xref: /freebsd/sys/dev/cxgbe/t4_vf.c (revision eb69d1f144a6fcc765d1b9d44a5ae8082353e70b)
1 /*-
2  * Copyright (c) 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/priv.h>
40 #include <dev/pci/pcivar.h>
41 #if defined(__i386__) || defined(__amd64__)
42 #include <vm/vm.h>
43 #include <vm/pmap.h>
44 #endif
45 
46 #include "common/common.h"
47 #include "common/t4_regs.h"
48 #include "t4_ioctl.h"
49 #include "t4_mp_ring.h"
50 
51 /*
52  * Some notes:
53  *
54  * The Virtual Interfaces are connected to an internal switch on the chip
55  * which allows VIs attached to the same port to talk to each other even when
56  * the port link is down.  As a result, we might want to always report a
57  * VF's link as being "up".
58  *
59  * XXX: Add a TUNABLE and possible per-device sysctl for this?
60  */
61 
62 struct intrs_and_queues {
63 	uint16_t intr_type;	/* MSI, or MSI-X */
64 	uint16_t nirq;		/* Total # of vectors */
65 	uint16_t ntxq;		/* # of NIC txq's for each port */
66 	uint16_t nrxq;		/* # of NIC rxq's for each port */
67 };
68 
69 struct {
70 	uint16_t device;
71 	char *desc;
72 } t4vf_pciids[] = {
73 	{0x4800, "Chelsio T440-dbg VF"},
74 	{0x4801, "Chelsio T420-CR VF"},
75 	{0x4802, "Chelsio T422-CR VF"},
76 	{0x4803, "Chelsio T440-CR VF"},
77 	{0x4804, "Chelsio T420-BCH VF"},
78 	{0x4805, "Chelsio T440-BCH VF"},
79 	{0x4806, "Chelsio T440-CH VF"},
80 	{0x4807, "Chelsio T420-SO VF"},
81 	{0x4808, "Chelsio T420-CX VF"},
82 	{0x4809, "Chelsio T420-BT VF"},
83 	{0x480a, "Chelsio T404-BT VF"},
84 	{0x480e, "Chelsio T440-LP-CR VF"},
85 }, t5vf_pciids[] = {
86 	{0x5800, "Chelsio T580-dbg VF"},
87 	{0x5801,  "Chelsio T520-CR VF"},	/* 2 x 10G */
88 	{0x5802,  "Chelsio T522-CR VF"},	/* 2 x 10G, 2 X 1G */
89 	{0x5803,  "Chelsio T540-CR VF"},	/* 4 x 10G */
90 	{0x5807,  "Chelsio T520-SO VF"},	/* 2 x 10G, nomem */
91 	{0x5809,  "Chelsio T520-BT VF"},	/* 2 x 10GBaseT */
92 	{0x580a,  "Chelsio T504-BT VF"},	/* 4 x 1G */
93 	{0x580d,  "Chelsio T580-CR VF"},	/* 2 x 40G */
94 	{0x580e,  "Chelsio T540-LP-CR VF"},	/* 4 x 10G */
95 	{0x5810,  "Chelsio T580-LP-CR VF"},	/* 2 x 40G */
96 	{0x5811,  "Chelsio T520-LL-CR VF"},	/* 2 x 10G */
97 	{0x5812,  "Chelsio T560-CR VF"},	/* 1 x 40G, 2 x 10G */
98 	{0x5814,  "Chelsio T580-LP-SO-CR VF"},	/* 2 x 40G, nomem */
99 	{0x5815,  "Chelsio T502-BT VF"},	/* 2 x 1G */
100 #ifdef notyet
101 	{0x5804,  "Chelsio T520-BCH VF"},
102 	{0x5805,  "Chelsio T540-BCH VF"},
103 	{0x5806,  "Chelsio T540-CH VF"},
104 	{0x5808,  "Chelsio T520-CX VF"},
105 	{0x580b,  "Chelsio B520-SR VF"},
106 	{0x580c,  "Chelsio B504-BT VF"},
107 	{0x580f,  "Chelsio Amsterdam VF"},
108 	{0x5813,  "Chelsio T580-CHR VF"},
109 #endif
110 }, t6vf_pciids[] = {
111 	{0x6800, "Chelsio T6-DBG-25 VF"},	/* 2 x 10/25G, debug */
112 	{0x6801, "Chelsio T6225-CR VF"},	/* 2 x 10/25G */
113 	{0x6802, "Chelsio T6225-SO-CR VF"},	/* 2 x 10/25G, nomem */
114 	{0x6803, "Chelsio T6425-CR VF"},	/* 4 x 10/25G */
115 	{0x6804, "Chelsio T6425-SO-CR VF"},	/* 4 x 10/25G, nomem */
116 	{0x6805, "Chelsio T6225-OCP-SO VF"},	/* 2 x 10/25G, nomem */
117 	{0x6806, "Chelsio T62100-OCP-SO VF"},	/* 2 x 40/50/100G, nomem */
118 	{0x6807, "Chelsio T62100-LP-CR VF"},	/* 2 x 40/50/100G */
119 	{0x6808, "Chelsio T62100-SO-CR VF"},	/* 2 x 40/50/100G, nomem */
120 	{0x6809, "Chelsio T6210-BT VF"},	/* 2 x 10GBASE-T */
121 	{0x680d, "Chelsio T62100-CR VF"},	/* 2 x 40/50/100G */
122 	{0x6810, "Chelsio T6-DBG-100 VF"},	/* 2 x 40/50/100G, debug */
123 	{0x6811, "Chelsio T6225-LL-CR VF"},	/* 2 x 10/25G */
124 	{0x6814, "Chelsio T61100-OCP-SO VF"},	/* 1 x 40/50/100G, nomem */
125 	{0x6815, "Chelsio T6201-BT VF"},	/* 2 x 1000BASE-T */
126 
127 	/* Custom */
128 	{0x6880, "Chelsio T6225 80 VF"},
129 	{0x6881, "Chelsio T62100 81 VF"},
130 };
131 
132 static d_ioctl_t t4vf_ioctl;
133 
134 static struct cdevsw t4vf_cdevsw = {
135        .d_version = D_VERSION,
136        .d_ioctl = t4vf_ioctl,
137        .d_name = "t4vf",
138 };
139 
140 static int
141 t4vf_probe(device_t dev)
142 {
143 	uint16_t d;
144 	size_t i;
145 
146 	d = pci_get_device(dev);
147 	for (i = 0; i < nitems(t4vf_pciids); i++) {
148 		if (d == t4vf_pciids[i].device) {
149 			device_set_desc(dev, t4vf_pciids[i].desc);
150 			return (BUS_PROBE_DEFAULT);
151 		}
152 	}
153 	return (ENXIO);
154 }
155 
156 static int
157 t5vf_probe(device_t dev)
158 {
159 	uint16_t d;
160 	size_t i;
161 
162 	d = pci_get_device(dev);
163 	for (i = 0; i < nitems(t5vf_pciids); i++) {
164 		if (d == t5vf_pciids[i].device) {
165 			device_set_desc(dev, t5vf_pciids[i].desc);
166 			return (BUS_PROBE_DEFAULT);
167 		}
168 	}
169 	return (ENXIO);
170 }
171 
172 static int
173 t6vf_probe(device_t dev)
174 {
175 	uint16_t d;
176 	size_t i;
177 
178 	d = pci_get_device(dev);
179 	for (i = 0; i < nitems(t6vf_pciids); i++) {
180 		if (d == t6vf_pciids[i].device) {
181 			device_set_desc(dev, t6vf_pciids[i].desc);
182 			return (BUS_PROBE_DEFAULT);
183 		}
184 	}
185 	return (ENXIO);
186 }
187 
188 #define FW_PARAM_DEV(param) \
189 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
190 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
191 #define FW_PARAM_PFVF(param) \
192 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
193 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
194 
195 static int
196 get_params__pre_init(struct adapter *sc)
197 {
198 	int rc;
199 	uint32_t param[3], val[3];
200 
201 	param[0] = FW_PARAM_DEV(FWREV);
202 	param[1] = FW_PARAM_DEV(TPREV);
203 	param[2] = FW_PARAM_DEV(CCLK);
204 	rc = -t4vf_query_params(sc, nitems(param), param, val);
205 	if (rc != 0) {
206 		device_printf(sc->dev,
207 		    "failed to query parameters (pre_init): %d.\n", rc);
208 		return (rc);
209 	}
210 
211 	sc->params.fw_vers = val[0];
212 	sc->params.tp_vers = val[1];
213 	sc->params.vpd.cclk = val[2];
214 
215 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
216 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
217 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
218 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
219 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
220 
221 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
222 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
223 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
224 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
225 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
226 
227 	return (0);
228 }
229 
230 static int
231 get_params__post_init(struct adapter *sc)
232 {
233 	int rc;
234 
235 	rc = -t4vf_get_sge_params(sc);
236 	if (rc != 0) {
237 		device_printf(sc->dev,
238 		    "unable to retrieve adapter SGE parameters: %d\n", rc);
239 		return (rc);
240 	}
241 
242 	rc = -t4vf_get_rss_glb_config(sc);
243 	if (rc != 0) {
244 		device_printf(sc->dev,
245 		    "unable to retrieve adapter RSS parameters: %d\n", rc);
246 		return (rc);
247 	}
248 	if (sc->params.rss.mode != FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
249 		device_printf(sc->dev,
250 		    "unable to operate with global RSS mode %d\n",
251 		    sc->params.rss.mode);
252 		return (EINVAL);
253 	}
254 
255 	rc = t4_read_chip_settings(sc);
256 	if (rc != 0)
257 		return (rc);
258 
259 	/*
260 	 * Grab our Virtual Interface resource allocation, extract the
261 	 * features that we're interested in and do a bit of sanity testing on
262 	 * what we discover.
263 	 */
264 	rc = -t4vf_get_vfres(sc);
265 	if (rc != 0) {
266 		device_printf(sc->dev,
267 		    "unable to get virtual interface resources: %d\n", rc);
268 		return (rc);
269 	}
270 
271 	/*
272 	 * Check for various parameter sanity issues.
273 	 */
274 	if (sc->params.vfres.pmask == 0) {
275 		device_printf(sc->dev, "no port access configured/usable!\n");
276 		return (EINVAL);
277 	}
278 	if (sc->params.vfres.nvi == 0) {
279 		device_printf(sc->dev,
280 		    "no virtual interfaces configured/usable!\n");
281 		return (EINVAL);
282 	}
283 	sc->params.portvec = sc->params.vfres.pmask;
284 
285 	return (0);
286 }
287 
288 static int
289 set_params__post_init(struct adapter *sc)
290 {
291 	uint32_t param, val;
292 
293 	/* ask for encapsulated CPLs */
294 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
295 	val = 1;
296 	(void)t4vf_set_params(sc, 1, &param, &val);
297 
298 	return (0);
299 }
300 
301 #undef FW_PARAM_PFVF
302 #undef FW_PARAM_DEV
303 
304 static int
305 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
306 {
307 	struct vf_resources *vfres;
308 	int nrxq, ntxq, nports;
309 	int itype, iq_avail, navail, rc;
310 
311 	/*
312 	 * Figure out the layout of queues across our VIs and ensure
313 	 * we can allocate enough interrupts for our layout.
314 	 */
315 	vfres = &sc->params.vfres;
316 	nports = sc->params.nports;
317 	bzero(iaq, sizeof(*iaq));
318 
319 	for (itype = INTR_MSIX; itype != 0; itype >>= 1) {
320 		if (itype == INTR_INTX)
321 			continue;
322 
323 		if (itype == INTR_MSIX)
324 			navail = pci_msix_count(sc->dev);
325 		else
326 			navail = pci_msi_count(sc->dev);
327 
328 		if (navail == 0)
329 			continue;
330 
331 		iaq->intr_type = itype;
332 
333 		/*
334 		 * XXX: The Linux driver reserves an Ingress Queue for
335 		 * forwarded interrupts when using MSI (but not MSI-X).
336 		 * It seems it just always asks for 2 interrupts and
337 		 * forwards all rxqs to the forwarded interrupt.
338 		 *
339 		 * We must reserve one IRQ for the for the firmware
340 		 * event queue.
341 		 *
342 		 * Every rxq requires an ingress queue with a free
343 		 * list and interrupts and an egress queue.  Every txq
344 		 * requires an ETH egress queue.
345 		 */
346 		iaq->nirq = T4VF_EXTRA_INTR;
347 
348 		/*
349 		 * First, determine how many queues we can allocate.
350 		 * Start by finding the upper bound on rxqs from the
351 		 * limit on ingress queues.
352 		 */
353 		iq_avail = vfres->niqflint - iaq->nirq;
354 		if (iq_avail < nports) {
355 			device_printf(sc->dev,
356 			    "Not enough ingress queues (%d) for %d ports\n",
357 			    vfres->niqflint, nports);
358 			return (ENXIO);
359 		}
360 
361 		/*
362 		 * Try to honor the cap on interrupts.  If there aren't
363 		 * enough interrupts for at least one interrupt per
364 		 * port, then don't bother, we will just forward all
365 		 * interrupts to one interrupt in that case.
366 		 */
367 		if (iaq->nirq + nports <= navail) {
368 			if (iq_avail > navail - iaq->nirq)
369 				iq_avail = navail - iaq->nirq;
370 		}
371 
372 		nrxq = nports * t4_nrxq;
373 		if (nrxq > iq_avail) {
374 			/*
375 			 * Too many ingress queues.  Use what we can.
376 			 */
377 			nrxq = (iq_avail / nports) * nports;
378 		}
379 		KASSERT(nrxq <= iq_avail, ("too many ingress queues"));
380 
381 		/*
382 		 * Next, determine the upper bound on txqs from the limit
383 		 * on ETH queues.
384 		 */
385 		if (vfres->nethctrl < nports) {
386 			device_printf(sc->dev,
387 			    "Not enough ETH queues (%d) for %d ports\n",
388 			    vfres->nethctrl, nports);
389 			return (ENXIO);
390 		}
391 
392 		ntxq = nports * t4_ntxq;
393 		if (ntxq > vfres->nethctrl) {
394 			/*
395 			 * Too many ETH queues.  Use what we can.
396 			 */
397 			ntxq = (vfres->nethctrl / nports) * nports;
398 		}
399 		KASSERT(ntxq <= vfres->nethctrl, ("too many ETH queues"));
400 
401 		/*
402 		 * Finally, ensure we have enough egress queues.
403 		 */
404 		if (vfres->neq < nports * 2) {
405 			device_printf(sc->dev,
406 			    "Not enough egress queues (%d) for %d ports\n",
407 			    vfres->neq, nports);
408 			return (ENXIO);
409 		}
410 		if (nrxq + ntxq > vfres->neq) {
411 			/* Just punt and use 1 for everything. */
412 			nrxq = ntxq = nports;
413 		}
414 		KASSERT(nrxq <= iq_avail, ("too many ingress queues"));
415 		KASSERT(ntxq <= vfres->nethctrl, ("too many ETH queues"));
416 		KASSERT(nrxq + ntxq <= vfres->neq, ("too many egress queues"));
417 
418 		/*
419 		 * Do we have enough interrupts?  For MSI the interrupts
420 		 * have to be a power of 2 as well.
421 		 */
422 		iaq->nirq += nrxq;
423 		iaq->ntxq = ntxq;
424 		iaq->nrxq = nrxq;
425 		if (iaq->nirq <= navail &&
426 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
427 			navail = iaq->nirq;
428 			if (itype == INTR_MSIX)
429 				rc = pci_alloc_msix(sc->dev, &navail);
430 			else
431 				rc = pci_alloc_msi(sc->dev, &navail);
432 			if (rc != 0) {
433 				device_printf(sc->dev,
434 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
435 				    itype, rc, iaq->nirq, navail);
436 				return (rc);
437 			}
438 			if (navail == iaq->nirq) {
439 				return (0);
440 			}
441 			pci_release_msi(sc->dev);
442 		}
443 
444 		/* Fall back to a single interrupt. */
445 		iaq->nirq = 1;
446 		navail = iaq->nirq;
447 		if (itype == INTR_MSIX)
448 			rc = pci_alloc_msix(sc->dev, &navail);
449 		else
450 			rc = pci_alloc_msi(sc->dev, &navail);
451 		if (rc != 0)
452 			device_printf(sc->dev,
453 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
454 			    itype, rc, iaq->nirq, navail);
455 		return (rc);
456 	}
457 
458 	device_printf(sc->dev,
459 	    "failed to find a usable interrupt type.  "
460 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
461 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
462 
463 	return (ENXIO);
464 }
465 
466 static int
467 t4vf_attach(device_t dev)
468 {
469 	struct adapter *sc;
470 	int rc = 0, i, j, rqidx, tqidx;
471 	struct make_dev_args mda;
472 	struct intrs_and_queues iaq;
473 	struct sge *s;
474 
475 	sc = device_get_softc(dev);
476 	sc->dev = dev;
477 	pci_enable_busmaster(dev);
478 	pci_set_max_read_req(dev, 4096);
479 	sc->params.pci.mps = pci_get_max_payload(dev);
480 
481 	sc->flags |= IS_VF;
482 
483 	sc->sge_gts_reg = VF_SGE_REG(A_SGE_VF_GTS);
484 	sc->sge_kdoorbell_reg = VF_SGE_REG(A_SGE_VF_KDOORBELL);
485 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
486 	    device_get_nameunit(dev));
487 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
488 	t4_add_adapter(sc);
489 
490 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
491 	TAILQ_INIT(&sc->sfl);
492 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
493 
494 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
495 
496 	rc = t4_map_bars_0_and_4(sc);
497 	if (rc != 0)
498 		goto done; /* error message displayed already */
499 
500 	rc = -t4vf_prep_adapter(sc);
501 	if (rc != 0)
502 		goto done;
503 
504 	t4_init_devnames(sc);
505 	if (sc->names == NULL) {
506 		rc = ENOTSUP;
507 		goto done; /* error message displayed already */
508 	}
509 
510 	/*
511 	 * Leave the 'pf' and 'mbox' values as zero.  This ensures
512 	 * that various firmware messages do not set the fields which
513 	 * is the correct thing to do for a VF.
514 	 */
515 
516 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
517 
518 	make_dev_args_init(&mda);
519 	mda.mda_devsw = &t4vf_cdevsw;
520 	mda.mda_uid = UID_ROOT;
521 	mda.mda_gid = GID_WHEEL;
522 	mda.mda_mode = 0600;
523 	mda.mda_si_drv1 = sc;
524 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
525 	if (rc != 0)
526 		device_printf(dev, "failed to create nexus char device: %d.\n",
527 		    rc);
528 
529 #if defined(__i386__)
530 	if ((cpu_feature & CPUID_CX8) == 0) {
531 		device_printf(dev, "64 bit atomics not available.\n");
532 		rc = ENOTSUP;
533 		goto done;
534 	}
535 #endif
536 
537 	/*
538 	 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
539 	 * 2.6.31 and later we can't call pci_reset_function() in order to
540 	 * issue an FLR because of a self- deadlock on the device semaphore.
541 	 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
542 	 * cases where they're needed -- for instance, some versions of KVM
543 	 * fail to reset "Assigned Devices" when the VM reboots.  Therefore we
544 	 * use the firmware based reset in order to reset any per function
545 	 * state.
546 	 */
547 	rc = -t4vf_fw_reset(sc);
548 	if (rc != 0) {
549 		device_printf(dev, "FW reset failed: %d\n", rc);
550 		goto done;
551 	}
552 	sc->flags |= FW_OK;
553 
554 	/*
555 	 * Grab basic operational parameters.  These will predominantly have
556 	 * been set up by the Physical Function Driver or will be hard coded
557 	 * into the adapter.  We just have to live with them ...  Note that
558 	 * we _must_ get our VPD parameters before our SGE parameters because
559 	 * we need to know the adapter's core clock from the VPD in order to
560 	 * properly decode the SGE Timer Values.
561 	 */
562 	rc = get_params__pre_init(sc);
563 	if (rc != 0)
564 		goto done; /* error message displayed already */
565 	rc = get_params__post_init(sc);
566 	if (rc != 0)
567 		goto done; /* error message displayed already */
568 
569 	rc = set_params__post_init(sc);
570 	if (rc != 0)
571 		goto done; /* error message displayed already */
572 
573 	rc = t4_map_bar_2(sc);
574 	if (rc != 0)
575 		goto done; /* error message displayed already */
576 
577 	rc = t4_create_dma_tag(sc);
578 	if (rc != 0)
579 		goto done; /* error message displayed already */
580 
581 	/*
582 	 * The number of "ports" which we support is equal to the number of
583 	 * Virtual Interfaces with which we've been provisioned.
584 	 */
585 	sc->params.nports = imin(sc->params.vfres.nvi, MAX_NPORTS);
586 
587 	/*
588 	 * We may have been provisioned with more VIs than the number of
589 	 * ports we're allowed to access (our Port Access Rights Mask).
590 	 * Just use a single VI for each port.
591 	 */
592 	sc->params.nports = imin(sc->params.nports,
593 	    bitcount32(sc->params.vfres.pmask));
594 
595 #ifdef notyet
596 	/*
597 	 * XXX: The Linux VF driver will lower nports if it thinks there
598 	 * are too few resources in vfres (niqflint, nethctrl, neq).
599 	 */
600 #endif
601 
602 	/*
603 	 * First pass over all the ports - allocate VIs and initialize some
604 	 * basic parameters like mac address, port type, etc.
605 	 */
606 	for_each_port(sc, i) {
607 		struct port_info *pi;
608 
609 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
610 		sc->port[i] = pi;
611 
612 		/* These must be set before t4_port_init */
613 		pi->adapter = sc;
614 		pi->port_id = i;
615 		pi->nvi = 1;
616 		pi->vi = malloc(sizeof(struct vi_info) * pi->nvi, M_CXGBE,
617 		    M_ZERO | M_WAITOK);
618 
619 		/*
620 		 * Allocate the "main" VI and initialize parameters
621 		 * like mac addr.
622 		 */
623 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
624 		if (rc != 0) {
625 			device_printf(dev, "unable to initialize port %d: %d\n",
626 			    i, rc);
627 			free(pi->vi, M_CXGBE);
628 			free(pi, M_CXGBE);
629 			sc->port[i] = NULL;
630 			goto done;
631 		}
632 
633 		/* No t4_link_start. */
634 
635 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
636 		    device_get_nameunit(dev), i);
637 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
638 		sc->chan_map[pi->tx_chan] = i;
639 
640 		pi->dev = device_add_child(dev, sc->names->vf_ifnet_name, -1);
641 		if (pi->dev == NULL) {
642 			device_printf(dev,
643 			    "failed to add device for port %d.\n", i);
644 			rc = ENXIO;
645 			goto done;
646 		}
647 		pi->vi[0].dev = pi->dev;
648 		device_set_softc(pi->dev, pi);
649 	}
650 
651 	/*
652 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
653 	 */
654 	rc = cfg_itype_and_nqueues(sc, &iaq);
655 	if (rc != 0)
656 		goto done; /* error message displayed already */
657 
658 	sc->intr_type = iaq.intr_type;
659 	sc->intr_count = iaq.nirq;
660 
661 	s = &sc->sge;
662 	s->nrxq = sc->params.nports * iaq.nrxq;
663 	s->ntxq = sc->params.nports * iaq.ntxq;
664 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
665 	s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
666 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
667 
668 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
669 	    M_ZERO | M_WAITOK);
670 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
671 	    M_ZERO | M_WAITOK);
672 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
673 	    M_ZERO | M_WAITOK);
674 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
675 	    M_ZERO | M_WAITOK);
676 
677 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
678 	    M_ZERO | M_WAITOK);
679 
680 	/*
681 	 * Second pass over the ports.  This time we know the number of rx and
682 	 * tx queues that each port should get.
683 	 */
684 	rqidx = tqidx = 0;
685 	for_each_port(sc, i) {
686 		struct port_info *pi = sc->port[i];
687 		struct vi_info *vi;
688 
689 		if (pi == NULL)
690 			continue;
691 
692 		for_each_vi(pi, j, vi) {
693 			vi->pi = pi;
694 			vi->qsize_rxq = t4_qsize_rxq;
695 			vi->qsize_txq = t4_qsize_txq;
696 
697 			vi->first_rxq = rqidx;
698 			vi->first_txq = tqidx;
699 			vi->tmr_idx = t4_tmr_idx;
700 			vi->pktc_idx = t4_pktc_idx;
701 			vi->nrxq = j == 0 ? iaq.nrxq: 1;
702 			vi->ntxq = j == 0 ? iaq.ntxq: 1;
703 
704 			rqidx += vi->nrxq;
705 			tqidx += vi->ntxq;
706 
707 			vi->rsrv_noflowq = 0;
708 		}
709 	}
710 
711 	rc = t4_setup_intr_handlers(sc);
712 	if (rc != 0) {
713 		device_printf(dev,
714 		    "failed to setup interrupt handlers: %d\n", rc);
715 		goto done;
716 	}
717 
718 	rc = bus_generic_attach(dev);
719 	if (rc != 0) {
720 		device_printf(dev,
721 		    "failed to attach all child ports: %d\n", rc);
722 		goto done;
723 	}
724 
725 	device_printf(dev,
726 	    "%d ports, %d %s interrupt%s, %d eq, %d iq\n",
727 	    sc->params.nports, sc->intr_count, sc->intr_type == INTR_MSIX ?
728 	    "MSI-X" : "MSI", sc->intr_count > 1 ? "s" : "", sc->sge.neq,
729 	    sc->sge.niq);
730 
731 done:
732 	if (rc != 0)
733 		t4_detach_common(dev);
734 	else
735 		t4_sysctls(sc);
736 
737 	return (rc);
738 }
739 
740 static void
741 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
742 {
743 
744 	/* 0x3f is used as the revision for VFs. */
745 	regs->version = chip_id(sc) | (0x3f << 10);
746 	t4_get_regs(sc, buf, regs->len);
747 }
748 
749 static void
750 t4_clr_vi_stats(struct adapter *sc)
751 {
752 	int reg;
753 
754 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
755 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
756 		t4_write_reg(sc, VF_MPS_REG(reg), 0);
757 }
758 
759 static int
760 t4vf_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
761     struct thread *td)
762 {
763 	int rc;
764 	struct adapter *sc = dev->si_drv1;
765 
766 	rc = priv_check(td, PRIV_DRIVER);
767 	if (rc != 0)
768 		return (rc);
769 
770 	switch (cmd) {
771 	case CHELSIO_T4_GETREG: {
772 		struct t4_reg *edata = (struct t4_reg *)data;
773 
774 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
775 			return (EFAULT);
776 
777 		if (edata->size == 4)
778 			edata->val = t4_read_reg(sc, edata->addr);
779 		else if (edata->size == 8)
780 			edata->val = t4_read_reg64(sc, edata->addr);
781 		else
782 			return (EINVAL);
783 
784 		break;
785 	}
786 	case CHELSIO_T4_SETREG: {
787 		struct t4_reg *edata = (struct t4_reg *)data;
788 
789 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
790 			return (EFAULT);
791 
792 		if (edata->size == 4) {
793 			if (edata->val & 0xffffffff00000000)
794 				return (EINVAL);
795 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
796 		} else if (edata->size == 8)
797 			t4_write_reg64(sc, edata->addr, edata->val);
798 		else
799 			return (EINVAL);
800 		break;
801 	}
802 	case CHELSIO_T4_REGDUMP: {
803 		struct t4_regdump *regs = (struct t4_regdump *)data;
804 		int reglen = t4_get_regs_len(sc);
805 		uint8_t *buf;
806 
807 		if (regs->len < reglen) {
808 			regs->len = reglen; /* hint to the caller */
809 			return (ENOBUFS);
810 		}
811 
812 		regs->len = reglen;
813 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
814 		get_regs(sc, regs, buf);
815 		rc = copyout(buf, regs->data, reglen);
816 		free(buf, M_CXGBE);
817 		break;
818 	}
819 	case CHELSIO_T4_CLEAR_STATS: {
820 		int i, v;
821 		u_int port_id = *(uint32_t *)data;
822 		struct port_info *pi;
823 		struct vi_info *vi;
824 
825 		if (port_id >= sc->params.nports)
826 			return (EINVAL);
827 		pi = sc->port[port_id];
828 
829 		/* MAC stats */
830 		pi->tx_parse_error = 0;
831 		t4_clr_vi_stats(sc);
832 
833 		/*
834 		 * Since this command accepts a port, clear stats for
835 		 * all VIs on this port.
836 		 */
837 		for_each_vi(pi, v, vi) {
838 			if (vi->flags & VI_INIT_DONE) {
839 				struct sge_rxq *rxq;
840 				struct sge_txq *txq;
841 
842 				for_each_rxq(vi, i, rxq) {
843 #if defined(INET) || defined(INET6)
844 					rxq->lro.lro_queued = 0;
845 					rxq->lro.lro_flushed = 0;
846 #endif
847 					rxq->rxcsum = 0;
848 					rxq->vlan_extraction = 0;
849 				}
850 
851 				for_each_txq(vi, i, txq) {
852 					txq->txcsum = 0;
853 					txq->tso_wrs = 0;
854 					txq->vlan_insertion = 0;
855 					txq->imm_wrs = 0;
856 					txq->sgl_wrs = 0;
857 					txq->txpkt_wrs = 0;
858 					txq->txpkts0_wrs = 0;
859 					txq->txpkts1_wrs = 0;
860 					txq->txpkts0_pkts = 0;
861 					txq->txpkts1_pkts = 0;
862 					mp_ring_reset_stats(txq->r);
863 				}
864 			}
865 		}
866 		break;
867 	}
868 	case CHELSIO_T4_SCHED_CLASS:
869 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
870 		break;
871 	case CHELSIO_T4_SCHED_QUEUE:
872 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
873 		break;
874 	default:
875 		rc = ENOTTY;
876 	}
877 
878 	return (rc);
879 }
880 
881 static device_method_t t4vf_methods[] = {
882 	DEVMETHOD(device_probe,		t4vf_probe),
883 	DEVMETHOD(device_attach,	t4vf_attach),
884 	DEVMETHOD(device_detach,	t4_detach_common),
885 
886 	DEVMETHOD_END
887 };
888 
889 static driver_t t4vf_driver = {
890 	"t4vf",
891 	t4vf_methods,
892 	sizeof(struct adapter)
893 };
894 
895 static device_method_t t5vf_methods[] = {
896 	DEVMETHOD(device_probe,		t5vf_probe),
897 	DEVMETHOD(device_attach,	t4vf_attach),
898 	DEVMETHOD(device_detach,	t4_detach_common),
899 
900 	DEVMETHOD_END
901 };
902 
903 static driver_t t5vf_driver = {
904 	"t5vf",
905 	t5vf_methods,
906 	sizeof(struct adapter)
907 };
908 
909 static device_method_t t6vf_methods[] = {
910 	DEVMETHOD(device_probe,		t6vf_probe),
911 	DEVMETHOD(device_attach,	t4vf_attach),
912 	DEVMETHOD(device_detach,	t4_detach_common),
913 
914 	DEVMETHOD_END
915 };
916 
917 static driver_t t6vf_driver = {
918 	"t6vf",
919 	t6vf_methods,
920 	sizeof(struct adapter)
921 };
922 
923 static driver_t cxgbev_driver = {
924 	"cxgbev",
925 	cxgbe_methods,
926 	sizeof(struct port_info)
927 };
928 
929 static driver_t cxlv_driver = {
930 	"cxlv",
931 	cxgbe_methods,
932 	sizeof(struct port_info)
933 };
934 
935 static driver_t ccv_driver = {
936 	"ccv",
937 	cxgbe_methods,
938 	sizeof(struct port_info)
939 };
940 
941 static devclass_t t4vf_devclass, t5vf_devclass, t6vf_devclass;
942 static devclass_t cxgbev_devclass, cxlv_devclass, ccv_devclass;
943 
944 DRIVER_MODULE(t4vf, pci, t4vf_driver, t4vf_devclass, 0, 0);
945 MODULE_VERSION(t4vf, 1);
946 MODULE_DEPEND(t4vf, t4nex, 1, 1, 1);
947 
948 DRIVER_MODULE(t5vf, pci, t5vf_driver, t5vf_devclass, 0, 0);
949 MODULE_VERSION(t5vf, 1);
950 MODULE_DEPEND(t5vf, t5nex, 1, 1, 1);
951 
952 DRIVER_MODULE(t6vf, pci, t6vf_driver, t6vf_devclass, 0, 0);
953 MODULE_VERSION(t6vf, 1);
954 MODULE_DEPEND(t6vf, t6nex, 1, 1, 1);
955 
956 DRIVER_MODULE(cxgbev, t4vf, cxgbev_driver, cxgbev_devclass, 0, 0);
957 MODULE_VERSION(cxgbev, 1);
958 
959 DRIVER_MODULE(cxlv, t5vf, cxlv_driver, cxlv_devclass, 0, 0);
960 MODULE_VERSION(cxlv, 1);
961 
962 DRIVER_MODULE(ccv, t6vf, ccv_driver, ccv_devclass, 0, 0);
963 MODULE_VERSION(ccv, 1);
964