); 1793 resid = job->uaiocb.aio_nbytes - job->aio_received; 1794 m = sb->sb_mb; 1795 KASSERT(m == NULL || toep->ddp.active_count == 0, 1796 ("%s: sockbuf data with active DDP", __func__)); 1797 while (m != NULL && resid > 0) { 1798 struct iovec iov[1]; 1799 struct uio uio; 1800 int error; 1801 1802 iov[0].iov_base = mtod(m, void *); 1803 iov[0].iov_len = m->m_len; 1804 if (iov[0].iov_len > resid) 1805 iov[0].iov_len = resid; 1806 uio.uio_iov = iov; 1807 uio.uio_iovcnt = 1; 1808 uio.uio_offset = 0; 1809 uio.uio_resid = iov[0].iov_len; 1810 uio.uio_segflg = UIO_SYSSPACE; 1811 uio.uio_rw = UIO_WRITE; 1812 error = uiomove_fromphys(ps->pages, offset + copied, 1813 uio.uio_resid, &uio); 1814 MPASS(error == 0 && uio.uio_resid == 0); 1815 copied += uio.uio_offset; 1816 resid -= uio.uio_offset; 1817 m = m->m_next; 1818 } 1819 if (copied != 0) { 1820 sbdrop_locked(sb, copied); 1821 job->aio_received += copied; 1822 job->msgrcv = 1; 1823 copied = job->aio_received; 1824 inp = sotoinpcb(so); 1825 if (!INP_TRY_WLOCK(inp)) { 1826 /* 1827 * The reference on the socket file descriptor in 1828 * the AIO job should keep 'sb' and 'inp' stable. 1829 * Our caller has a reference on the 'toep' that 1830 * keeps it stable. 1831 */ 1832 SOCKBUF_UNLOCK(sb); 1833 DDP_UNLOCK(toep); 1834 INP_WLOCK(inp); 1835 DDP_LOCK(toep); 1836 SOCKBUF_LOCK(sb); 1837 1838 /* 1839 * If the socket has been closed, we should detect 1840 * that and complete this request if needed on 1841 * the next trip around the loop. 1842 */ 1843 } 1844 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); 1845 INP_WUNLOCK(inp); 1846 if (resid == 0 || toep->ddp.flags & DDP_DEAD) { 1847 /* 1848 * We filled the entire buffer with socket 1849 * data, DDP is not being used, or the socket 1850 * is being shut down, so complete the 1851 * request. 1852 */ 1853 SOCKBUF_UNLOCK(sb); 1854 recycle_pageset(toep, ps); 1855 aio_complete(job, copied, 0); 1856 toep->ddp.queueing = NULL; 1857 goto restart; 1858 } 1859 1860 /* 1861 * If DDP is not enabled, requeue this request and restart. 1862 * This will either enable DDP or wait for more data to 1863 * arrive on the socket buffer. 1864 */ 1865 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { 1866 SOCKBUF_UNLOCK(sb); 1867 recycle_pageset(toep, ps); 1868 aio_ddp_requeue_one(toep, job); 1869 toep->ddp.queueing = NULL; 1870 goto restart; 1871 } 1872 1873 /* 1874 * An indicate might have arrived and been added to 1875 * the socket buffer while it was unlocked after the 1876 * copy to lock the INP. If so, restart the copy. 1877 */ 1878 if (sbavail(sb) != 0) 1879 goto sbcopy; 1880 } 1881 SOCKBUF_UNLOCK(sb); 1882 1883 if (prep_pageset(sc, toep, ps) == 0) { 1884 recycle_pageset(toep, ps); 1885 aio_ddp_requeue_one(toep, job); 1886 toep->ddp.queueing = NULL; 1887 1888 /* 1889 * XXX: Need to retry this later. Mostly need a trigger 1890 * when page pods are freed up. 1891 */ 1892 printf("%s: prep_pageset failed\n", __func__); 1893 return; 1894 } 1895 1896 /* Determine which DDP buffer to use. */ 1897 if (toep->ddp.db[0].job == NULL) { 1898 db_idx = 0; 1899 } else { 1900 MPASS(toep->ddp.db[1].job == NULL); 1901 db_idx = 1; 1902 } 1903 1904 ddp_flags = 0; 1905 ddp_flags_mask = 0; 1906 if (db_idx == 0) { 1907 ddp_flags |= V_TF_DDP_BUF0_VALID(1); 1908 if (so->so_state & SS_NBIO) 1909 ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); 1910 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | 1911 V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | 1912 V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); 1913 buf_flag = DDP_BUF0_ACTIVE; 1914 } else { 1915 ddp_flags |= V_TF_DDP_BUF1_VALID(1); 1916 if (so->so_state & SS_NBIO) 1917 ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); 1918 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | 1919 V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | 1920 V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); 1921 buf_flag = DDP_BUF1_ACTIVE; 1922 } 1923 MPASS((toep->ddp.flags & buf_flag) == 0); 1924 if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { 1925 MPASS(db_idx == 0); 1926 MPASS(toep->ddp.active_id == -1); 1927 MPASS(toep->ddp.active_count == 0); 1928 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); 1929 } 1930 1931 /* 1932 * The TID for this connection should still be valid. If DDP_DEAD 1933 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be 1934 * this far anyway. Even if the socket is closing on the other 1935 * end, the AIO job holds a reference on this end of the socket 1936 * which will keep it open and keep the TCP PCB attached until 1937 * after the job is completed. 1938 */ 1939 wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, 1940 ddp_flags, ddp_flags_mask); 1941 if (wr == NULL) { 1942 recycle_pageset(toep, ps); 1943 aio_ddp_requeue_one(toep, job); 1944 toep->ddp.queueing = NULL; 1945 1946 /* 1947 * XXX: Need a way to kick a retry here. 1948 * 1949 * XXX: We know the fixed size needed and could 1950 * preallocate this using a blocking request at the 1951 * start of the task to avoid having to handle this 1952 * edge case. 1953 */ 1954 printf("%s: mk_update_tcb_for_ddp failed\n", __func__); 1955 return; 1956 } 1957 1958 if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { 1959 free_wrqe(wr); 1960 recycle_pageset(toep, ps); 1961 aio_ddp_cancel_one(job); 1962 toep->ddp.queueing = NULL; 1963 goto restart; 1964 } 1965 1966 #ifdef VERBOSE_TRACES 1967 CTR6(KTR_CXGBE, 1968 "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, 1969 toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); 1970 #endif 1971 /* Give the chip the go-ahead. */ 1972 t4_wrq_tx(sc, wr); 1973 db = &toep->ddp.db[db_idx]; 1974 db->cancel_pending = 0; 1975 db->job = job; 1976 db->ps = ps; 1977 toep->ddp.queueing = NULL; 1978 toep->ddp.flags |= buf_flag; 1979 toep->ddp.active_count++; 1980 if (toep->ddp.active_count == 1) { 1981 MPASS(toep->ddp.active_id == -1); 1982 toep->ddp.active_id = db_idx; 1983 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, 1984 toep->ddp.active_id); 1985 } 1986 goto restart; 1987 } 1988 1989 void 1990 ddp_queue_toep(struct toepcb *toep) 1991 { 1992 1993 DDP_ASSERT_LOCKED(toep); 1994 if (toep->ddp.flags & DDP_TASK_ACTIVE) 1995 return; 1996 toep->ddp.flags |= DDP_TASK_ACTIVE; 1997 hold_toepcb(toep); 1998 soaio_enqueue(&toep->ddp.requeue_task); 1999 } 2000 2001 static void 2002 aio_ddp_requeue_task(void *context, int pending) 2003 { 2004 struct toepcb *toep = context; 2005 2006 DDP_LOCK(toep); 2007 aio_ddp_requeue(toep); 2008 toep->ddp.flags &= ~DDP_TASK_ACTIVE; 2009 DDP_UNLOCK(toep); 2010 2011 free_toepcb(toep); 2012 } 2013 2014 static void 2015 t4_aio_cancel_active(struct kaiocb *job) 2016 { 2017 struct socket *so = job->fd_file->f_data; 2018 struct tcpcb *tp = so_sototcpcb(so); 2019 struct toepcb *toep = tp->t_toe; 2020 struct adapter *sc = td_adapter(toep->td); 2021 uint64_t valid_flag; 2022 int i; 2023 2024 DDP_LOCK(toep); 2025 if (aio_cancel_cleared(job)) { 2026 DDP_UNLOCK(toep); 2027 aio_ddp_cancel_one(job); 2028 return; 2029 } 2030 2031 for (i = 0; i < nitems(toep->ddp.db); i++) { 2032 if (toep->ddp.db[i].job == job) { 2033 /* Should only ever get one cancel request for a job. */ 2034 MPASS(toep->ddp.db[i].cancel_pending == 0); 2035 2036 /* 2037 * Invalidate this buffer. It will be 2038 * cancelled or partially completed once the 2039 * card ACKs the invalidate. 2040 */ 2041 valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : 2042 V_TF_DDP_BUF1_VALID(1); 2043 t4_set_tcb_field(sc, toep->ctrlq, toep, 2044 W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, 2045 CPL_COOKIE_DDP0 + i); 2046 toep->ddp.db[i].cancel_pending = 1; 2047 CTR2(KTR_CXGBE, "%s: request %p marked pending", 2048 __func__, job); 2049 break; 2050 } 2051 } 2052 DDP_UNLOCK(toep); 2053 } 2054 2055 static void 2056 t4_aio_cancel_queued(struct kaiocb *job) 2057 { 2058 struct socket *so = job->fd_file->f_data; 2059 struct tcpcb *tp = so_sototcpcb(so); 2060 struct toepcb *toep = tp->t_toe; 2061 2062 DDP_LOCK(toep); 2063 if (!aio_cancel_cleared(job)) { 2064 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); 2065 toep->ddp.waiting_count--; 2066 if (toep->ddp.waiting_count == 0) 2067 ddp_queue_toep(toep); 2068 } 2069 CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); 2070 DDP_UNLOCK(toep); 2071 2072 aio_ddp_cancel_one(job); 2073 } 2074 2075 int 2076 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) 2077 { 2078 struct tcpcb *tp = so_sototcpcb(so); 2079 struct toepcb *toep = tp->t_toe; 2080 2081 2082 /* Ignore writes. */ 2083 if (job->uaiocb.aio_lio_opcode != LIO_READ) 2084 return (EOPNOTSUPP); 2085 2086 DDP_LOCK(toep); 2087 2088 /* 2089 * XXX: Think about possibly returning errors for ENOTCONN, 2090 * etc. Perhaps the caller would only queue the request 2091 * if it failed with EOPNOTSUPP? 2092 */ 2093 2094 #ifdef VERBOSE_TRACES 2095 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); 2096 #endif 2097 if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) 2098 panic("new job was cancelled"); 2099 TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); 2100 toep->ddp.waiting_count++; 2101 toep->ddp.flags |= DDP_OK; 2102 2103 /* 2104 * Try to handle this request synchronously. If this has 2105 * to block because the task is running, it will just bail 2106 * and let the task handle it instead. 2107 */ 2108 aio_ddp_requeue(toep); 2109 DDP_UNLOCK(toep); 2110 return (0); 2111 } 2112 2113 void 2114 t4_ddp_mod_load(void) 2115 { 2116 2117 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2118 CPL_COOKIE_DDP0); 2119 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, 2120 CPL_COOKIE_DDP1); 2121 t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); 2122 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); 2123 TAILQ_INIT(&ddp_orphan_pagesets); 2124 mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); 2125 TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); 2126 } 2127 2128 void 2129 t4_ddp_mod_unload(void) 2130 { 2131 2132 taskqueue_drain(taskqueue_thread, &ddp_orphan_task); 2133 MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); 2134 mtx_destroy(&ddp_orphan_pagesets_lock); 2135 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); 2136 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); 2137 t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); 2138 t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); 2139 } 2140 #endif 2141