1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location(device_t, device_t, struct sbuf *); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static int t4_suspend(device_t); 104 static int t4_resume(device_t); 105 static int t4_reset_prepare(device_t, device_t); 106 static int t4_reset_post(device_t, device_t); 107 static device_method_t t4_methods[] = { 108 DEVMETHOD(device_probe, t4_probe), 109 DEVMETHOD(device_attach, t4_attach), 110 DEVMETHOD(device_detach, t4_detach), 111 DEVMETHOD(device_suspend, t4_suspend), 112 DEVMETHOD(device_resume, t4_resume), 113 114 DEVMETHOD(bus_child_location, t4_child_location), 115 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 116 DEVMETHOD(bus_reset_post, t4_reset_post), 117 118 DEVMETHOD(t4_is_main_ready, t4_ready), 119 DEVMETHOD(t4_read_port_device, t4_read_port_device), 120 121 DEVMETHOD_END 122 }; 123 static driver_t t4_driver = { 124 "t4nex", 125 t4_methods, 126 sizeof(struct adapter) 127 }; 128 129 130 /* T4 port (cxgbe) interface */ 131 static int cxgbe_probe(device_t); 132 static int cxgbe_attach(device_t); 133 static int cxgbe_detach(device_t); 134 device_method_t cxgbe_methods[] = { 135 DEVMETHOD(device_probe, cxgbe_probe), 136 DEVMETHOD(device_attach, cxgbe_attach), 137 DEVMETHOD(device_detach, cxgbe_detach), 138 { 0, 0 } 139 }; 140 static driver_t cxgbe_driver = { 141 "cxgbe", 142 cxgbe_methods, 143 sizeof(struct port_info) 144 }; 145 146 /* T4 VI (vcxgbe) interface */ 147 static int vcxgbe_probe(device_t); 148 static int vcxgbe_attach(device_t); 149 static int vcxgbe_detach(device_t); 150 static device_method_t vcxgbe_methods[] = { 151 DEVMETHOD(device_probe, vcxgbe_probe), 152 DEVMETHOD(device_attach, vcxgbe_attach), 153 DEVMETHOD(device_detach, vcxgbe_detach), 154 { 0, 0 } 155 }; 156 static driver_t vcxgbe_driver = { 157 "vcxgbe", 158 vcxgbe_methods, 159 sizeof(struct vi_info) 160 }; 161 162 static d_ioctl_t t4_ioctl; 163 164 static struct cdevsw t4_cdevsw = { 165 .d_version = D_VERSION, 166 .d_ioctl = t4_ioctl, 167 .d_name = "t4nex", 168 }; 169 170 /* T5 bus driver interface */ 171 static int t5_probe(device_t); 172 static device_method_t t5_methods[] = { 173 DEVMETHOD(device_probe, t5_probe), 174 DEVMETHOD(device_attach, t4_attach), 175 DEVMETHOD(device_detach, t4_detach), 176 DEVMETHOD(device_suspend, t4_suspend), 177 DEVMETHOD(device_resume, t4_resume), 178 179 DEVMETHOD(bus_child_location, t4_child_location), 180 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 181 DEVMETHOD(bus_reset_post, t4_reset_post), 182 183 DEVMETHOD(t4_is_main_ready, t4_ready), 184 DEVMETHOD(t4_read_port_device, t4_read_port_device), 185 186 DEVMETHOD_END 187 }; 188 static driver_t t5_driver = { 189 "t5nex", 190 t5_methods, 191 sizeof(struct adapter) 192 }; 193 194 195 /* T5 port (cxl) interface */ 196 static driver_t cxl_driver = { 197 "cxl", 198 cxgbe_methods, 199 sizeof(struct port_info) 200 }; 201 202 /* T5 VI (vcxl) interface */ 203 static driver_t vcxl_driver = { 204 "vcxl", 205 vcxgbe_methods, 206 sizeof(struct vi_info) 207 }; 208 209 /* T6 bus driver interface */ 210 static int t6_probe(device_t); 211 static device_method_t t6_methods[] = { 212 DEVMETHOD(device_probe, t6_probe), 213 DEVMETHOD(device_attach, t4_attach), 214 DEVMETHOD(device_detach, t4_detach), 215 DEVMETHOD(device_suspend, t4_suspend), 216 DEVMETHOD(device_resume, t4_resume), 217 218 DEVMETHOD(bus_child_location, t4_child_location), 219 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 220 DEVMETHOD(bus_reset_post, t4_reset_post), 221 222 DEVMETHOD(t4_is_main_ready, t4_ready), 223 DEVMETHOD(t4_read_port_device, t4_read_port_device), 224 225 DEVMETHOD_END 226 }; 227 static driver_t t6_driver = { 228 "t6nex", 229 t6_methods, 230 sizeof(struct adapter) 231 }; 232 233 234 /* T6 port (cc) interface */ 235 static driver_t cc_driver = { 236 "cc", 237 cxgbe_methods, 238 sizeof(struct port_info) 239 }; 240 241 /* T6 VI (vcc) interface */ 242 static driver_t vcc_driver = { 243 "vcc", 244 vcxgbe_methods, 245 sizeof(struct vi_info) 246 }; 247 248 /* ifnet interface */ 249 static void cxgbe_init(void *); 250 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 251 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 252 static void cxgbe_qflush(struct ifnet *); 253 #if defined(KERN_TLS) || defined(RATELIMIT) 254 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 255 struct m_snd_tag **); 256 #endif 257 258 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 259 260 /* 261 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 262 * then ADAPTER_LOCK, then t4_uld_list_lock. 263 */ 264 static struct sx t4_list_lock; 265 SLIST_HEAD(, adapter) t4_list; 266 #ifdef TCP_OFFLOAD 267 static struct sx t4_uld_list_lock; 268 SLIST_HEAD(, uld_info) t4_uld_list; 269 #endif 270 271 /* 272 * Tunables. See tweak_tunables() too. 273 * 274 * Each tunable is set to a default value here if it's known at compile-time. 275 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 276 * provide a reasonable default (upto n) when the driver is loaded. 277 * 278 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 279 * T5 are under hw.cxl. 280 */ 281 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) parameters"); 283 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) T5+ parameters"); 285 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 286 "cxgbe(4) TOE parameters"); 287 288 /* 289 * Number of queues for tx and rx, NIC and offload. 290 */ 291 #define NTXQ 16 292 int t4_ntxq = -NTXQ; 293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 294 "Number of TX queues per port"); 295 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 296 297 #define NRXQ 8 298 int t4_nrxq = -NRXQ; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 300 "Number of RX queues per port"); 301 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 302 303 #define NTXQ_VI 1 304 static int t4_ntxq_vi = -NTXQ_VI; 305 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 306 "Number of TX queues per VI"); 307 308 #define NRXQ_VI 1 309 static int t4_nrxq_vi = -NRXQ_VI; 310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 311 "Number of RX queues per VI"); 312 313 static int t4_rsrv_noflowq = 0; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 315 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 316 317 static int t4_clocksync_fast = 1; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, csfast, CTLFLAG_RW | CTLFLAG_MPSAFE, &t4_clocksync_fast, 0, 319 "During initial clock sync how fast do we update in seconds"); 320 321 static int t4_clocksync_normal = 30; 322 SYSCTL_INT(_hw_cxgbe, OID_AUTO, csnormal, CTLFLAG_RW | CTLFLAG_MPSAFE, &t4_clocksync_normal, 0, 323 "During normal clock sync how fast do we update in seconds"); 324 325 static int t4_fast_2_normal = 30; 326 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cscount, CTLFLAG_RW | CTLFLAG_MPSAFE, &t4_fast_2_normal, 0, 327 "How many clock syncs do we need to do to transition to slow"); 328 329 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 330 #define NOFLDTXQ 8 331 static int t4_nofldtxq = -NOFLDTXQ; 332 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 333 "Number of offload TX queues per port"); 334 335 #define NOFLDRXQ 2 336 static int t4_nofldrxq = -NOFLDRXQ; 337 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 338 "Number of offload RX queues per port"); 339 340 #define NOFLDTXQ_VI 1 341 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 342 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 343 "Number of offload TX queues per VI"); 344 345 #define NOFLDRXQ_VI 1 346 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 347 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 348 "Number of offload RX queues per VI"); 349 350 #define TMR_IDX_OFLD 1 351 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 352 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 353 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 354 355 #define PKTC_IDX_OFLD (-1) 356 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 357 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 358 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 359 360 /* 0 means chip/fw default, non-zero number is value in microseconds */ 361 static u_long t4_toe_keepalive_idle = 0; 362 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 363 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 364 365 /* 0 means chip/fw default, non-zero number is value in microseconds */ 366 static u_long t4_toe_keepalive_interval = 0; 367 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 368 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 369 370 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 371 static int t4_toe_keepalive_count = 0; 372 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 373 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 374 375 /* 0 means chip/fw default, non-zero number is value in microseconds */ 376 static u_long t4_toe_rexmt_min = 0; 377 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 378 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 379 380 /* 0 means chip/fw default, non-zero number is value in microseconds */ 381 static u_long t4_toe_rexmt_max = 0; 382 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 383 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 384 385 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 386 static int t4_toe_rexmt_count = 0; 387 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 389 390 /* -1 means chip/fw default, other values are raw backoff values to use */ 391 static int t4_toe_rexmt_backoff[16] = { 392 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 393 }; 394 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 395 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 396 "cxgbe(4) TOE retransmit backoff values"); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[0], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[1], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[2], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[3], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[4], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[5], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[6], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[7], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[8], 0, ""); 415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 416 &t4_toe_rexmt_backoff[9], 0, ""); 417 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 418 &t4_toe_rexmt_backoff[10], 0, ""); 419 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 420 &t4_toe_rexmt_backoff[11], 0, ""); 421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 422 &t4_toe_rexmt_backoff[12], 0, ""); 423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 424 &t4_toe_rexmt_backoff[13], 0, ""); 425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 426 &t4_toe_rexmt_backoff[14], 0, ""); 427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 428 &t4_toe_rexmt_backoff[15], 0, ""); 429 430 static int t4_toe_tls_rx_timeout = 5; 431 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, tls_rx_timeout, CTLFLAG_RDTUN, 432 &t4_toe_tls_rx_timeout, 0, 433 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 434 #endif 435 436 #ifdef DEV_NETMAP 437 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 438 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 439 static int t4_native_netmap = NN_EXTRA_VI; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 441 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 442 443 #define NNMTXQ 8 444 static int t4_nnmtxq = -NNMTXQ; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 446 "Number of netmap TX queues"); 447 448 #define NNMRXQ 8 449 static int t4_nnmrxq = -NNMRXQ; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 451 "Number of netmap RX queues"); 452 453 #define NNMTXQ_VI 2 454 static int t4_nnmtxq_vi = -NNMTXQ_VI; 455 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 456 "Number of netmap TX queues per VI"); 457 458 #define NNMRXQ_VI 2 459 static int t4_nnmrxq_vi = -NNMRXQ_VI; 460 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 461 "Number of netmap RX queues per VI"); 462 #endif 463 464 /* 465 * Holdoff parameters for ports. 466 */ 467 #define TMR_IDX 1 468 int t4_tmr_idx = TMR_IDX; 469 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 470 0, "Holdoff timer index"); 471 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 472 473 #define PKTC_IDX (-1) 474 int t4_pktc_idx = PKTC_IDX; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 476 0, "Holdoff packet counter index"); 477 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 478 479 /* 480 * Size (# of entries) of each tx and rx queue. 481 */ 482 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 483 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 484 "Number of descriptors in each TX queue"); 485 486 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 487 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 488 "Number of descriptors in each RX queue"); 489 490 /* 491 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 492 */ 493 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 494 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 495 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 496 497 /* 498 * Configuration file. All the _CF names here are special. 499 */ 500 #define DEFAULT_CF "default" 501 #define BUILTIN_CF "built-in" 502 #define FLASH_CF "flash" 503 #define UWIRE_CF "uwire" 504 #define FPGA_CF "fpga" 505 static char t4_cfg_file[32] = DEFAULT_CF; 506 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 507 sizeof(t4_cfg_file), "Firmware configuration file"); 508 509 /* 510 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 511 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 512 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 513 * mark or when signalled to do so, 0 to never emit PAUSE. 514 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 515 * negotiated settings will override rx_pause/tx_pause. 516 * Otherwise rx_pause/tx_pause are applied forcibly. 517 */ 518 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 520 &t4_pause_settings, 0, 521 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 522 523 /* 524 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 525 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 526 * 0 to disable FEC. 527 */ 528 static int t4_fec = -1; 529 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 530 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 531 532 /* 533 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 534 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 535 * driver runs as if this is set to 0. 536 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 537 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 538 * transceiver. Multiple FEC bits may not be okay but will be passed on to 539 * the firmware anyway (may result in l1cfg errors with old firmwares). 540 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 541 * means set all FEC bits that are valid for the speed. 542 */ 543 static int t4_force_fec = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 545 "Controls the use of FORCE_FEC bit in L1 configuration."); 546 547 /* 548 * Link autonegotiation. 549 * -1 to run with the firmware default. 550 * 0 to disable. 551 * 1 to enable. 552 */ 553 static int t4_autoneg = -1; 554 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 555 "Link autonegotiation"); 556 557 /* 558 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 559 * encouraged respectively). '-n' is the same as 'n' except the firmware 560 * version used in the checks is read from the firmware bundled with the driver. 561 */ 562 static int t4_fw_install = 1; 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 564 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 565 566 /* 567 * ASIC features that will be used. Disable the ones you don't want so that the 568 * chip resources aren't wasted on features that will not be used. 569 */ 570 static int t4_nbmcaps_allowed = 0; 571 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 572 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 573 574 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 576 &t4_linkcaps_allowed, 0, "Default link capabilities"); 577 578 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 579 FW_CAPS_CONFIG_SWITCH_EGRESS; 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 581 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 582 583 #ifdef RATELIMIT 584 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 585 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 586 #else 587 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 588 FW_CAPS_CONFIG_NIC_HASHFILTER; 589 #endif 590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 591 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 592 593 static int t4_toecaps_allowed = -1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 595 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 596 597 static int t4_rdmacaps_allowed = -1; 598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 599 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 600 601 static int t4_cryptocaps_allowed = -1; 602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 603 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 604 605 static int t4_iscsicaps_allowed = -1; 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 607 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 608 609 static int t4_fcoecaps_allowed = 0; 610 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 611 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 612 613 static int t5_write_combine = 0; 614 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 615 0, "Use WC instead of UC for BAR2"); 616 617 static int t4_num_vis = 1; 618 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 619 "Number of VIs per port"); 620 621 /* 622 * PCIe Relaxed Ordering. 623 * -1: driver should figure out a good value. 624 * 0: disable RO. 625 * 1: enable RO. 626 * 2: leave RO alone. 627 */ 628 static int pcie_relaxed_ordering = -1; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 630 &pcie_relaxed_ordering, 0, 631 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 632 633 static int t4_panic_on_fatal_err = 0; 634 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 635 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 636 637 static int t4_reset_on_fatal_err = 0; 638 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 639 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 640 641 static int t4_clock_gate_on_suspend = 0; 642 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 643 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 644 645 static int t4_tx_vm_wr = 0; 646 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 647 "Use VM work requests to transmit packets."); 648 649 /* 650 * Set to non-zero to enable the attack filter. A packet that matches any of 651 * these conditions will get dropped on ingress: 652 * 1) IP && source address == destination address. 653 * 2) TCP/IP && source address is not a unicast address. 654 * 3) TCP/IP && destination address is not a unicast address. 655 * 4) IP && source address is loopback (127.x.y.z). 656 * 5) IP && destination address is loopback (127.x.y.z). 657 * 6) IPv6 && source address == destination address. 658 * 7) IPv6 && source address is not a unicast address. 659 * 8) IPv6 && source address is loopback (::1/128). 660 * 9) IPv6 && destination address is loopback (::1/128). 661 * 10) IPv6 && source address is unspecified (::/128). 662 * 11) IPv6 && destination address is unspecified (::/128). 663 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 664 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 665 */ 666 static int t4_attack_filter = 0; 667 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 668 &t4_attack_filter, 0, "Drop suspicious traffic"); 669 670 static int t4_drop_ip_fragments = 0; 671 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 672 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 673 674 static int t4_drop_pkts_with_l2_errors = 1; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l2_errors, 0, 677 "Drop all frames with Layer 2 length or checksum errors"); 678 679 static int t4_drop_pkts_with_l3_errors = 0; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 681 &t4_drop_pkts_with_l3_errors, 0, 682 "Drop all frames with IP version, length, or checksum errors"); 683 684 static int t4_drop_pkts_with_l4_errors = 0; 685 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 686 &t4_drop_pkts_with_l4_errors, 0, 687 "Drop all frames with Layer 4 length, checksum, or other errors"); 688 689 #ifdef TCP_OFFLOAD 690 /* 691 * TOE tunables. 692 */ 693 static int t4_cop_managed_offloading = 0; 694 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 695 &t4_cop_managed_offloading, 0, 696 "COP (Connection Offload Policy) controls all TOE offload"); 697 #endif 698 699 #ifdef KERN_TLS 700 /* 701 * This enables KERN_TLS for all adapters if set. 702 */ 703 static int t4_kern_tls = 0; 704 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 705 "Enable KERN_TLS mode for T6 adapters"); 706 707 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 708 "cxgbe(4) KERN_TLS parameters"); 709 710 static int t4_tls_inline_keys = 0; 711 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 712 &t4_tls_inline_keys, 0, 713 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 714 "in card memory."); 715 716 static int t4_tls_combo_wrs = 0; 717 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 718 0, "Attempt to combine TCB field updates with TLS record work requests."); 719 #endif 720 721 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 722 static int vi_mac_funcs[] = { 723 FW_VI_FUNC_ETH, 724 FW_VI_FUNC_OFLD, 725 FW_VI_FUNC_IWARP, 726 FW_VI_FUNC_OPENISCSI, 727 FW_VI_FUNC_OPENFCOE, 728 FW_VI_FUNC_FOISCSI, 729 FW_VI_FUNC_FOFCOE, 730 }; 731 732 struct intrs_and_queues { 733 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 734 uint16_t num_vis; /* number of VIs for each port */ 735 uint16_t nirq; /* Total # of vectors */ 736 uint16_t ntxq; /* # of NIC txq's for each port */ 737 uint16_t nrxq; /* # of NIC rxq's for each port */ 738 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 739 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 740 uint16_t nnmtxq; /* # of netmap txq's */ 741 uint16_t nnmrxq; /* # of netmap rxq's */ 742 743 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 744 uint16_t ntxq_vi; /* # of NIC txq's */ 745 uint16_t nrxq_vi; /* # of NIC rxq's */ 746 uint16_t nofldtxq_vi; /* # of TOE txq's */ 747 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 748 uint16_t nnmtxq_vi; /* # of netmap txq's */ 749 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 750 }; 751 752 static void setup_memwin(struct adapter *); 753 static void position_memwin(struct adapter *, int, uint32_t); 754 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 755 static int fwmtype_to_hwmtype(int); 756 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 757 uint32_t *); 758 static int fixup_devlog_params(struct adapter *); 759 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 760 static int contact_firmware(struct adapter *); 761 static int partition_resources(struct adapter *); 762 static int get_params__pre_init(struct adapter *); 763 static int set_params__pre_init(struct adapter *); 764 static int get_params__post_init(struct adapter *); 765 static int set_params__post_init(struct adapter *); 766 static void t4_set_desc(struct adapter *); 767 static bool fixed_ifmedia(struct port_info *); 768 static void build_medialist(struct port_info *); 769 static void init_link_config(struct port_info *); 770 static int fixup_link_config(struct port_info *); 771 static int apply_link_config(struct port_info *); 772 static int cxgbe_init_synchronized(struct vi_info *); 773 static int cxgbe_uninit_synchronized(struct vi_info *); 774 static int adapter_full_init(struct adapter *); 775 static void adapter_full_uninit(struct adapter *); 776 static int vi_full_init(struct vi_info *); 777 static void vi_full_uninit(struct vi_info *); 778 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 779 static void quiesce_txq(struct sge_txq *); 780 static void quiesce_wrq(struct sge_wrq *); 781 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 782 static void quiesce_vi(struct vi_info *); 783 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 784 driver_intr_t *, void *, char *); 785 static int t4_free_irq(struct adapter *, struct irq *); 786 static void t4_init_atid_table(struct adapter *); 787 static void t4_free_atid_table(struct adapter *); 788 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 789 static void vi_refresh_stats(struct vi_info *); 790 static void cxgbe_refresh_stats(struct vi_info *); 791 static void cxgbe_tick(void *); 792 static void vi_tick(void *); 793 static void cxgbe_sysctls(struct port_info *); 794 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 795 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 796 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 797 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 798 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 799 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 800 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 801 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 802 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 803 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 804 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 805 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 806 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 807 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 808 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 809 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 810 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 811 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 812 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 813 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 814 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 815 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 817 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 818 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 819 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 820 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 821 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 822 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 824 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 825 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 826 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 827 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 828 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 829 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 830 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 831 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 832 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 833 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 834 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 839 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 840 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 841 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 842 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 843 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 844 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 845 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 846 #ifdef TCP_OFFLOAD 847 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 848 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 849 static int sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS); 850 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 851 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 852 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 853 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 854 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 855 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 856 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 857 #endif 858 static int get_sge_context(struct adapter *, struct t4_sge_context *); 859 static int load_fw(struct adapter *, struct t4_data *); 860 static int load_cfg(struct adapter *, struct t4_data *); 861 static int load_boot(struct adapter *, struct t4_bootrom *); 862 static int load_bootcfg(struct adapter *, struct t4_data *); 863 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 864 static void free_offload_policy(struct t4_offload_policy *); 865 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 866 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 867 static int read_i2c(struct adapter *, struct t4_i2c_data *); 868 static int clear_stats(struct adapter *, u_int); 869 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 870 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 871 #ifdef TCP_OFFLOAD 872 static int toe_capability(struct vi_info *, bool); 873 static int t4_deactivate_all_uld(struct adapter *); 874 static void t4_async_event(struct adapter *); 875 #endif 876 #ifdef KERN_TLS 877 static int ktls_capability(struct adapter *, bool); 878 #endif 879 static int mod_event(module_t, int, void *); 880 static int notify_siblings(device_t, int); 881 static uint64_t vi_get_counter(struct ifnet *, ift_counter); 882 static uint64_t cxgbe_get_counter(struct ifnet *, ift_counter); 883 static void enable_vxlan_rx(struct adapter *); 884 static void reset_adapter_task(void *, int); 885 static void fatal_error_task(void *, int); 886 static void dump_devlog(struct adapter *); 887 static void dump_cim_regs(struct adapter *); 888 static void dump_cimla(struct adapter *); 889 890 struct { 891 uint16_t device; 892 char *desc; 893 } t4_pciids[] = { 894 {0xa000, "Chelsio Terminator 4 FPGA"}, 895 {0x4400, "Chelsio T440-dbg"}, 896 {0x4401, "Chelsio T420-CR"}, 897 {0x4402, "Chelsio T422-CR"}, 898 {0x4403, "Chelsio T440-CR"}, 899 {0x4404, "Chelsio T420-BCH"}, 900 {0x4405, "Chelsio T440-BCH"}, 901 {0x4406, "Chelsio T440-CH"}, 902 {0x4407, "Chelsio T420-SO"}, 903 {0x4408, "Chelsio T420-CX"}, 904 {0x4409, "Chelsio T420-BT"}, 905 {0x440a, "Chelsio T404-BT"}, 906 {0x440e, "Chelsio T440-LP-CR"}, 907 }, t5_pciids[] = { 908 {0xb000, "Chelsio Terminator 5 FPGA"}, 909 {0x5400, "Chelsio T580-dbg"}, 910 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 911 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 912 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 913 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 914 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 915 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 916 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 917 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 918 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 919 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 920 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 921 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 922 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 923 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 924 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 925 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 926 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 927 928 /* Custom */ 929 {0x5483, "Custom T540-CR"}, 930 {0x5484, "Custom T540-BT"}, 931 }, t6_pciids[] = { 932 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 933 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 934 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 935 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 936 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 937 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 938 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 939 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 940 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 941 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 942 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 943 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 944 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 945 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 946 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 947 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 948 949 /* Custom */ 950 {0x6480, "Custom T6225-CR"}, 951 {0x6481, "Custom T62100-CR"}, 952 {0x6482, "Custom T6225-CR"}, 953 {0x6483, "Custom T62100-CR"}, 954 {0x6484, "Custom T64100-CR"}, 955 {0x6485, "Custom T6240-SO"}, 956 {0x6486, "Custom T6225-SO-CR"}, 957 {0x6487, "Custom T6225-CR"}, 958 }; 959 960 #ifdef TCP_OFFLOAD 961 /* 962 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 963 * be exactly the same for both rxq and ofld_rxq. 964 */ 965 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 966 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 967 #endif 968 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 969 970 static int 971 t4_probe(device_t dev) 972 { 973 int i; 974 uint16_t v = pci_get_vendor(dev); 975 uint16_t d = pci_get_device(dev); 976 uint8_t f = pci_get_function(dev); 977 978 if (v != PCI_VENDOR_ID_CHELSIO) 979 return (ENXIO); 980 981 /* Attach only to PF0 of the FPGA */ 982 if (d == 0xa000 && f != 0) 983 return (ENXIO); 984 985 for (i = 0; i < nitems(t4_pciids); i++) { 986 if (d == t4_pciids[i].device) { 987 device_set_desc(dev, t4_pciids[i].desc); 988 return (BUS_PROBE_DEFAULT); 989 } 990 } 991 992 return (ENXIO); 993 } 994 995 static int 996 t5_probe(device_t dev) 997 { 998 int i; 999 uint16_t v = pci_get_vendor(dev); 1000 uint16_t d = pci_get_device(dev); 1001 uint8_t f = pci_get_function(dev); 1002 1003 if (v != PCI_VENDOR_ID_CHELSIO) 1004 return (ENXIO); 1005 1006 /* Attach only to PF0 of the FPGA */ 1007 if (d == 0xb000 && f != 0) 1008 return (ENXIO); 1009 1010 for (i = 0; i < nitems(t5_pciids); i++) { 1011 if (d == t5_pciids[i].device) { 1012 device_set_desc(dev, t5_pciids[i].desc); 1013 return (BUS_PROBE_DEFAULT); 1014 } 1015 } 1016 1017 return (ENXIO); 1018 } 1019 1020 static int 1021 t6_probe(device_t dev) 1022 { 1023 int i; 1024 uint16_t v = pci_get_vendor(dev); 1025 uint16_t d = pci_get_device(dev); 1026 1027 if (v != PCI_VENDOR_ID_CHELSIO) 1028 return (ENXIO); 1029 1030 for (i = 0; i < nitems(t6_pciids); i++) { 1031 if (d == t6_pciids[i].device) { 1032 device_set_desc(dev, t6_pciids[i].desc); 1033 return (BUS_PROBE_DEFAULT); 1034 } 1035 } 1036 1037 return (ENXIO); 1038 } 1039 1040 static void 1041 t5_attribute_workaround(device_t dev) 1042 { 1043 device_t root_port; 1044 uint32_t v; 1045 1046 /* 1047 * The T5 chips do not properly echo the No Snoop and Relaxed 1048 * Ordering attributes when replying to a TLP from a Root 1049 * Port. As a workaround, find the parent Root Port and 1050 * disable No Snoop and Relaxed Ordering. Note that this 1051 * affects all devices under this root port. 1052 */ 1053 root_port = pci_find_pcie_root_port(dev); 1054 if (root_port == NULL) { 1055 device_printf(dev, "Unable to find parent root port\n"); 1056 return; 1057 } 1058 1059 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1060 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1061 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1062 0) 1063 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1064 device_get_nameunit(root_port)); 1065 } 1066 1067 static const struct devnames devnames[] = { 1068 { 1069 .nexus_name = "t4nex", 1070 .ifnet_name = "cxgbe", 1071 .vi_ifnet_name = "vcxgbe", 1072 .pf03_drv_name = "t4iov", 1073 .vf_nexus_name = "t4vf", 1074 .vf_ifnet_name = "cxgbev" 1075 }, { 1076 .nexus_name = "t5nex", 1077 .ifnet_name = "cxl", 1078 .vi_ifnet_name = "vcxl", 1079 .pf03_drv_name = "t5iov", 1080 .vf_nexus_name = "t5vf", 1081 .vf_ifnet_name = "cxlv" 1082 }, { 1083 .nexus_name = "t6nex", 1084 .ifnet_name = "cc", 1085 .vi_ifnet_name = "vcc", 1086 .pf03_drv_name = "t6iov", 1087 .vf_nexus_name = "t6vf", 1088 .vf_ifnet_name = "ccv" 1089 } 1090 }; 1091 1092 void 1093 t4_init_devnames(struct adapter *sc) 1094 { 1095 int id; 1096 1097 id = chip_id(sc); 1098 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1099 sc->names = &devnames[id - CHELSIO_T4]; 1100 else { 1101 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1102 sc->names = NULL; 1103 } 1104 } 1105 1106 static int 1107 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1108 { 1109 const char *parent, *name; 1110 long value; 1111 int line, unit; 1112 1113 line = 0; 1114 parent = device_get_nameunit(sc->dev); 1115 name = sc->names->ifnet_name; 1116 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1117 if (resource_long_value(name, unit, "port", &value) == 0 && 1118 value == pi->port_id) 1119 return (unit); 1120 } 1121 return (-1); 1122 } 1123 1124 static inline uint64_t 1125 t4_get_ns_timestamp(struct timespec *ts) 1126 { 1127 return ((ts->tv_sec * 1000000000) + ts->tv_nsec); 1128 } 1129 1130 static void 1131 t4_calibration(void *arg) 1132 { 1133 struct adapter *sc; 1134 struct timespec ts; 1135 struct clock_sync *cur, *nex; 1136 int next_up; 1137 1138 sc = (struct adapter *)arg; 1139 1140 cur = &sc->cal_info[sc->cal_current]; 1141 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1142 nex = &sc->cal_info[next_up]; 1143 if (__predict_false(sc->cal_count == 0)) { 1144 /* First time in, just get the values in */ 1145 cur->hw_cur = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1146 nanouptime(&ts); 1147 cur->rt_cur = t4_get_ns_timestamp(&ts); 1148 sc->cal_count++; 1149 goto done; 1150 } 1151 nex->hw_prev = cur->hw_cur; 1152 nex->rt_prev = cur->rt_cur; 1153 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibtration")); 1154 nex->hw_cur = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1155 nanouptime(&ts); 1156 nex->rt_cur = t4_get_ns_timestamp(&ts); 1157 if ((nex->hw_cur - nex->hw_prev) == 0) { 1158 /* The clock is not advancing? */ 1159 sc->cal_count = 0; 1160 atomic_store_rel_int(&cur->gen, 0); 1161 goto done; 1162 } 1163 atomic_store_rel_int(&cur->gen, 0); 1164 sc->cal_current = next_up; 1165 sc->cal_gen++; 1166 atomic_store_rel_int(&nex->gen, sc->cal_gen); 1167 if (sc->cal_count < t4_fast_2_normal) 1168 sc->cal_count++; 1169 done: 1170 callout_reset_sbt_curcpu(&sc->cal_callout, 1171 ((sc->cal_count < t4_fast_2_normal) ? 1172 t4_clocksync_fast : t4_clocksync_normal) * SBT_1S, 0, 1173 t4_calibration, sc, C_DIRECT_EXEC); 1174 } 1175 1176 1177 1178 static void 1179 t4_calibration_start(struct adapter *sc) 1180 { 1181 /* 1182 * Here if we have not done a calibration 1183 * then do so otherwise start the appropriate 1184 * timer. 1185 */ 1186 int i; 1187 1188 for (i = 0; i < CNT_CAL_INFO; i++) { 1189 sc->cal_info[i].gen = 0; 1190 } 1191 sc->cal_current = 0; 1192 sc->cal_count = 0; 1193 sc->cal_gen = 0; 1194 t4_calibration(sc); 1195 } 1196 1197 static int 1198 t4_attach(device_t dev) 1199 { 1200 struct adapter *sc; 1201 int rc = 0, i, j, rqidx, tqidx, nports; 1202 struct make_dev_args mda; 1203 struct intrs_and_queues iaq; 1204 struct sge *s; 1205 uint32_t *buf; 1206 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1207 int ofld_tqidx; 1208 #endif 1209 #ifdef TCP_OFFLOAD 1210 int ofld_rqidx; 1211 #endif 1212 #ifdef DEV_NETMAP 1213 int nm_rqidx, nm_tqidx; 1214 #endif 1215 int num_vis; 1216 1217 sc = device_get_softc(dev); 1218 sc->dev = dev; 1219 sysctl_ctx_init(&sc->ctx); 1220 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1221 1222 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1223 t5_attribute_workaround(dev); 1224 pci_enable_busmaster(dev); 1225 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1226 uint32_t v; 1227 1228 pci_set_max_read_req(dev, 4096); 1229 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1230 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1231 if (pcie_relaxed_ordering == 0 && 1232 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1233 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1234 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1235 } else if (pcie_relaxed_ordering == 1 && 1236 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1237 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1238 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1239 } 1240 } 1241 1242 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1243 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1244 sc->traceq = -1; 1245 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1246 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1247 device_get_nameunit(dev)); 1248 1249 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1250 device_get_nameunit(dev)); 1251 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1252 t4_add_adapter(sc); 1253 1254 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1255 TAILQ_INIT(&sc->sfl); 1256 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1257 1258 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1259 1260 sc->policy = NULL; 1261 rw_init(&sc->policy_lock, "connection offload policy"); 1262 1263 callout_init(&sc->ktls_tick, 1); 1264 1265 callout_init(&sc->cal_callout, 1); 1266 1267 refcount_init(&sc->vxlan_refcount, 0); 1268 1269 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1270 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1271 1272 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1273 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1274 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1275 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1276 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1277 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1278 1279 rc = t4_map_bars_0_and_4(sc); 1280 if (rc != 0) 1281 goto done; /* error message displayed already */ 1282 1283 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1284 1285 /* Prepare the adapter for operation. */ 1286 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1287 rc = -t4_prep_adapter(sc, buf); 1288 free(buf, M_CXGBE); 1289 if (rc != 0) { 1290 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1291 goto done; 1292 } 1293 1294 /* 1295 * This is the real PF# to which we're attaching. Works from within PCI 1296 * passthrough environments too, where pci_get_function() could return a 1297 * different PF# depending on the passthrough configuration. We need to 1298 * use the real PF# in all our communication with the firmware. 1299 */ 1300 j = t4_read_reg(sc, A_PL_WHOAMI); 1301 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1302 sc->mbox = sc->pf; 1303 1304 t4_init_devnames(sc); 1305 if (sc->names == NULL) { 1306 rc = ENOTSUP; 1307 goto done; /* error message displayed already */ 1308 } 1309 1310 /* 1311 * Do this really early, with the memory windows set up even before the 1312 * character device. The userland tool's register i/o and mem read 1313 * will work even in "recovery mode". 1314 */ 1315 setup_memwin(sc); 1316 if (t4_init_devlog_params(sc, 0) == 0) 1317 fixup_devlog_params(sc); 1318 make_dev_args_init(&mda); 1319 mda.mda_devsw = &t4_cdevsw; 1320 mda.mda_uid = UID_ROOT; 1321 mda.mda_gid = GID_WHEEL; 1322 mda.mda_mode = 0600; 1323 mda.mda_si_drv1 = sc; 1324 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1325 if (rc != 0) 1326 device_printf(dev, "failed to create nexus char device: %d.\n", 1327 rc); 1328 1329 /* Go no further if recovery mode has been requested. */ 1330 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1331 device_printf(dev, "recovery mode.\n"); 1332 goto done; 1333 } 1334 1335 #if defined(__i386__) 1336 if ((cpu_feature & CPUID_CX8) == 0) { 1337 device_printf(dev, "64 bit atomics not available.\n"); 1338 rc = ENOTSUP; 1339 goto done; 1340 } 1341 #endif 1342 1343 /* Contact the firmware and try to become the master driver. */ 1344 rc = contact_firmware(sc); 1345 if (rc != 0) 1346 goto done; /* error message displayed already */ 1347 MPASS(sc->flags & FW_OK); 1348 1349 rc = get_params__pre_init(sc); 1350 if (rc != 0) 1351 goto done; /* error message displayed already */ 1352 1353 if (sc->flags & MASTER_PF) { 1354 rc = partition_resources(sc); 1355 if (rc != 0) 1356 goto done; /* error message displayed already */ 1357 t4_intr_clear(sc); 1358 } 1359 1360 rc = get_params__post_init(sc); 1361 if (rc != 0) 1362 goto done; /* error message displayed already */ 1363 1364 rc = set_params__post_init(sc); 1365 if (rc != 0) 1366 goto done; /* error message displayed already */ 1367 1368 rc = t4_map_bar_2(sc); 1369 if (rc != 0) 1370 goto done; /* error message displayed already */ 1371 1372 rc = t4_create_dma_tag(sc); 1373 if (rc != 0) 1374 goto done; /* error message displayed already */ 1375 1376 /* 1377 * First pass over all the ports - allocate VIs and initialize some 1378 * basic parameters like mac address, port type, etc. 1379 */ 1380 for_each_port(sc, i) { 1381 struct port_info *pi; 1382 1383 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1384 sc->port[i] = pi; 1385 1386 /* These must be set before t4_port_init */ 1387 pi->adapter = sc; 1388 pi->port_id = i; 1389 /* 1390 * XXX: vi[0] is special so we can't delay this allocation until 1391 * pi->nvi's final value is known. 1392 */ 1393 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1394 M_ZERO | M_WAITOK); 1395 1396 /* 1397 * Allocate the "main" VI and initialize parameters 1398 * like mac addr. 1399 */ 1400 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1401 if (rc != 0) { 1402 device_printf(dev, "unable to initialize port %d: %d\n", 1403 i, rc); 1404 free(pi->vi, M_CXGBE); 1405 free(pi, M_CXGBE); 1406 sc->port[i] = NULL; 1407 goto done; 1408 } 1409 1410 if (is_bt(pi->port_type)) 1411 setbit(&sc->bt_map, pi->tx_chan); 1412 else 1413 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1414 1415 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1416 device_get_nameunit(dev), i); 1417 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1418 sc->chan_map[pi->tx_chan] = i; 1419 1420 /* 1421 * The MPS counter for FCS errors doesn't work correctly on the 1422 * T6 so we use the MAC counter here. Which MAC is in use 1423 * depends on the link settings which will be known when the 1424 * link comes up. 1425 */ 1426 if (is_t6(sc)) { 1427 pi->fcs_reg = -1; 1428 } else if (is_t4(sc)) { 1429 pi->fcs_reg = PORT_REG(pi->tx_chan, 1430 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1431 } else { 1432 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1433 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1434 } 1435 pi->fcs_base = 0; 1436 1437 /* All VIs on this port share this media. */ 1438 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1439 cxgbe_media_status); 1440 1441 PORT_LOCK(pi); 1442 init_link_config(pi); 1443 fixup_link_config(pi); 1444 build_medialist(pi); 1445 if (fixed_ifmedia(pi)) 1446 pi->flags |= FIXED_IFMEDIA; 1447 PORT_UNLOCK(pi); 1448 1449 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1450 t4_ifnet_unit(sc, pi)); 1451 if (pi->dev == NULL) { 1452 device_printf(dev, 1453 "failed to add device for port %d.\n", i); 1454 rc = ENXIO; 1455 goto done; 1456 } 1457 pi->vi[0].dev = pi->dev; 1458 device_set_softc(pi->dev, pi); 1459 } 1460 1461 /* 1462 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1463 */ 1464 nports = sc->params.nports; 1465 rc = cfg_itype_and_nqueues(sc, &iaq); 1466 if (rc != 0) 1467 goto done; /* error message displayed already */ 1468 1469 num_vis = iaq.num_vis; 1470 sc->intr_type = iaq.intr_type; 1471 sc->intr_count = iaq.nirq; 1472 1473 s = &sc->sge; 1474 s->nrxq = nports * iaq.nrxq; 1475 s->ntxq = nports * iaq.ntxq; 1476 if (num_vis > 1) { 1477 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1478 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1479 } 1480 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1481 s->neq += nports; /* ctrl queues: 1 per port */ 1482 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1483 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1484 if (is_offload(sc) || is_ethoffload(sc)) { 1485 s->nofldtxq = nports * iaq.nofldtxq; 1486 if (num_vis > 1) 1487 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1488 s->neq += s->nofldtxq; 1489 1490 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1491 M_CXGBE, M_ZERO | M_WAITOK); 1492 } 1493 #endif 1494 #ifdef TCP_OFFLOAD 1495 if (is_offload(sc)) { 1496 s->nofldrxq = nports * iaq.nofldrxq; 1497 if (num_vis > 1) 1498 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1499 s->neq += s->nofldrxq; /* free list */ 1500 s->niq += s->nofldrxq; 1501 1502 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1503 M_CXGBE, M_ZERO | M_WAITOK); 1504 } 1505 #endif 1506 #ifdef DEV_NETMAP 1507 s->nnmrxq = 0; 1508 s->nnmtxq = 0; 1509 if (t4_native_netmap & NN_MAIN_VI) { 1510 s->nnmrxq += nports * iaq.nnmrxq; 1511 s->nnmtxq += nports * iaq.nnmtxq; 1512 } 1513 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1514 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1515 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1516 } 1517 s->neq += s->nnmtxq + s->nnmrxq; 1518 s->niq += s->nnmrxq; 1519 1520 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1521 M_CXGBE, M_ZERO | M_WAITOK); 1522 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1523 M_CXGBE, M_ZERO | M_WAITOK); 1524 #endif 1525 MPASS(s->niq <= s->iqmap_sz); 1526 MPASS(s->neq <= s->eqmap_sz); 1527 1528 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1529 M_ZERO | M_WAITOK); 1530 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1531 M_ZERO | M_WAITOK); 1532 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1533 M_ZERO | M_WAITOK); 1534 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1535 M_ZERO | M_WAITOK); 1536 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1537 M_ZERO | M_WAITOK); 1538 1539 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1540 M_ZERO | M_WAITOK); 1541 1542 t4_init_l2t(sc, M_WAITOK); 1543 t4_init_smt(sc, M_WAITOK); 1544 t4_init_tx_sched(sc); 1545 t4_init_atid_table(sc); 1546 #ifdef RATELIMIT 1547 t4_init_etid_table(sc); 1548 #endif 1549 #ifdef INET6 1550 t4_init_clip_table(sc); 1551 #endif 1552 if (sc->vres.key.size != 0) 1553 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1554 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1555 1556 /* 1557 * Second pass over the ports. This time we know the number of rx and 1558 * tx queues that each port should get. 1559 */ 1560 rqidx = tqidx = 0; 1561 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1562 ofld_tqidx = 0; 1563 #endif 1564 #ifdef TCP_OFFLOAD 1565 ofld_rqidx = 0; 1566 #endif 1567 #ifdef DEV_NETMAP 1568 nm_rqidx = nm_tqidx = 0; 1569 #endif 1570 for_each_port(sc, i) { 1571 struct port_info *pi = sc->port[i]; 1572 struct vi_info *vi; 1573 1574 if (pi == NULL) 1575 continue; 1576 1577 pi->nvi = num_vis; 1578 for_each_vi(pi, j, vi) { 1579 vi->pi = pi; 1580 vi->adapter = sc; 1581 vi->first_intr = -1; 1582 vi->qsize_rxq = t4_qsize_rxq; 1583 vi->qsize_txq = t4_qsize_txq; 1584 1585 vi->first_rxq = rqidx; 1586 vi->first_txq = tqidx; 1587 vi->tmr_idx = t4_tmr_idx; 1588 vi->pktc_idx = t4_pktc_idx; 1589 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1590 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1591 1592 rqidx += vi->nrxq; 1593 tqidx += vi->ntxq; 1594 1595 if (j == 0 && vi->ntxq > 1) 1596 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1597 else 1598 vi->rsrv_noflowq = 0; 1599 1600 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1601 vi->first_ofld_txq = ofld_tqidx; 1602 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1603 ofld_tqidx += vi->nofldtxq; 1604 #endif 1605 #ifdef TCP_OFFLOAD 1606 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1607 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1608 vi->first_ofld_rxq = ofld_rqidx; 1609 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1610 1611 ofld_rqidx += vi->nofldrxq; 1612 #endif 1613 #ifdef DEV_NETMAP 1614 vi->first_nm_rxq = nm_rqidx; 1615 vi->first_nm_txq = nm_tqidx; 1616 if (j == 0) { 1617 vi->nnmrxq = iaq.nnmrxq; 1618 vi->nnmtxq = iaq.nnmtxq; 1619 } else { 1620 vi->nnmrxq = iaq.nnmrxq_vi; 1621 vi->nnmtxq = iaq.nnmtxq_vi; 1622 } 1623 nm_rqidx += vi->nnmrxq; 1624 nm_tqidx += vi->nnmtxq; 1625 #endif 1626 } 1627 } 1628 1629 rc = t4_setup_intr_handlers(sc); 1630 if (rc != 0) { 1631 device_printf(dev, 1632 "failed to setup interrupt handlers: %d\n", rc); 1633 goto done; 1634 } 1635 1636 rc = bus_generic_probe(dev); 1637 if (rc != 0) { 1638 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1639 goto done; 1640 } 1641 1642 /* 1643 * Ensure thread-safe mailbox access (in debug builds). 1644 * 1645 * So far this was the only thread accessing the mailbox but various 1646 * ifnets and sysctls are about to be created and their handlers/ioctls 1647 * will access the mailbox from different threads. 1648 */ 1649 sc->flags |= CHK_MBOX_ACCESS; 1650 1651 rc = bus_generic_attach(dev); 1652 if (rc != 0) { 1653 device_printf(dev, 1654 "failed to attach all child ports: %d\n", rc); 1655 goto done; 1656 } 1657 t4_calibration_start(sc); 1658 1659 device_printf(dev, 1660 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1661 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1662 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1663 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1664 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1665 1666 t4_set_desc(sc); 1667 1668 notify_siblings(dev, 0); 1669 1670 done: 1671 if (rc != 0 && sc->cdev) { 1672 /* cdev was created and so cxgbetool works; recover that way. */ 1673 device_printf(dev, 1674 "error during attach, adapter is now in recovery mode.\n"); 1675 rc = 0; 1676 } 1677 1678 if (rc != 0) 1679 t4_detach_common(dev); 1680 else 1681 t4_sysctls(sc); 1682 1683 return (rc); 1684 } 1685 1686 static int 1687 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1688 { 1689 struct adapter *sc; 1690 struct port_info *pi; 1691 int i; 1692 1693 sc = device_get_softc(bus); 1694 for_each_port(sc, i) { 1695 pi = sc->port[i]; 1696 if (pi != NULL && pi->dev == dev) { 1697 sbuf_printf(sb, "port=%d", pi->port_id); 1698 break; 1699 } 1700 } 1701 return (0); 1702 } 1703 1704 static int 1705 t4_ready(device_t dev) 1706 { 1707 struct adapter *sc; 1708 1709 sc = device_get_softc(dev); 1710 if (sc->flags & FW_OK) 1711 return (0); 1712 return (ENXIO); 1713 } 1714 1715 static int 1716 t4_read_port_device(device_t dev, int port, device_t *child) 1717 { 1718 struct adapter *sc; 1719 struct port_info *pi; 1720 1721 sc = device_get_softc(dev); 1722 if (port < 0 || port >= MAX_NPORTS) 1723 return (EINVAL); 1724 pi = sc->port[port]; 1725 if (pi == NULL || pi->dev == NULL) 1726 return (ENXIO); 1727 *child = pi->dev; 1728 return (0); 1729 } 1730 1731 static int 1732 notify_siblings(device_t dev, int detaching) 1733 { 1734 device_t sibling; 1735 int error, i; 1736 1737 error = 0; 1738 for (i = 0; i < PCI_FUNCMAX; i++) { 1739 if (i == pci_get_function(dev)) 1740 continue; 1741 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1742 pci_get_slot(dev), i); 1743 if (sibling == NULL || !device_is_attached(sibling)) 1744 continue; 1745 if (detaching) 1746 error = T4_DETACH_CHILD(sibling); 1747 else 1748 (void)T4_ATTACH_CHILD(sibling); 1749 if (error) 1750 break; 1751 } 1752 return (error); 1753 } 1754 1755 /* 1756 * Idempotent 1757 */ 1758 static int 1759 t4_detach(device_t dev) 1760 { 1761 int rc; 1762 1763 rc = notify_siblings(dev, 1); 1764 if (rc) { 1765 device_printf(dev, 1766 "failed to detach sibling devices: %d\n", rc); 1767 return (rc); 1768 } 1769 1770 return (t4_detach_common(dev)); 1771 } 1772 1773 int 1774 t4_detach_common(device_t dev) 1775 { 1776 struct adapter *sc; 1777 struct port_info *pi; 1778 int i, rc; 1779 1780 sc = device_get_softc(dev); 1781 1782 #ifdef TCP_OFFLOAD 1783 rc = t4_deactivate_all_uld(sc); 1784 if (rc) { 1785 device_printf(dev, 1786 "failed to detach upper layer drivers: %d\n", rc); 1787 return (rc); 1788 } 1789 #endif 1790 1791 if (sc->cdev) { 1792 destroy_dev(sc->cdev); 1793 sc->cdev = NULL; 1794 } 1795 1796 sx_xlock(&t4_list_lock); 1797 SLIST_REMOVE(&t4_list, sc, adapter, link); 1798 sx_xunlock(&t4_list_lock); 1799 1800 sc->flags &= ~CHK_MBOX_ACCESS; 1801 if (sc->flags & FULL_INIT_DONE) { 1802 if (!(sc->flags & IS_VF)) 1803 t4_intr_disable(sc); 1804 } 1805 1806 if (device_is_attached(dev)) { 1807 rc = bus_generic_detach(dev); 1808 if (rc) { 1809 device_printf(dev, 1810 "failed to detach child devices: %d\n", rc); 1811 return (rc); 1812 } 1813 } 1814 1815 for (i = 0; i < sc->intr_count; i++) 1816 t4_free_irq(sc, &sc->irq[i]); 1817 1818 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1819 t4_free_tx_sched(sc); 1820 1821 for (i = 0; i < MAX_NPORTS; i++) { 1822 pi = sc->port[i]; 1823 if (pi) { 1824 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1825 if (pi->dev) 1826 device_delete_child(dev, pi->dev); 1827 1828 mtx_destroy(&pi->pi_lock); 1829 free(pi->vi, M_CXGBE); 1830 free(pi, M_CXGBE); 1831 } 1832 } 1833 callout_stop(&sc->cal_callout); 1834 callout_drain(&sc->cal_callout); 1835 device_delete_children(dev); 1836 sysctl_ctx_free(&sc->ctx); 1837 adapter_full_uninit(sc); 1838 1839 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1840 t4_fw_bye(sc, sc->mbox); 1841 1842 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1843 pci_release_msi(dev); 1844 1845 if (sc->regs_res) 1846 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1847 sc->regs_res); 1848 1849 if (sc->udbs_res) 1850 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1851 sc->udbs_res); 1852 1853 if (sc->msix_res) 1854 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1855 sc->msix_res); 1856 1857 if (sc->l2t) 1858 t4_free_l2t(sc->l2t); 1859 if (sc->smt) 1860 t4_free_smt(sc->smt); 1861 t4_free_atid_table(sc); 1862 #ifdef RATELIMIT 1863 t4_free_etid_table(sc); 1864 #endif 1865 if (sc->key_map) 1866 vmem_destroy(sc->key_map); 1867 #ifdef INET6 1868 t4_destroy_clip_table(sc); 1869 #endif 1870 1871 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1872 free(sc->sge.ofld_txq, M_CXGBE); 1873 #endif 1874 #ifdef TCP_OFFLOAD 1875 free(sc->sge.ofld_rxq, M_CXGBE); 1876 #endif 1877 #ifdef DEV_NETMAP 1878 free(sc->sge.nm_rxq, M_CXGBE); 1879 free(sc->sge.nm_txq, M_CXGBE); 1880 #endif 1881 free(sc->irq, M_CXGBE); 1882 free(sc->sge.rxq, M_CXGBE); 1883 free(sc->sge.txq, M_CXGBE); 1884 free(sc->sge.ctrlq, M_CXGBE); 1885 free(sc->sge.iqmap, M_CXGBE); 1886 free(sc->sge.eqmap, M_CXGBE); 1887 free(sc->tids.ftid_tab, M_CXGBE); 1888 free(sc->tids.hpftid_tab, M_CXGBE); 1889 free_hftid_hash(&sc->tids); 1890 free(sc->tids.tid_tab, M_CXGBE); 1891 free(sc->tt.tls_rx_ports, M_CXGBE); 1892 t4_destroy_dma_tag(sc); 1893 1894 callout_drain(&sc->ktls_tick); 1895 callout_drain(&sc->sfl_callout); 1896 if (mtx_initialized(&sc->tids.ftid_lock)) { 1897 mtx_destroy(&sc->tids.ftid_lock); 1898 cv_destroy(&sc->tids.ftid_cv); 1899 } 1900 if (mtx_initialized(&sc->tids.atid_lock)) 1901 mtx_destroy(&sc->tids.atid_lock); 1902 if (mtx_initialized(&sc->ifp_lock)) 1903 mtx_destroy(&sc->ifp_lock); 1904 1905 if (rw_initialized(&sc->policy_lock)) { 1906 rw_destroy(&sc->policy_lock); 1907 #ifdef TCP_OFFLOAD 1908 if (sc->policy != NULL) 1909 free_offload_policy(sc->policy); 1910 #endif 1911 } 1912 1913 for (i = 0; i < NUM_MEMWIN; i++) { 1914 struct memwin *mw = &sc->memwin[i]; 1915 1916 if (rw_initialized(&mw->mw_lock)) 1917 rw_destroy(&mw->mw_lock); 1918 } 1919 1920 mtx_destroy(&sc->sfl_lock); 1921 mtx_destroy(&sc->reg_lock); 1922 mtx_destroy(&sc->sc_lock); 1923 1924 bzero(sc, sizeof(*sc)); 1925 1926 return (0); 1927 } 1928 1929 static inline bool 1930 ok_to_reset(struct adapter *sc) 1931 { 1932 struct tid_info *t = &sc->tids; 1933 struct port_info *pi; 1934 struct vi_info *vi; 1935 int i, j; 1936 int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT; 1937 1938 if (is_t6(sc)) 1939 caps |= IFCAP_TXTLS; 1940 1941 ASSERT_SYNCHRONIZED_OP(sc); 1942 MPASS(!(sc->flags & IS_VF)); 1943 1944 for_each_port(sc, i) { 1945 pi = sc->port[i]; 1946 for_each_vi(pi, j, vi) { 1947 if (vi->ifp->if_capenable & caps) 1948 return (false); 1949 } 1950 } 1951 1952 if (atomic_load_int(&t->tids_in_use) > 0) 1953 return (false); 1954 if (atomic_load_int(&t->stids_in_use) > 0) 1955 return (false); 1956 if (atomic_load_int(&t->atids_in_use) > 0) 1957 return (false); 1958 if (atomic_load_int(&t->ftids_in_use) > 0) 1959 return (false); 1960 if (atomic_load_int(&t->hpftids_in_use) > 0) 1961 return (false); 1962 if (atomic_load_int(&t->etids_in_use) > 0) 1963 return (false); 1964 1965 return (true); 1966 } 1967 1968 static inline int 1969 stop_adapter(struct adapter *sc) 1970 { 1971 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1972 return (1); /* Already stopped. */ 1973 return (t4_shutdown_adapter(sc)); 1974 } 1975 1976 static int 1977 t4_suspend(device_t dev) 1978 { 1979 struct adapter *sc = device_get_softc(dev); 1980 struct port_info *pi; 1981 struct vi_info *vi; 1982 struct ifnet *ifp; 1983 struct sge_rxq *rxq; 1984 struct sge_txq *txq; 1985 struct sge_wrq *wrq; 1986 #ifdef TCP_OFFLOAD 1987 struct sge_ofld_rxq *ofld_rxq; 1988 #endif 1989 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1990 struct sge_ofld_txq *ofld_txq; 1991 #endif 1992 int rc, i, j, k; 1993 1994 CH_ALERT(sc, "suspend requested\n"); 1995 1996 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1997 if (rc != 0) 1998 return (ENXIO); 1999 2000 /* XXX: Can the kernel call suspend repeatedly without resume? */ 2001 MPASS(!hw_off_limits(sc)); 2002 2003 if (!ok_to_reset(sc)) { 2004 /* XXX: should list what resource is preventing suspend. */ 2005 CH_ERR(sc, "not safe to suspend.\n"); 2006 rc = EBUSY; 2007 goto done; 2008 } 2009 2010 /* No more DMA or interrupts. */ 2011 stop_adapter(sc); 2012 /* Quiesce all activity. */ 2013 for_each_port(sc, i) { 2014 pi = sc->port[i]; 2015 pi->vxlan_tcam_entry = false; 2016 2017 PORT_LOCK(pi); 2018 if (pi->up_vis > 0) { 2019 /* 2020 * t4_shutdown_adapter has already shut down all the 2021 * PHYs but it also disables interrupts and DMA so there 2022 * won't be a link interrupt. So we update the state 2023 * manually and inform the kernel. 2024 */ 2025 pi->link_cfg.link_ok = false; 2026 t4_os_link_changed(pi); 2027 } 2028 PORT_UNLOCK(pi); 2029 2030 for_each_vi(pi, j, vi) { 2031 vi->xact_addr_filt = -1; 2032 mtx_lock(&vi->tick_mtx); 2033 vi->flags |= VI_SKIP_STATS; 2034 mtx_unlock(&vi->tick_mtx); 2035 if (!(vi->flags & VI_INIT_DONE)) 2036 continue; 2037 2038 ifp = vi->ifp; 2039 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2040 mtx_lock(&vi->tick_mtx); 2041 callout_stop(&vi->tick); 2042 mtx_unlock(&vi->tick_mtx); 2043 callout_drain(&vi->tick); 2044 } 2045 2046 /* 2047 * Note that the HW is not available. 2048 */ 2049 for_each_txq(vi, k, txq) { 2050 TXQ_LOCK(txq); 2051 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2052 TXQ_UNLOCK(txq); 2053 } 2054 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2055 for_each_ofld_txq(vi, k, ofld_txq) { 2056 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2057 } 2058 #endif 2059 for_each_rxq(vi, k, rxq) { 2060 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2061 } 2062 #if defined(TCP_OFFLOAD) 2063 for_each_ofld_rxq(vi, k, ofld_rxq) { 2064 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2065 } 2066 #endif 2067 2068 quiesce_vi(vi); 2069 } 2070 2071 if (sc->flags & FULL_INIT_DONE) { 2072 /* Control queue */ 2073 wrq = &sc->sge.ctrlq[i]; 2074 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2075 quiesce_wrq(wrq); 2076 } 2077 } 2078 if (sc->flags & FULL_INIT_DONE) { 2079 /* Firmware event queue */ 2080 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2081 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2082 } 2083 2084 /* Stop calibration */ 2085 callout_stop(&sc->cal_callout); 2086 callout_drain(&sc->cal_callout); 2087 2088 /* Mark the adapter totally off limits. */ 2089 mtx_lock(&sc->reg_lock); 2090 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2091 sc->flags &= ~(FW_OK | MASTER_PF); 2092 sc->reset_thread = NULL; 2093 mtx_unlock(&sc->reg_lock); 2094 2095 if (t4_clock_gate_on_suspend) { 2096 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2097 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2098 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2099 } 2100 2101 CH_ALERT(sc, "suspend completed.\n"); 2102 done: 2103 end_synchronized_op(sc, 0); 2104 return (rc); 2105 } 2106 2107 struct adapter_pre_reset_state { 2108 u_int flags; 2109 uint16_t nbmcaps; 2110 uint16_t linkcaps; 2111 uint16_t switchcaps; 2112 uint16_t niccaps; 2113 uint16_t toecaps; 2114 uint16_t rdmacaps; 2115 uint16_t cryptocaps; 2116 uint16_t iscsicaps; 2117 uint16_t fcoecaps; 2118 2119 u_int cfcsum; 2120 char cfg_file[32]; 2121 2122 struct adapter_params params; 2123 struct t4_virt_res vres; 2124 struct tid_info tids; 2125 struct sge sge; 2126 2127 int rawf_base; 2128 int nrawf; 2129 2130 }; 2131 2132 static void 2133 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2134 { 2135 2136 ASSERT_SYNCHRONIZED_OP(sc); 2137 2138 o->flags = sc->flags; 2139 2140 o->nbmcaps = sc->nbmcaps; 2141 o->linkcaps = sc->linkcaps; 2142 o->switchcaps = sc->switchcaps; 2143 o->niccaps = sc->niccaps; 2144 o->toecaps = sc->toecaps; 2145 o->rdmacaps = sc->rdmacaps; 2146 o->cryptocaps = sc->cryptocaps; 2147 o->iscsicaps = sc->iscsicaps; 2148 o->fcoecaps = sc->fcoecaps; 2149 2150 o->cfcsum = sc->cfcsum; 2151 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2152 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2153 2154 o->params = sc->params; 2155 o->vres = sc->vres; 2156 o->tids = sc->tids; 2157 o->sge = sc->sge; 2158 2159 o->rawf_base = sc->rawf_base; 2160 o->nrawf = sc->nrawf; 2161 } 2162 2163 static int 2164 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2165 { 2166 int rc = 0; 2167 2168 ASSERT_SYNCHRONIZED_OP(sc); 2169 2170 /* Capabilities */ 2171 #define COMPARE_CAPS(c) do { \ 2172 if (o->c##caps != sc->c##caps) { \ 2173 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2174 sc->c##caps); \ 2175 rc = EINVAL; \ 2176 } \ 2177 } while (0) 2178 COMPARE_CAPS(nbm); 2179 COMPARE_CAPS(link); 2180 COMPARE_CAPS(switch); 2181 COMPARE_CAPS(nic); 2182 COMPARE_CAPS(toe); 2183 COMPARE_CAPS(rdma); 2184 COMPARE_CAPS(crypto); 2185 COMPARE_CAPS(iscsi); 2186 COMPARE_CAPS(fcoe); 2187 #undef COMPARE_CAPS 2188 2189 /* Firmware config file */ 2190 if (o->cfcsum != sc->cfcsum) { 2191 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2192 o->cfcsum, sc->cfg_file, sc->cfcsum); 2193 rc = EINVAL; 2194 } 2195 2196 #define COMPARE_PARAM(p, name) do { \ 2197 if (o->p != sc->p) { \ 2198 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2199 rc = EINVAL; \ 2200 } \ 2201 } while (0) 2202 COMPARE_PARAM(sge.iq_start, iq_start); 2203 COMPARE_PARAM(sge.eq_start, eq_start); 2204 COMPARE_PARAM(tids.ftid_base, ftid_base); 2205 COMPARE_PARAM(tids.ftid_end, ftid_end); 2206 COMPARE_PARAM(tids.nftids, nftids); 2207 COMPARE_PARAM(vres.l2t.start, l2t_start); 2208 COMPARE_PARAM(vres.l2t.size, l2t_size); 2209 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2210 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2211 COMPARE_PARAM(tids.tid_base, tid_base); 2212 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2213 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2214 COMPARE_PARAM(tids.nhpftids, nhpftids); 2215 COMPARE_PARAM(rawf_base, rawf_base); 2216 COMPARE_PARAM(nrawf, nrawf); 2217 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2218 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2219 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2220 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2221 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2222 COMPARE_PARAM(tids.ntids, ntids); 2223 COMPARE_PARAM(tids.etid_base, etid_base); 2224 COMPARE_PARAM(tids.etid_end, etid_end); 2225 COMPARE_PARAM(tids.netids, netids); 2226 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2227 COMPARE_PARAM(params.ethoffload, ethoffload); 2228 COMPARE_PARAM(tids.natids, natids); 2229 COMPARE_PARAM(tids.stid_base, stid_base); 2230 COMPARE_PARAM(vres.ddp.start, ddp_start); 2231 COMPARE_PARAM(vres.ddp.size, ddp_size); 2232 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2233 COMPARE_PARAM(vres.stag.start, stag_start); 2234 COMPARE_PARAM(vres.stag.size, stag_size); 2235 COMPARE_PARAM(vres.rq.start, rq_start); 2236 COMPARE_PARAM(vres.rq.size, rq_size); 2237 COMPARE_PARAM(vres.pbl.start, pbl_start); 2238 COMPARE_PARAM(vres.pbl.size, pbl_size); 2239 COMPARE_PARAM(vres.qp.start, qp_start); 2240 COMPARE_PARAM(vres.qp.size, qp_size); 2241 COMPARE_PARAM(vres.cq.start, cq_start); 2242 COMPARE_PARAM(vres.cq.size, cq_size); 2243 COMPARE_PARAM(vres.ocq.start, ocq_start); 2244 COMPARE_PARAM(vres.ocq.size, ocq_size); 2245 COMPARE_PARAM(vres.srq.start, srq_start); 2246 COMPARE_PARAM(vres.srq.size, srq_size); 2247 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2248 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2249 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2250 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2251 COMPARE_PARAM(vres.key.start, key_start); 2252 COMPARE_PARAM(vres.key.size, key_size); 2253 #undef COMPARE_PARAM 2254 2255 return (rc); 2256 } 2257 2258 static int 2259 t4_resume(device_t dev) 2260 { 2261 struct adapter *sc = device_get_softc(dev); 2262 struct adapter_pre_reset_state *old_state = NULL; 2263 struct port_info *pi; 2264 struct vi_info *vi; 2265 struct ifnet *ifp; 2266 struct sge_txq *txq; 2267 int rc, i, j, k; 2268 2269 CH_ALERT(sc, "resume requested.\n"); 2270 2271 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2272 if (rc != 0) 2273 return (ENXIO); 2274 MPASS(hw_off_limits(sc)); 2275 MPASS((sc->flags & FW_OK) == 0); 2276 MPASS((sc->flags & MASTER_PF) == 0); 2277 MPASS(sc->reset_thread == NULL); 2278 sc->reset_thread = curthread; 2279 2280 /* Register access is expected to work by the time we're here. */ 2281 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2282 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2283 rc = ENXIO; 2284 goto done; 2285 } 2286 2287 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2288 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2289 2290 /* Restore memory window. */ 2291 setup_memwin(sc); 2292 2293 /* Go no further if recovery mode has been requested. */ 2294 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2295 CH_ALERT(sc, "recovery mode on resume.\n"); 2296 rc = 0; 2297 mtx_lock(&sc->reg_lock); 2298 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2299 mtx_unlock(&sc->reg_lock); 2300 goto done; 2301 } 2302 2303 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2304 save_caps_and_params(sc, old_state); 2305 2306 /* Reestablish contact with firmware and become the primary PF. */ 2307 rc = contact_firmware(sc); 2308 if (rc != 0) 2309 goto done; /* error message displayed already */ 2310 MPASS(sc->flags & FW_OK); 2311 2312 if (sc->flags & MASTER_PF) { 2313 rc = partition_resources(sc); 2314 if (rc != 0) 2315 goto done; /* error message displayed already */ 2316 t4_intr_clear(sc); 2317 } 2318 2319 rc = get_params__post_init(sc); 2320 if (rc != 0) 2321 goto done; /* error message displayed already */ 2322 2323 rc = set_params__post_init(sc); 2324 if (rc != 0) 2325 goto done; /* error message displayed already */ 2326 2327 rc = compare_caps_and_params(sc, old_state); 2328 if (rc != 0) 2329 goto done; /* error message displayed already */ 2330 2331 for_each_port(sc, i) { 2332 pi = sc->port[i]; 2333 MPASS(pi != NULL); 2334 MPASS(pi->vi != NULL); 2335 MPASS(pi->vi[0].dev == pi->dev); 2336 2337 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2338 if (rc != 0) { 2339 CH_ERR(sc, 2340 "failed to re-initialize port %d: %d\n", i, rc); 2341 goto done; 2342 } 2343 MPASS(sc->chan_map[pi->tx_chan] == i); 2344 2345 PORT_LOCK(pi); 2346 fixup_link_config(pi); 2347 build_medialist(pi); 2348 PORT_UNLOCK(pi); 2349 for_each_vi(pi, j, vi) { 2350 if (IS_MAIN_VI(vi)) 2351 continue; 2352 rc = alloc_extra_vi(sc, pi, vi); 2353 if (rc != 0) { 2354 CH_ERR(vi, 2355 "failed to re-allocate extra VI: %d\n", rc); 2356 goto done; 2357 } 2358 } 2359 } 2360 2361 /* 2362 * Interrupts and queues are about to be enabled and other threads will 2363 * want to access the hardware too. It is safe to do so. Note that 2364 * this thread is still in the middle of a synchronized_op. 2365 */ 2366 mtx_lock(&sc->reg_lock); 2367 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2368 mtx_unlock(&sc->reg_lock); 2369 2370 if (sc->flags & FULL_INIT_DONE) { 2371 rc = adapter_full_init(sc); 2372 if (rc != 0) { 2373 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2374 goto done; 2375 } 2376 2377 if (sc->vxlan_refcount > 0) 2378 enable_vxlan_rx(sc); 2379 2380 for_each_port(sc, i) { 2381 pi = sc->port[i]; 2382 for_each_vi(pi, j, vi) { 2383 mtx_lock(&vi->tick_mtx); 2384 vi->flags &= ~VI_SKIP_STATS; 2385 mtx_unlock(&vi->tick_mtx); 2386 if (!(vi->flags & VI_INIT_DONE)) 2387 continue; 2388 rc = vi_full_init(vi); 2389 if (rc != 0) { 2390 CH_ERR(vi, "failed to re-initialize " 2391 "interface: %d\n", rc); 2392 goto done; 2393 } 2394 2395 ifp = vi->ifp; 2396 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2397 continue; 2398 /* 2399 * Note that we do not setup multicast addresses 2400 * in the first pass. This ensures that the 2401 * unicast DMACs for all VIs on all ports get an 2402 * MPS TCAM entry. 2403 */ 2404 rc = update_mac_settings(ifp, XGMAC_ALL & 2405 ~XGMAC_MCADDRS); 2406 if (rc != 0) { 2407 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2408 goto done; 2409 } 2410 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2411 true); 2412 if (rc != 0) { 2413 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2414 goto done; 2415 } 2416 for_each_txq(vi, k, txq) { 2417 TXQ_LOCK(txq); 2418 txq->eq.flags |= EQ_ENABLED; 2419 TXQ_UNLOCK(txq); 2420 } 2421 mtx_lock(&vi->tick_mtx); 2422 callout_schedule(&vi->tick, hz); 2423 mtx_unlock(&vi->tick_mtx); 2424 } 2425 PORT_LOCK(pi); 2426 if (pi->up_vis > 0) { 2427 t4_update_port_info(pi); 2428 fixup_link_config(pi); 2429 build_medialist(pi); 2430 apply_link_config(pi); 2431 if (pi->link_cfg.link_ok) 2432 t4_os_link_changed(pi); 2433 } 2434 PORT_UNLOCK(pi); 2435 } 2436 2437 /* Now reprogram the L2 multicast addresses. */ 2438 for_each_port(sc, i) { 2439 pi = sc->port[i]; 2440 for_each_vi(pi, j, vi) { 2441 if (!(vi->flags & VI_INIT_DONE)) 2442 continue; 2443 ifp = vi->ifp; 2444 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2445 continue; 2446 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2447 if (rc != 0) { 2448 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2449 rc = 0; /* carry on */ 2450 } 2451 } 2452 } 2453 } 2454 2455 /* Reset all calibration */ 2456 t4_calibration_start(sc); 2457 2458 done: 2459 if (rc == 0) { 2460 sc->incarnation++; 2461 CH_ALERT(sc, "resume completed.\n"); 2462 } 2463 end_synchronized_op(sc, 0); 2464 free(old_state, M_CXGBE); 2465 return (rc); 2466 } 2467 2468 static int 2469 t4_reset_prepare(device_t dev, device_t child) 2470 { 2471 struct adapter *sc = device_get_softc(dev); 2472 2473 CH_ALERT(sc, "reset_prepare.\n"); 2474 return (0); 2475 } 2476 2477 static int 2478 t4_reset_post(device_t dev, device_t child) 2479 { 2480 struct adapter *sc = device_get_softc(dev); 2481 2482 CH_ALERT(sc, "reset_post.\n"); 2483 return (0); 2484 } 2485 2486 static int 2487 reset_adapter(struct adapter *sc) 2488 { 2489 int rc, oldinc, error_flags; 2490 2491 CH_ALERT(sc, "reset requested.\n"); 2492 2493 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2494 if (rc != 0) 2495 return (EBUSY); 2496 2497 if (hw_off_limits(sc)) { 2498 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2499 rc = ENXIO; 2500 goto done; 2501 } 2502 2503 if (!ok_to_reset(sc)) { 2504 /* XXX: should list what resource is preventing reset. */ 2505 CH_ERR(sc, "not safe to reset.\n"); 2506 rc = EBUSY; 2507 goto done; 2508 } 2509 2510 done: 2511 oldinc = sc->incarnation; 2512 end_synchronized_op(sc, 0); 2513 if (rc != 0) 2514 return (rc); /* Error logged already. */ 2515 2516 atomic_add_int(&sc->num_resets, 1); 2517 mtx_lock(&Giant); 2518 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2519 mtx_unlock(&Giant); 2520 if (rc != 0) 2521 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2522 else { 2523 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2524 if (rc != 0) 2525 return (EBUSY); 2526 error_flags = atomic_load_int(&sc->error_flags); 2527 if (sc->incarnation > oldinc && error_flags == 0) { 2528 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2529 } else { 2530 CH_ERR(sc, "adapter did not reset properly, flags " 2531 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2532 error_flags); 2533 rc = ENXIO; 2534 } 2535 end_synchronized_op(sc, 0); 2536 } 2537 2538 return (rc); 2539 } 2540 2541 static void 2542 reset_adapter_task(void *arg, int pending) 2543 { 2544 /* XXX: t4_async_event here? */ 2545 reset_adapter(arg); 2546 } 2547 2548 static int 2549 cxgbe_probe(device_t dev) 2550 { 2551 char buf[128]; 2552 struct port_info *pi = device_get_softc(dev); 2553 2554 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2555 device_set_desc_copy(dev, buf); 2556 2557 return (BUS_PROBE_DEFAULT); 2558 } 2559 2560 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2561 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2562 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2563 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2564 #define T4_CAP_ENABLE (T4_CAP) 2565 2566 static int 2567 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2568 { 2569 struct ifnet *ifp; 2570 struct sbuf *sb; 2571 struct sysctl_ctx_list *ctx = &vi->ctx; 2572 struct sysctl_oid_list *children; 2573 struct pfil_head_args pa; 2574 struct adapter *sc = vi->adapter; 2575 2576 sysctl_ctx_init(ctx); 2577 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2578 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2579 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2580 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2581 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2582 #ifdef DEV_NETMAP 2583 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2584 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2585 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2586 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2587 #endif 2588 #ifdef TCP_OFFLOAD 2589 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2590 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2591 #endif 2592 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2593 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2594 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2595 #endif 2596 2597 vi->xact_addr_filt = -1; 2598 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2599 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2600 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2601 vi->flags |= TX_USES_VM_WR; 2602 2603 /* Allocate an ifnet and set it up */ 2604 ifp = if_alloc_dev(IFT_ETHER, dev); 2605 if (ifp == NULL) { 2606 device_printf(dev, "Cannot allocate ifnet\n"); 2607 return (ENOMEM); 2608 } 2609 vi->ifp = ifp; 2610 ifp->if_softc = vi; 2611 2612 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2613 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2614 2615 ifp->if_init = cxgbe_init; 2616 ifp->if_ioctl = cxgbe_ioctl; 2617 ifp->if_transmit = cxgbe_transmit; 2618 ifp->if_qflush = cxgbe_qflush; 2619 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2620 ifp->if_get_counter = vi_get_counter; 2621 else 2622 ifp->if_get_counter = cxgbe_get_counter; 2623 #if defined(KERN_TLS) || defined(RATELIMIT) 2624 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 2625 #endif 2626 #ifdef RATELIMIT 2627 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 2628 #endif 2629 2630 ifp->if_capabilities = T4_CAP; 2631 ifp->if_capenable = T4_CAP_ENABLE; 2632 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2633 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 2634 if (chip_id(sc) >= CHELSIO_T6) { 2635 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2636 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 2637 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2638 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2639 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 2640 } 2641 2642 #ifdef TCP_OFFLOAD 2643 if (vi->nofldrxq != 0) 2644 ifp->if_capabilities |= IFCAP_TOE; 2645 #endif 2646 #ifdef RATELIMIT 2647 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2648 ifp->if_capabilities |= IFCAP_TXRTLMT; 2649 ifp->if_capenable |= IFCAP_TXRTLMT; 2650 } 2651 #endif 2652 2653 ifp->if_hw_tsomax = IP_MAXPACKET; 2654 if (vi->flags & TX_USES_VM_WR) 2655 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 2656 else 2657 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 2658 #ifdef RATELIMIT 2659 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2660 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 2661 #endif 2662 ifp->if_hw_tsomaxsegsize = 65536; 2663 #ifdef KERN_TLS 2664 if (is_ktls(sc)) { 2665 ifp->if_capabilities |= IFCAP_TXTLS; 2666 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2667 ifp->if_capenable |= IFCAP_TXTLS; 2668 } 2669 #endif 2670 2671 ether_ifattach(ifp, vi->hw_addr); 2672 #ifdef DEV_NETMAP 2673 if (vi->nnmrxq != 0) 2674 cxgbe_nm_attach(vi); 2675 #endif 2676 sb = sbuf_new_auto(); 2677 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2678 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2679 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2680 case IFCAP_TOE: 2681 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2682 break; 2683 case IFCAP_TOE | IFCAP_TXRTLMT: 2684 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2685 break; 2686 case IFCAP_TXRTLMT: 2687 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2688 break; 2689 } 2690 #endif 2691 #ifdef TCP_OFFLOAD 2692 if (ifp->if_capabilities & IFCAP_TOE) 2693 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2694 #endif 2695 #ifdef DEV_NETMAP 2696 if (ifp->if_capabilities & IFCAP_NETMAP) 2697 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2698 vi->nnmtxq, vi->nnmrxq); 2699 #endif 2700 sbuf_finish(sb); 2701 device_printf(dev, "%s\n", sbuf_data(sb)); 2702 sbuf_delete(sb); 2703 2704 vi_sysctls(vi); 2705 2706 pa.pa_version = PFIL_VERSION; 2707 pa.pa_flags = PFIL_IN; 2708 pa.pa_type = PFIL_TYPE_ETHERNET; 2709 pa.pa_headname = ifp->if_xname; 2710 vi->pfil = pfil_head_register(&pa); 2711 2712 return (0); 2713 } 2714 2715 static int 2716 cxgbe_attach(device_t dev) 2717 { 2718 struct port_info *pi = device_get_softc(dev); 2719 struct adapter *sc = pi->adapter; 2720 struct vi_info *vi; 2721 int i, rc; 2722 2723 sysctl_ctx_init(&pi->ctx); 2724 2725 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2726 if (rc) 2727 return (rc); 2728 2729 for_each_vi(pi, i, vi) { 2730 if (i == 0) 2731 continue; 2732 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2733 if (vi->dev == NULL) { 2734 device_printf(dev, "failed to add VI %d\n", i); 2735 continue; 2736 } 2737 device_set_softc(vi->dev, vi); 2738 } 2739 2740 cxgbe_sysctls(pi); 2741 2742 bus_generic_attach(dev); 2743 2744 return (0); 2745 } 2746 2747 static void 2748 cxgbe_vi_detach(struct vi_info *vi) 2749 { 2750 struct ifnet *ifp = vi->ifp; 2751 2752 if (vi->pfil != NULL) { 2753 pfil_head_unregister(vi->pfil); 2754 vi->pfil = NULL; 2755 } 2756 2757 ether_ifdetach(ifp); 2758 2759 /* Let detach proceed even if these fail. */ 2760 #ifdef DEV_NETMAP 2761 if (ifp->if_capabilities & IFCAP_NETMAP) 2762 cxgbe_nm_detach(vi); 2763 #endif 2764 cxgbe_uninit_synchronized(vi); 2765 callout_drain(&vi->tick); 2766 sysctl_ctx_free(&vi->ctx); 2767 vi_full_uninit(vi); 2768 2769 if_free(vi->ifp); 2770 vi->ifp = NULL; 2771 } 2772 2773 static int 2774 cxgbe_detach(device_t dev) 2775 { 2776 struct port_info *pi = device_get_softc(dev); 2777 struct adapter *sc = pi->adapter; 2778 int rc; 2779 2780 /* Detach the extra VIs first. */ 2781 rc = bus_generic_detach(dev); 2782 if (rc) 2783 return (rc); 2784 device_delete_children(dev); 2785 2786 sysctl_ctx_free(&pi->ctx); 2787 doom_vi(sc, &pi->vi[0]); 2788 2789 if (pi->flags & HAS_TRACEQ) { 2790 sc->traceq = -1; /* cloner should not create ifnet */ 2791 t4_tracer_port_detach(sc); 2792 } 2793 2794 cxgbe_vi_detach(&pi->vi[0]); 2795 ifmedia_removeall(&pi->media); 2796 2797 end_synchronized_op(sc, 0); 2798 2799 return (0); 2800 } 2801 2802 static void 2803 cxgbe_init(void *arg) 2804 { 2805 struct vi_info *vi = arg; 2806 struct adapter *sc = vi->adapter; 2807 2808 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2809 return; 2810 cxgbe_init_synchronized(vi); 2811 end_synchronized_op(sc, 0); 2812 } 2813 2814 static int 2815 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2816 { 2817 int rc = 0, mtu, flags; 2818 struct vi_info *vi = ifp->if_softc; 2819 struct port_info *pi = vi->pi; 2820 struct adapter *sc = pi->adapter; 2821 struct ifreq *ifr = (struct ifreq *)data; 2822 uint32_t mask; 2823 2824 switch (cmd) { 2825 case SIOCSIFMTU: 2826 mtu = ifr->ifr_mtu; 2827 if (mtu < ETHERMIN || mtu > MAX_MTU) 2828 return (EINVAL); 2829 2830 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2831 if (rc) 2832 return (rc); 2833 ifp->if_mtu = mtu; 2834 if (vi->flags & VI_INIT_DONE) { 2835 t4_update_fl_bufsize(ifp); 2836 if (!hw_off_limits(sc) && 2837 ifp->if_drv_flags & IFF_DRV_RUNNING) 2838 rc = update_mac_settings(ifp, XGMAC_MTU); 2839 } 2840 end_synchronized_op(sc, 0); 2841 break; 2842 2843 case SIOCSIFFLAGS: 2844 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2845 if (rc) 2846 return (rc); 2847 2848 if (hw_off_limits(sc)) { 2849 rc = ENXIO; 2850 goto fail; 2851 } 2852 2853 if (ifp->if_flags & IFF_UP) { 2854 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2855 flags = vi->if_flags; 2856 if ((ifp->if_flags ^ flags) & 2857 (IFF_PROMISC | IFF_ALLMULTI)) { 2858 rc = update_mac_settings(ifp, 2859 XGMAC_PROMISC | XGMAC_ALLMULTI); 2860 } 2861 } else { 2862 rc = cxgbe_init_synchronized(vi); 2863 } 2864 vi->if_flags = ifp->if_flags; 2865 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2866 rc = cxgbe_uninit_synchronized(vi); 2867 } 2868 end_synchronized_op(sc, 0); 2869 break; 2870 2871 case SIOCADDMULTI: 2872 case SIOCDELMULTI: 2873 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2874 if (rc) 2875 return (rc); 2876 if (!hw_off_limits(sc) && ifp->if_drv_flags & IFF_DRV_RUNNING) 2877 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2878 end_synchronized_op(sc, 0); 2879 break; 2880 2881 case SIOCSIFCAP: 2882 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2883 if (rc) 2884 return (rc); 2885 2886 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2887 if (mask & IFCAP_TXCSUM) { 2888 ifp->if_capenable ^= IFCAP_TXCSUM; 2889 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2890 2891 if (IFCAP_TSO4 & ifp->if_capenable && 2892 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2893 mask &= ~IFCAP_TSO4; 2894 ifp->if_capenable &= ~IFCAP_TSO4; 2895 if_printf(ifp, 2896 "tso4 disabled due to -txcsum.\n"); 2897 } 2898 } 2899 if (mask & IFCAP_TXCSUM_IPV6) { 2900 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2901 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2902 2903 if (IFCAP_TSO6 & ifp->if_capenable && 2904 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2905 mask &= ~IFCAP_TSO6; 2906 ifp->if_capenable &= ~IFCAP_TSO6; 2907 if_printf(ifp, 2908 "tso6 disabled due to -txcsum6.\n"); 2909 } 2910 } 2911 if (mask & IFCAP_RXCSUM) 2912 ifp->if_capenable ^= IFCAP_RXCSUM; 2913 if (mask & IFCAP_RXCSUM_IPV6) 2914 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2915 2916 /* 2917 * Note that we leave CSUM_TSO alone (it is always set). The 2918 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2919 * sending a TSO request our way, so it's sufficient to toggle 2920 * IFCAP_TSOx only. 2921 */ 2922 if (mask & IFCAP_TSO4) { 2923 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2924 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2925 if_printf(ifp, "enable txcsum first.\n"); 2926 rc = EAGAIN; 2927 goto fail; 2928 } 2929 ifp->if_capenable ^= IFCAP_TSO4; 2930 } 2931 if (mask & IFCAP_TSO6) { 2932 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2933 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2934 if_printf(ifp, "enable txcsum6 first.\n"); 2935 rc = EAGAIN; 2936 goto fail; 2937 } 2938 ifp->if_capenable ^= IFCAP_TSO6; 2939 } 2940 if (mask & IFCAP_LRO) { 2941 #if defined(INET) || defined(INET6) 2942 int i; 2943 struct sge_rxq *rxq; 2944 2945 ifp->if_capenable ^= IFCAP_LRO; 2946 for_each_rxq(vi, i, rxq) { 2947 if (ifp->if_capenable & IFCAP_LRO) 2948 rxq->iq.flags |= IQ_LRO_ENABLED; 2949 else 2950 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2951 } 2952 #endif 2953 } 2954 #ifdef TCP_OFFLOAD 2955 if (mask & IFCAP_TOE) { 2956 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2957 2958 rc = toe_capability(vi, enable); 2959 if (rc != 0) 2960 goto fail; 2961 2962 ifp->if_capenable ^= mask; 2963 } 2964 #endif 2965 if (mask & IFCAP_VLAN_HWTAGGING) { 2966 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2967 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2968 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2969 } 2970 if (mask & IFCAP_VLAN_MTU) { 2971 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2972 2973 /* Need to find out how to disable auto-mtu-inflation */ 2974 } 2975 if (mask & IFCAP_VLAN_HWTSO) 2976 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2977 if (mask & IFCAP_VLAN_HWCSUM) 2978 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2979 #ifdef RATELIMIT 2980 if (mask & IFCAP_TXRTLMT) 2981 ifp->if_capenable ^= IFCAP_TXRTLMT; 2982 #endif 2983 if (mask & IFCAP_HWRXTSTMP) { 2984 int i; 2985 struct sge_rxq *rxq; 2986 2987 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2988 for_each_rxq(vi, i, rxq) { 2989 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2990 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2991 else 2992 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2993 } 2994 } 2995 if (mask & IFCAP_MEXTPG) 2996 ifp->if_capenable ^= IFCAP_MEXTPG; 2997 2998 #ifdef KERN_TLS 2999 if (mask & IFCAP_TXTLS) { 3000 int enable = (ifp->if_capenable ^ mask) & IFCAP_TXTLS; 3001 3002 rc = ktls_capability(sc, enable); 3003 if (rc != 0) 3004 goto fail; 3005 3006 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 3007 } 3008 #endif 3009 if (mask & IFCAP_VXLAN_HWCSUM) { 3010 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 3011 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 3012 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3013 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 3014 } 3015 if (mask & IFCAP_VXLAN_HWTSO) { 3016 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 3017 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 3018 CSUM_INNER_IP_TSO; 3019 } 3020 3021 #ifdef VLAN_CAPABILITIES 3022 VLAN_CAPABILITIES(ifp); 3023 #endif 3024 fail: 3025 end_synchronized_op(sc, 0); 3026 break; 3027 3028 case SIOCSIFMEDIA: 3029 case SIOCGIFMEDIA: 3030 case SIOCGIFXMEDIA: 3031 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3032 break; 3033 3034 case SIOCGI2C: { 3035 struct ifi2creq i2c; 3036 3037 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3038 if (rc != 0) 3039 break; 3040 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3041 rc = EPERM; 3042 break; 3043 } 3044 if (i2c.len > sizeof(i2c.data)) { 3045 rc = EINVAL; 3046 break; 3047 } 3048 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3049 if (rc) 3050 return (rc); 3051 if (hw_off_limits(sc)) 3052 rc = ENXIO; 3053 else 3054 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3055 i2c.offset, i2c.len, &i2c.data[0]); 3056 end_synchronized_op(sc, 0); 3057 if (rc == 0) 3058 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3059 break; 3060 } 3061 3062 default: 3063 rc = ether_ioctl(ifp, cmd, data); 3064 } 3065 3066 return (rc); 3067 } 3068 3069 static int 3070 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 3071 { 3072 struct vi_info *vi = ifp->if_softc; 3073 struct port_info *pi = vi->pi; 3074 struct adapter *sc; 3075 struct sge_txq *txq; 3076 void *items[1]; 3077 int rc; 3078 3079 M_ASSERTPKTHDR(m); 3080 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3081 #if defined(KERN_TLS) || defined(RATELIMIT) 3082 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3083 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3084 #endif 3085 3086 if (__predict_false(pi->link_cfg.link_ok == false)) { 3087 m_freem(m); 3088 return (ENETDOWN); 3089 } 3090 3091 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3092 if (__predict_false(rc != 0)) { 3093 MPASS(m == NULL); /* was freed already */ 3094 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3095 return (rc); 3096 } 3097 #ifdef RATELIMIT 3098 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 3099 if (m->m_pkthdr.snd_tag->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT) 3100 return (ethofld_transmit(ifp, m)); 3101 } 3102 #endif 3103 3104 /* Select a txq. */ 3105 sc = vi->adapter; 3106 txq = &sc->sge.txq[vi->first_txq]; 3107 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3108 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3109 vi->rsrv_noflowq); 3110 3111 items[0] = m; 3112 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3113 if (__predict_false(rc != 0)) 3114 m_freem(m); 3115 3116 return (rc); 3117 } 3118 3119 static void 3120 cxgbe_qflush(struct ifnet *ifp) 3121 { 3122 struct vi_info *vi = ifp->if_softc; 3123 struct sge_txq *txq; 3124 int i; 3125 3126 /* queues do not exist if !VI_INIT_DONE. */ 3127 if (vi->flags & VI_INIT_DONE) { 3128 for_each_txq(vi, i, txq) { 3129 TXQ_LOCK(txq); 3130 txq->eq.flags |= EQ_QFLUSH; 3131 TXQ_UNLOCK(txq); 3132 while (!mp_ring_is_idle(txq->r)) { 3133 mp_ring_check_drainage(txq->r, 4096); 3134 pause("qflush", 1); 3135 } 3136 TXQ_LOCK(txq); 3137 txq->eq.flags &= ~EQ_QFLUSH; 3138 TXQ_UNLOCK(txq); 3139 } 3140 } 3141 if_qflush(ifp); 3142 } 3143 3144 static uint64_t 3145 vi_get_counter(struct ifnet *ifp, ift_counter c) 3146 { 3147 struct vi_info *vi = ifp->if_softc; 3148 struct fw_vi_stats_vf *s = &vi->stats; 3149 3150 mtx_lock(&vi->tick_mtx); 3151 vi_refresh_stats(vi); 3152 mtx_unlock(&vi->tick_mtx); 3153 3154 switch (c) { 3155 case IFCOUNTER_IPACKETS: 3156 return (s->rx_bcast_frames + s->rx_mcast_frames + 3157 s->rx_ucast_frames); 3158 case IFCOUNTER_IERRORS: 3159 return (s->rx_err_frames); 3160 case IFCOUNTER_OPACKETS: 3161 return (s->tx_bcast_frames + s->tx_mcast_frames + 3162 s->tx_ucast_frames + s->tx_offload_frames); 3163 case IFCOUNTER_OERRORS: 3164 return (s->tx_drop_frames); 3165 case IFCOUNTER_IBYTES: 3166 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3167 s->rx_ucast_bytes); 3168 case IFCOUNTER_OBYTES: 3169 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3170 s->tx_ucast_bytes + s->tx_offload_bytes); 3171 case IFCOUNTER_IMCASTS: 3172 return (s->rx_mcast_frames); 3173 case IFCOUNTER_OMCASTS: 3174 return (s->tx_mcast_frames); 3175 case IFCOUNTER_OQDROPS: { 3176 uint64_t drops; 3177 3178 drops = 0; 3179 if (vi->flags & VI_INIT_DONE) { 3180 int i; 3181 struct sge_txq *txq; 3182 3183 for_each_txq(vi, i, txq) 3184 drops += counter_u64_fetch(txq->r->dropped); 3185 } 3186 3187 return (drops); 3188 3189 } 3190 3191 default: 3192 return (if_get_counter_default(ifp, c)); 3193 } 3194 } 3195 3196 static uint64_t 3197 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 3198 { 3199 struct vi_info *vi = ifp->if_softc; 3200 struct port_info *pi = vi->pi; 3201 struct port_stats *s = &pi->stats; 3202 3203 mtx_lock(&vi->tick_mtx); 3204 cxgbe_refresh_stats(vi); 3205 mtx_unlock(&vi->tick_mtx); 3206 3207 switch (c) { 3208 case IFCOUNTER_IPACKETS: 3209 return (s->rx_frames); 3210 3211 case IFCOUNTER_IERRORS: 3212 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3213 s->rx_fcs_err + s->rx_len_err); 3214 3215 case IFCOUNTER_OPACKETS: 3216 return (s->tx_frames); 3217 3218 case IFCOUNTER_OERRORS: 3219 return (s->tx_error_frames); 3220 3221 case IFCOUNTER_IBYTES: 3222 return (s->rx_octets); 3223 3224 case IFCOUNTER_OBYTES: 3225 return (s->tx_octets); 3226 3227 case IFCOUNTER_IMCASTS: 3228 return (s->rx_mcast_frames); 3229 3230 case IFCOUNTER_OMCASTS: 3231 return (s->tx_mcast_frames); 3232 3233 case IFCOUNTER_IQDROPS: 3234 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3235 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3236 s->rx_trunc3 + pi->tnl_cong_drops); 3237 3238 case IFCOUNTER_OQDROPS: { 3239 uint64_t drops; 3240 3241 drops = s->tx_drop; 3242 if (vi->flags & VI_INIT_DONE) { 3243 int i; 3244 struct sge_txq *txq; 3245 3246 for_each_txq(vi, i, txq) 3247 drops += counter_u64_fetch(txq->r->dropped); 3248 } 3249 3250 return (drops); 3251 3252 } 3253 3254 default: 3255 return (if_get_counter_default(ifp, c)); 3256 } 3257 } 3258 3259 #if defined(KERN_TLS) || defined(RATELIMIT) 3260 static int 3261 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 3262 struct m_snd_tag **pt) 3263 { 3264 int error; 3265 3266 switch (params->hdr.type) { 3267 #ifdef RATELIMIT 3268 case IF_SND_TAG_TYPE_RATE_LIMIT: 3269 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3270 break; 3271 #endif 3272 #ifdef KERN_TLS 3273 case IF_SND_TAG_TYPE_TLS: 3274 { 3275 struct vi_info *vi = ifp->if_softc; 3276 3277 if (is_t6(vi->pi->adapter)) 3278 error = t6_tls_tag_alloc(ifp, params, pt); 3279 else 3280 error = EOPNOTSUPP; 3281 break; 3282 } 3283 #endif 3284 default: 3285 error = EOPNOTSUPP; 3286 } 3287 return (error); 3288 } 3289 #endif 3290 3291 /* 3292 * The kernel picks a media from the list we had provided but we still validate 3293 * the requeste. 3294 */ 3295 int 3296 cxgbe_media_change(struct ifnet *ifp) 3297 { 3298 struct vi_info *vi = ifp->if_softc; 3299 struct port_info *pi = vi->pi; 3300 struct ifmedia *ifm = &pi->media; 3301 struct link_config *lc = &pi->link_cfg; 3302 struct adapter *sc = pi->adapter; 3303 int rc; 3304 3305 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3306 if (rc != 0) 3307 return (rc); 3308 PORT_LOCK(pi); 3309 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3310 /* ifconfig .. media autoselect */ 3311 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3312 rc = ENOTSUP; /* AN not supported by transceiver */ 3313 goto done; 3314 } 3315 lc->requested_aneg = AUTONEG_ENABLE; 3316 lc->requested_speed = 0; 3317 lc->requested_fc |= PAUSE_AUTONEG; 3318 } else { 3319 lc->requested_aneg = AUTONEG_DISABLE; 3320 lc->requested_speed = 3321 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3322 lc->requested_fc = 0; 3323 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3324 lc->requested_fc |= PAUSE_RX; 3325 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3326 lc->requested_fc |= PAUSE_TX; 3327 } 3328 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3329 fixup_link_config(pi); 3330 rc = apply_link_config(pi); 3331 } 3332 done: 3333 PORT_UNLOCK(pi); 3334 end_synchronized_op(sc, 0); 3335 return (rc); 3336 } 3337 3338 /* 3339 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3340 * given speed. 3341 */ 3342 static int 3343 port_mword(struct port_info *pi, uint32_t speed) 3344 { 3345 3346 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3347 MPASS(powerof2(speed)); 3348 3349 switch(pi->port_type) { 3350 case FW_PORT_TYPE_BT_SGMII: 3351 case FW_PORT_TYPE_BT_XFI: 3352 case FW_PORT_TYPE_BT_XAUI: 3353 /* BaseT */ 3354 switch (speed) { 3355 case FW_PORT_CAP32_SPEED_100M: 3356 return (IFM_100_T); 3357 case FW_PORT_CAP32_SPEED_1G: 3358 return (IFM_1000_T); 3359 case FW_PORT_CAP32_SPEED_10G: 3360 return (IFM_10G_T); 3361 } 3362 break; 3363 case FW_PORT_TYPE_KX4: 3364 if (speed == FW_PORT_CAP32_SPEED_10G) 3365 return (IFM_10G_KX4); 3366 break; 3367 case FW_PORT_TYPE_CX4: 3368 if (speed == FW_PORT_CAP32_SPEED_10G) 3369 return (IFM_10G_CX4); 3370 break; 3371 case FW_PORT_TYPE_KX: 3372 if (speed == FW_PORT_CAP32_SPEED_1G) 3373 return (IFM_1000_KX); 3374 break; 3375 case FW_PORT_TYPE_KR: 3376 case FW_PORT_TYPE_BP_AP: 3377 case FW_PORT_TYPE_BP4_AP: 3378 case FW_PORT_TYPE_BP40_BA: 3379 case FW_PORT_TYPE_KR4_100G: 3380 case FW_PORT_TYPE_KR_SFP28: 3381 case FW_PORT_TYPE_KR_XLAUI: 3382 switch (speed) { 3383 case FW_PORT_CAP32_SPEED_1G: 3384 return (IFM_1000_KX); 3385 case FW_PORT_CAP32_SPEED_10G: 3386 return (IFM_10G_KR); 3387 case FW_PORT_CAP32_SPEED_25G: 3388 return (IFM_25G_KR); 3389 case FW_PORT_CAP32_SPEED_40G: 3390 return (IFM_40G_KR4); 3391 case FW_PORT_CAP32_SPEED_50G: 3392 return (IFM_50G_KR2); 3393 case FW_PORT_CAP32_SPEED_100G: 3394 return (IFM_100G_KR4); 3395 } 3396 break; 3397 case FW_PORT_TYPE_FIBER_XFI: 3398 case FW_PORT_TYPE_FIBER_XAUI: 3399 case FW_PORT_TYPE_SFP: 3400 case FW_PORT_TYPE_QSFP_10G: 3401 case FW_PORT_TYPE_QSA: 3402 case FW_PORT_TYPE_QSFP: 3403 case FW_PORT_TYPE_CR4_QSFP: 3404 case FW_PORT_TYPE_CR_QSFP: 3405 case FW_PORT_TYPE_CR2_QSFP: 3406 case FW_PORT_TYPE_SFP28: 3407 /* Pluggable transceiver */ 3408 switch (pi->mod_type) { 3409 case FW_PORT_MOD_TYPE_LR: 3410 switch (speed) { 3411 case FW_PORT_CAP32_SPEED_1G: 3412 return (IFM_1000_LX); 3413 case FW_PORT_CAP32_SPEED_10G: 3414 return (IFM_10G_LR); 3415 case FW_PORT_CAP32_SPEED_25G: 3416 return (IFM_25G_LR); 3417 case FW_PORT_CAP32_SPEED_40G: 3418 return (IFM_40G_LR4); 3419 case FW_PORT_CAP32_SPEED_50G: 3420 return (IFM_50G_LR2); 3421 case FW_PORT_CAP32_SPEED_100G: 3422 return (IFM_100G_LR4); 3423 } 3424 break; 3425 case FW_PORT_MOD_TYPE_SR: 3426 switch (speed) { 3427 case FW_PORT_CAP32_SPEED_1G: 3428 return (IFM_1000_SX); 3429 case FW_PORT_CAP32_SPEED_10G: 3430 return (IFM_10G_SR); 3431 case FW_PORT_CAP32_SPEED_25G: 3432 return (IFM_25G_SR); 3433 case FW_PORT_CAP32_SPEED_40G: 3434 return (IFM_40G_SR4); 3435 case FW_PORT_CAP32_SPEED_50G: 3436 return (IFM_50G_SR2); 3437 case FW_PORT_CAP32_SPEED_100G: 3438 return (IFM_100G_SR4); 3439 } 3440 break; 3441 case FW_PORT_MOD_TYPE_ER: 3442 if (speed == FW_PORT_CAP32_SPEED_10G) 3443 return (IFM_10G_ER); 3444 break; 3445 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3446 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3447 switch (speed) { 3448 case FW_PORT_CAP32_SPEED_1G: 3449 return (IFM_1000_CX); 3450 case FW_PORT_CAP32_SPEED_10G: 3451 return (IFM_10G_TWINAX); 3452 case FW_PORT_CAP32_SPEED_25G: 3453 return (IFM_25G_CR); 3454 case FW_PORT_CAP32_SPEED_40G: 3455 return (IFM_40G_CR4); 3456 case FW_PORT_CAP32_SPEED_50G: 3457 return (IFM_50G_CR2); 3458 case FW_PORT_CAP32_SPEED_100G: 3459 return (IFM_100G_CR4); 3460 } 3461 break; 3462 case FW_PORT_MOD_TYPE_LRM: 3463 if (speed == FW_PORT_CAP32_SPEED_10G) 3464 return (IFM_10G_LRM); 3465 break; 3466 case FW_PORT_MOD_TYPE_NA: 3467 MPASS(0); /* Not pluggable? */ 3468 /* fall throough */ 3469 case FW_PORT_MOD_TYPE_ERROR: 3470 case FW_PORT_MOD_TYPE_UNKNOWN: 3471 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3472 break; 3473 case FW_PORT_MOD_TYPE_NONE: 3474 return (IFM_NONE); 3475 } 3476 break; 3477 case FW_PORT_TYPE_NONE: 3478 return (IFM_NONE); 3479 } 3480 3481 return (IFM_UNKNOWN); 3482 } 3483 3484 void 3485 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 3486 { 3487 struct vi_info *vi = ifp->if_softc; 3488 struct port_info *pi = vi->pi; 3489 struct adapter *sc = pi->adapter; 3490 struct link_config *lc = &pi->link_cfg; 3491 3492 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 3493 return; 3494 PORT_LOCK(pi); 3495 3496 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3497 /* 3498 * If all the interfaces are administratively down the firmware 3499 * does not report transceiver changes. Refresh port info here 3500 * so that ifconfig displays accurate ifmedia at all times. 3501 * This is the only reason we have a synchronized op in this 3502 * function. Just PORT_LOCK would have been enough otherwise. 3503 */ 3504 t4_update_port_info(pi); 3505 build_medialist(pi); 3506 } 3507 3508 /* ifm_status */ 3509 ifmr->ifm_status = IFM_AVALID; 3510 if (lc->link_ok == false) 3511 goto done; 3512 ifmr->ifm_status |= IFM_ACTIVE; 3513 3514 /* ifm_active */ 3515 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3516 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3517 if (lc->fc & PAUSE_RX) 3518 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3519 if (lc->fc & PAUSE_TX) 3520 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3521 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3522 done: 3523 PORT_UNLOCK(pi); 3524 end_synchronized_op(sc, 0); 3525 } 3526 3527 static int 3528 vcxgbe_probe(device_t dev) 3529 { 3530 char buf[128]; 3531 struct vi_info *vi = device_get_softc(dev); 3532 3533 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3534 vi - vi->pi->vi); 3535 device_set_desc_copy(dev, buf); 3536 3537 return (BUS_PROBE_DEFAULT); 3538 } 3539 3540 static int 3541 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3542 { 3543 int func, index, rc; 3544 uint32_t param, val; 3545 3546 ASSERT_SYNCHRONIZED_OP(sc); 3547 3548 index = vi - pi->vi; 3549 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3550 KASSERT(index < nitems(vi_mac_funcs), 3551 ("%s: VI %s doesn't have a MAC func", __func__, 3552 device_get_nameunit(vi->dev))); 3553 func = vi_mac_funcs[index]; 3554 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3555 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3556 if (rc < 0) { 3557 CH_ERR(vi, "failed to allocate virtual interface %d" 3558 "for port %d: %d\n", index, pi->port_id, -rc); 3559 return (-rc); 3560 } 3561 vi->viid = rc; 3562 3563 if (vi->rss_size == 1) { 3564 /* 3565 * This VI didn't get a slice of the RSS table. Reduce the 3566 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3567 * configuration file (nvi, rssnvi for this PF) if this is a 3568 * problem. 3569 */ 3570 device_printf(vi->dev, "RSS table not available.\n"); 3571 vi->rss_base = 0xffff; 3572 3573 return (0); 3574 } 3575 3576 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3577 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3578 V_FW_PARAMS_PARAM_YZ(vi->viid); 3579 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3580 if (rc) 3581 vi->rss_base = 0xffff; 3582 else { 3583 MPASS((val >> 16) == vi->rss_size); 3584 vi->rss_base = val & 0xffff; 3585 } 3586 3587 return (0); 3588 } 3589 3590 static int 3591 vcxgbe_attach(device_t dev) 3592 { 3593 struct vi_info *vi; 3594 struct port_info *pi; 3595 struct adapter *sc; 3596 int rc; 3597 3598 vi = device_get_softc(dev); 3599 pi = vi->pi; 3600 sc = pi->adapter; 3601 3602 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3603 if (rc) 3604 return (rc); 3605 rc = alloc_extra_vi(sc, pi, vi); 3606 end_synchronized_op(sc, 0); 3607 if (rc) 3608 return (rc); 3609 3610 rc = cxgbe_vi_attach(dev, vi); 3611 if (rc) { 3612 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3613 return (rc); 3614 } 3615 return (0); 3616 } 3617 3618 static int 3619 vcxgbe_detach(device_t dev) 3620 { 3621 struct vi_info *vi; 3622 struct adapter *sc; 3623 3624 vi = device_get_softc(dev); 3625 sc = vi->adapter; 3626 3627 doom_vi(sc, vi); 3628 3629 cxgbe_vi_detach(vi); 3630 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3631 3632 end_synchronized_op(sc, 0); 3633 3634 return (0); 3635 } 3636 3637 static struct callout fatal_callout; 3638 static struct taskqueue *reset_tq; 3639 3640 static void 3641 delayed_panic(void *arg) 3642 { 3643 struct adapter *sc = arg; 3644 3645 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3646 } 3647 3648 static void 3649 fatal_error_task(void *arg, int pending) 3650 { 3651 struct adapter *sc = arg; 3652 int rc; 3653 3654 #ifdef TCP_OFFLOAD 3655 t4_async_event(sc); 3656 #endif 3657 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3658 dump_cim_regs(sc); 3659 dump_cimla(sc); 3660 dump_devlog(sc); 3661 } 3662 3663 if (t4_reset_on_fatal_err) { 3664 CH_ALERT(sc, "resetting on fatal error.\n"); 3665 rc = reset_adapter(sc); 3666 if (rc == 0 && t4_panic_on_fatal_err) { 3667 CH_ALERT(sc, "reset was successful, " 3668 "system will NOT panic.\n"); 3669 return; 3670 } 3671 } 3672 3673 if (t4_panic_on_fatal_err) { 3674 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3675 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3676 } 3677 } 3678 3679 void 3680 t4_fatal_err(struct adapter *sc, bool fw_error) 3681 { 3682 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3683 3684 stop_adapter(sc); 3685 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3686 return; 3687 if (fw_error) { 3688 /* 3689 * We are here because of a firmware error/timeout and not 3690 * because of a hardware interrupt. It is possible (although 3691 * not very likely) that an error interrupt was also raised but 3692 * this thread ran first and inhibited t4_intr_err. We walk the 3693 * main INT_CAUSE registers here to make sure we haven't missed 3694 * anything interesting. 3695 */ 3696 t4_slow_intr_handler(sc, verbose); 3697 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3698 } 3699 t4_report_fw_error(sc); 3700 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3701 device_get_nameunit(sc->dev), fw_error); 3702 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3703 } 3704 3705 void 3706 t4_add_adapter(struct adapter *sc) 3707 { 3708 sx_xlock(&t4_list_lock); 3709 SLIST_INSERT_HEAD(&t4_list, sc, link); 3710 sx_xunlock(&t4_list_lock); 3711 } 3712 3713 int 3714 t4_map_bars_0_and_4(struct adapter *sc) 3715 { 3716 sc->regs_rid = PCIR_BAR(0); 3717 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3718 &sc->regs_rid, RF_ACTIVE); 3719 if (sc->regs_res == NULL) { 3720 device_printf(sc->dev, "cannot map registers.\n"); 3721 return (ENXIO); 3722 } 3723 sc->bt = rman_get_bustag(sc->regs_res); 3724 sc->bh = rman_get_bushandle(sc->regs_res); 3725 sc->mmio_len = rman_get_size(sc->regs_res); 3726 setbit(&sc->doorbells, DOORBELL_KDB); 3727 3728 sc->msix_rid = PCIR_BAR(4); 3729 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3730 &sc->msix_rid, RF_ACTIVE); 3731 if (sc->msix_res == NULL) { 3732 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3733 return (ENXIO); 3734 } 3735 3736 return (0); 3737 } 3738 3739 int 3740 t4_map_bar_2(struct adapter *sc) 3741 { 3742 3743 /* 3744 * T4: only iWARP driver uses the userspace doorbells. There is no need 3745 * to map it if RDMA is disabled. 3746 */ 3747 if (is_t4(sc) && sc->rdmacaps == 0) 3748 return (0); 3749 3750 sc->udbs_rid = PCIR_BAR(2); 3751 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3752 &sc->udbs_rid, RF_ACTIVE); 3753 if (sc->udbs_res == NULL) { 3754 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3755 return (ENXIO); 3756 } 3757 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3758 3759 if (chip_id(sc) >= CHELSIO_T5) { 3760 setbit(&sc->doorbells, DOORBELL_UDB); 3761 #if defined(__i386__) || defined(__amd64__) 3762 if (t5_write_combine) { 3763 int rc, mode; 3764 3765 /* 3766 * Enable write combining on BAR2. This is the 3767 * userspace doorbell BAR and is split into 128B 3768 * (UDBS_SEG_SIZE) doorbell regions, each associated 3769 * with an egress queue. The first 64B has the doorbell 3770 * and the second 64B can be used to submit a tx work 3771 * request with an implicit doorbell. 3772 */ 3773 3774 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3775 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3776 if (rc == 0) { 3777 clrbit(&sc->doorbells, DOORBELL_UDB); 3778 setbit(&sc->doorbells, DOORBELL_WCWR); 3779 setbit(&sc->doorbells, DOORBELL_UDBWC); 3780 } else { 3781 device_printf(sc->dev, 3782 "couldn't enable write combining: %d\n", 3783 rc); 3784 } 3785 3786 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3787 t4_write_reg(sc, A_SGE_STAT_CFG, 3788 V_STATSOURCE_T5(7) | mode); 3789 } 3790 #endif 3791 } 3792 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3793 3794 return (0); 3795 } 3796 3797 struct memwin_init { 3798 uint32_t base; 3799 uint32_t aperture; 3800 }; 3801 3802 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3803 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3804 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3805 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3806 }; 3807 3808 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3809 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3810 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3811 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3812 }; 3813 3814 static void 3815 setup_memwin(struct adapter *sc) 3816 { 3817 const struct memwin_init *mw_init; 3818 struct memwin *mw; 3819 int i; 3820 uint32_t bar0; 3821 3822 if (is_t4(sc)) { 3823 /* 3824 * Read low 32b of bar0 indirectly via the hardware backdoor 3825 * mechanism. Works from within PCI passthrough environments 3826 * too, where rman_get_start() can return a different value. We 3827 * need to program the T4 memory window decoders with the actual 3828 * addresses that will be coming across the PCIe link. 3829 */ 3830 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3831 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3832 3833 mw_init = &t4_memwin[0]; 3834 } else { 3835 /* T5+ use the relative offset inside the PCIe BAR */ 3836 bar0 = 0; 3837 3838 mw_init = &t5_memwin[0]; 3839 } 3840 3841 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3842 if (!rw_initialized(&mw->mw_lock)) { 3843 rw_init(&mw->mw_lock, "memory window access"); 3844 mw->mw_base = mw_init->base; 3845 mw->mw_aperture = mw_init->aperture; 3846 mw->mw_curpos = 0; 3847 } 3848 t4_write_reg(sc, 3849 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3850 (mw->mw_base + bar0) | V_BIR(0) | 3851 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3852 rw_wlock(&mw->mw_lock); 3853 position_memwin(sc, i, mw->mw_curpos); 3854 rw_wunlock(&mw->mw_lock); 3855 } 3856 3857 /* flush */ 3858 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3859 } 3860 3861 /* 3862 * Positions the memory window at the given address in the card's address space. 3863 * There are some alignment requirements and the actual position may be at an 3864 * address prior to the requested address. mw->mw_curpos always has the actual 3865 * position of the window. 3866 */ 3867 static void 3868 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3869 { 3870 struct memwin *mw; 3871 uint32_t pf; 3872 uint32_t reg; 3873 3874 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3875 mw = &sc->memwin[idx]; 3876 rw_assert(&mw->mw_lock, RA_WLOCKED); 3877 3878 if (is_t4(sc)) { 3879 pf = 0; 3880 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3881 } else { 3882 pf = V_PFNUM(sc->pf); 3883 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3884 } 3885 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3886 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3887 t4_read_reg(sc, reg); /* flush */ 3888 } 3889 3890 int 3891 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3892 int len, int rw) 3893 { 3894 struct memwin *mw; 3895 uint32_t mw_end, v; 3896 3897 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3898 3899 /* Memory can only be accessed in naturally aligned 4 byte units */ 3900 if (addr & 3 || len & 3 || len <= 0) 3901 return (EINVAL); 3902 3903 mw = &sc->memwin[idx]; 3904 while (len > 0) { 3905 rw_rlock(&mw->mw_lock); 3906 mw_end = mw->mw_curpos + mw->mw_aperture; 3907 if (addr >= mw_end || addr < mw->mw_curpos) { 3908 /* Will need to reposition the window */ 3909 if (!rw_try_upgrade(&mw->mw_lock)) { 3910 rw_runlock(&mw->mw_lock); 3911 rw_wlock(&mw->mw_lock); 3912 } 3913 rw_assert(&mw->mw_lock, RA_WLOCKED); 3914 position_memwin(sc, idx, addr); 3915 rw_downgrade(&mw->mw_lock); 3916 mw_end = mw->mw_curpos + mw->mw_aperture; 3917 } 3918 rw_assert(&mw->mw_lock, RA_RLOCKED); 3919 while (addr < mw_end && len > 0) { 3920 if (rw == 0) { 3921 v = t4_read_reg(sc, mw->mw_base + addr - 3922 mw->mw_curpos); 3923 *val++ = le32toh(v); 3924 } else { 3925 v = *val++; 3926 t4_write_reg(sc, mw->mw_base + addr - 3927 mw->mw_curpos, htole32(v)); 3928 } 3929 addr += 4; 3930 len -= 4; 3931 } 3932 rw_runlock(&mw->mw_lock); 3933 } 3934 3935 return (0); 3936 } 3937 3938 static void 3939 t4_init_atid_table(struct adapter *sc) 3940 { 3941 struct tid_info *t; 3942 int i; 3943 3944 t = &sc->tids; 3945 if (t->natids == 0) 3946 return; 3947 3948 MPASS(t->atid_tab == NULL); 3949 3950 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3951 M_ZERO | M_WAITOK); 3952 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3953 t->afree = t->atid_tab; 3954 t->atids_in_use = 0; 3955 for (i = 1; i < t->natids; i++) 3956 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3957 t->atid_tab[t->natids - 1].next = NULL; 3958 } 3959 3960 static void 3961 t4_free_atid_table(struct adapter *sc) 3962 { 3963 struct tid_info *t; 3964 3965 t = &sc->tids; 3966 3967 KASSERT(t->atids_in_use == 0, 3968 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3969 3970 if (mtx_initialized(&t->atid_lock)) 3971 mtx_destroy(&t->atid_lock); 3972 free(t->atid_tab, M_CXGBE); 3973 t->atid_tab = NULL; 3974 } 3975 3976 int 3977 alloc_atid(struct adapter *sc, void *ctx) 3978 { 3979 struct tid_info *t = &sc->tids; 3980 int atid = -1; 3981 3982 mtx_lock(&t->atid_lock); 3983 if (t->afree) { 3984 union aopen_entry *p = t->afree; 3985 3986 atid = p - t->atid_tab; 3987 MPASS(atid <= M_TID_TID); 3988 t->afree = p->next; 3989 p->data = ctx; 3990 t->atids_in_use++; 3991 } 3992 mtx_unlock(&t->atid_lock); 3993 return (atid); 3994 } 3995 3996 void * 3997 lookup_atid(struct adapter *sc, int atid) 3998 { 3999 struct tid_info *t = &sc->tids; 4000 4001 return (t->atid_tab[atid].data); 4002 } 4003 4004 void 4005 free_atid(struct adapter *sc, int atid) 4006 { 4007 struct tid_info *t = &sc->tids; 4008 union aopen_entry *p = &t->atid_tab[atid]; 4009 4010 mtx_lock(&t->atid_lock); 4011 p->next = t->afree; 4012 t->afree = p; 4013 t->atids_in_use--; 4014 mtx_unlock(&t->atid_lock); 4015 } 4016 4017 static void 4018 queue_tid_release(struct adapter *sc, int tid) 4019 { 4020 4021 CXGBE_UNIMPLEMENTED("deferred tid release"); 4022 } 4023 4024 void 4025 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4026 { 4027 struct wrqe *wr; 4028 struct cpl_tid_release *req; 4029 4030 wr = alloc_wrqe(sizeof(*req), ctrlq); 4031 if (wr == NULL) { 4032 queue_tid_release(sc, tid); /* defer */ 4033 return; 4034 } 4035 req = wrtod(wr); 4036 4037 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4038 4039 t4_wrq_tx(sc, wr); 4040 } 4041 4042 static int 4043 t4_range_cmp(const void *a, const void *b) 4044 { 4045 return ((const struct t4_range *)a)->start - 4046 ((const struct t4_range *)b)->start; 4047 } 4048 4049 /* 4050 * Verify that the memory range specified by the addr/len pair is valid within 4051 * the card's address space. 4052 */ 4053 static int 4054 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4055 { 4056 struct t4_range mem_ranges[4], *r, *next; 4057 uint32_t em, addr_len; 4058 int i, n, remaining; 4059 4060 /* Memory can only be accessed in naturally aligned 4 byte units */ 4061 if (addr & 3 || len & 3 || len == 0) 4062 return (EINVAL); 4063 4064 /* Enabled memories */ 4065 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4066 4067 r = &mem_ranges[0]; 4068 n = 0; 4069 bzero(r, sizeof(mem_ranges)); 4070 if (em & F_EDRAM0_ENABLE) { 4071 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4072 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4073 if (r->size > 0) { 4074 r->start = G_EDRAM0_BASE(addr_len) << 20; 4075 if (addr >= r->start && 4076 addr + len <= r->start + r->size) 4077 return (0); 4078 r++; 4079 n++; 4080 } 4081 } 4082 if (em & F_EDRAM1_ENABLE) { 4083 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4084 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4085 if (r->size > 0) { 4086 r->start = G_EDRAM1_BASE(addr_len) << 20; 4087 if (addr >= r->start && 4088 addr + len <= r->start + r->size) 4089 return (0); 4090 r++; 4091 n++; 4092 } 4093 } 4094 if (em & F_EXT_MEM_ENABLE) { 4095 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4096 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4097 if (r->size > 0) { 4098 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4099 if (addr >= r->start && 4100 addr + len <= r->start + r->size) 4101 return (0); 4102 r++; 4103 n++; 4104 } 4105 } 4106 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4107 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4108 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4109 if (r->size > 0) { 4110 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4111 if (addr >= r->start && 4112 addr + len <= r->start + r->size) 4113 return (0); 4114 r++; 4115 n++; 4116 } 4117 } 4118 MPASS(n <= nitems(mem_ranges)); 4119 4120 if (n > 1) { 4121 /* Sort and merge the ranges. */ 4122 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4123 4124 /* Start from index 0 and examine the next n - 1 entries. */ 4125 r = &mem_ranges[0]; 4126 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4127 4128 MPASS(r->size > 0); /* r is a valid entry. */ 4129 next = r + 1; 4130 MPASS(next->size > 0); /* and so is the next one. */ 4131 4132 while (r->start + r->size >= next->start) { 4133 /* Merge the next one into the current entry. */ 4134 r->size = max(r->start + r->size, 4135 next->start + next->size) - r->start; 4136 n--; /* One fewer entry in total. */ 4137 if (--remaining == 0) 4138 goto done; /* short circuit */ 4139 next++; 4140 } 4141 if (next != r + 1) { 4142 /* 4143 * Some entries were merged into r and next 4144 * points to the first valid entry that couldn't 4145 * be merged. 4146 */ 4147 MPASS(next->size > 0); /* must be valid */ 4148 memcpy(r + 1, next, remaining * sizeof(*r)); 4149 #ifdef INVARIANTS 4150 /* 4151 * This so that the foo->size assertion in the 4152 * next iteration of the loop do the right 4153 * thing for entries that were pulled up and are 4154 * no longer valid. 4155 */ 4156 MPASS(n < nitems(mem_ranges)); 4157 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4158 sizeof(struct t4_range)); 4159 #endif 4160 } 4161 } 4162 done: 4163 /* Done merging the ranges. */ 4164 MPASS(n > 0); 4165 r = &mem_ranges[0]; 4166 for (i = 0; i < n; i++, r++) { 4167 if (addr >= r->start && 4168 addr + len <= r->start + r->size) 4169 return (0); 4170 } 4171 } 4172 4173 return (EFAULT); 4174 } 4175 4176 static int 4177 fwmtype_to_hwmtype(int mtype) 4178 { 4179 4180 switch (mtype) { 4181 case FW_MEMTYPE_EDC0: 4182 return (MEM_EDC0); 4183 case FW_MEMTYPE_EDC1: 4184 return (MEM_EDC1); 4185 case FW_MEMTYPE_EXTMEM: 4186 return (MEM_MC0); 4187 case FW_MEMTYPE_EXTMEM1: 4188 return (MEM_MC1); 4189 default: 4190 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4191 } 4192 } 4193 4194 /* 4195 * Verify that the memory range specified by the memtype/offset/len pair is 4196 * valid and lies entirely within the memtype specified. The global address of 4197 * the start of the range is returned in addr. 4198 */ 4199 static int 4200 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4201 uint32_t *addr) 4202 { 4203 uint32_t em, addr_len, maddr; 4204 4205 /* Memory can only be accessed in naturally aligned 4 byte units */ 4206 if (off & 3 || len & 3 || len == 0) 4207 return (EINVAL); 4208 4209 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4210 switch (fwmtype_to_hwmtype(mtype)) { 4211 case MEM_EDC0: 4212 if (!(em & F_EDRAM0_ENABLE)) 4213 return (EINVAL); 4214 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4215 maddr = G_EDRAM0_BASE(addr_len) << 20; 4216 break; 4217 case MEM_EDC1: 4218 if (!(em & F_EDRAM1_ENABLE)) 4219 return (EINVAL); 4220 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4221 maddr = G_EDRAM1_BASE(addr_len) << 20; 4222 break; 4223 case MEM_MC: 4224 if (!(em & F_EXT_MEM_ENABLE)) 4225 return (EINVAL); 4226 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4227 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4228 break; 4229 case MEM_MC1: 4230 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4231 return (EINVAL); 4232 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4233 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4234 break; 4235 default: 4236 return (EINVAL); 4237 } 4238 4239 *addr = maddr + off; /* global address */ 4240 return (validate_mem_range(sc, *addr, len)); 4241 } 4242 4243 static int 4244 fixup_devlog_params(struct adapter *sc) 4245 { 4246 struct devlog_params *dparams = &sc->params.devlog; 4247 int rc; 4248 4249 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4250 dparams->size, &dparams->addr); 4251 4252 return (rc); 4253 } 4254 4255 static void 4256 update_nirq(struct intrs_and_queues *iaq, int nports) 4257 { 4258 4259 iaq->nirq = T4_EXTRA_INTR; 4260 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4261 iaq->nirq += nports * iaq->nofldrxq; 4262 iaq->nirq += nports * (iaq->num_vis - 1) * 4263 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4264 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4265 } 4266 4267 /* 4268 * Adjust requirements to fit the number of interrupts available. 4269 */ 4270 static void 4271 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4272 int navail) 4273 { 4274 int old_nirq; 4275 const int nports = sc->params.nports; 4276 4277 MPASS(nports > 0); 4278 MPASS(navail > 0); 4279 4280 bzero(iaq, sizeof(*iaq)); 4281 iaq->intr_type = itype; 4282 iaq->num_vis = t4_num_vis; 4283 iaq->ntxq = t4_ntxq; 4284 iaq->ntxq_vi = t4_ntxq_vi; 4285 iaq->nrxq = t4_nrxq; 4286 iaq->nrxq_vi = t4_nrxq_vi; 4287 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4288 if (is_offload(sc) || is_ethoffload(sc)) { 4289 iaq->nofldtxq = t4_nofldtxq; 4290 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4291 } 4292 #endif 4293 #ifdef TCP_OFFLOAD 4294 if (is_offload(sc)) { 4295 iaq->nofldrxq = t4_nofldrxq; 4296 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4297 } 4298 #endif 4299 #ifdef DEV_NETMAP 4300 if (t4_native_netmap & NN_MAIN_VI) { 4301 iaq->nnmtxq = t4_nnmtxq; 4302 iaq->nnmrxq = t4_nnmrxq; 4303 } 4304 if (t4_native_netmap & NN_EXTRA_VI) { 4305 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4306 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4307 } 4308 #endif 4309 4310 update_nirq(iaq, nports); 4311 if (iaq->nirq <= navail && 4312 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4313 /* 4314 * This is the normal case -- there are enough interrupts for 4315 * everything. 4316 */ 4317 goto done; 4318 } 4319 4320 /* 4321 * If extra VIs have been configured try reducing their count and see if 4322 * that works. 4323 */ 4324 while (iaq->num_vis > 1) { 4325 iaq->num_vis--; 4326 update_nirq(iaq, nports); 4327 if (iaq->nirq <= navail && 4328 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4329 device_printf(sc->dev, "virtual interfaces per port " 4330 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4331 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4332 "itype %d, navail %u, nirq %d.\n", 4333 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4334 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4335 itype, navail, iaq->nirq); 4336 goto done; 4337 } 4338 } 4339 4340 /* 4341 * Extra VIs will not be created. Log a message if they were requested. 4342 */ 4343 MPASS(iaq->num_vis == 1); 4344 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4345 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4346 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4347 if (iaq->num_vis != t4_num_vis) { 4348 device_printf(sc->dev, "extra virtual interfaces disabled. " 4349 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4350 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4351 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4352 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4353 } 4354 4355 /* 4356 * Keep reducing the number of NIC rx queues to the next lower power of 4357 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4358 * if that works. 4359 */ 4360 do { 4361 if (iaq->nrxq > 1) { 4362 do { 4363 iaq->nrxq--; 4364 } while (!powerof2(iaq->nrxq)); 4365 if (iaq->nnmrxq > iaq->nrxq) 4366 iaq->nnmrxq = iaq->nrxq; 4367 } 4368 if (iaq->nofldrxq > 1) 4369 iaq->nofldrxq >>= 1; 4370 4371 old_nirq = iaq->nirq; 4372 update_nirq(iaq, nports); 4373 if (iaq->nirq <= navail && 4374 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4375 device_printf(sc->dev, "running with reduced number of " 4376 "rx queues because of shortage of interrupts. " 4377 "nrxq=%u, nofldrxq=%u. " 4378 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4379 iaq->nofldrxq, itype, navail, iaq->nirq); 4380 goto done; 4381 } 4382 } while (old_nirq != iaq->nirq); 4383 4384 /* One interrupt for everything. Ugh. */ 4385 device_printf(sc->dev, "running with minimal number of queues. " 4386 "itype %d, navail %u.\n", itype, navail); 4387 iaq->nirq = 1; 4388 iaq->nrxq = 1; 4389 iaq->ntxq = 1; 4390 if (iaq->nofldrxq > 0) { 4391 iaq->nofldrxq = 1; 4392 iaq->nofldtxq = 1; 4393 } 4394 iaq->nnmtxq = 0; 4395 iaq->nnmrxq = 0; 4396 done: 4397 MPASS(iaq->num_vis > 0); 4398 if (iaq->num_vis > 1) { 4399 MPASS(iaq->nrxq_vi > 0); 4400 MPASS(iaq->ntxq_vi > 0); 4401 } 4402 MPASS(iaq->nirq > 0); 4403 MPASS(iaq->nrxq > 0); 4404 MPASS(iaq->ntxq > 0); 4405 if (itype == INTR_MSI) { 4406 MPASS(powerof2(iaq->nirq)); 4407 } 4408 } 4409 4410 static int 4411 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4412 { 4413 int rc, itype, navail, nalloc; 4414 4415 for (itype = INTR_MSIX; itype; itype >>= 1) { 4416 4417 if ((itype & t4_intr_types) == 0) 4418 continue; /* not allowed */ 4419 4420 if (itype == INTR_MSIX) 4421 navail = pci_msix_count(sc->dev); 4422 else if (itype == INTR_MSI) 4423 navail = pci_msi_count(sc->dev); 4424 else 4425 navail = 1; 4426 restart: 4427 if (navail == 0) 4428 continue; 4429 4430 calculate_iaq(sc, iaq, itype, navail); 4431 nalloc = iaq->nirq; 4432 rc = 0; 4433 if (itype == INTR_MSIX) 4434 rc = pci_alloc_msix(sc->dev, &nalloc); 4435 else if (itype == INTR_MSI) 4436 rc = pci_alloc_msi(sc->dev, &nalloc); 4437 4438 if (rc == 0 && nalloc > 0) { 4439 if (nalloc == iaq->nirq) 4440 return (0); 4441 4442 /* 4443 * Didn't get the number requested. Use whatever number 4444 * the kernel is willing to allocate. 4445 */ 4446 device_printf(sc->dev, "fewer vectors than requested, " 4447 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4448 itype, iaq->nirq, nalloc); 4449 pci_release_msi(sc->dev); 4450 navail = nalloc; 4451 goto restart; 4452 } 4453 4454 device_printf(sc->dev, 4455 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4456 itype, rc, iaq->nirq, nalloc); 4457 } 4458 4459 device_printf(sc->dev, 4460 "failed to find a usable interrupt type. " 4461 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4462 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4463 4464 return (ENXIO); 4465 } 4466 4467 #define FW_VERSION(chip) ( \ 4468 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4469 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4470 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4471 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4472 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4473 4474 /* Just enough of fw_hdr to cover all version info. */ 4475 struct fw_h { 4476 __u8 ver; 4477 __u8 chip; 4478 __be16 len512; 4479 __be32 fw_ver; 4480 __be32 tp_microcode_ver; 4481 __u8 intfver_nic; 4482 __u8 intfver_vnic; 4483 __u8 intfver_ofld; 4484 __u8 intfver_ri; 4485 __u8 intfver_iscsipdu; 4486 __u8 intfver_iscsi; 4487 __u8 intfver_fcoepdu; 4488 __u8 intfver_fcoe; 4489 }; 4490 /* Spot check a couple of fields. */ 4491 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4492 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4493 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4494 4495 struct fw_info { 4496 uint8_t chip; 4497 char *kld_name; 4498 char *fw_mod_name; 4499 struct fw_h fw_h; 4500 } fw_info[] = { 4501 { 4502 .chip = CHELSIO_T4, 4503 .kld_name = "t4fw_cfg", 4504 .fw_mod_name = "t4fw", 4505 .fw_h = { 4506 .chip = FW_HDR_CHIP_T4, 4507 .fw_ver = htobe32(FW_VERSION(T4)), 4508 .intfver_nic = FW_INTFVER(T4, NIC), 4509 .intfver_vnic = FW_INTFVER(T4, VNIC), 4510 .intfver_ofld = FW_INTFVER(T4, OFLD), 4511 .intfver_ri = FW_INTFVER(T4, RI), 4512 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4513 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4514 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4515 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4516 }, 4517 }, { 4518 .chip = CHELSIO_T5, 4519 .kld_name = "t5fw_cfg", 4520 .fw_mod_name = "t5fw", 4521 .fw_h = { 4522 .chip = FW_HDR_CHIP_T5, 4523 .fw_ver = htobe32(FW_VERSION(T5)), 4524 .intfver_nic = FW_INTFVER(T5, NIC), 4525 .intfver_vnic = FW_INTFVER(T5, VNIC), 4526 .intfver_ofld = FW_INTFVER(T5, OFLD), 4527 .intfver_ri = FW_INTFVER(T5, RI), 4528 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4529 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4530 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4531 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4532 }, 4533 }, { 4534 .chip = CHELSIO_T6, 4535 .kld_name = "t6fw_cfg", 4536 .fw_mod_name = "t6fw", 4537 .fw_h = { 4538 .chip = FW_HDR_CHIP_T6, 4539 .fw_ver = htobe32(FW_VERSION(T6)), 4540 .intfver_nic = FW_INTFVER(T6, NIC), 4541 .intfver_vnic = FW_INTFVER(T6, VNIC), 4542 .intfver_ofld = FW_INTFVER(T6, OFLD), 4543 .intfver_ri = FW_INTFVER(T6, RI), 4544 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4545 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4546 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4547 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4548 }, 4549 } 4550 }; 4551 4552 static struct fw_info * 4553 find_fw_info(int chip) 4554 { 4555 int i; 4556 4557 for (i = 0; i < nitems(fw_info); i++) { 4558 if (fw_info[i].chip == chip) 4559 return (&fw_info[i]); 4560 } 4561 return (NULL); 4562 } 4563 4564 /* 4565 * Is the given firmware API compatible with the one the driver was compiled 4566 * with? 4567 */ 4568 static int 4569 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4570 { 4571 4572 /* short circuit if it's the exact same firmware version */ 4573 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4574 return (1); 4575 4576 /* 4577 * XXX: Is this too conservative? Perhaps I should limit this to the 4578 * features that are supported in the driver. 4579 */ 4580 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4581 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4582 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4583 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4584 return (1); 4585 #undef SAME_INTF 4586 4587 return (0); 4588 } 4589 4590 static int 4591 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4592 const struct firmware **fw) 4593 { 4594 struct fw_info *fw_info; 4595 4596 *dcfg = NULL; 4597 if (fw != NULL) 4598 *fw = NULL; 4599 4600 fw_info = find_fw_info(chip_id(sc)); 4601 if (fw_info == NULL) { 4602 device_printf(sc->dev, 4603 "unable to look up firmware information for chip %d.\n", 4604 chip_id(sc)); 4605 return (EINVAL); 4606 } 4607 4608 *dcfg = firmware_get(fw_info->kld_name); 4609 if (*dcfg != NULL) { 4610 if (fw != NULL) 4611 *fw = firmware_get(fw_info->fw_mod_name); 4612 return (0); 4613 } 4614 4615 return (ENOENT); 4616 } 4617 4618 static void 4619 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4620 const struct firmware *fw) 4621 { 4622 4623 if (fw != NULL) 4624 firmware_put(fw, FIRMWARE_UNLOAD); 4625 if (dcfg != NULL) 4626 firmware_put(dcfg, FIRMWARE_UNLOAD); 4627 } 4628 4629 /* 4630 * Return values: 4631 * 0 means no firmware install attempted. 4632 * ERESTART means a firmware install was attempted and was successful. 4633 * +ve errno means a firmware install was attempted but failed. 4634 */ 4635 static int 4636 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4637 const struct fw_h *drv_fw, const char *reason, int *already) 4638 { 4639 const struct firmware *cfg, *fw; 4640 const uint32_t c = be32toh(card_fw->fw_ver); 4641 uint32_t d, k; 4642 int rc, fw_install; 4643 struct fw_h bundled_fw; 4644 bool load_attempted; 4645 4646 cfg = fw = NULL; 4647 load_attempted = false; 4648 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4649 4650 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4651 if (t4_fw_install < 0) { 4652 rc = load_fw_module(sc, &cfg, &fw); 4653 if (rc != 0 || fw == NULL) { 4654 device_printf(sc->dev, 4655 "failed to load firmware module: %d. cfg %p, fw %p;" 4656 " will use compiled-in firmware version for" 4657 "hw.cxgbe.fw_install checks.\n", 4658 rc, cfg, fw); 4659 } else { 4660 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4661 } 4662 load_attempted = true; 4663 } 4664 d = be32toh(bundled_fw.fw_ver); 4665 4666 if (reason != NULL) 4667 goto install; 4668 4669 if ((sc->flags & FW_OK) == 0) { 4670 4671 if (c == 0xffffffff) { 4672 reason = "missing"; 4673 goto install; 4674 } 4675 4676 rc = 0; 4677 goto done; 4678 } 4679 4680 if (!fw_compatible(card_fw, &bundled_fw)) { 4681 reason = "incompatible or unusable"; 4682 goto install; 4683 } 4684 4685 if (d > c) { 4686 reason = "older than the version bundled with this driver"; 4687 goto install; 4688 } 4689 4690 if (fw_install == 2 && d != c) { 4691 reason = "different than the version bundled with this driver"; 4692 goto install; 4693 } 4694 4695 /* No reason to do anything to the firmware already on the card. */ 4696 rc = 0; 4697 goto done; 4698 4699 install: 4700 rc = 0; 4701 if ((*already)++) 4702 goto done; 4703 4704 if (fw_install == 0) { 4705 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4706 "but the driver is prohibited from installing a firmware " 4707 "on the card.\n", 4708 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4709 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4710 4711 goto done; 4712 } 4713 4714 /* 4715 * We'll attempt to install a firmware. Load the module first (if it 4716 * hasn't been loaded already). 4717 */ 4718 if (!load_attempted) { 4719 rc = load_fw_module(sc, &cfg, &fw); 4720 if (rc != 0 || fw == NULL) { 4721 device_printf(sc->dev, 4722 "failed to load firmware module: %d. cfg %p, fw %p\n", 4723 rc, cfg, fw); 4724 /* carry on */ 4725 } 4726 } 4727 if (fw == NULL) { 4728 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4729 "but the driver cannot take corrective action because it " 4730 "is unable to load the firmware module.\n", 4731 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4732 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4733 rc = sc->flags & FW_OK ? 0 : ENOENT; 4734 goto done; 4735 } 4736 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4737 if (k != d) { 4738 MPASS(t4_fw_install > 0); 4739 device_printf(sc->dev, 4740 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4741 "expecting (%u.%u.%u.%u) and will not be used.\n", 4742 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4743 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4744 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4745 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4746 rc = sc->flags & FW_OK ? 0 : EINVAL; 4747 goto done; 4748 } 4749 4750 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4751 "installing firmware %u.%u.%u.%u on card.\n", 4752 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4753 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4754 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4755 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4756 4757 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4758 if (rc != 0) { 4759 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4760 } else { 4761 /* Installed successfully, update the cached header too. */ 4762 rc = ERESTART; 4763 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4764 } 4765 done: 4766 unload_fw_module(sc, cfg, fw); 4767 4768 return (rc); 4769 } 4770 4771 /* 4772 * Establish contact with the firmware and attempt to become the master driver. 4773 * 4774 * A firmware will be installed to the card if needed (if the driver is allowed 4775 * to do so). 4776 */ 4777 static int 4778 contact_firmware(struct adapter *sc) 4779 { 4780 int rc, already = 0; 4781 enum dev_state state; 4782 struct fw_info *fw_info; 4783 struct fw_hdr *card_fw; /* fw on the card */ 4784 const struct fw_h *drv_fw; 4785 4786 fw_info = find_fw_info(chip_id(sc)); 4787 if (fw_info == NULL) { 4788 device_printf(sc->dev, 4789 "unable to look up firmware information for chip %d.\n", 4790 chip_id(sc)); 4791 return (EINVAL); 4792 } 4793 drv_fw = &fw_info->fw_h; 4794 4795 /* Read the header of the firmware on the card */ 4796 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4797 restart: 4798 rc = -t4_get_fw_hdr(sc, card_fw); 4799 if (rc != 0) { 4800 device_printf(sc->dev, 4801 "unable to read firmware header from card's flash: %d\n", 4802 rc); 4803 goto done; 4804 } 4805 4806 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4807 &already); 4808 if (rc == ERESTART) 4809 goto restart; 4810 if (rc != 0) 4811 goto done; 4812 4813 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4814 if (rc < 0 || state == DEV_STATE_ERR) { 4815 rc = -rc; 4816 device_printf(sc->dev, 4817 "failed to connect to the firmware: %d, %d. " 4818 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4819 #if 0 4820 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4821 "not responding properly to HELLO", &already) == ERESTART) 4822 goto restart; 4823 #endif 4824 goto done; 4825 } 4826 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4827 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4828 4829 if (rc == sc->pf) { 4830 sc->flags |= MASTER_PF; 4831 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4832 NULL, &already); 4833 if (rc == ERESTART) 4834 rc = 0; 4835 else if (rc != 0) 4836 goto done; 4837 } else if (state == DEV_STATE_UNINIT) { 4838 /* 4839 * We didn't get to be the master so we definitely won't be 4840 * configuring the chip. It's a bug if someone else hasn't 4841 * configured it already. 4842 */ 4843 device_printf(sc->dev, "couldn't be master(%d), " 4844 "device not already initialized either(%d). " 4845 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4846 rc = EPROTO; 4847 goto done; 4848 } else { 4849 /* 4850 * Some other PF is the master and has configured the chip. 4851 * This is allowed but untested. 4852 */ 4853 device_printf(sc->dev, "PF%d is master, device state %d. " 4854 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4855 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4856 sc->cfcsum = 0; 4857 rc = 0; 4858 } 4859 done: 4860 if (rc != 0 && sc->flags & FW_OK) { 4861 t4_fw_bye(sc, sc->mbox); 4862 sc->flags &= ~FW_OK; 4863 } 4864 free(card_fw, M_CXGBE); 4865 return (rc); 4866 } 4867 4868 static int 4869 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4870 uint32_t mtype, uint32_t moff) 4871 { 4872 struct fw_info *fw_info; 4873 const struct firmware *dcfg, *rcfg = NULL; 4874 const uint32_t *cfdata; 4875 uint32_t cflen, addr; 4876 int rc; 4877 4878 load_fw_module(sc, &dcfg, NULL); 4879 4880 /* Card specific interpretation of "default". */ 4881 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4882 if (pci_get_device(sc->dev) == 0x440a) 4883 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4884 if (is_fpga(sc)) 4885 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4886 } 4887 4888 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4889 if (dcfg == NULL) { 4890 device_printf(sc->dev, 4891 "KLD with default config is not available.\n"); 4892 rc = ENOENT; 4893 goto done; 4894 } 4895 cfdata = dcfg->data; 4896 cflen = dcfg->datasize & ~3; 4897 } else { 4898 char s[32]; 4899 4900 fw_info = find_fw_info(chip_id(sc)); 4901 if (fw_info == NULL) { 4902 device_printf(sc->dev, 4903 "unable to look up firmware information for chip %d.\n", 4904 chip_id(sc)); 4905 rc = EINVAL; 4906 goto done; 4907 } 4908 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4909 4910 rcfg = firmware_get(s); 4911 if (rcfg == NULL) { 4912 device_printf(sc->dev, 4913 "unable to load module \"%s\" for configuration " 4914 "profile \"%s\".\n", s, cfg_file); 4915 rc = ENOENT; 4916 goto done; 4917 } 4918 cfdata = rcfg->data; 4919 cflen = rcfg->datasize & ~3; 4920 } 4921 4922 if (cflen > FLASH_CFG_MAX_SIZE) { 4923 device_printf(sc->dev, 4924 "config file too long (%d, max allowed is %d).\n", 4925 cflen, FLASH_CFG_MAX_SIZE); 4926 rc = EINVAL; 4927 goto done; 4928 } 4929 4930 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4931 if (rc != 0) { 4932 device_printf(sc->dev, 4933 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4934 __func__, mtype, moff, cflen, rc); 4935 rc = EINVAL; 4936 goto done; 4937 } 4938 write_via_memwin(sc, 2, addr, cfdata, cflen); 4939 done: 4940 if (rcfg != NULL) 4941 firmware_put(rcfg, FIRMWARE_UNLOAD); 4942 unload_fw_module(sc, dcfg, NULL); 4943 return (rc); 4944 } 4945 4946 struct caps_allowed { 4947 uint16_t nbmcaps; 4948 uint16_t linkcaps; 4949 uint16_t switchcaps; 4950 uint16_t niccaps; 4951 uint16_t toecaps; 4952 uint16_t rdmacaps; 4953 uint16_t cryptocaps; 4954 uint16_t iscsicaps; 4955 uint16_t fcoecaps; 4956 }; 4957 4958 #define FW_PARAM_DEV(param) \ 4959 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4960 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4961 #define FW_PARAM_PFVF(param) \ 4962 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4963 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4964 4965 /* 4966 * Provide a configuration profile to the firmware and have it initialize the 4967 * chip accordingly. This may involve uploading a configuration file to the 4968 * card. 4969 */ 4970 static int 4971 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4972 const struct caps_allowed *caps_allowed) 4973 { 4974 int rc; 4975 struct fw_caps_config_cmd caps; 4976 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4977 4978 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4979 if (rc != 0) { 4980 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4981 return (rc); 4982 } 4983 4984 bzero(&caps, sizeof(caps)); 4985 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4986 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4987 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4988 mtype = 0; 4989 moff = 0; 4990 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4991 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4992 mtype = FW_MEMTYPE_FLASH; 4993 moff = t4_flash_cfg_addr(sc); 4994 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4995 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4996 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4997 FW_LEN16(caps)); 4998 } else { 4999 /* 5000 * Ask the firmware where it wants us to upload the config file. 5001 */ 5002 param = FW_PARAM_DEV(CF); 5003 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5004 if (rc != 0) { 5005 /* No support for config file? Shouldn't happen. */ 5006 device_printf(sc->dev, 5007 "failed to query config file location: %d.\n", rc); 5008 goto done; 5009 } 5010 mtype = G_FW_PARAMS_PARAM_Y(val); 5011 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5012 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5013 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5014 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5015 FW_LEN16(caps)); 5016 5017 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5018 if (rc != 0) { 5019 device_printf(sc->dev, 5020 "failed to upload config file to card: %d.\n", rc); 5021 goto done; 5022 } 5023 } 5024 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5025 if (rc != 0) { 5026 device_printf(sc->dev, "failed to pre-process config file: %d " 5027 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5028 goto done; 5029 } 5030 5031 finicsum = be32toh(caps.finicsum); 5032 cfcsum = be32toh(caps.cfcsum); /* actual */ 5033 if (finicsum != cfcsum) { 5034 device_printf(sc->dev, 5035 "WARNING: config file checksum mismatch: %08x %08x\n", 5036 finicsum, cfcsum); 5037 } 5038 sc->cfcsum = cfcsum; 5039 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5040 5041 /* 5042 * Let the firmware know what features will (not) be used so it can tune 5043 * things accordingly. 5044 */ 5045 #define LIMIT_CAPS(x) do { \ 5046 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5047 } while (0) 5048 LIMIT_CAPS(nbm); 5049 LIMIT_CAPS(link); 5050 LIMIT_CAPS(switch); 5051 LIMIT_CAPS(nic); 5052 LIMIT_CAPS(toe); 5053 LIMIT_CAPS(rdma); 5054 LIMIT_CAPS(crypto); 5055 LIMIT_CAPS(iscsi); 5056 LIMIT_CAPS(fcoe); 5057 #undef LIMIT_CAPS 5058 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5059 /* 5060 * TOE and hashfilters are mutually exclusive. It is a config 5061 * file or firmware bug if both are reported as available. Try 5062 * to cope with the situation in non-debug builds by disabling 5063 * TOE. 5064 */ 5065 MPASS(caps.toecaps == 0); 5066 5067 caps.toecaps = 0; 5068 caps.rdmacaps = 0; 5069 caps.iscsicaps = 0; 5070 } 5071 5072 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5073 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5074 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5075 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5076 if (rc != 0) { 5077 device_printf(sc->dev, 5078 "failed to process config file: %d.\n", rc); 5079 goto done; 5080 } 5081 5082 t4_tweak_chip_settings(sc); 5083 set_params__pre_init(sc); 5084 5085 /* get basic stuff going */ 5086 rc = -t4_fw_initialize(sc, sc->mbox); 5087 if (rc != 0) { 5088 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5089 goto done; 5090 } 5091 done: 5092 return (rc); 5093 } 5094 5095 /* 5096 * Partition chip resources for use between various PFs, VFs, etc. 5097 */ 5098 static int 5099 partition_resources(struct adapter *sc) 5100 { 5101 char cfg_file[sizeof(t4_cfg_file)]; 5102 struct caps_allowed caps_allowed; 5103 int rc; 5104 bool fallback; 5105 5106 /* Only the master driver gets to configure the chip resources. */ 5107 MPASS(sc->flags & MASTER_PF); 5108 5109 #define COPY_CAPS(x) do { \ 5110 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5111 } while (0) 5112 bzero(&caps_allowed, sizeof(caps_allowed)); 5113 COPY_CAPS(nbm); 5114 COPY_CAPS(link); 5115 COPY_CAPS(switch); 5116 COPY_CAPS(nic); 5117 COPY_CAPS(toe); 5118 COPY_CAPS(rdma); 5119 COPY_CAPS(crypto); 5120 COPY_CAPS(iscsi); 5121 COPY_CAPS(fcoe); 5122 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5123 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5124 retry: 5125 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5126 if (rc != 0 && fallback) { 5127 device_printf(sc->dev, 5128 "failed (%d) to configure card with \"%s\" profile, " 5129 "will fall back to a basic configuration and retry.\n", 5130 rc, cfg_file); 5131 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5132 bzero(&caps_allowed, sizeof(caps_allowed)); 5133 COPY_CAPS(switch); 5134 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5135 fallback = false; 5136 goto retry; 5137 } 5138 #undef COPY_CAPS 5139 return (rc); 5140 } 5141 5142 /* 5143 * Retrieve parameters that are needed (or nice to have) very early. 5144 */ 5145 static int 5146 get_params__pre_init(struct adapter *sc) 5147 { 5148 int rc; 5149 uint32_t param[2], val[2]; 5150 5151 t4_get_version_info(sc); 5152 5153 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5154 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5155 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5156 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5157 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5158 5159 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5160 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5161 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5162 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5163 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5164 5165 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5166 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5167 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5168 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5169 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5170 5171 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5172 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5173 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5174 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5175 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5176 5177 param[0] = FW_PARAM_DEV(PORTVEC); 5178 param[1] = FW_PARAM_DEV(CCLK); 5179 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5180 if (rc != 0) { 5181 device_printf(sc->dev, 5182 "failed to query parameters (pre_init): %d.\n", rc); 5183 return (rc); 5184 } 5185 5186 sc->params.portvec = val[0]; 5187 sc->params.nports = bitcount32(val[0]); 5188 sc->params.vpd.cclk = val[1]; 5189 5190 /* Read device log parameters. */ 5191 rc = -t4_init_devlog_params(sc, 1); 5192 if (rc == 0) 5193 fixup_devlog_params(sc); 5194 else { 5195 device_printf(sc->dev, 5196 "failed to get devlog parameters: %d.\n", rc); 5197 rc = 0; /* devlog isn't critical for device operation */ 5198 } 5199 5200 return (rc); 5201 } 5202 5203 /* 5204 * Any params that need to be set before FW_INITIALIZE. 5205 */ 5206 static int 5207 set_params__pre_init(struct adapter *sc) 5208 { 5209 int rc = 0; 5210 uint32_t param, val; 5211 5212 if (chip_id(sc) >= CHELSIO_T6) { 5213 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5214 val = 1; 5215 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5216 /* firmwares < 1.20.1.0 do not have this param. */ 5217 if (rc == FW_EINVAL && 5218 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5219 rc = 0; 5220 } 5221 if (rc != 0) { 5222 device_printf(sc->dev, 5223 "failed to enable high priority filters :%d.\n", 5224 rc); 5225 } 5226 5227 param = FW_PARAM_DEV(PPOD_EDRAM); 5228 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5229 if (rc == 0 && val == 1) { 5230 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5231 &val); 5232 if (rc != 0) { 5233 device_printf(sc->dev, 5234 "failed to set PPOD_EDRAM: %d.\n", rc); 5235 } 5236 } 5237 } 5238 5239 /* Enable opaque VIIDs with firmwares that support it. */ 5240 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5241 val = 1; 5242 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5243 if (rc == 0 && val == 1) 5244 sc->params.viid_smt_extn_support = true; 5245 else 5246 sc->params.viid_smt_extn_support = false; 5247 5248 return (rc); 5249 } 5250 5251 /* 5252 * Retrieve various parameters that are of interest to the driver. The device 5253 * has been initialized by the firmware at this point. 5254 */ 5255 static int 5256 get_params__post_init(struct adapter *sc) 5257 { 5258 int rc; 5259 uint32_t param[7], val[7]; 5260 struct fw_caps_config_cmd caps; 5261 5262 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5263 param[1] = FW_PARAM_PFVF(EQ_START); 5264 param[2] = FW_PARAM_PFVF(FILTER_START); 5265 param[3] = FW_PARAM_PFVF(FILTER_END); 5266 param[4] = FW_PARAM_PFVF(L2T_START); 5267 param[5] = FW_PARAM_PFVF(L2T_END); 5268 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5269 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5270 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5271 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5272 if (rc != 0) { 5273 device_printf(sc->dev, 5274 "failed to query parameters (post_init): %d.\n", rc); 5275 return (rc); 5276 } 5277 5278 sc->sge.iq_start = val[0]; 5279 sc->sge.eq_start = val[1]; 5280 if ((int)val[3] > (int)val[2]) { 5281 sc->tids.ftid_base = val[2]; 5282 sc->tids.ftid_end = val[3]; 5283 sc->tids.nftids = val[3] - val[2] + 1; 5284 } 5285 sc->vres.l2t.start = val[4]; 5286 sc->vres.l2t.size = val[5] - val[4] + 1; 5287 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5288 ("%s: L2 table size (%u) larger than expected (%u)", 5289 __func__, sc->vres.l2t.size, L2T_SIZE)); 5290 sc->params.core_vdd = val[6]; 5291 5292 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5293 param[1] = FW_PARAM_PFVF(EQ_END); 5294 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5295 if (rc != 0) { 5296 device_printf(sc->dev, 5297 "failed to query parameters (post_init2): %d.\n", rc); 5298 return (rc); 5299 } 5300 MPASS((int)val[0] >= sc->sge.iq_start); 5301 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5302 MPASS((int)val[1] >= sc->sge.eq_start); 5303 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5304 5305 if (chip_id(sc) >= CHELSIO_T6) { 5306 5307 sc->tids.tid_base = t4_read_reg(sc, 5308 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5309 5310 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5311 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5312 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5313 if (rc != 0) { 5314 device_printf(sc->dev, 5315 "failed to query hpfilter parameters: %d.\n", rc); 5316 return (rc); 5317 } 5318 if ((int)val[1] > (int)val[0]) { 5319 sc->tids.hpftid_base = val[0]; 5320 sc->tids.hpftid_end = val[1]; 5321 sc->tids.nhpftids = val[1] - val[0] + 1; 5322 5323 /* 5324 * These should go off if the layout changes and the 5325 * driver needs to catch up. 5326 */ 5327 MPASS(sc->tids.hpftid_base == 0); 5328 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5329 } 5330 5331 param[0] = FW_PARAM_PFVF(RAWF_START); 5332 param[1] = FW_PARAM_PFVF(RAWF_END); 5333 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5334 if (rc != 0) { 5335 device_printf(sc->dev, 5336 "failed to query rawf parameters: %d.\n", rc); 5337 return (rc); 5338 } 5339 if ((int)val[1] > (int)val[0]) { 5340 sc->rawf_base = val[0]; 5341 sc->nrawf = val[1] - val[0] + 1; 5342 } 5343 } 5344 5345 /* 5346 * MPSBGMAP is queried separately because only recent firmwares support 5347 * it as a parameter and we don't want the compound query above to fail 5348 * on older firmwares. 5349 */ 5350 param[0] = FW_PARAM_DEV(MPSBGMAP); 5351 val[0] = 0; 5352 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5353 if (rc == 0) 5354 sc->params.mps_bg_map = val[0]; 5355 else 5356 sc->params.mps_bg_map = 0; 5357 5358 /* 5359 * Determine whether the firmware supports the filter2 work request. 5360 * This is queried separately for the same reason as MPSBGMAP above. 5361 */ 5362 param[0] = FW_PARAM_DEV(FILTER2_WR); 5363 val[0] = 0; 5364 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5365 if (rc == 0) 5366 sc->params.filter2_wr_support = val[0] != 0; 5367 else 5368 sc->params.filter2_wr_support = 0; 5369 5370 /* 5371 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5372 * This is queried separately for the same reason as other params above. 5373 */ 5374 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5375 val[0] = 0; 5376 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5377 if (rc == 0) 5378 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5379 else 5380 sc->params.ulptx_memwrite_dsgl = false; 5381 5382 /* FW_RI_FR_NSMR_TPTE_WR support */ 5383 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5384 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5385 if (rc == 0) 5386 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5387 else 5388 sc->params.fr_nsmr_tpte_wr_support = false; 5389 5390 /* Support for 512 SGL entries per FR MR. */ 5391 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5392 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5393 if (rc == 0) 5394 sc->params.dev_512sgl_mr = val[0] != 0; 5395 else 5396 sc->params.dev_512sgl_mr = false; 5397 5398 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5399 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5400 if (rc == 0) 5401 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5402 else 5403 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5404 5405 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5406 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5407 if (rc == 0) { 5408 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5409 sc->params.nsched_cls = val[0]; 5410 } else 5411 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5412 5413 /* get capabilites */ 5414 bzero(&caps, sizeof(caps)); 5415 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5416 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5417 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5418 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5419 if (rc != 0) { 5420 device_printf(sc->dev, 5421 "failed to get card capabilities: %d.\n", rc); 5422 return (rc); 5423 } 5424 5425 #define READ_CAPS(x) do { \ 5426 sc->x = htobe16(caps.x); \ 5427 } while (0) 5428 READ_CAPS(nbmcaps); 5429 READ_CAPS(linkcaps); 5430 READ_CAPS(switchcaps); 5431 READ_CAPS(niccaps); 5432 READ_CAPS(toecaps); 5433 READ_CAPS(rdmacaps); 5434 READ_CAPS(cryptocaps); 5435 READ_CAPS(iscsicaps); 5436 READ_CAPS(fcoecaps); 5437 5438 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5439 MPASS(chip_id(sc) > CHELSIO_T4); 5440 MPASS(sc->toecaps == 0); 5441 sc->toecaps = 0; 5442 5443 param[0] = FW_PARAM_DEV(NTID); 5444 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5445 if (rc != 0) { 5446 device_printf(sc->dev, 5447 "failed to query HASHFILTER parameters: %d.\n", rc); 5448 return (rc); 5449 } 5450 sc->tids.ntids = val[0]; 5451 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5452 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5453 sc->tids.ntids -= sc->tids.nhpftids; 5454 } 5455 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5456 sc->params.hash_filter = 1; 5457 } 5458 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5459 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5460 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5461 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5462 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5463 if (rc != 0) { 5464 device_printf(sc->dev, 5465 "failed to query NIC parameters: %d.\n", rc); 5466 return (rc); 5467 } 5468 if ((int)val[1] > (int)val[0]) { 5469 sc->tids.etid_base = val[0]; 5470 sc->tids.etid_end = val[1]; 5471 sc->tids.netids = val[1] - val[0] + 1; 5472 sc->params.eo_wr_cred = val[2]; 5473 sc->params.ethoffload = 1; 5474 } 5475 } 5476 if (sc->toecaps) { 5477 /* query offload-related parameters */ 5478 param[0] = FW_PARAM_DEV(NTID); 5479 param[1] = FW_PARAM_PFVF(SERVER_START); 5480 param[2] = FW_PARAM_PFVF(SERVER_END); 5481 param[3] = FW_PARAM_PFVF(TDDP_START); 5482 param[4] = FW_PARAM_PFVF(TDDP_END); 5483 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5484 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5485 if (rc != 0) { 5486 device_printf(sc->dev, 5487 "failed to query TOE parameters: %d.\n", rc); 5488 return (rc); 5489 } 5490 sc->tids.ntids = val[0]; 5491 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5492 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5493 sc->tids.ntids -= sc->tids.nhpftids; 5494 } 5495 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5496 if ((int)val[2] > (int)val[1]) { 5497 sc->tids.stid_base = val[1]; 5498 sc->tids.nstids = val[2] - val[1] + 1; 5499 } 5500 sc->vres.ddp.start = val[3]; 5501 sc->vres.ddp.size = val[4] - val[3] + 1; 5502 sc->params.ofldq_wr_cred = val[5]; 5503 sc->params.offload = 1; 5504 } else { 5505 /* 5506 * The firmware attempts memfree TOE configuration for -SO cards 5507 * and will report toecaps=0 if it runs out of resources (this 5508 * depends on the config file). It may not report 0 for other 5509 * capabilities dependent on the TOE in this case. Set them to 5510 * 0 here so that the driver doesn't bother tracking resources 5511 * that will never be used. 5512 */ 5513 sc->iscsicaps = 0; 5514 sc->rdmacaps = 0; 5515 } 5516 if (sc->rdmacaps) { 5517 param[0] = FW_PARAM_PFVF(STAG_START); 5518 param[1] = FW_PARAM_PFVF(STAG_END); 5519 param[2] = FW_PARAM_PFVF(RQ_START); 5520 param[3] = FW_PARAM_PFVF(RQ_END); 5521 param[4] = FW_PARAM_PFVF(PBL_START); 5522 param[5] = FW_PARAM_PFVF(PBL_END); 5523 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5524 if (rc != 0) { 5525 device_printf(sc->dev, 5526 "failed to query RDMA parameters(1): %d.\n", rc); 5527 return (rc); 5528 } 5529 sc->vres.stag.start = val[0]; 5530 sc->vres.stag.size = val[1] - val[0] + 1; 5531 sc->vres.rq.start = val[2]; 5532 sc->vres.rq.size = val[3] - val[2] + 1; 5533 sc->vres.pbl.start = val[4]; 5534 sc->vres.pbl.size = val[5] - val[4] + 1; 5535 5536 param[0] = FW_PARAM_PFVF(SQRQ_START); 5537 param[1] = FW_PARAM_PFVF(SQRQ_END); 5538 param[2] = FW_PARAM_PFVF(CQ_START); 5539 param[3] = FW_PARAM_PFVF(CQ_END); 5540 param[4] = FW_PARAM_PFVF(OCQ_START); 5541 param[5] = FW_PARAM_PFVF(OCQ_END); 5542 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5543 if (rc != 0) { 5544 device_printf(sc->dev, 5545 "failed to query RDMA parameters(2): %d.\n", rc); 5546 return (rc); 5547 } 5548 sc->vres.qp.start = val[0]; 5549 sc->vres.qp.size = val[1] - val[0] + 1; 5550 sc->vres.cq.start = val[2]; 5551 sc->vres.cq.size = val[3] - val[2] + 1; 5552 sc->vres.ocq.start = val[4]; 5553 sc->vres.ocq.size = val[5] - val[4] + 1; 5554 5555 param[0] = FW_PARAM_PFVF(SRQ_START); 5556 param[1] = FW_PARAM_PFVF(SRQ_END); 5557 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5558 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5559 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5560 if (rc != 0) { 5561 device_printf(sc->dev, 5562 "failed to query RDMA parameters(3): %d.\n", rc); 5563 return (rc); 5564 } 5565 sc->vres.srq.start = val[0]; 5566 sc->vres.srq.size = val[1] - val[0] + 1; 5567 sc->params.max_ordird_qp = val[2]; 5568 sc->params.max_ird_adapter = val[3]; 5569 } 5570 if (sc->iscsicaps) { 5571 param[0] = FW_PARAM_PFVF(ISCSI_START); 5572 param[1] = FW_PARAM_PFVF(ISCSI_END); 5573 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5574 if (rc != 0) { 5575 device_printf(sc->dev, 5576 "failed to query iSCSI parameters: %d.\n", rc); 5577 return (rc); 5578 } 5579 sc->vres.iscsi.start = val[0]; 5580 sc->vres.iscsi.size = val[1] - val[0] + 1; 5581 } 5582 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5583 param[0] = FW_PARAM_PFVF(TLS_START); 5584 param[1] = FW_PARAM_PFVF(TLS_END); 5585 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5586 if (rc != 0) { 5587 device_printf(sc->dev, 5588 "failed to query TLS parameters: %d.\n", rc); 5589 return (rc); 5590 } 5591 sc->vres.key.start = val[0]; 5592 sc->vres.key.size = val[1] - val[0] + 1; 5593 } 5594 5595 /* 5596 * We've got the params we wanted to query directly from the firmware. 5597 * Grab some others via other means. 5598 */ 5599 t4_init_sge_params(sc); 5600 t4_init_tp_params(sc); 5601 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5602 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5603 5604 rc = t4_verify_chip_settings(sc); 5605 if (rc != 0) 5606 return (rc); 5607 t4_init_rx_buf_info(sc); 5608 5609 return (rc); 5610 } 5611 5612 #ifdef KERN_TLS 5613 static void 5614 ktls_tick(void *arg) 5615 { 5616 struct adapter *sc; 5617 uint32_t tstamp; 5618 5619 sc = arg; 5620 tstamp = tcp_ts_getticks(); 5621 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5622 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5623 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5624 } 5625 5626 static int 5627 t6_config_kern_tls(struct adapter *sc, bool enable) 5628 { 5629 int rc; 5630 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5631 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5632 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5633 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5634 5635 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5636 if (rc != 0) { 5637 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5638 enable ? "enable" : "disable", rc); 5639 return (rc); 5640 } 5641 5642 if (enable) { 5643 sc->flags |= KERN_TLS_ON; 5644 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5645 C_HARDCLOCK); 5646 } else { 5647 sc->flags &= ~KERN_TLS_ON; 5648 callout_stop(&sc->ktls_tick); 5649 } 5650 5651 return (rc); 5652 } 5653 #endif 5654 5655 static int 5656 set_params__post_init(struct adapter *sc) 5657 { 5658 uint32_t mask, param, val; 5659 #ifdef TCP_OFFLOAD 5660 int i, v, shift; 5661 #endif 5662 5663 /* ask for encapsulated CPLs */ 5664 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5665 val = 1; 5666 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5667 5668 /* Enable 32b port caps if the firmware supports it. */ 5669 param = FW_PARAM_PFVF(PORT_CAPS32); 5670 val = 1; 5671 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5672 sc->params.port_caps32 = 1; 5673 5674 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5675 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5676 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5677 V_MASKFILTER(val - 1)); 5678 5679 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5680 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5681 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5682 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5683 val = 0; 5684 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5685 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5686 F_ATTACKFILTERENABLE); 5687 val |= F_DROPERRORATTACK; 5688 } 5689 if (t4_drop_ip_fragments != 0) { 5690 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5691 F_FRAGMENTDROP); 5692 val |= F_DROPERRORFRAG; 5693 } 5694 if (t4_drop_pkts_with_l2_errors != 0) 5695 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5696 if (t4_drop_pkts_with_l3_errors != 0) { 5697 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5698 F_DROPERRORCSUMIP; 5699 } 5700 if (t4_drop_pkts_with_l4_errors != 0) { 5701 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5702 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5703 } 5704 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5705 5706 #ifdef TCP_OFFLOAD 5707 /* 5708 * Override the TOE timers with user provided tunables. This is not the 5709 * recommended way to change the timers (the firmware config file is) so 5710 * these tunables are not documented. 5711 * 5712 * All the timer tunables are in microseconds. 5713 */ 5714 if (t4_toe_keepalive_idle != 0) { 5715 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5716 v &= M_KEEPALIVEIDLE; 5717 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5718 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5719 } 5720 if (t4_toe_keepalive_interval != 0) { 5721 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5722 v &= M_KEEPALIVEINTVL; 5723 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5724 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5725 } 5726 if (t4_toe_keepalive_count != 0) { 5727 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5728 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5729 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5730 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5731 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5732 } 5733 if (t4_toe_rexmt_min != 0) { 5734 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5735 v &= M_RXTMIN; 5736 t4_set_reg_field(sc, A_TP_RXT_MIN, 5737 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5738 } 5739 if (t4_toe_rexmt_max != 0) { 5740 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5741 v &= M_RXTMAX; 5742 t4_set_reg_field(sc, A_TP_RXT_MAX, 5743 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5744 } 5745 if (t4_toe_rexmt_count != 0) { 5746 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5747 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5748 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5749 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5750 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5751 } 5752 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5753 if (t4_toe_rexmt_backoff[i] != -1) { 5754 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5755 shift = (i & 3) << 3; 5756 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5757 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5758 } 5759 } 5760 #endif 5761 5762 #ifdef KERN_TLS 5763 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5764 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5765 /* 5766 * Limit TOE connections to 2 reassembly "islands". This is 5767 * required for TOE TLS connections to downgrade to plain TOE 5768 * connections if an unsupported TLS version or ciphersuite is 5769 * used. 5770 */ 5771 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5772 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5773 } 5774 5775 if (is_ktls(sc)) { 5776 sc->tlst.inline_keys = t4_tls_inline_keys; 5777 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5778 if (t4_kern_tls != 0 && is_t6(sc)) 5779 t6_config_kern_tls(sc, true); 5780 } 5781 #endif 5782 return (0); 5783 } 5784 5785 #undef FW_PARAM_PFVF 5786 #undef FW_PARAM_DEV 5787 5788 static void 5789 t4_set_desc(struct adapter *sc) 5790 { 5791 char buf[128]; 5792 struct adapter_params *p = &sc->params; 5793 5794 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5795 5796 device_set_desc_copy(sc->dev, buf); 5797 } 5798 5799 static inline void 5800 ifmedia_add4(struct ifmedia *ifm, int m) 5801 { 5802 5803 ifmedia_add(ifm, m, 0, NULL); 5804 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5805 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5806 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5807 } 5808 5809 /* 5810 * This is the selected media, which is not quite the same as the active media. 5811 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5812 * and active are not the same, and "media: Ethernet selected" otherwise. 5813 */ 5814 static void 5815 set_current_media(struct port_info *pi) 5816 { 5817 struct link_config *lc; 5818 struct ifmedia *ifm; 5819 int mword; 5820 u_int speed; 5821 5822 PORT_LOCK_ASSERT_OWNED(pi); 5823 5824 /* Leave current media alone if it's already set to IFM_NONE. */ 5825 ifm = &pi->media; 5826 if (ifm->ifm_cur != NULL && 5827 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5828 return; 5829 5830 lc = &pi->link_cfg; 5831 if (lc->requested_aneg != AUTONEG_DISABLE && 5832 lc->pcaps & FW_PORT_CAP32_ANEG) { 5833 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5834 return; 5835 } 5836 mword = IFM_ETHER | IFM_FDX; 5837 if (lc->requested_fc & PAUSE_TX) 5838 mword |= IFM_ETH_TXPAUSE; 5839 if (lc->requested_fc & PAUSE_RX) 5840 mword |= IFM_ETH_RXPAUSE; 5841 if (lc->requested_speed == 0) 5842 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5843 else 5844 speed = lc->requested_speed; 5845 mword |= port_mword(pi, speed_to_fwcap(speed)); 5846 ifmedia_set(ifm, mword); 5847 } 5848 5849 /* 5850 * Returns true if the ifmedia list for the port cannot change. 5851 */ 5852 static bool 5853 fixed_ifmedia(struct port_info *pi) 5854 { 5855 5856 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5857 pi->port_type == FW_PORT_TYPE_BT_XFI || 5858 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5859 pi->port_type == FW_PORT_TYPE_KX4 || 5860 pi->port_type == FW_PORT_TYPE_KX || 5861 pi->port_type == FW_PORT_TYPE_KR || 5862 pi->port_type == FW_PORT_TYPE_BP_AP || 5863 pi->port_type == FW_PORT_TYPE_BP4_AP || 5864 pi->port_type == FW_PORT_TYPE_BP40_BA || 5865 pi->port_type == FW_PORT_TYPE_KR4_100G || 5866 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5867 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5868 } 5869 5870 static void 5871 build_medialist(struct port_info *pi) 5872 { 5873 uint32_t ss, speed; 5874 int unknown, mword, bit; 5875 struct link_config *lc; 5876 struct ifmedia *ifm; 5877 5878 PORT_LOCK_ASSERT_OWNED(pi); 5879 5880 if (pi->flags & FIXED_IFMEDIA) 5881 return; 5882 5883 /* 5884 * Rebuild the ifmedia list. 5885 */ 5886 ifm = &pi->media; 5887 ifmedia_removeall(ifm); 5888 lc = &pi->link_cfg; 5889 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5890 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5891 MPASS(ss != 0); 5892 no_media: 5893 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5894 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5895 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5896 return; 5897 } 5898 5899 unknown = 0; 5900 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5901 speed = 1 << bit; 5902 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5903 if (ss & speed) { 5904 mword = port_mword(pi, speed); 5905 if (mword == IFM_NONE) { 5906 goto no_media; 5907 } else if (mword == IFM_UNKNOWN) 5908 unknown++; 5909 else 5910 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5911 } 5912 } 5913 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5914 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5915 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5916 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5917 5918 set_current_media(pi); 5919 } 5920 5921 /* 5922 * Initialize the requested fields in the link config based on driver tunables. 5923 */ 5924 static void 5925 init_link_config(struct port_info *pi) 5926 { 5927 struct link_config *lc = &pi->link_cfg; 5928 5929 PORT_LOCK_ASSERT_OWNED(pi); 5930 5931 lc->requested_caps = 0; 5932 lc->requested_speed = 0; 5933 5934 if (t4_autoneg == 0) 5935 lc->requested_aneg = AUTONEG_DISABLE; 5936 else if (t4_autoneg == 1) 5937 lc->requested_aneg = AUTONEG_ENABLE; 5938 else 5939 lc->requested_aneg = AUTONEG_AUTO; 5940 5941 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5942 PAUSE_AUTONEG); 5943 5944 if (t4_fec & FEC_AUTO) 5945 lc->requested_fec = FEC_AUTO; 5946 else if (t4_fec == 0) 5947 lc->requested_fec = FEC_NONE; 5948 else { 5949 /* -1 is handled by the FEC_AUTO block above and not here. */ 5950 lc->requested_fec = t4_fec & 5951 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5952 if (lc->requested_fec == 0) 5953 lc->requested_fec = FEC_AUTO; 5954 } 5955 if (t4_force_fec < 0) 5956 lc->force_fec = -1; 5957 else if (t4_force_fec > 0) 5958 lc->force_fec = 1; 5959 else 5960 lc->force_fec = 0; 5961 } 5962 5963 /* 5964 * Makes sure that all requested settings comply with what's supported by the 5965 * port. Returns the number of settings that were invalid and had to be fixed. 5966 */ 5967 static int 5968 fixup_link_config(struct port_info *pi) 5969 { 5970 int n = 0; 5971 struct link_config *lc = &pi->link_cfg; 5972 uint32_t fwspeed; 5973 5974 PORT_LOCK_ASSERT_OWNED(pi); 5975 5976 /* Speed (when not autonegotiating) */ 5977 if (lc->requested_speed != 0) { 5978 fwspeed = speed_to_fwcap(lc->requested_speed); 5979 if ((fwspeed & lc->pcaps) == 0) { 5980 n++; 5981 lc->requested_speed = 0; 5982 } 5983 } 5984 5985 /* Link autonegotiation */ 5986 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5987 lc->requested_aneg == AUTONEG_DISABLE || 5988 lc->requested_aneg == AUTONEG_AUTO); 5989 if (lc->requested_aneg == AUTONEG_ENABLE && 5990 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5991 n++; 5992 lc->requested_aneg = AUTONEG_AUTO; 5993 } 5994 5995 /* Flow control */ 5996 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5997 if (lc->requested_fc & PAUSE_TX && 5998 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5999 n++; 6000 lc->requested_fc &= ~PAUSE_TX; 6001 } 6002 if (lc->requested_fc & PAUSE_RX && 6003 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6004 n++; 6005 lc->requested_fc &= ~PAUSE_RX; 6006 } 6007 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6008 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6009 n++; 6010 lc->requested_fc |= PAUSE_AUTONEG; 6011 } 6012 6013 /* FEC */ 6014 if ((lc->requested_fec & FEC_RS && 6015 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6016 (lc->requested_fec & FEC_BASER_RS && 6017 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6018 n++; 6019 lc->requested_fec = FEC_AUTO; 6020 } 6021 6022 return (n); 6023 } 6024 6025 /* 6026 * Apply the requested L1 settings, which are expected to be valid, to the 6027 * hardware. 6028 */ 6029 static int 6030 apply_link_config(struct port_info *pi) 6031 { 6032 struct adapter *sc = pi->adapter; 6033 struct link_config *lc = &pi->link_cfg; 6034 int rc; 6035 6036 #ifdef INVARIANTS 6037 ASSERT_SYNCHRONIZED_OP(sc); 6038 PORT_LOCK_ASSERT_OWNED(pi); 6039 6040 if (lc->requested_aneg == AUTONEG_ENABLE) 6041 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6042 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6043 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6044 if (lc->requested_fc & PAUSE_TX) 6045 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6046 if (lc->requested_fc & PAUSE_RX) 6047 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6048 if (lc->requested_fec & FEC_RS) 6049 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6050 if (lc->requested_fec & FEC_BASER_RS) 6051 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6052 #endif 6053 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6054 if (rc != 0) { 6055 /* Don't complain if the VF driver gets back an EPERM. */ 6056 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 6057 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6058 } else { 6059 /* 6060 * An L1_CFG will almost always result in a link-change event if 6061 * the link is up, and the driver will refresh the actual 6062 * fec/fc/etc. when the notification is processed. If the link 6063 * is down then the actual settings are meaningless. 6064 * 6065 * This takes care of the case where a change in the L1 settings 6066 * may not result in a notification. 6067 */ 6068 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6069 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6070 } 6071 return (rc); 6072 } 6073 6074 #define FW_MAC_EXACT_CHUNK 7 6075 struct mcaddr_ctx { 6076 struct ifnet *ifp; 6077 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6078 uint64_t hash; 6079 int i; 6080 int del; 6081 int rc; 6082 }; 6083 6084 static u_int 6085 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6086 { 6087 struct mcaddr_ctx *ctx = arg; 6088 struct vi_info *vi = ctx->ifp->if_softc; 6089 struct port_info *pi = vi->pi; 6090 struct adapter *sc = pi->adapter; 6091 6092 if (ctx->rc < 0) 6093 return (0); 6094 6095 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6096 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6097 ctx->i++; 6098 6099 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6100 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6101 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6102 if (ctx->rc < 0) { 6103 int j; 6104 6105 for (j = 0; j < ctx->i; j++) { 6106 if_printf(ctx->ifp, 6107 "failed to add mc address" 6108 " %02x:%02x:%02x:" 6109 "%02x:%02x:%02x rc=%d\n", 6110 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6111 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6112 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6113 -ctx->rc); 6114 } 6115 return (0); 6116 } 6117 ctx->del = 0; 6118 ctx->i = 0; 6119 } 6120 6121 return (1); 6122 } 6123 6124 /* 6125 * Program the port's XGMAC based on parameters in ifnet. The caller also 6126 * indicates which parameters should be programmed (the rest are left alone). 6127 */ 6128 int 6129 update_mac_settings(struct ifnet *ifp, int flags) 6130 { 6131 int rc = 0; 6132 struct vi_info *vi = ifp->if_softc; 6133 struct port_info *pi = vi->pi; 6134 struct adapter *sc = pi->adapter; 6135 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6136 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6137 6138 ASSERT_SYNCHRONIZED_OP(sc); 6139 KASSERT(flags, ("%s: not told what to update.", __func__)); 6140 6141 if (flags & XGMAC_MTU) 6142 mtu = ifp->if_mtu; 6143 6144 if (flags & XGMAC_PROMISC) 6145 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 6146 6147 if (flags & XGMAC_ALLMULTI) 6148 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 6149 6150 if (flags & XGMAC_VLANEX) 6151 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6152 6153 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6154 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6155 allmulti, 1, vlanex, false); 6156 if (rc) { 6157 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6158 rc); 6159 return (rc); 6160 } 6161 } 6162 6163 if (flags & XGMAC_UCADDR) { 6164 uint8_t ucaddr[ETHER_ADDR_LEN]; 6165 6166 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 6167 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6168 ucaddr, true, &vi->smt_idx); 6169 if (rc < 0) { 6170 rc = -rc; 6171 if_printf(ifp, "change_mac failed: %d\n", rc); 6172 return (rc); 6173 } else { 6174 vi->xact_addr_filt = rc; 6175 rc = 0; 6176 } 6177 } 6178 6179 if (flags & XGMAC_MCADDRS) { 6180 struct epoch_tracker et; 6181 struct mcaddr_ctx ctx; 6182 int j; 6183 6184 ctx.ifp = ifp; 6185 ctx.hash = 0; 6186 ctx.i = 0; 6187 ctx.del = 1; 6188 ctx.rc = 0; 6189 /* 6190 * Unlike other drivers, we accumulate list of pointers into 6191 * interface address lists and we need to keep it safe even 6192 * after if_foreach_llmaddr() returns, thus we must enter the 6193 * network epoch. 6194 */ 6195 NET_EPOCH_ENTER(et); 6196 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6197 if (ctx.rc < 0) { 6198 NET_EPOCH_EXIT(et); 6199 rc = -ctx.rc; 6200 return (rc); 6201 } 6202 if (ctx.i > 0) { 6203 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6204 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6205 NET_EPOCH_EXIT(et); 6206 if (rc < 0) { 6207 rc = -rc; 6208 for (j = 0; j < ctx.i; j++) { 6209 if_printf(ifp, 6210 "failed to add mcast address" 6211 " %02x:%02x:%02x:" 6212 "%02x:%02x:%02x rc=%d\n", 6213 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6214 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6215 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6216 rc); 6217 } 6218 return (rc); 6219 } 6220 ctx.del = 0; 6221 } else 6222 NET_EPOCH_EXIT(et); 6223 6224 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6225 if (rc != 0) 6226 if_printf(ifp, "failed to set mcast address hash: %d\n", 6227 rc); 6228 if (ctx.del == 0) { 6229 /* We clobbered the VXLAN entry if there was one. */ 6230 pi->vxlan_tcam_entry = false; 6231 } 6232 } 6233 6234 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6235 pi->vxlan_tcam_entry == false) { 6236 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6237 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6238 true); 6239 if (rc < 0) { 6240 rc = -rc; 6241 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6242 rc); 6243 } else { 6244 MPASS(rc == sc->rawf_base + pi->port_id); 6245 rc = 0; 6246 pi->vxlan_tcam_entry = true; 6247 } 6248 } 6249 6250 return (rc); 6251 } 6252 6253 /* 6254 * {begin|end}_synchronized_op must be called from the same thread. 6255 */ 6256 int 6257 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6258 char *wmesg) 6259 { 6260 int rc, pri; 6261 6262 #ifdef WITNESS 6263 /* the caller thinks it's ok to sleep, but is it really? */ 6264 if (flags & SLEEP_OK) 6265 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6266 "begin_synchronized_op"); 6267 #endif 6268 6269 if (INTR_OK) 6270 pri = PCATCH; 6271 else 6272 pri = 0; 6273 6274 ADAPTER_LOCK(sc); 6275 for (;;) { 6276 6277 if (vi && IS_DOOMED(vi)) { 6278 rc = ENXIO; 6279 goto done; 6280 } 6281 6282 if (!IS_BUSY(sc)) { 6283 rc = 0; 6284 break; 6285 } 6286 6287 if (!(flags & SLEEP_OK)) { 6288 rc = EBUSY; 6289 goto done; 6290 } 6291 6292 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6293 rc = EINTR; 6294 goto done; 6295 } 6296 } 6297 6298 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6299 SET_BUSY(sc); 6300 #ifdef INVARIANTS 6301 sc->last_op = wmesg; 6302 sc->last_op_thr = curthread; 6303 sc->last_op_flags = flags; 6304 #endif 6305 6306 done: 6307 if (!(flags & HOLD_LOCK) || rc) 6308 ADAPTER_UNLOCK(sc); 6309 6310 return (rc); 6311 } 6312 6313 /* 6314 * Tell if_ioctl and if_init that the VI is going away. This is 6315 * special variant of begin_synchronized_op and must be paired with a 6316 * call to end_synchronized_op. 6317 */ 6318 void 6319 doom_vi(struct adapter *sc, struct vi_info *vi) 6320 { 6321 6322 ADAPTER_LOCK(sc); 6323 SET_DOOMED(vi); 6324 wakeup(&sc->flags); 6325 while (IS_BUSY(sc)) 6326 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6327 SET_BUSY(sc); 6328 #ifdef INVARIANTS 6329 sc->last_op = "t4detach"; 6330 sc->last_op_thr = curthread; 6331 sc->last_op_flags = 0; 6332 #endif 6333 ADAPTER_UNLOCK(sc); 6334 } 6335 6336 /* 6337 * {begin|end}_synchronized_op must be called from the same thread. 6338 */ 6339 void 6340 end_synchronized_op(struct adapter *sc, int flags) 6341 { 6342 6343 if (flags & LOCK_HELD) 6344 ADAPTER_LOCK_ASSERT_OWNED(sc); 6345 else 6346 ADAPTER_LOCK(sc); 6347 6348 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6349 CLR_BUSY(sc); 6350 wakeup(&sc->flags); 6351 ADAPTER_UNLOCK(sc); 6352 } 6353 6354 static int 6355 cxgbe_init_synchronized(struct vi_info *vi) 6356 { 6357 struct port_info *pi = vi->pi; 6358 struct adapter *sc = pi->adapter; 6359 struct ifnet *ifp = vi->ifp; 6360 int rc = 0, i; 6361 struct sge_txq *txq; 6362 6363 ASSERT_SYNCHRONIZED_OP(sc); 6364 6365 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6366 return (0); /* already running */ 6367 6368 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6369 return (rc); /* error message displayed already */ 6370 6371 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6372 return (rc); /* error message displayed already */ 6373 6374 rc = update_mac_settings(ifp, XGMAC_ALL); 6375 if (rc) 6376 goto done; /* error message displayed already */ 6377 6378 PORT_LOCK(pi); 6379 if (pi->up_vis == 0) { 6380 t4_update_port_info(pi); 6381 fixup_link_config(pi); 6382 build_medialist(pi); 6383 apply_link_config(pi); 6384 } 6385 6386 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6387 if (rc != 0) { 6388 if_printf(ifp, "enable_vi failed: %d\n", rc); 6389 PORT_UNLOCK(pi); 6390 goto done; 6391 } 6392 6393 /* 6394 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6395 * if this changes. 6396 */ 6397 6398 for_each_txq(vi, i, txq) { 6399 TXQ_LOCK(txq); 6400 txq->eq.flags |= EQ_ENABLED; 6401 TXQ_UNLOCK(txq); 6402 } 6403 6404 /* 6405 * The first iq of the first port to come up is used for tracing. 6406 */ 6407 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6408 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6409 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6410 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6411 V_QUEUENUMBER(sc->traceq)); 6412 pi->flags |= HAS_TRACEQ; 6413 } 6414 6415 /* all ok */ 6416 pi->up_vis++; 6417 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6418 if (pi->link_cfg.link_ok) 6419 t4_os_link_changed(pi); 6420 PORT_UNLOCK(pi); 6421 6422 mtx_lock(&vi->tick_mtx); 6423 if (ifp->if_get_counter == vi_get_counter) 6424 callout_reset(&vi->tick, hz, vi_tick, vi); 6425 else 6426 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6427 mtx_unlock(&vi->tick_mtx); 6428 done: 6429 if (rc != 0) 6430 cxgbe_uninit_synchronized(vi); 6431 6432 return (rc); 6433 } 6434 6435 /* 6436 * Idempotent. 6437 */ 6438 static int 6439 cxgbe_uninit_synchronized(struct vi_info *vi) 6440 { 6441 struct port_info *pi = vi->pi; 6442 struct adapter *sc = pi->adapter; 6443 struct ifnet *ifp = vi->ifp; 6444 int rc, i; 6445 struct sge_txq *txq; 6446 6447 ASSERT_SYNCHRONIZED_OP(sc); 6448 6449 if (!(vi->flags & VI_INIT_DONE)) { 6450 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6451 KASSERT(0, ("uninited VI is running")); 6452 if_printf(ifp, "uninited VI with running ifnet. " 6453 "vi->flags 0x%016lx, if_flags 0x%08x, " 6454 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 6455 ifp->if_drv_flags); 6456 } 6457 return (0); 6458 } 6459 6460 /* 6461 * Disable the VI so that all its data in either direction is discarded 6462 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6463 * tick) intact as the TP can deliver negative advice or data that it's 6464 * holding in its RAM (for an offloaded connection) even after the VI is 6465 * disabled. 6466 */ 6467 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6468 if (rc) { 6469 if_printf(ifp, "disable_vi failed: %d\n", rc); 6470 return (rc); 6471 } 6472 6473 for_each_txq(vi, i, txq) { 6474 TXQ_LOCK(txq); 6475 txq->eq.flags &= ~EQ_ENABLED; 6476 TXQ_UNLOCK(txq); 6477 } 6478 6479 mtx_lock(&vi->tick_mtx); 6480 callout_stop(&vi->tick); 6481 mtx_unlock(&vi->tick_mtx); 6482 6483 PORT_LOCK(pi); 6484 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6485 PORT_UNLOCK(pi); 6486 return (0); 6487 } 6488 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 6489 pi->up_vis--; 6490 if (pi->up_vis > 0) { 6491 PORT_UNLOCK(pi); 6492 return (0); 6493 } 6494 6495 pi->link_cfg.link_ok = false; 6496 pi->link_cfg.speed = 0; 6497 pi->link_cfg.link_down_rc = 255; 6498 t4_os_link_changed(pi); 6499 PORT_UNLOCK(pi); 6500 6501 return (0); 6502 } 6503 6504 /* 6505 * It is ok for this function to fail midway and return right away. t4_detach 6506 * will walk the entire sc->irq list and clean up whatever is valid. 6507 */ 6508 int 6509 t4_setup_intr_handlers(struct adapter *sc) 6510 { 6511 int rc, rid, p, q, v; 6512 char s[8]; 6513 struct irq *irq; 6514 struct port_info *pi; 6515 struct vi_info *vi; 6516 struct sge *sge = &sc->sge; 6517 struct sge_rxq *rxq; 6518 #ifdef TCP_OFFLOAD 6519 struct sge_ofld_rxq *ofld_rxq; 6520 #endif 6521 #ifdef DEV_NETMAP 6522 struct sge_nm_rxq *nm_rxq; 6523 #endif 6524 #ifdef RSS 6525 int nbuckets = rss_getnumbuckets(); 6526 #endif 6527 6528 /* 6529 * Setup interrupts. 6530 */ 6531 irq = &sc->irq[0]; 6532 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6533 if (forwarding_intr_to_fwq(sc)) 6534 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6535 6536 /* Multiple interrupts. */ 6537 if (sc->flags & IS_VF) 6538 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6539 ("%s: too few intr.", __func__)); 6540 else 6541 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6542 ("%s: too few intr.", __func__)); 6543 6544 /* The first one is always error intr on PFs */ 6545 if (!(sc->flags & IS_VF)) { 6546 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6547 if (rc != 0) 6548 return (rc); 6549 irq++; 6550 rid++; 6551 } 6552 6553 /* The second one is always the firmware event queue (first on VFs) */ 6554 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6555 if (rc != 0) 6556 return (rc); 6557 irq++; 6558 rid++; 6559 6560 for_each_port(sc, p) { 6561 pi = sc->port[p]; 6562 for_each_vi(pi, v, vi) { 6563 vi->first_intr = rid - 1; 6564 6565 if (vi->nnmrxq > 0) { 6566 int n = max(vi->nrxq, vi->nnmrxq); 6567 6568 rxq = &sge->rxq[vi->first_rxq]; 6569 #ifdef DEV_NETMAP 6570 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6571 #endif 6572 for (q = 0; q < n; q++) { 6573 snprintf(s, sizeof(s), "%x%c%x", p, 6574 'a' + v, q); 6575 if (q < vi->nrxq) 6576 irq->rxq = rxq++; 6577 #ifdef DEV_NETMAP 6578 if (q < vi->nnmrxq) 6579 irq->nm_rxq = nm_rxq++; 6580 6581 if (irq->nm_rxq != NULL && 6582 irq->rxq == NULL) { 6583 /* Netmap rx only */ 6584 rc = t4_alloc_irq(sc, irq, rid, 6585 t4_nm_intr, irq->nm_rxq, s); 6586 } 6587 if (irq->nm_rxq != NULL && 6588 irq->rxq != NULL) { 6589 /* NIC and Netmap rx */ 6590 rc = t4_alloc_irq(sc, irq, rid, 6591 t4_vi_intr, irq, s); 6592 } 6593 #endif 6594 if (irq->rxq != NULL && 6595 irq->nm_rxq == NULL) { 6596 /* NIC rx only */ 6597 rc = t4_alloc_irq(sc, irq, rid, 6598 t4_intr, irq->rxq, s); 6599 } 6600 if (rc != 0) 6601 return (rc); 6602 #ifdef RSS 6603 if (q < vi->nrxq) { 6604 bus_bind_intr(sc->dev, irq->res, 6605 rss_getcpu(q % nbuckets)); 6606 } 6607 #endif 6608 irq++; 6609 rid++; 6610 vi->nintr++; 6611 } 6612 } else { 6613 for_each_rxq(vi, q, rxq) { 6614 snprintf(s, sizeof(s), "%x%c%x", p, 6615 'a' + v, q); 6616 rc = t4_alloc_irq(sc, irq, rid, 6617 t4_intr, rxq, s); 6618 if (rc != 0) 6619 return (rc); 6620 #ifdef RSS 6621 bus_bind_intr(sc->dev, irq->res, 6622 rss_getcpu(q % nbuckets)); 6623 #endif 6624 irq++; 6625 rid++; 6626 vi->nintr++; 6627 } 6628 } 6629 #ifdef TCP_OFFLOAD 6630 for_each_ofld_rxq(vi, q, ofld_rxq) { 6631 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6632 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6633 ofld_rxq, s); 6634 if (rc != 0) 6635 return (rc); 6636 irq++; 6637 rid++; 6638 vi->nintr++; 6639 } 6640 #endif 6641 } 6642 } 6643 MPASS(irq == &sc->irq[sc->intr_count]); 6644 6645 return (0); 6646 } 6647 6648 static void 6649 write_global_rss_key(struct adapter *sc) 6650 { 6651 #ifdef RSS 6652 int i; 6653 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6654 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6655 6656 CTASSERT(RSS_KEYSIZE == 40); 6657 6658 rss_getkey((void *)&raw_rss_key[0]); 6659 for (i = 0; i < nitems(rss_key); i++) { 6660 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6661 } 6662 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6663 #endif 6664 } 6665 6666 /* 6667 * Idempotent. 6668 */ 6669 static int 6670 adapter_full_init(struct adapter *sc) 6671 { 6672 int rc, i; 6673 6674 ASSERT_SYNCHRONIZED_OP(sc); 6675 6676 /* 6677 * queues that belong to the adapter (not any particular port). 6678 */ 6679 rc = t4_setup_adapter_queues(sc); 6680 if (rc != 0) 6681 return (rc); 6682 6683 for (i = 0; i < nitems(sc->tq); i++) { 6684 if (sc->tq[i] != NULL) 6685 continue; 6686 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6687 taskqueue_thread_enqueue, &sc->tq[i]); 6688 if (sc->tq[i] == NULL) { 6689 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6690 return (ENOMEM); 6691 } 6692 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6693 device_get_nameunit(sc->dev), i); 6694 } 6695 6696 if (!(sc->flags & IS_VF)) { 6697 write_global_rss_key(sc); 6698 t4_intr_enable(sc); 6699 } 6700 return (0); 6701 } 6702 6703 int 6704 adapter_init(struct adapter *sc) 6705 { 6706 int rc; 6707 6708 ASSERT_SYNCHRONIZED_OP(sc); 6709 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6710 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6711 ("%s: FULL_INIT_DONE already", __func__)); 6712 6713 rc = adapter_full_init(sc); 6714 if (rc != 0) 6715 adapter_full_uninit(sc); 6716 else 6717 sc->flags |= FULL_INIT_DONE; 6718 6719 return (rc); 6720 } 6721 6722 /* 6723 * Idempotent. 6724 */ 6725 static void 6726 adapter_full_uninit(struct adapter *sc) 6727 { 6728 int i; 6729 6730 t4_teardown_adapter_queues(sc); 6731 6732 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6733 taskqueue_free(sc->tq[i]); 6734 sc->tq[i] = NULL; 6735 } 6736 6737 sc->flags &= ~FULL_INIT_DONE; 6738 } 6739 6740 #ifdef RSS 6741 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6742 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6743 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6744 RSS_HASHTYPE_RSS_UDP_IPV6) 6745 6746 /* Translates kernel hash types to hardware. */ 6747 static int 6748 hashconfig_to_hashen(int hashconfig) 6749 { 6750 int hashen = 0; 6751 6752 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6753 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6754 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6755 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6756 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6757 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6758 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6759 } 6760 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6761 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6762 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6763 } 6764 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6765 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6766 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6767 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6768 6769 return (hashen); 6770 } 6771 6772 /* Translates hardware hash types to kernel. */ 6773 static int 6774 hashen_to_hashconfig(int hashen) 6775 { 6776 int hashconfig = 0; 6777 6778 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6779 /* 6780 * If UDP hashing was enabled it must have been enabled for 6781 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6782 * enabling any 4-tuple hash is nonsense configuration. 6783 */ 6784 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6785 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6786 6787 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6788 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6789 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6790 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6791 } 6792 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6793 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6794 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6795 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6796 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6797 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6798 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6799 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6800 6801 return (hashconfig); 6802 } 6803 #endif 6804 6805 /* 6806 * Idempotent. 6807 */ 6808 static int 6809 vi_full_init(struct vi_info *vi) 6810 { 6811 struct adapter *sc = vi->adapter; 6812 struct sge_rxq *rxq; 6813 int rc, i, j; 6814 #ifdef RSS 6815 int nbuckets = rss_getnumbuckets(); 6816 int hashconfig = rss_gethashconfig(); 6817 int extra; 6818 #endif 6819 6820 ASSERT_SYNCHRONIZED_OP(sc); 6821 6822 /* 6823 * Allocate tx/rx/fl queues for this VI. 6824 */ 6825 rc = t4_setup_vi_queues(vi); 6826 if (rc != 0) 6827 return (rc); 6828 6829 /* 6830 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6831 */ 6832 if (vi->nrxq > vi->rss_size) { 6833 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6834 "some queues will never receive traffic.\n", vi->nrxq, 6835 vi->rss_size); 6836 } else if (vi->rss_size % vi->nrxq) { 6837 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6838 "expect uneven traffic distribution.\n", vi->nrxq, 6839 vi->rss_size); 6840 } 6841 #ifdef RSS 6842 if (vi->nrxq != nbuckets) { 6843 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6844 "performance will be impacted.\n", vi->nrxq, nbuckets); 6845 } 6846 #endif 6847 if (vi->rss == NULL) 6848 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6849 M_ZERO | M_WAITOK); 6850 for (i = 0; i < vi->rss_size;) { 6851 #ifdef RSS 6852 j = rss_get_indirection_to_bucket(i); 6853 j %= vi->nrxq; 6854 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6855 vi->rss[i++] = rxq->iq.abs_id; 6856 #else 6857 for_each_rxq(vi, j, rxq) { 6858 vi->rss[i++] = rxq->iq.abs_id; 6859 if (i == vi->rss_size) 6860 break; 6861 } 6862 #endif 6863 } 6864 6865 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6866 vi->rss, vi->rss_size); 6867 if (rc != 0) { 6868 CH_ERR(vi, "rss_config failed: %d\n", rc); 6869 return (rc); 6870 } 6871 6872 #ifdef RSS 6873 vi->hashen = hashconfig_to_hashen(hashconfig); 6874 6875 /* 6876 * We may have had to enable some hashes even though the global config 6877 * wants them disabled. This is a potential problem that must be 6878 * reported to the user. 6879 */ 6880 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6881 6882 /* 6883 * If we consider only the supported hash types, then the enabled hashes 6884 * are a superset of the requested hashes. In other words, there cannot 6885 * be any supported hash that was requested but not enabled, but there 6886 * can be hashes that were not requested but had to be enabled. 6887 */ 6888 extra &= SUPPORTED_RSS_HASHTYPES; 6889 MPASS((extra & hashconfig) == 0); 6890 6891 if (extra) { 6892 CH_ALERT(vi, 6893 "global RSS config (0x%x) cannot be accommodated.\n", 6894 hashconfig); 6895 } 6896 if (extra & RSS_HASHTYPE_RSS_IPV4) 6897 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6898 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6899 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6900 if (extra & RSS_HASHTYPE_RSS_IPV6) 6901 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6902 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6903 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6904 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6905 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6906 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6907 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6908 #else 6909 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6910 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6911 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6912 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6913 #endif 6914 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6915 0, 0); 6916 if (rc != 0) { 6917 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6918 return (rc); 6919 } 6920 6921 return (0); 6922 } 6923 6924 int 6925 vi_init(struct vi_info *vi) 6926 { 6927 int rc; 6928 6929 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6930 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6931 ("%s: VI_INIT_DONE already", __func__)); 6932 6933 rc = vi_full_init(vi); 6934 if (rc != 0) 6935 vi_full_uninit(vi); 6936 else 6937 vi->flags |= VI_INIT_DONE; 6938 6939 return (rc); 6940 } 6941 6942 /* 6943 * Idempotent. 6944 */ 6945 static void 6946 vi_full_uninit(struct vi_info *vi) 6947 { 6948 6949 if (vi->flags & VI_INIT_DONE) { 6950 quiesce_vi(vi); 6951 free(vi->rss, M_CXGBE); 6952 free(vi->nm_rss, M_CXGBE); 6953 } 6954 6955 t4_teardown_vi_queues(vi); 6956 vi->flags &= ~VI_INIT_DONE; 6957 } 6958 6959 static void 6960 quiesce_txq(struct sge_txq *txq) 6961 { 6962 struct sge_eq *eq = &txq->eq; 6963 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6964 6965 MPASS(eq->flags & EQ_SW_ALLOCATED); 6966 MPASS(!(eq->flags & EQ_ENABLED)); 6967 6968 /* Wait for the mp_ring to empty. */ 6969 while (!mp_ring_is_idle(txq->r)) { 6970 mp_ring_check_drainage(txq->r, 4096); 6971 pause("rquiesce", 1); 6972 } 6973 MPASS(txq->txp.npkt == 0); 6974 6975 if (eq->flags & EQ_HW_ALLOCATED) { 6976 /* 6977 * Hardware is alive and working normally. Wait for it to 6978 * finish and then wait for the driver to catch up and reclaim 6979 * all descriptors. 6980 */ 6981 while (spg->cidx != htobe16(eq->pidx)) 6982 pause("equiesce", 1); 6983 while (eq->cidx != eq->pidx) 6984 pause("dquiesce", 1); 6985 } else { 6986 /* 6987 * Hardware is unavailable. Discard all pending tx and reclaim 6988 * descriptors directly. 6989 */ 6990 TXQ_LOCK(txq); 6991 while (eq->cidx != eq->pidx) { 6992 struct mbuf *m, *nextpkt; 6993 struct tx_sdesc *txsd; 6994 6995 txsd = &txq->sdesc[eq->cidx]; 6996 for (m = txsd->m; m != NULL; m = nextpkt) { 6997 nextpkt = m->m_nextpkt; 6998 m->m_nextpkt = NULL; 6999 m_freem(m); 7000 } 7001 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7002 } 7003 spg->pidx = spg->cidx = htobe16(eq->cidx); 7004 TXQ_UNLOCK(txq); 7005 } 7006 } 7007 7008 static void 7009 quiesce_wrq(struct sge_wrq *wrq) 7010 { 7011 7012 /* XXXTX */ 7013 } 7014 7015 static void 7016 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7017 { 7018 /* Synchronize with the interrupt handler */ 7019 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7020 pause("iqfree", 1); 7021 7022 if (fl != NULL) { 7023 MPASS(iq->flags & IQ_HAS_FL); 7024 7025 mtx_lock(&sc->sfl_lock); 7026 FL_LOCK(fl); 7027 fl->flags |= FL_DOOMED; 7028 FL_UNLOCK(fl); 7029 callout_stop(&sc->sfl_callout); 7030 mtx_unlock(&sc->sfl_lock); 7031 7032 KASSERT((fl->flags & FL_STARVING) == 0, 7033 ("%s: still starving", __func__)); 7034 7035 /* Release all buffers if hardware is no longer available. */ 7036 if (!(iq->flags & IQ_HW_ALLOCATED)) 7037 free_fl_buffers(sc, fl); 7038 } 7039 } 7040 7041 /* 7042 * Wait for all activity on all the queues of the VI to complete. It is assumed 7043 * that no new work is being enqueued by the hardware or the driver. That part 7044 * should be arranged before calling this function. 7045 */ 7046 static void 7047 quiesce_vi(struct vi_info *vi) 7048 { 7049 int i; 7050 struct adapter *sc = vi->adapter; 7051 struct sge_rxq *rxq; 7052 struct sge_txq *txq; 7053 #ifdef TCP_OFFLOAD 7054 struct sge_ofld_rxq *ofld_rxq; 7055 #endif 7056 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7057 struct sge_ofld_txq *ofld_txq; 7058 #endif 7059 7060 if (!(vi->flags & VI_INIT_DONE)) 7061 return; 7062 7063 for_each_txq(vi, i, txq) { 7064 quiesce_txq(txq); 7065 } 7066 7067 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7068 for_each_ofld_txq(vi, i, ofld_txq) { 7069 quiesce_wrq(&ofld_txq->wrq); 7070 } 7071 #endif 7072 7073 for_each_rxq(vi, i, rxq) { 7074 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7075 } 7076 7077 #ifdef TCP_OFFLOAD 7078 for_each_ofld_rxq(vi, i, ofld_rxq) { 7079 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7080 } 7081 #endif 7082 } 7083 7084 static int 7085 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7086 driver_intr_t *handler, void *arg, char *name) 7087 { 7088 int rc; 7089 7090 irq->rid = rid; 7091 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7092 RF_SHAREABLE | RF_ACTIVE); 7093 if (irq->res == NULL) { 7094 device_printf(sc->dev, 7095 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7096 return (ENOMEM); 7097 } 7098 7099 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7100 NULL, handler, arg, &irq->tag); 7101 if (rc != 0) { 7102 device_printf(sc->dev, 7103 "failed to setup interrupt for rid %d, name %s: %d\n", 7104 rid, name, rc); 7105 } else if (name) 7106 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7107 7108 return (rc); 7109 } 7110 7111 static int 7112 t4_free_irq(struct adapter *sc, struct irq *irq) 7113 { 7114 if (irq->tag) 7115 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7116 if (irq->res) 7117 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7118 7119 bzero(irq, sizeof(*irq)); 7120 7121 return (0); 7122 } 7123 7124 static void 7125 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7126 { 7127 7128 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7129 t4_get_regs(sc, buf, regs->len); 7130 } 7131 7132 #define A_PL_INDIR_CMD 0x1f8 7133 7134 #define S_PL_AUTOINC 31 7135 #define M_PL_AUTOINC 0x1U 7136 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7137 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7138 7139 #define S_PL_VFID 20 7140 #define M_PL_VFID 0xffU 7141 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7142 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7143 7144 #define S_PL_ADDR 0 7145 #define M_PL_ADDR 0xfffffU 7146 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7147 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7148 7149 #define A_PL_INDIR_DATA 0x1fc 7150 7151 static uint64_t 7152 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7153 { 7154 u32 stats[2]; 7155 7156 if (sc->flags & IS_VF) { 7157 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7158 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7159 } else { 7160 mtx_assert(&sc->reg_lock, MA_OWNED); 7161 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7162 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7163 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7164 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7165 } 7166 return (((uint64_t)stats[1]) << 32 | stats[0]); 7167 } 7168 7169 static void 7170 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7171 { 7172 7173 #define GET_STAT(name) \ 7174 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7175 7176 if (!(sc->flags & IS_VF)) 7177 mtx_lock(&sc->reg_lock); 7178 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7179 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7180 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7181 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7182 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7183 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7184 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7185 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7186 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7187 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7188 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7189 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7190 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7191 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7192 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7193 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7194 if (!(sc->flags & IS_VF)) 7195 mtx_unlock(&sc->reg_lock); 7196 7197 #undef GET_STAT 7198 } 7199 7200 static void 7201 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7202 { 7203 int reg; 7204 7205 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7206 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7207 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7208 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7209 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7210 } 7211 7212 static void 7213 vi_refresh_stats(struct vi_info *vi) 7214 { 7215 struct timeval tv; 7216 const struct timeval interval = {0, 250000}; /* 250ms */ 7217 7218 mtx_assert(&vi->tick_mtx, MA_OWNED); 7219 7220 if (vi->flags & VI_SKIP_STATS) 7221 return; 7222 7223 getmicrotime(&tv); 7224 timevalsub(&tv, &interval); 7225 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7226 return; 7227 7228 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7229 getmicrotime(&vi->last_refreshed); 7230 } 7231 7232 static void 7233 cxgbe_refresh_stats(struct vi_info *vi) 7234 { 7235 u_int i, v, tnl_cong_drops, chan_map; 7236 struct timeval tv; 7237 const struct timeval interval = {0, 250000}; /* 250ms */ 7238 struct port_info *pi; 7239 struct adapter *sc; 7240 7241 mtx_assert(&vi->tick_mtx, MA_OWNED); 7242 7243 if (vi->flags & VI_SKIP_STATS) 7244 return; 7245 7246 getmicrotime(&tv); 7247 timevalsub(&tv, &interval); 7248 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7249 return; 7250 7251 pi = vi->pi; 7252 sc = vi->adapter; 7253 tnl_cong_drops = 0; 7254 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7255 chan_map = pi->rx_e_chan_map; 7256 while (chan_map) { 7257 i = ffs(chan_map) - 1; 7258 mtx_lock(&sc->reg_lock); 7259 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7260 A_TP_MIB_TNL_CNG_DROP_0 + i); 7261 mtx_unlock(&sc->reg_lock); 7262 tnl_cong_drops += v; 7263 chan_map &= ~(1 << i); 7264 } 7265 pi->tnl_cong_drops = tnl_cong_drops; 7266 getmicrotime(&vi->last_refreshed); 7267 } 7268 7269 static void 7270 cxgbe_tick(void *arg) 7271 { 7272 struct vi_info *vi = arg; 7273 7274 MPASS(IS_MAIN_VI(vi)); 7275 mtx_assert(&vi->tick_mtx, MA_OWNED); 7276 7277 cxgbe_refresh_stats(vi); 7278 callout_schedule(&vi->tick, hz); 7279 } 7280 7281 static void 7282 vi_tick(void *arg) 7283 { 7284 struct vi_info *vi = arg; 7285 7286 mtx_assert(&vi->tick_mtx, MA_OWNED); 7287 7288 vi_refresh_stats(vi); 7289 callout_schedule(&vi->tick, hz); 7290 } 7291 7292 /* 7293 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7294 */ 7295 static char *caps_decoder[] = { 7296 "\20\001IPMI\002NCSI", /* 0: NBM */ 7297 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7298 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7299 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7300 "\006HASHFILTER\007ETHOFLD", 7301 "\20\001TOE", /* 4: TOE */ 7302 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7303 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7304 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7305 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7306 "\007T10DIF" 7307 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7308 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7309 "\004TLS_HW", 7310 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7311 "\004PO_INITIATOR\005PO_TARGET", 7312 }; 7313 7314 void 7315 t4_sysctls(struct adapter *sc) 7316 { 7317 struct sysctl_ctx_list *ctx = &sc->ctx; 7318 struct sysctl_oid *oid; 7319 struct sysctl_oid_list *children, *c0; 7320 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7321 7322 /* 7323 * dev.t4nex.X. 7324 */ 7325 oid = device_get_sysctl_tree(sc->dev); 7326 c0 = children = SYSCTL_CHILDREN(oid); 7327 7328 sc->sc_do_rxcopy = 1; 7329 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7330 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7331 7332 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7333 sc->params.nports, "# of ports"); 7334 7335 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7336 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7337 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7338 "available doorbells"); 7339 7340 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7341 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7342 7343 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7344 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7345 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7346 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7347 7348 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7349 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7350 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7351 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7352 7353 t4_sge_sysctls(sc, ctx, children); 7354 7355 sc->lro_timeout = 100; 7356 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7357 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7358 7359 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7360 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7361 7362 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7363 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7364 7365 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7366 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7367 7368 if (sc->flags & IS_VF) 7369 return; 7370 7371 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7372 NULL, chip_rev(sc), "chip hardware revision"); 7373 7374 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7375 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7376 7377 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7378 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7379 7380 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7381 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7382 7383 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7384 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7385 7386 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7387 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7388 7389 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7390 sc->er_version, 0, "expansion ROM version"); 7391 7392 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7393 sc->bs_version, 0, "bootstrap firmware version"); 7394 7395 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7396 NULL, sc->params.scfg_vers, "serial config version"); 7397 7398 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7399 NULL, sc->params.vpd_vers, "VPD version"); 7400 7401 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7402 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7403 7404 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7405 sc->cfcsum, "config file checksum"); 7406 7407 #define SYSCTL_CAP(name, n, text) \ 7408 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7409 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7410 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7411 "available " text " capabilities") 7412 7413 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7414 SYSCTL_CAP(linkcaps, 1, "link"); 7415 SYSCTL_CAP(switchcaps, 2, "switch"); 7416 SYSCTL_CAP(niccaps, 3, "NIC"); 7417 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7418 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7419 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7420 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7421 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7422 #undef SYSCTL_CAP 7423 7424 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7425 NULL, sc->tids.nftids, "number of filters"); 7426 7427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7428 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7429 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7430 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7431 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7432 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7433 7434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7435 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7436 sysctl_loadavg, "A", 7437 "microprocessor load averages (debug firmwares only)"); 7438 7439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7440 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7441 "I", "core Vdd (in mV)"); 7442 7443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7444 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7445 sysctl_cpus, "A", "local CPUs"); 7446 7447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7448 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7449 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7450 7451 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7452 &sc->swintr, 0, "software triggered interrupts"); 7453 7454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7455 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7456 "1 = reset adapter, 0 = zero reset counter"); 7457 7458 /* 7459 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7460 */ 7461 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7462 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7463 "logs and miscellaneous information"); 7464 children = SYSCTL_CHILDREN(oid); 7465 7466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7467 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7468 sysctl_cctrl, "A", "congestion control"); 7469 7470 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7471 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7472 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7473 7474 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7475 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7476 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7477 7478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7479 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7480 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7481 7482 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7483 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7484 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7485 7486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7487 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7488 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7489 7490 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7491 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7492 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7493 7494 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7495 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7496 sysctl_cim_la, "A", "CIM logic analyzer"); 7497 7498 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7499 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7500 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7501 7502 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7503 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7504 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7505 7506 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7507 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7508 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7509 7510 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7511 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7512 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7513 7514 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7515 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7516 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7517 7518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7519 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7520 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7521 7522 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7523 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7524 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7525 7526 if (chip_id(sc) > CHELSIO_T4) { 7527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7528 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7529 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7530 "CIM OBQ 6 (SGE0-RX)"); 7531 7532 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7533 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7534 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7535 "CIM OBQ 7 (SGE1-RX)"); 7536 } 7537 7538 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7539 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7540 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7541 7542 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7543 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7544 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7545 7546 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7547 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7548 sysctl_cpl_stats, "A", "CPL statistics"); 7549 7550 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7551 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7552 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7553 7554 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7555 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7556 sysctl_tid_stats, "A", "tid stats"); 7557 7558 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7559 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7560 sysctl_devlog, "A", "firmware's device log"); 7561 7562 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7563 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7564 sysctl_fcoe_stats, "A", "FCoE statistics"); 7565 7566 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7567 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7568 sysctl_hw_sched, "A", "hardware scheduler "); 7569 7570 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7571 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7572 sysctl_l2t, "A", "hardware L2 table"); 7573 7574 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7575 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7576 sysctl_smt, "A", "hardware source MAC table"); 7577 7578 #ifdef INET6 7579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7581 sysctl_clip, "A", "active CLIP table entries"); 7582 #endif 7583 7584 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7585 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7586 sysctl_lb_stats, "A", "loopback statistics"); 7587 7588 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7589 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7590 sysctl_meminfo, "A", "memory regions"); 7591 7592 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7593 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7594 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7595 "A", "MPS TCAM entries"); 7596 7597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7598 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7599 sysctl_path_mtus, "A", "path MTUs"); 7600 7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7603 sysctl_pm_stats, "A", "PM statistics"); 7604 7605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7606 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7607 sysctl_rdma_stats, "A", "RDMA statistics"); 7608 7609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7610 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7611 sysctl_tcp_stats, "A", "TCP statistics"); 7612 7613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7614 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7615 sysctl_tids, "A", "TID information"); 7616 7617 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7618 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7619 sysctl_tp_err_stats, "A", "TP error statistics"); 7620 7621 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7622 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7623 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7624 7625 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7626 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7627 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7628 7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7630 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7631 sysctl_tp_la, "A", "TP logic analyzer"); 7632 7633 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7634 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7635 sysctl_tx_rate, "A", "Tx rate"); 7636 7637 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7638 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7639 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7640 7641 if (chip_id(sc) >= CHELSIO_T5) { 7642 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7643 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7644 sysctl_wcwr_stats, "A", "write combined work requests"); 7645 } 7646 7647 #ifdef KERN_TLS 7648 if (is_ktls(sc)) { 7649 /* 7650 * dev.t4nex.0.tls. 7651 */ 7652 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7653 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7654 children = SYSCTL_CHILDREN(oid); 7655 7656 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7657 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7658 "keys in work requests (1) or attempt to store TLS keys " 7659 "in card memory."); 7660 7661 if (is_t6(sc)) 7662 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7663 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7664 "combine TCB field updates with TLS record work " 7665 "requests."); 7666 } 7667 #endif 7668 7669 #ifdef TCP_OFFLOAD 7670 if (is_offload(sc)) { 7671 int i; 7672 char s[4]; 7673 7674 /* 7675 * dev.t4nex.X.toe. 7676 */ 7677 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7678 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7679 children = SYSCTL_CHILDREN(oid); 7680 7681 sc->tt.cong_algorithm = -1; 7682 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7683 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7684 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7685 "3 = highspeed)"); 7686 7687 sc->tt.sndbuf = -1; 7688 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7689 &sc->tt.sndbuf, 0, "hardware send buffer"); 7690 7691 sc->tt.ddp = 0; 7692 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7693 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7694 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7695 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7696 7697 sc->tt.rx_coalesce = -1; 7698 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7699 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7700 7701 sc->tt.tls = 0; 7702 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7703 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7704 "Inline TLS allowed"); 7705 7706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 7707 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7708 sysctl_tls_rx_ports, "I", 7709 "TCP ports that use inline TLS+TOE RX"); 7710 7711 sc->tt.tls_rx_timeout = t4_toe_tls_rx_timeout; 7712 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_timeout", 7713 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7714 sysctl_tls_rx_timeout, "I", 7715 "Timeout in seconds to downgrade TLS sockets to plain TOE"); 7716 7717 sc->tt.tx_align = -1; 7718 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7719 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7720 7721 sc->tt.tx_zcopy = 0; 7722 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7723 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7724 "Enable zero-copy aio_write(2)"); 7725 7726 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7727 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7728 "cop_managed_offloading", CTLFLAG_RW, 7729 &sc->tt.cop_managed_offloading, 0, 7730 "COP (Connection Offload Policy) controls all TOE offload"); 7731 7732 sc->tt.autorcvbuf_inc = 16 * 1024; 7733 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7734 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7735 "autorcvbuf increment"); 7736 7737 sc->tt.update_hc_on_pmtu_change = 1; 7738 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7739 "update_hc_on_pmtu_change", CTLFLAG_RW, 7740 &sc->tt.update_hc_on_pmtu_change, 0, 7741 "Update hostcache entry if the PMTU changes"); 7742 7743 sc->tt.iso = 1; 7744 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7745 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7746 7747 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7748 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7749 sysctl_tp_tick, "A", "TP timer tick (us)"); 7750 7751 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7752 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7753 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7754 7755 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7756 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7757 sysctl_tp_tick, "A", "DACK tick (us)"); 7758 7759 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7760 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7761 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7762 7763 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7764 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7765 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7766 "Minimum retransmit interval (us)"); 7767 7768 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7769 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7770 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7771 "Maximum retransmit interval (us)"); 7772 7773 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7774 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7775 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7776 "Persist timer min (us)"); 7777 7778 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7779 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7780 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7781 "Persist timer max (us)"); 7782 7783 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7784 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7785 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7786 "Keepalive idle timer (us)"); 7787 7788 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7789 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7790 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7791 "Keepalive interval timer (us)"); 7792 7793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7794 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7795 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7796 7797 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7798 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7799 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7800 "FINWAIT2 timer (us)"); 7801 7802 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7803 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7804 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7805 "Number of SYN retransmissions before abort"); 7806 7807 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7808 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7809 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7810 "Number of retransmissions before abort"); 7811 7812 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7813 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7814 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7815 "Number of keepalive probes before abort"); 7816 7817 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7818 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7819 "TOE retransmit backoffs"); 7820 children = SYSCTL_CHILDREN(oid); 7821 for (i = 0; i < 16; i++) { 7822 snprintf(s, sizeof(s), "%u", i); 7823 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7824 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7825 i, sysctl_tp_backoff, "IU", 7826 "TOE retransmit backoff"); 7827 } 7828 } 7829 #endif 7830 } 7831 7832 void 7833 vi_sysctls(struct vi_info *vi) 7834 { 7835 struct sysctl_ctx_list *ctx = &vi->ctx; 7836 struct sysctl_oid *oid; 7837 struct sysctl_oid_list *children; 7838 7839 /* 7840 * dev.v?(cxgbe|cxl).X. 7841 */ 7842 oid = device_get_sysctl_tree(vi->dev); 7843 children = SYSCTL_CHILDREN(oid); 7844 7845 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7846 vi->viid, "VI identifer"); 7847 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7848 &vi->nrxq, 0, "# of rx queues"); 7849 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7850 &vi->ntxq, 0, "# of tx queues"); 7851 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7852 &vi->first_rxq, 0, "index of first rx queue"); 7853 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7854 &vi->first_txq, 0, "index of first tx queue"); 7855 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7856 vi->rss_base, "start of RSS indirection table"); 7857 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7858 vi->rss_size, "size of RSS indirection table"); 7859 7860 if (IS_MAIN_VI(vi)) { 7861 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7862 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7863 sysctl_noflowq, "IU", 7864 "Reserve queue 0 for non-flowid packets"); 7865 } 7866 7867 if (vi->adapter->flags & IS_VF) { 7868 MPASS(vi->flags & TX_USES_VM_WR); 7869 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7870 NULL, 1, "use VM work requests for transmit"); 7871 } else { 7872 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7873 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7874 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7875 } 7876 7877 #ifdef TCP_OFFLOAD 7878 if (vi->nofldrxq != 0) { 7879 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7880 &vi->nofldrxq, 0, 7881 "# of rx queues for offloaded TCP connections"); 7882 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7883 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7884 "index of first TOE rx queue"); 7885 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7886 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7887 sysctl_holdoff_tmr_idx_ofld, "I", 7888 "holdoff timer index for TOE queues"); 7889 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7890 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7891 sysctl_holdoff_pktc_idx_ofld, "I", 7892 "holdoff packet counter index for TOE queues"); 7893 } 7894 #endif 7895 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7896 if (vi->nofldtxq != 0) { 7897 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7898 &vi->nofldtxq, 0, 7899 "# of tx queues for TOE/ETHOFLD"); 7900 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7901 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7902 "index of first TOE/ETHOFLD tx queue"); 7903 } 7904 #endif 7905 #ifdef DEV_NETMAP 7906 if (vi->nnmrxq != 0) { 7907 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7908 &vi->nnmrxq, 0, "# of netmap rx queues"); 7909 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7910 &vi->nnmtxq, 0, "# of netmap tx queues"); 7911 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7912 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7913 "index of first netmap rx queue"); 7914 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7915 CTLFLAG_RD, &vi->first_nm_txq, 0, 7916 "index of first netmap tx queue"); 7917 } 7918 #endif 7919 7920 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7921 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7922 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7923 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7924 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7925 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7926 7927 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7928 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7929 sysctl_qsize_rxq, "I", "rx queue size"); 7930 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7931 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7932 sysctl_qsize_txq, "I", "tx queue size"); 7933 } 7934 7935 static void 7936 cxgbe_sysctls(struct port_info *pi) 7937 { 7938 struct sysctl_ctx_list *ctx = &pi->ctx; 7939 struct sysctl_oid *oid; 7940 struct sysctl_oid_list *children, *children2; 7941 struct adapter *sc = pi->adapter; 7942 int i; 7943 char name[16]; 7944 static char *tc_flags = {"\20\1USER"}; 7945 7946 /* 7947 * dev.cxgbe.X. 7948 */ 7949 oid = device_get_sysctl_tree(pi->dev); 7950 children = SYSCTL_CHILDREN(oid); 7951 7952 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7953 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7954 sysctl_linkdnrc, "A", "reason why link is down"); 7955 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7956 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7957 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7958 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7959 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7960 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7961 sysctl_btphy, "I", "PHY firmware version"); 7962 } 7963 7964 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7965 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7966 sysctl_pause_settings, "A", 7967 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7968 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7969 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7970 "FEC in use on the link"); 7971 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7972 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7973 sysctl_requested_fec, "A", 7974 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7975 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7976 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7977 "FEC recommended by the cable/transceiver"); 7978 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7979 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7980 sysctl_autoneg, "I", 7981 "autonegotiation (-1 = not supported)"); 7982 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7983 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7984 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7985 7986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7987 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7988 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7989 &pi->link_cfg.pcaps, 0, "port capabilities"); 7990 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7991 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7992 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7993 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7994 7995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7996 port_top_speed(pi), "max speed (in Gbps)"); 7997 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7998 pi->mps_bg_map, "MPS buffer group map"); 7999 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8000 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8001 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 8002 pi->rx_c_chan, "TP rx c-channel"); 8003 8004 if (sc->flags & IS_VF) 8005 return; 8006 8007 /* 8008 * dev.(cxgbe|cxl).X.tc. 8009 */ 8010 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8011 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8012 "Tx scheduler traffic classes (cl_rl)"); 8013 children2 = SYSCTL_CHILDREN(oid); 8014 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8015 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8016 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8017 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8018 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8019 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8020 for (i = 0; i < sc->params.nsched_cls; i++) { 8021 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8022 8023 snprintf(name, sizeof(name), "%d", i); 8024 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8025 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8026 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8027 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8028 CTLFLAG_RD, &tc->state, 0, "current state"); 8029 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8031 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8032 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8033 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8034 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8035 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8036 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8037 "traffic class parameters"); 8038 } 8039 8040 /* 8041 * dev.cxgbe.X.stats. 8042 */ 8043 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8044 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8045 children = SYSCTL_CHILDREN(oid); 8046 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8047 &pi->tx_parse_error, 0, 8048 "# of tx packets with invalid length or # of segments"); 8049 8050 #define T4_REGSTAT(name, stat, desc) \ 8051 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8052 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8053 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 8054 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 8055 sysctl_handle_t4_reg64, "QU", desc) 8056 8057 /* We get these from port_stats and they may be stale by up to 1s */ 8058 #define T4_PORTSTAT(name, desc) \ 8059 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8060 &pi->stats.name, desc) 8061 8062 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8063 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8064 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8065 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8066 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8067 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8068 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8069 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8070 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8071 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8072 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8073 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8074 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8075 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8076 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8077 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8078 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8079 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8080 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8081 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8082 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8083 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8084 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8085 8086 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8087 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8088 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8089 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8090 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8091 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8092 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8093 if (is_t6(sc)) { 8094 T4_PORTSTAT(rx_fcs_err, 8095 "# of frames received with bad FCS since last link up"); 8096 } else { 8097 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8098 "# of frames received with bad FCS"); 8099 } 8100 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8101 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8102 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8103 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8104 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8105 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8106 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8107 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8108 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8109 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8110 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8111 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8112 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8113 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8114 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8115 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8116 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8117 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8118 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8119 8120 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8121 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8122 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8123 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8124 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8125 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8126 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8127 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8128 8129 #undef T4_REGSTAT 8130 #undef T4_PORTSTAT 8131 } 8132 8133 static int 8134 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8135 { 8136 int rc, *i, space = 0; 8137 struct sbuf sb; 8138 8139 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8140 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8141 if (space) 8142 sbuf_printf(&sb, " "); 8143 sbuf_printf(&sb, "%d", *i); 8144 space = 1; 8145 } 8146 rc = sbuf_finish(&sb); 8147 sbuf_delete(&sb); 8148 return (rc); 8149 } 8150 8151 static int 8152 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8153 { 8154 int rc; 8155 struct sbuf *sb; 8156 8157 rc = sysctl_wire_old_buffer(req, 0); 8158 if (rc != 0) 8159 return(rc); 8160 8161 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8162 if (sb == NULL) 8163 return (ENOMEM); 8164 8165 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8166 rc = sbuf_finish(sb); 8167 sbuf_delete(sb); 8168 8169 return (rc); 8170 } 8171 8172 static int 8173 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8174 { 8175 int rc; 8176 struct sbuf *sb; 8177 8178 rc = sysctl_wire_old_buffer(req, 0); 8179 if (rc != 0) 8180 return(rc); 8181 8182 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8183 if (sb == NULL) 8184 return (ENOMEM); 8185 8186 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8187 rc = sbuf_finish(sb); 8188 sbuf_delete(sb); 8189 8190 return (rc); 8191 } 8192 8193 static int 8194 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8195 { 8196 struct port_info *pi = arg1; 8197 int op = arg2; 8198 struct adapter *sc = pi->adapter; 8199 u_int v; 8200 int rc; 8201 8202 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8203 if (rc) 8204 return (rc); 8205 if (hw_off_limits(sc)) 8206 rc = ENXIO; 8207 else { 8208 /* XXX: magic numbers */ 8209 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8210 op ? 0x20 : 0xc820, &v); 8211 } 8212 end_synchronized_op(sc, 0); 8213 if (rc) 8214 return (rc); 8215 if (op == 0) 8216 v /= 256; 8217 8218 rc = sysctl_handle_int(oidp, &v, 0, req); 8219 return (rc); 8220 } 8221 8222 static int 8223 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8224 { 8225 struct vi_info *vi = arg1; 8226 int rc, val; 8227 8228 val = vi->rsrv_noflowq; 8229 rc = sysctl_handle_int(oidp, &val, 0, req); 8230 if (rc != 0 || req->newptr == NULL) 8231 return (rc); 8232 8233 if ((val >= 1) && (vi->ntxq > 1)) 8234 vi->rsrv_noflowq = 1; 8235 else 8236 vi->rsrv_noflowq = 0; 8237 8238 return (rc); 8239 } 8240 8241 static int 8242 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8243 { 8244 struct vi_info *vi = arg1; 8245 struct adapter *sc = vi->adapter; 8246 int rc, val, i; 8247 8248 MPASS(!(sc->flags & IS_VF)); 8249 8250 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8251 rc = sysctl_handle_int(oidp, &val, 0, req); 8252 if (rc != 0 || req->newptr == NULL) 8253 return (rc); 8254 8255 if (val != 0 && val != 1) 8256 return (EINVAL); 8257 8258 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8259 "t4txvm"); 8260 if (rc) 8261 return (rc); 8262 if (hw_off_limits(sc)) 8263 rc = ENXIO; 8264 else if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 8265 /* 8266 * We don't want parse_pkt to run with one setting (VF or PF) 8267 * and then eth_tx to see a different setting but still use 8268 * stale information calculated by parse_pkt. 8269 */ 8270 rc = EBUSY; 8271 } else { 8272 struct port_info *pi = vi->pi; 8273 struct sge_txq *txq; 8274 uint32_t ctrl0; 8275 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8276 8277 if (val) { 8278 vi->flags |= TX_USES_VM_WR; 8279 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 8280 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8281 V_TXPKT_INTF(pi->tx_chan)); 8282 if (!(sc->flags & IS_VF)) 8283 npkt--; 8284 } else { 8285 vi->flags &= ~TX_USES_VM_WR; 8286 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 8287 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8288 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8289 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8290 } 8291 for_each_txq(vi, i, txq) { 8292 txq->cpl_ctrl0 = ctrl0; 8293 txq->txp.max_npkt = npkt; 8294 } 8295 } 8296 end_synchronized_op(sc, LOCK_HELD); 8297 return (rc); 8298 } 8299 8300 static int 8301 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8302 { 8303 struct vi_info *vi = arg1; 8304 struct adapter *sc = vi->adapter; 8305 int idx, rc, i; 8306 struct sge_rxq *rxq; 8307 uint8_t v; 8308 8309 idx = vi->tmr_idx; 8310 8311 rc = sysctl_handle_int(oidp, &idx, 0, req); 8312 if (rc != 0 || req->newptr == NULL) 8313 return (rc); 8314 8315 if (idx < 0 || idx >= SGE_NTIMERS) 8316 return (EINVAL); 8317 8318 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8319 "t4tmr"); 8320 if (rc) 8321 return (rc); 8322 8323 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8324 for_each_rxq(vi, i, rxq) { 8325 #ifdef atomic_store_rel_8 8326 atomic_store_rel_8(&rxq->iq.intr_params, v); 8327 #else 8328 rxq->iq.intr_params = v; 8329 #endif 8330 } 8331 vi->tmr_idx = idx; 8332 8333 end_synchronized_op(sc, LOCK_HELD); 8334 return (0); 8335 } 8336 8337 static int 8338 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8339 { 8340 struct vi_info *vi = arg1; 8341 struct adapter *sc = vi->adapter; 8342 int idx, rc; 8343 8344 idx = vi->pktc_idx; 8345 8346 rc = sysctl_handle_int(oidp, &idx, 0, req); 8347 if (rc != 0 || req->newptr == NULL) 8348 return (rc); 8349 8350 if (idx < -1 || idx >= SGE_NCOUNTERS) 8351 return (EINVAL); 8352 8353 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8354 "t4pktc"); 8355 if (rc) 8356 return (rc); 8357 8358 if (vi->flags & VI_INIT_DONE) 8359 rc = EBUSY; /* cannot be changed once the queues are created */ 8360 else 8361 vi->pktc_idx = idx; 8362 8363 end_synchronized_op(sc, LOCK_HELD); 8364 return (rc); 8365 } 8366 8367 static int 8368 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8369 { 8370 struct vi_info *vi = arg1; 8371 struct adapter *sc = vi->adapter; 8372 int qsize, rc; 8373 8374 qsize = vi->qsize_rxq; 8375 8376 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8377 if (rc != 0 || req->newptr == NULL) 8378 return (rc); 8379 8380 if (qsize < 128 || (qsize & 7)) 8381 return (EINVAL); 8382 8383 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8384 "t4rxqs"); 8385 if (rc) 8386 return (rc); 8387 8388 if (vi->flags & VI_INIT_DONE) 8389 rc = EBUSY; /* cannot be changed once the queues are created */ 8390 else 8391 vi->qsize_rxq = qsize; 8392 8393 end_synchronized_op(sc, LOCK_HELD); 8394 return (rc); 8395 } 8396 8397 static int 8398 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8399 { 8400 struct vi_info *vi = arg1; 8401 struct adapter *sc = vi->adapter; 8402 int qsize, rc; 8403 8404 qsize = vi->qsize_txq; 8405 8406 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8407 if (rc != 0 || req->newptr == NULL) 8408 return (rc); 8409 8410 if (qsize < 128 || qsize > 65536) 8411 return (EINVAL); 8412 8413 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8414 "t4txqs"); 8415 if (rc) 8416 return (rc); 8417 8418 if (vi->flags & VI_INIT_DONE) 8419 rc = EBUSY; /* cannot be changed once the queues are created */ 8420 else 8421 vi->qsize_txq = qsize; 8422 8423 end_synchronized_op(sc, LOCK_HELD); 8424 return (rc); 8425 } 8426 8427 static int 8428 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8429 { 8430 struct port_info *pi = arg1; 8431 struct adapter *sc = pi->adapter; 8432 struct link_config *lc = &pi->link_cfg; 8433 int rc; 8434 8435 if (req->newptr == NULL) { 8436 struct sbuf *sb; 8437 static char *bits = "\20\1RX\2TX\3AUTO"; 8438 8439 rc = sysctl_wire_old_buffer(req, 0); 8440 if (rc != 0) 8441 return(rc); 8442 8443 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8444 if (sb == NULL) 8445 return (ENOMEM); 8446 8447 if (lc->link_ok) { 8448 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8449 (lc->requested_fc & PAUSE_AUTONEG), bits); 8450 } else { 8451 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8452 PAUSE_RX | PAUSE_AUTONEG), bits); 8453 } 8454 rc = sbuf_finish(sb); 8455 sbuf_delete(sb); 8456 } else { 8457 char s[2]; 8458 int n; 8459 8460 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8461 PAUSE_AUTONEG)); 8462 s[1] = 0; 8463 8464 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8465 if (rc != 0) 8466 return(rc); 8467 8468 if (s[1] != 0) 8469 return (EINVAL); 8470 if (s[0] < '0' || s[0] > '9') 8471 return (EINVAL); /* not a number */ 8472 n = s[0] - '0'; 8473 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8474 return (EINVAL); /* some other bit is set too */ 8475 8476 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8477 "t4PAUSE"); 8478 if (rc) 8479 return (rc); 8480 if (!hw_off_limits(sc)) { 8481 PORT_LOCK(pi); 8482 lc->requested_fc = n; 8483 fixup_link_config(pi); 8484 if (pi->up_vis > 0) 8485 rc = apply_link_config(pi); 8486 set_current_media(pi); 8487 PORT_UNLOCK(pi); 8488 } 8489 end_synchronized_op(sc, 0); 8490 } 8491 8492 return (rc); 8493 } 8494 8495 static int 8496 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8497 { 8498 struct port_info *pi = arg1; 8499 struct link_config *lc = &pi->link_cfg; 8500 int rc; 8501 struct sbuf *sb; 8502 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8503 8504 rc = sysctl_wire_old_buffer(req, 0); 8505 if (rc != 0) 8506 return(rc); 8507 8508 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8509 if (sb == NULL) 8510 return (ENOMEM); 8511 if (lc->link_ok) 8512 sbuf_printf(sb, "%b", lc->fec, bits); 8513 else 8514 sbuf_printf(sb, "no link"); 8515 rc = sbuf_finish(sb); 8516 sbuf_delete(sb); 8517 8518 return (rc); 8519 } 8520 8521 static int 8522 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8523 { 8524 struct port_info *pi = arg1; 8525 struct adapter *sc = pi->adapter; 8526 struct link_config *lc = &pi->link_cfg; 8527 int rc; 8528 int8_t old; 8529 8530 if (req->newptr == NULL) { 8531 struct sbuf *sb; 8532 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8533 "\5RSVD3\6auto\7module"; 8534 8535 rc = sysctl_wire_old_buffer(req, 0); 8536 if (rc != 0) 8537 return(rc); 8538 8539 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8540 if (sb == NULL) 8541 return (ENOMEM); 8542 8543 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8544 rc = sbuf_finish(sb); 8545 sbuf_delete(sb); 8546 } else { 8547 char s[8]; 8548 int n; 8549 8550 snprintf(s, sizeof(s), "%d", 8551 lc->requested_fec == FEC_AUTO ? -1 : 8552 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8553 8554 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8555 if (rc != 0) 8556 return(rc); 8557 8558 n = strtol(&s[0], NULL, 0); 8559 if (n < 0 || n & FEC_AUTO) 8560 n = FEC_AUTO; 8561 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8562 return (EINVAL);/* some other bit is set too */ 8563 8564 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8565 "t4reqf"); 8566 if (rc) 8567 return (rc); 8568 PORT_LOCK(pi); 8569 old = lc->requested_fec; 8570 if (n == FEC_AUTO) 8571 lc->requested_fec = FEC_AUTO; 8572 else if (n == 0 || n == FEC_NONE) 8573 lc->requested_fec = FEC_NONE; 8574 else { 8575 if ((lc->pcaps | 8576 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8577 lc->pcaps) { 8578 rc = ENOTSUP; 8579 goto done; 8580 } 8581 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8582 FEC_MODULE); 8583 } 8584 if (!hw_off_limits(sc)) { 8585 fixup_link_config(pi); 8586 if (pi->up_vis > 0) { 8587 rc = apply_link_config(pi); 8588 if (rc != 0) { 8589 lc->requested_fec = old; 8590 if (rc == FW_EPROTO) 8591 rc = ENOTSUP; 8592 } 8593 } 8594 } 8595 done: 8596 PORT_UNLOCK(pi); 8597 end_synchronized_op(sc, 0); 8598 } 8599 8600 return (rc); 8601 } 8602 8603 static int 8604 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8605 { 8606 struct port_info *pi = arg1; 8607 struct adapter *sc = pi->adapter; 8608 struct link_config *lc = &pi->link_cfg; 8609 int rc; 8610 int8_t fec; 8611 struct sbuf *sb; 8612 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8613 8614 rc = sysctl_wire_old_buffer(req, 0); 8615 if (rc != 0) 8616 return (rc); 8617 8618 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8619 if (sb == NULL) 8620 return (ENOMEM); 8621 8622 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8623 rc = EBUSY; 8624 goto done; 8625 } 8626 if (hw_off_limits(sc)) { 8627 rc = ENXIO; 8628 goto done; 8629 } 8630 PORT_LOCK(pi); 8631 if (pi->up_vis == 0) { 8632 /* 8633 * If all the interfaces are administratively down the firmware 8634 * does not report transceiver changes. Refresh port info here. 8635 * This is the only reason we have a synchronized op in this 8636 * function. Just PORT_LOCK would have been enough otherwise. 8637 */ 8638 t4_update_port_info(pi); 8639 } 8640 8641 fec = lc->fec_hint; 8642 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8643 !fec_supported(lc->pcaps)) { 8644 sbuf_printf(sb, "n/a"); 8645 } else { 8646 if (fec == 0) 8647 fec = FEC_NONE; 8648 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8649 } 8650 rc = sbuf_finish(sb); 8651 PORT_UNLOCK(pi); 8652 done: 8653 sbuf_delete(sb); 8654 end_synchronized_op(sc, 0); 8655 8656 return (rc); 8657 } 8658 8659 static int 8660 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8661 { 8662 struct port_info *pi = arg1; 8663 struct adapter *sc = pi->adapter; 8664 struct link_config *lc = &pi->link_cfg; 8665 int rc, val; 8666 8667 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8668 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8669 else 8670 val = -1; 8671 rc = sysctl_handle_int(oidp, &val, 0, req); 8672 if (rc != 0 || req->newptr == NULL) 8673 return (rc); 8674 if (val == 0) 8675 val = AUTONEG_DISABLE; 8676 else if (val == 1) 8677 val = AUTONEG_ENABLE; 8678 else 8679 val = AUTONEG_AUTO; 8680 8681 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8682 "t4aneg"); 8683 if (rc) 8684 return (rc); 8685 PORT_LOCK(pi); 8686 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8687 rc = ENOTSUP; 8688 goto done; 8689 } 8690 lc->requested_aneg = val; 8691 if (!hw_off_limits(sc)) { 8692 fixup_link_config(pi); 8693 if (pi->up_vis > 0) 8694 rc = apply_link_config(pi); 8695 set_current_media(pi); 8696 } 8697 done: 8698 PORT_UNLOCK(pi); 8699 end_synchronized_op(sc, 0); 8700 return (rc); 8701 } 8702 8703 static int 8704 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8705 { 8706 struct port_info *pi = arg1; 8707 struct adapter *sc = pi->adapter; 8708 struct link_config *lc = &pi->link_cfg; 8709 int rc, val; 8710 8711 val = lc->force_fec; 8712 MPASS(val >= -1 && val <= 1); 8713 rc = sysctl_handle_int(oidp, &val, 0, req); 8714 if (rc != 0 || req->newptr == NULL) 8715 return (rc); 8716 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8717 return (ENOTSUP); 8718 if (val < -1 || val > 1) 8719 return (EINVAL); 8720 8721 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8722 if (rc) 8723 return (rc); 8724 PORT_LOCK(pi); 8725 lc->force_fec = val; 8726 if (!hw_off_limits(sc)) { 8727 fixup_link_config(pi); 8728 if (pi->up_vis > 0) 8729 rc = apply_link_config(pi); 8730 } 8731 PORT_UNLOCK(pi); 8732 end_synchronized_op(sc, 0); 8733 return (rc); 8734 } 8735 8736 static int 8737 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8738 { 8739 struct adapter *sc = arg1; 8740 int rc, reg = arg2; 8741 uint64_t val; 8742 8743 mtx_lock(&sc->reg_lock); 8744 if (hw_off_limits(sc)) 8745 rc = ENXIO; 8746 else { 8747 rc = 0; 8748 val = t4_read_reg64(sc, reg); 8749 } 8750 mtx_unlock(&sc->reg_lock); 8751 if (rc == 0) 8752 rc = sysctl_handle_64(oidp, &val, 0, req); 8753 return (rc); 8754 } 8755 8756 static int 8757 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8758 { 8759 struct adapter *sc = arg1; 8760 int rc, t; 8761 uint32_t param, val; 8762 8763 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8764 if (rc) 8765 return (rc); 8766 if (hw_off_limits(sc)) 8767 rc = ENXIO; 8768 else { 8769 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8770 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8771 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8772 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8773 } 8774 end_synchronized_op(sc, 0); 8775 if (rc) 8776 return (rc); 8777 8778 /* unknown is returned as 0 but we display -1 in that case */ 8779 t = val == 0 ? -1 : val; 8780 8781 rc = sysctl_handle_int(oidp, &t, 0, req); 8782 return (rc); 8783 } 8784 8785 static int 8786 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8787 { 8788 struct adapter *sc = arg1; 8789 int rc; 8790 uint32_t param, val; 8791 8792 if (sc->params.core_vdd == 0) { 8793 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8794 "t4vdd"); 8795 if (rc) 8796 return (rc); 8797 if (hw_off_limits(sc)) 8798 rc = ENXIO; 8799 else { 8800 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8801 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8802 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8803 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8804 ¶m, &val); 8805 } 8806 end_synchronized_op(sc, 0); 8807 if (rc) 8808 return (rc); 8809 sc->params.core_vdd = val; 8810 } 8811 8812 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8813 } 8814 8815 static int 8816 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8817 { 8818 struct adapter *sc = arg1; 8819 int rc, v; 8820 uint32_t param, val; 8821 8822 v = sc->sensor_resets; 8823 rc = sysctl_handle_int(oidp, &v, 0, req); 8824 if (rc != 0 || req->newptr == NULL || v <= 0) 8825 return (rc); 8826 8827 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8828 chip_id(sc) < CHELSIO_T5) 8829 return (ENOTSUP); 8830 8831 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8832 if (rc) 8833 return (rc); 8834 if (hw_off_limits(sc)) 8835 rc = ENXIO; 8836 else { 8837 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8838 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8839 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8840 val = 1; 8841 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8842 } 8843 end_synchronized_op(sc, 0); 8844 if (rc == 0) 8845 sc->sensor_resets++; 8846 return (rc); 8847 } 8848 8849 static int 8850 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8851 { 8852 struct adapter *sc = arg1; 8853 struct sbuf *sb; 8854 int rc; 8855 uint32_t param, val; 8856 8857 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8858 if (rc) 8859 return (rc); 8860 if (hw_off_limits(sc)) 8861 rc = ENXIO; 8862 else { 8863 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8864 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8865 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8866 } 8867 end_synchronized_op(sc, 0); 8868 if (rc) 8869 return (rc); 8870 8871 rc = sysctl_wire_old_buffer(req, 0); 8872 if (rc != 0) 8873 return (rc); 8874 8875 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8876 if (sb == NULL) 8877 return (ENOMEM); 8878 8879 if (val == 0xffffffff) { 8880 /* Only debug and custom firmwares report load averages. */ 8881 sbuf_printf(sb, "not available"); 8882 } else { 8883 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8884 (val >> 16) & 0xff); 8885 } 8886 rc = sbuf_finish(sb); 8887 sbuf_delete(sb); 8888 8889 return (rc); 8890 } 8891 8892 static int 8893 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8894 { 8895 struct adapter *sc = arg1; 8896 struct sbuf *sb; 8897 int rc, i; 8898 uint16_t incr[NMTUS][NCCTRL_WIN]; 8899 static const char *dec_fac[] = { 8900 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8901 "0.9375" 8902 }; 8903 8904 rc = sysctl_wire_old_buffer(req, 0); 8905 if (rc != 0) 8906 return (rc); 8907 8908 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8909 if (sb == NULL) 8910 return (ENOMEM); 8911 8912 mtx_lock(&sc->reg_lock); 8913 if (hw_off_limits(sc)) 8914 rc = ENXIO; 8915 else 8916 t4_read_cong_tbl(sc, incr); 8917 mtx_unlock(&sc->reg_lock); 8918 if (rc) 8919 goto done; 8920 8921 for (i = 0; i < NCCTRL_WIN; ++i) { 8922 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8923 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8924 incr[5][i], incr[6][i], incr[7][i]); 8925 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8926 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8927 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8928 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8929 } 8930 8931 rc = sbuf_finish(sb); 8932 done: 8933 sbuf_delete(sb); 8934 return (rc); 8935 } 8936 8937 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8938 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8939 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8940 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8941 }; 8942 8943 static int 8944 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8945 { 8946 struct adapter *sc = arg1; 8947 struct sbuf *sb; 8948 int rc, i, n, qid = arg2; 8949 uint32_t *buf, *p; 8950 char *qtype; 8951 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8952 8953 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8954 ("%s: bad qid %d\n", __func__, qid)); 8955 8956 if (qid < CIM_NUM_IBQ) { 8957 /* inbound queue */ 8958 qtype = "IBQ"; 8959 n = 4 * CIM_IBQ_SIZE; 8960 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8961 mtx_lock(&sc->reg_lock); 8962 if (hw_off_limits(sc)) 8963 rc = -ENXIO; 8964 else 8965 rc = t4_read_cim_ibq(sc, qid, buf, n); 8966 mtx_unlock(&sc->reg_lock); 8967 } else { 8968 /* outbound queue */ 8969 qtype = "OBQ"; 8970 qid -= CIM_NUM_IBQ; 8971 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8972 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8973 mtx_lock(&sc->reg_lock); 8974 if (hw_off_limits(sc)) 8975 rc = -ENXIO; 8976 else 8977 rc = t4_read_cim_obq(sc, qid, buf, n); 8978 mtx_unlock(&sc->reg_lock); 8979 } 8980 8981 if (rc < 0) { 8982 rc = -rc; 8983 goto done; 8984 } 8985 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8986 8987 rc = sysctl_wire_old_buffer(req, 0); 8988 if (rc != 0) 8989 goto done; 8990 8991 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8992 if (sb == NULL) { 8993 rc = ENOMEM; 8994 goto done; 8995 } 8996 8997 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8998 for (i = 0, p = buf; i < n; i += 16, p += 4) 8999 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9000 p[2], p[3]); 9001 9002 rc = sbuf_finish(sb); 9003 sbuf_delete(sb); 9004 done: 9005 free(buf, M_CXGBE); 9006 return (rc); 9007 } 9008 9009 static void 9010 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9011 { 9012 uint32_t *p; 9013 9014 sbuf_printf(sb, "Status Data PC%s", 9015 cfg & F_UPDBGLACAPTPCONLY ? "" : 9016 " LS0Stat LS0Addr LS0Data"); 9017 9018 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9019 if (cfg & F_UPDBGLACAPTPCONLY) { 9020 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9021 p[6], p[7]); 9022 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9023 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9024 p[4] & 0xff, p[5] >> 8); 9025 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9026 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9027 p[1] & 0xf, p[2] >> 4); 9028 } else { 9029 sbuf_printf(sb, 9030 "\n %02x %x%07x %x%07x %08x %08x " 9031 "%08x%08x%08x%08x", 9032 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9033 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9034 p[6], p[7]); 9035 } 9036 } 9037 } 9038 9039 static void 9040 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9041 { 9042 uint32_t *p; 9043 9044 sbuf_printf(sb, "Status Inst Data PC%s", 9045 cfg & F_UPDBGLACAPTPCONLY ? "" : 9046 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9047 9048 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9049 if (cfg & F_UPDBGLACAPTPCONLY) { 9050 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9051 p[3] & 0xff, p[2], p[1], p[0]); 9052 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9053 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9054 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9055 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9056 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9057 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9058 p[6] >> 16); 9059 } else { 9060 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9061 "%08x %08x %08x %08x %08x %08x", 9062 (p[9] >> 16) & 0xff, 9063 p[9] & 0xffff, p[8] >> 16, 9064 p[8] & 0xffff, p[7] >> 16, 9065 p[7] & 0xffff, p[6] >> 16, 9066 p[2], p[1], p[0], p[5], p[4], p[3]); 9067 } 9068 } 9069 } 9070 9071 static int 9072 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9073 { 9074 uint32_t cfg, *buf; 9075 int rc; 9076 9077 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9078 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9079 M_ZERO | flags); 9080 if (buf == NULL) 9081 return (ENOMEM); 9082 9083 mtx_lock(&sc->reg_lock); 9084 if (hw_off_limits(sc)) 9085 rc = ENXIO; 9086 else { 9087 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9088 if (rc == 0) 9089 rc = -t4_cim_read_la(sc, buf, NULL); 9090 } 9091 mtx_unlock(&sc->reg_lock); 9092 if (rc == 0) { 9093 if (chip_id(sc) < CHELSIO_T6) 9094 sbuf_cim_la4(sc, sb, buf, cfg); 9095 else 9096 sbuf_cim_la6(sc, sb, buf, cfg); 9097 } 9098 free(buf, M_CXGBE); 9099 return (rc); 9100 } 9101 9102 static int 9103 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9104 { 9105 struct adapter *sc = arg1; 9106 struct sbuf *sb; 9107 int rc; 9108 9109 rc = sysctl_wire_old_buffer(req, 0); 9110 if (rc != 0) 9111 return (rc); 9112 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9113 if (sb == NULL) 9114 return (ENOMEM); 9115 9116 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9117 if (rc == 0) 9118 rc = sbuf_finish(sb); 9119 sbuf_delete(sb); 9120 return (rc); 9121 } 9122 9123 static void 9124 dump_cim_regs(struct adapter *sc) 9125 { 9126 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9127 device_get_nameunit(sc->dev), 9128 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9129 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9130 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9131 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9132 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9133 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9134 device_get_nameunit(sc->dev), 9135 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9136 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9137 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9138 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9139 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9140 } 9141 9142 static void 9143 dump_cimla(struct adapter *sc) 9144 { 9145 struct sbuf sb; 9146 int rc; 9147 9148 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9149 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9150 device_get_nameunit(sc->dev)); 9151 return; 9152 } 9153 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9154 if (rc == 0) { 9155 rc = sbuf_finish(&sb); 9156 if (rc == 0) { 9157 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9158 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9159 } 9160 } 9161 sbuf_delete(&sb); 9162 } 9163 9164 void 9165 t4_os_cim_err(struct adapter *sc) 9166 { 9167 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9168 } 9169 9170 static int 9171 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9172 { 9173 struct adapter *sc = arg1; 9174 u_int i; 9175 struct sbuf *sb; 9176 uint32_t *buf, *p; 9177 int rc; 9178 9179 rc = sysctl_wire_old_buffer(req, 0); 9180 if (rc != 0) 9181 return (rc); 9182 9183 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9184 if (sb == NULL) 9185 return (ENOMEM); 9186 9187 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9188 M_ZERO | M_WAITOK); 9189 9190 mtx_lock(&sc->reg_lock); 9191 if (hw_off_limits(sc)) 9192 rc = ENXIO; 9193 else 9194 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9195 mtx_unlock(&sc->reg_lock); 9196 if (rc) 9197 goto done; 9198 9199 p = buf; 9200 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9201 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9202 p[1], p[0]); 9203 } 9204 9205 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9206 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9207 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9208 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9209 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9210 (p[1] >> 2) | ((p[2] & 3) << 30), 9211 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9212 p[0] & 1); 9213 } 9214 rc = sbuf_finish(sb); 9215 done: 9216 sbuf_delete(sb); 9217 free(buf, M_CXGBE); 9218 return (rc); 9219 } 9220 9221 static int 9222 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9223 { 9224 struct adapter *sc = arg1; 9225 u_int i; 9226 struct sbuf *sb; 9227 uint32_t *buf, *p; 9228 int rc; 9229 9230 rc = sysctl_wire_old_buffer(req, 0); 9231 if (rc != 0) 9232 return (rc); 9233 9234 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9235 if (sb == NULL) 9236 return (ENOMEM); 9237 9238 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9239 M_ZERO | M_WAITOK); 9240 9241 mtx_lock(&sc->reg_lock); 9242 if (hw_off_limits(sc)) 9243 rc = ENXIO; 9244 else 9245 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9246 mtx_unlock(&sc->reg_lock); 9247 if (rc) 9248 goto done; 9249 9250 p = buf; 9251 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9252 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9253 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9254 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9255 p[4], p[3], p[2], p[1], p[0]); 9256 } 9257 9258 sbuf_printf(sb, "\n\nCntl ID Data"); 9259 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9260 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9261 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9262 } 9263 9264 rc = sbuf_finish(sb); 9265 done: 9266 sbuf_delete(sb); 9267 free(buf, M_CXGBE); 9268 return (rc); 9269 } 9270 9271 static int 9272 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9273 { 9274 struct adapter *sc = arg1; 9275 struct sbuf *sb; 9276 int rc, i; 9277 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9278 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9279 uint16_t thres[CIM_NUM_IBQ]; 9280 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9281 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9282 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9283 9284 cim_num_obq = sc->chip_params->cim_num_obq; 9285 if (is_t4(sc)) { 9286 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9287 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9288 } else { 9289 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9290 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9291 } 9292 nq = CIM_NUM_IBQ + cim_num_obq; 9293 9294 mtx_lock(&sc->reg_lock); 9295 if (hw_off_limits(sc)) 9296 rc = ENXIO; 9297 else { 9298 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9299 if (rc == 0) { 9300 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9301 obq_wr); 9302 if (rc == 0) 9303 t4_read_cimq_cfg(sc, base, size, thres); 9304 } 9305 } 9306 mtx_unlock(&sc->reg_lock); 9307 if (rc) 9308 return (rc); 9309 9310 rc = sysctl_wire_old_buffer(req, 0); 9311 if (rc != 0) 9312 return (rc); 9313 9314 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9315 if (sb == NULL) 9316 return (ENOMEM); 9317 9318 sbuf_printf(sb, 9319 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9320 9321 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9322 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9323 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9324 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9325 G_QUEREMFLITS(p[2]) * 16); 9326 for ( ; i < nq; i++, p += 4, wr += 2) 9327 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9328 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9329 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9330 G_QUEREMFLITS(p[2]) * 16); 9331 9332 rc = sbuf_finish(sb); 9333 sbuf_delete(sb); 9334 9335 return (rc); 9336 } 9337 9338 static int 9339 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9340 { 9341 struct adapter *sc = arg1; 9342 struct sbuf *sb; 9343 int rc; 9344 struct tp_cpl_stats stats; 9345 9346 rc = sysctl_wire_old_buffer(req, 0); 9347 if (rc != 0) 9348 return (rc); 9349 9350 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9351 if (sb == NULL) 9352 return (ENOMEM); 9353 9354 mtx_lock(&sc->reg_lock); 9355 if (hw_off_limits(sc)) 9356 rc = ENXIO; 9357 else 9358 t4_tp_get_cpl_stats(sc, &stats, 0); 9359 mtx_unlock(&sc->reg_lock); 9360 if (rc) 9361 goto done; 9362 9363 if (sc->chip_params->nchan > 2) { 9364 sbuf_printf(sb, " channel 0 channel 1" 9365 " channel 2 channel 3"); 9366 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9367 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9368 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9369 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9370 } else { 9371 sbuf_printf(sb, " channel 0 channel 1"); 9372 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9373 stats.req[0], stats.req[1]); 9374 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9375 stats.rsp[0], stats.rsp[1]); 9376 } 9377 9378 rc = sbuf_finish(sb); 9379 done: 9380 sbuf_delete(sb); 9381 return (rc); 9382 } 9383 9384 static int 9385 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9386 { 9387 struct adapter *sc = arg1; 9388 struct sbuf *sb; 9389 int rc; 9390 struct tp_usm_stats stats; 9391 9392 rc = sysctl_wire_old_buffer(req, 0); 9393 if (rc != 0) 9394 return(rc); 9395 9396 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9397 if (sb == NULL) 9398 return (ENOMEM); 9399 9400 mtx_lock(&sc->reg_lock); 9401 if (hw_off_limits(sc)) 9402 rc = ENXIO; 9403 else 9404 t4_get_usm_stats(sc, &stats, 1); 9405 mtx_unlock(&sc->reg_lock); 9406 if (rc == 0) { 9407 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9408 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9409 sbuf_printf(sb, "Drops: %u", stats.drops); 9410 rc = sbuf_finish(sb); 9411 } 9412 sbuf_delete(sb); 9413 9414 return (rc); 9415 } 9416 9417 static int 9418 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9419 { 9420 struct adapter *sc = arg1; 9421 struct sbuf *sb; 9422 int rc; 9423 struct tp_tid_stats stats; 9424 9425 rc = sysctl_wire_old_buffer(req, 0); 9426 if (rc != 0) 9427 return(rc); 9428 9429 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9430 if (sb == NULL) 9431 return (ENOMEM); 9432 9433 mtx_lock(&sc->reg_lock); 9434 if (hw_off_limits(sc)) 9435 rc = ENXIO; 9436 else 9437 t4_tp_get_tid_stats(sc, &stats, 1); 9438 mtx_unlock(&sc->reg_lock); 9439 if (rc == 0) { 9440 sbuf_printf(sb, "Delete: %u\n", stats.del); 9441 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9442 sbuf_printf(sb, "Active: %u\n", stats.act); 9443 sbuf_printf(sb, "Passive: %u", stats.pas); 9444 rc = sbuf_finish(sb); 9445 } 9446 sbuf_delete(sb); 9447 9448 return (rc); 9449 } 9450 9451 static const char * const devlog_level_strings[] = { 9452 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9453 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9454 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9455 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9456 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9457 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9458 }; 9459 9460 static const char * const devlog_facility_strings[] = { 9461 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9462 [FW_DEVLOG_FACILITY_CF] = "CF", 9463 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9464 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9465 [FW_DEVLOG_FACILITY_RES] = "RES", 9466 [FW_DEVLOG_FACILITY_HW] = "HW", 9467 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9468 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9469 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9470 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9471 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9472 [FW_DEVLOG_FACILITY_VI] = "VI", 9473 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9474 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9475 [FW_DEVLOG_FACILITY_TM] = "TM", 9476 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9477 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9478 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9479 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9480 [FW_DEVLOG_FACILITY_RI] = "RI", 9481 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9482 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9483 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9484 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9485 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9486 }; 9487 9488 static int 9489 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9490 { 9491 int i, j, rc, nentries, first = 0; 9492 struct devlog_params *dparams = &sc->params.devlog; 9493 struct fw_devlog_e *buf, *e; 9494 uint64_t ftstamp = UINT64_MAX; 9495 9496 if (dparams->addr == 0) 9497 return (ENXIO); 9498 9499 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9500 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9501 if (buf == NULL) 9502 return (ENOMEM); 9503 9504 mtx_lock(&sc->reg_lock); 9505 if (hw_off_limits(sc)) 9506 rc = ENXIO; 9507 else 9508 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9509 dparams->size); 9510 mtx_unlock(&sc->reg_lock); 9511 if (rc != 0) 9512 goto done; 9513 9514 nentries = dparams->size / sizeof(struct fw_devlog_e); 9515 for (i = 0; i < nentries; i++) { 9516 e = &buf[i]; 9517 9518 if (e->timestamp == 0) 9519 break; /* end */ 9520 9521 e->timestamp = be64toh(e->timestamp); 9522 e->seqno = be32toh(e->seqno); 9523 for (j = 0; j < 8; j++) 9524 e->params[j] = be32toh(e->params[j]); 9525 9526 if (e->timestamp < ftstamp) { 9527 ftstamp = e->timestamp; 9528 first = i; 9529 } 9530 } 9531 9532 if (buf[first].timestamp == 0) 9533 goto done; /* nothing in the log */ 9534 9535 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9536 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9537 9538 i = first; 9539 do { 9540 e = &buf[i]; 9541 if (e->timestamp == 0) 9542 break; /* end */ 9543 9544 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9545 e->seqno, e->timestamp, 9546 (e->level < nitems(devlog_level_strings) ? 9547 devlog_level_strings[e->level] : "UNKNOWN"), 9548 (e->facility < nitems(devlog_facility_strings) ? 9549 devlog_facility_strings[e->facility] : "UNKNOWN")); 9550 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9551 e->params[2], e->params[3], e->params[4], 9552 e->params[5], e->params[6], e->params[7]); 9553 9554 if (++i == nentries) 9555 i = 0; 9556 } while (i != first); 9557 done: 9558 free(buf, M_CXGBE); 9559 return (rc); 9560 } 9561 9562 static int 9563 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9564 { 9565 struct adapter *sc = arg1; 9566 int rc; 9567 struct sbuf *sb; 9568 9569 rc = sysctl_wire_old_buffer(req, 0); 9570 if (rc != 0) 9571 return (rc); 9572 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9573 if (sb == NULL) 9574 return (ENOMEM); 9575 9576 rc = sbuf_devlog(sc, sb, M_WAITOK); 9577 if (rc == 0) 9578 rc = sbuf_finish(sb); 9579 sbuf_delete(sb); 9580 return (rc); 9581 } 9582 9583 static void 9584 dump_devlog(struct adapter *sc) 9585 { 9586 int rc; 9587 struct sbuf sb; 9588 9589 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9590 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9591 device_get_nameunit(sc->dev)); 9592 return; 9593 } 9594 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9595 if (rc == 0) { 9596 rc = sbuf_finish(&sb); 9597 if (rc == 0) { 9598 log(LOG_DEBUG, "%s: device log follows.\n%s", 9599 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9600 } 9601 } 9602 sbuf_delete(&sb); 9603 } 9604 9605 static int 9606 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9607 { 9608 struct adapter *sc = arg1; 9609 struct sbuf *sb; 9610 int rc; 9611 struct tp_fcoe_stats stats[MAX_NCHAN]; 9612 int i, nchan = sc->chip_params->nchan; 9613 9614 rc = sysctl_wire_old_buffer(req, 0); 9615 if (rc != 0) 9616 return (rc); 9617 9618 mtx_lock(&sc->reg_lock); 9619 if (hw_off_limits(sc)) 9620 rc = ENXIO; 9621 else { 9622 for (i = 0; i < nchan; i++) 9623 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9624 } 9625 mtx_unlock(&sc->reg_lock); 9626 if (rc != 0) 9627 return (rc); 9628 9629 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9630 if (sb == NULL) 9631 return (ENOMEM); 9632 9633 if (nchan > 2) { 9634 sbuf_printf(sb, " channel 0 channel 1" 9635 " channel 2 channel 3"); 9636 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9637 stats[0].octets_ddp, stats[1].octets_ddp, 9638 stats[2].octets_ddp, stats[3].octets_ddp); 9639 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9640 stats[0].frames_ddp, stats[1].frames_ddp, 9641 stats[2].frames_ddp, stats[3].frames_ddp); 9642 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9643 stats[0].frames_drop, stats[1].frames_drop, 9644 stats[2].frames_drop, stats[3].frames_drop); 9645 } else { 9646 sbuf_printf(sb, " channel 0 channel 1"); 9647 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9648 stats[0].octets_ddp, stats[1].octets_ddp); 9649 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9650 stats[0].frames_ddp, stats[1].frames_ddp); 9651 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9652 stats[0].frames_drop, stats[1].frames_drop); 9653 } 9654 9655 rc = sbuf_finish(sb); 9656 sbuf_delete(sb); 9657 9658 return (rc); 9659 } 9660 9661 static int 9662 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9663 { 9664 struct adapter *sc = arg1; 9665 struct sbuf *sb; 9666 int rc, i; 9667 unsigned int map, kbps, ipg, mode; 9668 unsigned int pace_tab[NTX_SCHED]; 9669 9670 rc = sysctl_wire_old_buffer(req, 0); 9671 if (rc != 0) 9672 return (rc); 9673 9674 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9675 if (sb == NULL) 9676 return (ENOMEM); 9677 9678 mtx_lock(&sc->reg_lock); 9679 if (hw_off_limits(sc)) { 9680 rc = ENXIO; 9681 goto done; 9682 } 9683 9684 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9685 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9686 t4_read_pace_tbl(sc, pace_tab); 9687 9688 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9689 "Class IPG (0.1 ns) Flow IPG (us)"); 9690 9691 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9692 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9693 sbuf_printf(sb, "\n %u %-5s %u ", i, 9694 (mode & (1 << i)) ? "flow" : "class", map & 3); 9695 if (kbps) 9696 sbuf_printf(sb, "%9u ", kbps); 9697 else 9698 sbuf_printf(sb, " disabled "); 9699 9700 if (ipg) 9701 sbuf_printf(sb, "%13u ", ipg); 9702 else 9703 sbuf_printf(sb, " disabled "); 9704 9705 if (pace_tab[i]) 9706 sbuf_printf(sb, "%10u", pace_tab[i]); 9707 else 9708 sbuf_printf(sb, " disabled"); 9709 } 9710 rc = sbuf_finish(sb); 9711 done: 9712 mtx_unlock(&sc->reg_lock); 9713 sbuf_delete(sb); 9714 return (rc); 9715 } 9716 9717 static int 9718 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9719 { 9720 struct adapter *sc = arg1; 9721 struct sbuf *sb; 9722 int rc, i, j; 9723 uint64_t *p0, *p1; 9724 struct lb_port_stats s[2]; 9725 static const char *stat_name[] = { 9726 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9727 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9728 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9729 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9730 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9731 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9732 "BG2FramesTrunc:", "BG3FramesTrunc:" 9733 }; 9734 9735 rc = sysctl_wire_old_buffer(req, 0); 9736 if (rc != 0) 9737 return (rc); 9738 9739 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9740 if (sb == NULL) 9741 return (ENOMEM); 9742 9743 memset(s, 0, sizeof(s)); 9744 9745 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9746 mtx_lock(&sc->reg_lock); 9747 if (hw_off_limits(sc)) 9748 rc = ENXIO; 9749 else { 9750 t4_get_lb_stats(sc, i, &s[0]); 9751 t4_get_lb_stats(sc, i + 1, &s[1]); 9752 } 9753 mtx_unlock(&sc->reg_lock); 9754 if (rc != 0) 9755 break; 9756 9757 p0 = &s[0].octets; 9758 p1 = &s[1].octets; 9759 sbuf_printf(sb, "%s Loopback %u" 9760 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9761 9762 for (j = 0; j < nitems(stat_name); j++) 9763 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9764 *p0++, *p1++); 9765 } 9766 9767 rc = sbuf_finish(sb); 9768 sbuf_delete(sb); 9769 9770 return (rc); 9771 } 9772 9773 static int 9774 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9775 { 9776 int rc = 0; 9777 struct port_info *pi = arg1; 9778 struct link_config *lc = &pi->link_cfg; 9779 struct sbuf *sb; 9780 9781 rc = sysctl_wire_old_buffer(req, 0); 9782 if (rc != 0) 9783 return(rc); 9784 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9785 if (sb == NULL) 9786 return (ENOMEM); 9787 9788 if (lc->link_ok || lc->link_down_rc == 255) 9789 sbuf_printf(sb, "n/a"); 9790 else 9791 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9792 9793 rc = sbuf_finish(sb); 9794 sbuf_delete(sb); 9795 9796 return (rc); 9797 } 9798 9799 struct mem_desc { 9800 u_int base; 9801 u_int limit; 9802 u_int idx; 9803 }; 9804 9805 static int 9806 mem_desc_cmp(const void *a, const void *b) 9807 { 9808 const u_int v1 = ((const struct mem_desc *)a)->base; 9809 const u_int v2 = ((const struct mem_desc *)b)->base; 9810 9811 if (v1 < v2) 9812 return (-1); 9813 else if (v1 > v2) 9814 return (1); 9815 9816 return (0); 9817 } 9818 9819 static void 9820 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9821 unsigned int to) 9822 { 9823 unsigned int size; 9824 9825 if (from == to) 9826 return; 9827 9828 size = to - from + 1; 9829 if (size == 0) 9830 return; 9831 9832 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9833 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9834 } 9835 9836 static int 9837 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9838 { 9839 struct adapter *sc = arg1; 9840 struct sbuf *sb; 9841 int rc, i, n; 9842 uint32_t lo, hi, used, free, alloc; 9843 static const char *memory[] = { 9844 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9845 }; 9846 static const char *region[] = { 9847 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9848 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9849 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9850 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9851 "RQUDP region:", "PBL region:", "TXPBL region:", 9852 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9853 "ULPTX state:", "On-chip queues:", 9854 }; 9855 struct mem_desc avail[4]; 9856 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9857 struct mem_desc *md = mem; 9858 9859 rc = sysctl_wire_old_buffer(req, 0); 9860 if (rc != 0) 9861 return (rc); 9862 9863 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9864 if (sb == NULL) 9865 return (ENOMEM); 9866 9867 for (i = 0; i < nitems(mem); i++) { 9868 mem[i].limit = 0; 9869 mem[i].idx = i; 9870 } 9871 9872 mtx_lock(&sc->reg_lock); 9873 if (hw_off_limits(sc)) { 9874 rc = ENXIO; 9875 goto done; 9876 } 9877 9878 /* Find and sort the populated memory ranges */ 9879 i = 0; 9880 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9881 if (lo & F_EDRAM0_ENABLE) { 9882 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9883 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9884 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9885 avail[i].idx = 0; 9886 i++; 9887 } 9888 if (lo & F_EDRAM1_ENABLE) { 9889 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9890 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9891 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9892 avail[i].idx = 1; 9893 i++; 9894 } 9895 if (lo & F_EXT_MEM_ENABLE) { 9896 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9897 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9898 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9899 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9900 i++; 9901 } 9902 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9903 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9904 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9905 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9906 avail[i].idx = 4; 9907 i++; 9908 } 9909 if (is_t6(sc) && lo & F_HMA_MUX) { 9910 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9911 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9912 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9913 avail[i].idx = 5; 9914 i++; 9915 } 9916 MPASS(i <= nitems(avail)); 9917 if (!i) /* no memory available */ 9918 goto done; 9919 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9920 9921 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9922 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9923 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9924 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9925 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9926 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9927 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9928 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9929 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9930 9931 /* the next few have explicit upper bounds */ 9932 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9933 md->limit = md->base - 1 + 9934 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9935 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9936 md++; 9937 9938 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9939 md->limit = md->base - 1 + 9940 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9941 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9942 md++; 9943 9944 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9945 if (chip_id(sc) <= CHELSIO_T5) 9946 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9947 else 9948 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9949 md->limit = 0; 9950 } else { 9951 md->base = 0; 9952 md->idx = nitems(region); /* hide it */ 9953 } 9954 md++; 9955 9956 #define ulp_region(reg) \ 9957 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9958 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9959 9960 ulp_region(RX_ISCSI); 9961 ulp_region(RX_TDDP); 9962 ulp_region(TX_TPT); 9963 ulp_region(RX_STAG); 9964 ulp_region(RX_RQ); 9965 ulp_region(RX_RQUDP); 9966 ulp_region(RX_PBL); 9967 ulp_region(TX_PBL); 9968 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9969 ulp_region(RX_TLS_KEY); 9970 } 9971 #undef ulp_region 9972 9973 md->base = 0; 9974 if (is_t4(sc)) 9975 md->idx = nitems(region); 9976 else { 9977 uint32_t size = 0; 9978 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9979 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9980 9981 if (is_t5(sc)) { 9982 if (sge_ctrl & F_VFIFO_ENABLE) 9983 size = fifo_size << 2; 9984 } else 9985 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9986 9987 if (size) { 9988 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9989 md->limit = md->base + size - 1; 9990 } else 9991 md->idx = nitems(region); 9992 } 9993 md++; 9994 9995 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9996 md->limit = 0; 9997 md++; 9998 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9999 md->limit = 0; 10000 md++; 10001 10002 md->base = sc->vres.ocq.start; 10003 if (sc->vres.ocq.size) 10004 md->limit = md->base + sc->vres.ocq.size - 1; 10005 else 10006 md->idx = nitems(region); /* hide it */ 10007 md++; 10008 10009 /* add any address-space holes, there can be up to 3 */ 10010 for (n = 0; n < i - 1; n++) 10011 if (avail[n].limit < avail[n + 1].base) 10012 (md++)->base = avail[n].limit; 10013 if (avail[n].limit) 10014 (md++)->base = avail[n].limit; 10015 10016 n = md - mem; 10017 MPASS(n <= nitems(mem)); 10018 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10019 10020 for (lo = 0; lo < i; lo++) 10021 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10022 avail[lo].limit - 1); 10023 10024 sbuf_printf(sb, "\n"); 10025 for (i = 0; i < n; i++) { 10026 if (mem[i].idx >= nitems(region)) 10027 continue; /* skip holes */ 10028 if (!mem[i].limit) 10029 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10030 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10031 mem[i].limit); 10032 } 10033 10034 sbuf_printf(sb, "\n"); 10035 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10036 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10037 mem_region_show(sb, "uP RAM:", lo, hi); 10038 10039 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10040 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10041 mem_region_show(sb, "uP Extmem2:", lo, hi); 10042 10043 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10044 for (i = 0, free = 0; i < 2; i++) 10045 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10046 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10047 G_PMRXMAXPAGE(lo), free, 10048 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10049 (lo & F_PMRXNUMCHN) ? 2 : 1); 10050 10051 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10052 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10053 for (i = 0, free = 0; i < 4; i++) 10054 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10055 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10056 G_PMTXMAXPAGE(lo), free, 10057 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10058 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10059 sbuf_printf(sb, "%u p-structs (%u free)\n", 10060 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10061 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10062 10063 for (i = 0; i < 4; i++) { 10064 if (chip_id(sc) > CHELSIO_T5) 10065 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10066 else 10067 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10068 if (is_t5(sc)) { 10069 used = G_T5_USED(lo); 10070 alloc = G_T5_ALLOC(lo); 10071 } else { 10072 used = G_USED(lo); 10073 alloc = G_ALLOC(lo); 10074 } 10075 /* For T6 these are MAC buffer groups */ 10076 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10077 i, used, alloc); 10078 } 10079 for (i = 0; i < sc->chip_params->nchan; i++) { 10080 if (chip_id(sc) > CHELSIO_T5) 10081 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10082 else 10083 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10084 if (is_t5(sc)) { 10085 used = G_T5_USED(lo); 10086 alloc = G_T5_ALLOC(lo); 10087 } else { 10088 used = G_USED(lo); 10089 alloc = G_ALLOC(lo); 10090 } 10091 /* For T6 these are MAC buffer groups */ 10092 sbuf_printf(sb, 10093 "\nLoopback %d using %u pages out of %u allocated", 10094 i, used, alloc); 10095 } 10096 done: 10097 mtx_unlock(&sc->reg_lock); 10098 if (rc == 0) 10099 rc = sbuf_finish(sb); 10100 sbuf_delete(sb); 10101 return (rc); 10102 } 10103 10104 static inline void 10105 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10106 { 10107 *mask = x | y; 10108 y = htobe64(y); 10109 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10110 } 10111 10112 static int 10113 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10114 { 10115 struct adapter *sc = arg1; 10116 struct sbuf *sb; 10117 int rc, i; 10118 10119 MPASS(chip_id(sc) <= CHELSIO_T5); 10120 10121 rc = sysctl_wire_old_buffer(req, 0); 10122 if (rc != 0) 10123 return (rc); 10124 10125 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10126 if (sb == NULL) 10127 return (ENOMEM); 10128 10129 sbuf_printf(sb, 10130 "Idx Ethernet address Mask Vld Ports PF" 10131 " VF Replication P0 P1 P2 P3 ML"); 10132 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10133 uint64_t tcamx, tcamy, mask; 10134 uint32_t cls_lo, cls_hi; 10135 uint8_t addr[ETHER_ADDR_LEN]; 10136 10137 mtx_lock(&sc->reg_lock); 10138 if (hw_off_limits(sc)) 10139 rc = ENXIO; 10140 else { 10141 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10142 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10143 } 10144 mtx_unlock(&sc->reg_lock); 10145 if (rc != 0) 10146 break; 10147 if (tcamx & tcamy) 10148 continue; 10149 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10150 mtx_lock(&sc->reg_lock); 10151 if (hw_off_limits(sc)) 10152 rc = ENXIO; 10153 else { 10154 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10155 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10156 } 10157 mtx_unlock(&sc->reg_lock); 10158 if (rc != 0) 10159 break; 10160 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10161 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10162 addr[3], addr[4], addr[5], (uintmax_t)mask, 10163 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10164 G_PORTMAP(cls_hi), G_PF(cls_lo), 10165 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10166 10167 if (cls_lo & F_REPLICATE) { 10168 struct fw_ldst_cmd ldst_cmd; 10169 10170 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10171 ldst_cmd.op_to_addrspace = 10172 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10173 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10174 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10175 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10176 ldst_cmd.u.mps.rplc.fid_idx = 10177 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10178 V_FW_LDST_CMD_IDX(i)); 10179 10180 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10181 "t4mps"); 10182 if (rc) 10183 break; 10184 if (hw_off_limits(sc)) 10185 rc = ENXIO; 10186 else 10187 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10188 sizeof(ldst_cmd), &ldst_cmd); 10189 end_synchronized_op(sc, 0); 10190 if (rc != 0) 10191 break; 10192 else { 10193 sbuf_printf(sb, " %08x %08x %08x %08x", 10194 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10195 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10196 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10197 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10198 } 10199 } else 10200 sbuf_printf(sb, "%36s", ""); 10201 10202 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10203 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10204 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10205 } 10206 10207 if (rc) 10208 (void) sbuf_finish(sb); 10209 else 10210 rc = sbuf_finish(sb); 10211 sbuf_delete(sb); 10212 10213 return (rc); 10214 } 10215 10216 static int 10217 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10218 { 10219 struct adapter *sc = arg1; 10220 struct sbuf *sb; 10221 int rc, i; 10222 10223 MPASS(chip_id(sc) > CHELSIO_T5); 10224 10225 rc = sysctl_wire_old_buffer(req, 0); 10226 if (rc != 0) 10227 return (rc); 10228 10229 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10230 if (sb == NULL) 10231 return (ENOMEM); 10232 10233 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10234 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10235 " Replication" 10236 " P0 P1 P2 P3 ML\n"); 10237 10238 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10239 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10240 uint16_t ivlan; 10241 uint64_t tcamx, tcamy, val, mask; 10242 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10243 uint8_t addr[ETHER_ADDR_LEN]; 10244 10245 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10246 if (i < 256) 10247 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10248 else 10249 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10250 mtx_lock(&sc->reg_lock); 10251 if (hw_off_limits(sc)) 10252 rc = ENXIO; 10253 else { 10254 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10255 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10256 tcamy = G_DMACH(val) << 32; 10257 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10258 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10259 } 10260 mtx_unlock(&sc->reg_lock); 10261 if (rc != 0) 10262 break; 10263 10264 lookup_type = G_DATALKPTYPE(data2); 10265 port_num = G_DATAPORTNUM(data2); 10266 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10267 /* Inner header VNI */ 10268 vniy = ((data2 & F_DATAVIDH2) << 23) | 10269 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10270 dip_hit = data2 & F_DATADIPHIT; 10271 vlan_vld = 0; 10272 } else { 10273 vniy = 0; 10274 dip_hit = 0; 10275 vlan_vld = data2 & F_DATAVIDH2; 10276 ivlan = G_VIDL(val); 10277 } 10278 10279 ctl |= V_CTLXYBITSEL(1); 10280 mtx_lock(&sc->reg_lock); 10281 if (hw_off_limits(sc)) 10282 rc = ENXIO; 10283 else { 10284 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10285 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10286 tcamx = G_DMACH(val) << 32; 10287 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10288 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10289 } 10290 mtx_unlock(&sc->reg_lock); 10291 if (rc != 0) 10292 break; 10293 10294 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10295 /* Inner header VNI mask */ 10296 vnix = ((data2 & F_DATAVIDH2) << 23) | 10297 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10298 } else 10299 vnix = 0; 10300 10301 if (tcamx & tcamy) 10302 continue; 10303 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10304 10305 mtx_lock(&sc->reg_lock); 10306 if (hw_off_limits(sc)) 10307 rc = ENXIO; 10308 else { 10309 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10310 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10311 } 10312 mtx_unlock(&sc->reg_lock); 10313 if (rc != 0) 10314 break; 10315 10316 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10317 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10318 "%012jx %06x %06x - - %3c" 10319 " I %4x %3c %#x%4u%4d", i, addr[0], 10320 addr[1], addr[2], addr[3], addr[4], addr[5], 10321 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10322 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10323 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10324 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10325 } else { 10326 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10327 "%012jx - - ", i, addr[0], addr[1], 10328 addr[2], addr[3], addr[4], addr[5], 10329 (uintmax_t)mask); 10330 10331 if (vlan_vld) 10332 sbuf_printf(sb, "%4u Y ", ivlan); 10333 else 10334 sbuf_printf(sb, " - N "); 10335 10336 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10337 lookup_type ? 'I' : 'O', port_num, 10338 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10339 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10340 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10341 } 10342 10343 10344 if (cls_lo & F_T6_REPLICATE) { 10345 struct fw_ldst_cmd ldst_cmd; 10346 10347 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10348 ldst_cmd.op_to_addrspace = 10349 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10350 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10351 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10352 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10353 ldst_cmd.u.mps.rplc.fid_idx = 10354 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10355 V_FW_LDST_CMD_IDX(i)); 10356 10357 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10358 "t6mps"); 10359 if (rc) 10360 break; 10361 if (hw_off_limits(sc)) 10362 rc = ENXIO; 10363 else 10364 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10365 sizeof(ldst_cmd), &ldst_cmd); 10366 end_synchronized_op(sc, 0); 10367 if (rc != 0) 10368 break; 10369 else { 10370 sbuf_printf(sb, " %08x %08x %08x %08x" 10371 " %08x %08x %08x %08x", 10372 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10373 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10374 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10375 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10376 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10377 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10378 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10379 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10380 } 10381 } else 10382 sbuf_printf(sb, "%72s", ""); 10383 10384 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10385 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10386 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10387 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10388 } 10389 10390 if (rc) 10391 (void) sbuf_finish(sb); 10392 else 10393 rc = sbuf_finish(sb); 10394 sbuf_delete(sb); 10395 10396 return (rc); 10397 } 10398 10399 static int 10400 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10401 { 10402 struct adapter *sc = arg1; 10403 struct sbuf *sb; 10404 int rc; 10405 uint16_t mtus[NMTUS]; 10406 10407 rc = sysctl_wire_old_buffer(req, 0); 10408 if (rc != 0) 10409 return (rc); 10410 10411 mtx_lock(&sc->reg_lock); 10412 if (hw_off_limits(sc)) 10413 rc = ENXIO; 10414 else 10415 t4_read_mtu_tbl(sc, mtus, NULL); 10416 mtx_unlock(&sc->reg_lock); 10417 if (rc != 0) 10418 return (rc); 10419 10420 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10421 if (sb == NULL) 10422 return (ENOMEM); 10423 10424 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10425 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10426 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10427 mtus[14], mtus[15]); 10428 10429 rc = sbuf_finish(sb); 10430 sbuf_delete(sb); 10431 10432 return (rc); 10433 } 10434 10435 static int 10436 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10437 { 10438 struct adapter *sc = arg1; 10439 struct sbuf *sb; 10440 int rc, i; 10441 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10442 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10443 static const char *tx_stats[MAX_PM_NSTATS] = { 10444 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10445 "Tx FIFO wait", NULL, "Tx latency" 10446 }; 10447 static const char *rx_stats[MAX_PM_NSTATS] = { 10448 "Read:", "Write bypass:", "Write mem:", "Flush:", 10449 "Rx FIFO wait", NULL, "Rx latency" 10450 }; 10451 10452 rc = sysctl_wire_old_buffer(req, 0); 10453 if (rc != 0) 10454 return (rc); 10455 10456 mtx_lock(&sc->reg_lock); 10457 if (hw_off_limits(sc)) 10458 rc = ENXIO; 10459 else { 10460 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10461 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10462 } 10463 mtx_unlock(&sc->reg_lock); 10464 if (rc != 0) 10465 return (rc); 10466 10467 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10468 if (sb == NULL) 10469 return (ENOMEM); 10470 10471 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10472 for (i = 0; i < 4; i++) { 10473 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10474 tx_cyc[i]); 10475 } 10476 10477 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10478 for (i = 0; i < 4; i++) { 10479 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10480 rx_cyc[i]); 10481 } 10482 10483 if (chip_id(sc) > CHELSIO_T5) { 10484 sbuf_printf(sb, 10485 "\n Total wait Total occupancy"); 10486 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10487 tx_cyc[i]); 10488 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10489 rx_cyc[i]); 10490 10491 i += 2; 10492 MPASS(i < nitems(tx_stats)); 10493 10494 sbuf_printf(sb, 10495 "\n Reads Total wait"); 10496 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10497 tx_cyc[i]); 10498 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10499 rx_cyc[i]); 10500 } 10501 10502 rc = sbuf_finish(sb); 10503 sbuf_delete(sb); 10504 10505 return (rc); 10506 } 10507 10508 static int 10509 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10510 { 10511 struct adapter *sc = arg1; 10512 struct sbuf *sb; 10513 int rc; 10514 struct tp_rdma_stats stats; 10515 10516 rc = sysctl_wire_old_buffer(req, 0); 10517 if (rc != 0) 10518 return (rc); 10519 10520 mtx_lock(&sc->reg_lock); 10521 if (hw_off_limits(sc)) 10522 rc = ENXIO; 10523 else 10524 t4_tp_get_rdma_stats(sc, &stats, 0); 10525 mtx_unlock(&sc->reg_lock); 10526 if (rc != 0) 10527 return (rc); 10528 10529 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10530 if (sb == NULL) 10531 return (ENOMEM); 10532 10533 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10534 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10535 10536 rc = sbuf_finish(sb); 10537 sbuf_delete(sb); 10538 10539 return (rc); 10540 } 10541 10542 static int 10543 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10544 { 10545 struct adapter *sc = arg1; 10546 struct sbuf *sb; 10547 int rc; 10548 struct tp_tcp_stats v4, v6; 10549 10550 rc = sysctl_wire_old_buffer(req, 0); 10551 if (rc != 0) 10552 return (rc); 10553 10554 mtx_lock(&sc->reg_lock); 10555 if (hw_off_limits(sc)) 10556 rc = ENXIO; 10557 else 10558 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10559 mtx_unlock(&sc->reg_lock); 10560 if (rc != 0) 10561 return (rc); 10562 10563 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10564 if (sb == NULL) 10565 return (ENOMEM); 10566 10567 sbuf_printf(sb, 10568 " IP IPv6\n"); 10569 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10570 v4.tcp_out_rsts, v6.tcp_out_rsts); 10571 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10572 v4.tcp_in_segs, v6.tcp_in_segs); 10573 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10574 v4.tcp_out_segs, v6.tcp_out_segs); 10575 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10576 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10577 10578 rc = sbuf_finish(sb); 10579 sbuf_delete(sb); 10580 10581 return (rc); 10582 } 10583 10584 static int 10585 sysctl_tids(SYSCTL_HANDLER_ARGS) 10586 { 10587 struct adapter *sc = arg1; 10588 struct sbuf *sb; 10589 int rc; 10590 uint32_t x, y; 10591 struct tid_info *t = &sc->tids; 10592 10593 rc = sysctl_wire_old_buffer(req, 0); 10594 if (rc != 0) 10595 return (rc); 10596 10597 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10598 if (sb == NULL) 10599 return (ENOMEM); 10600 10601 if (t->natids) { 10602 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10603 t->atids_in_use); 10604 } 10605 10606 if (t->nhpftids) { 10607 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10608 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10609 } 10610 10611 if (t->ntids) { 10612 bool hashen = false; 10613 10614 mtx_lock(&sc->reg_lock); 10615 if (hw_off_limits(sc)) 10616 rc = ENXIO; 10617 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10618 hashen = true; 10619 if (chip_id(sc) <= CHELSIO_T5) { 10620 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10621 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10622 } else { 10623 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10624 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10625 } 10626 } 10627 mtx_unlock(&sc->reg_lock); 10628 if (rc != 0) 10629 goto done; 10630 10631 sbuf_printf(sb, "TID range: "); 10632 if (hashen) { 10633 if (x) 10634 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10635 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10636 } else { 10637 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10638 t->ntids - 1); 10639 } 10640 sbuf_printf(sb, ", in use: %u\n", 10641 atomic_load_acq_int(&t->tids_in_use)); 10642 } 10643 10644 if (t->nstids) { 10645 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10646 t->stid_base + t->nstids - 1, t->stids_in_use); 10647 } 10648 10649 if (t->nftids) { 10650 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10651 t->ftid_end, t->ftids_in_use); 10652 } 10653 10654 if (t->netids) { 10655 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10656 t->etid_base + t->netids - 1, t->etids_in_use); 10657 } 10658 10659 mtx_lock(&sc->reg_lock); 10660 if (hw_off_limits(sc)) 10661 rc = ENXIO; 10662 else { 10663 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10664 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10665 } 10666 mtx_unlock(&sc->reg_lock); 10667 if (rc != 0) 10668 goto done; 10669 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10670 done: 10671 if (rc == 0) 10672 rc = sbuf_finish(sb); 10673 else 10674 (void)sbuf_finish(sb); 10675 sbuf_delete(sb); 10676 10677 return (rc); 10678 } 10679 10680 static int 10681 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10682 { 10683 struct adapter *sc = arg1; 10684 struct sbuf *sb; 10685 int rc; 10686 struct tp_err_stats stats; 10687 10688 rc = sysctl_wire_old_buffer(req, 0); 10689 if (rc != 0) 10690 return (rc); 10691 10692 mtx_lock(&sc->reg_lock); 10693 if (hw_off_limits(sc)) 10694 rc = ENXIO; 10695 else 10696 t4_tp_get_err_stats(sc, &stats, 0); 10697 mtx_unlock(&sc->reg_lock); 10698 if (rc != 0) 10699 return (rc); 10700 10701 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10702 if (sb == NULL) 10703 return (ENOMEM); 10704 10705 if (sc->chip_params->nchan > 2) { 10706 sbuf_printf(sb, " channel 0 channel 1" 10707 " channel 2 channel 3\n"); 10708 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10709 stats.mac_in_errs[0], stats.mac_in_errs[1], 10710 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10711 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10712 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10713 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10714 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10715 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10716 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10717 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10718 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10719 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10720 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10721 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10722 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10723 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10724 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10725 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10726 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10727 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10728 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10729 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10730 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10731 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10732 } else { 10733 sbuf_printf(sb, " channel 0 channel 1\n"); 10734 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10735 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10736 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10737 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10738 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10739 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10740 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10741 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10742 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10743 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10744 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10745 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10746 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10747 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10748 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10749 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10750 } 10751 10752 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10753 stats.ofld_no_neigh, stats.ofld_cong_defer); 10754 10755 rc = sbuf_finish(sb); 10756 sbuf_delete(sb); 10757 10758 return (rc); 10759 } 10760 10761 static int 10762 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10763 { 10764 struct adapter *sc = arg1; 10765 struct sbuf *sb; 10766 int rc; 10767 struct tp_tnl_stats stats; 10768 10769 rc = sysctl_wire_old_buffer(req, 0); 10770 if (rc != 0) 10771 return(rc); 10772 10773 mtx_lock(&sc->reg_lock); 10774 if (hw_off_limits(sc)) 10775 rc = ENXIO; 10776 else 10777 t4_tp_get_tnl_stats(sc, &stats, 1); 10778 mtx_unlock(&sc->reg_lock); 10779 if (rc != 0) 10780 return (rc); 10781 10782 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10783 if (sb == NULL) 10784 return (ENOMEM); 10785 10786 if (sc->chip_params->nchan > 2) { 10787 sbuf_printf(sb, " channel 0 channel 1" 10788 " channel 2 channel 3\n"); 10789 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10790 stats.out_pkt[0], stats.out_pkt[1], 10791 stats.out_pkt[2], stats.out_pkt[3]); 10792 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10793 stats.in_pkt[0], stats.in_pkt[1], 10794 stats.in_pkt[2], stats.in_pkt[3]); 10795 } else { 10796 sbuf_printf(sb, " channel 0 channel 1\n"); 10797 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10798 stats.out_pkt[0], stats.out_pkt[1]); 10799 sbuf_printf(sb, "InPkts: %10u %10u", 10800 stats.in_pkt[0], stats.in_pkt[1]); 10801 } 10802 10803 rc = sbuf_finish(sb); 10804 sbuf_delete(sb); 10805 10806 return (rc); 10807 } 10808 10809 static int 10810 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10811 { 10812 struct adapter *sc = arg1; 10813 struct tp_params *tpp = &sc->params.tp; 10814 u_int mask; 10815 int rc; 10816 10817 mask = tpp->la_mask >> 16; 10818 rc = sysctl_handle_int(oidp, &mask, 0, req); 10819 if (rc != 0 || req->newptr == NULL) 10820 return (rc); 10821 if (mask > 0xffff) 10822 return (EINVAL); 10823 mtx_lock(&sc->reg_lock); 10824 if (hw_off_limits(sc)) 10825 rc = ENXIO; 10826 else { 10827 tpp->la_mask = mask << 16; 10828 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10829 tpp->la_mask); 10830 } 10831 mtx_unlock(&sc->reg_lock); 10832 10833 return (rc); 10834 } 10835 10836 struct field_desc { 10837 const char *name; 10838 u_int start; 10839 u_int width; 10840 }; 10841 10842 static void 10843 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10844 { 10845 char buf[32]; 10846 int line_size = 0; 10847 10848 while (f->name) { 10849 uint64_t mask = (1ULL << f->width) - 1; 10850 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10851 ((uintmax_t)v >> f->start) & mask); 10852 10853 if (line_size + len >= 79) { 10854 line_size = 8; 10855 sbuf_printf(sb, "\n "); 10856 } 10857 sbuf_printf(sb, "%s ", buf); 10858 line_size += len + 1; 10859 f++; 10860 } 10861 sbuf_printf(sb, "\n"); 10862 } 10863 10864 static const struct field_desc tp_la0[] = { 10865 { "RcfOpCodeOut", 60, 4 }, 10866 { "State", 56, 4 }, 10867 { "WcfState", 52, 4 }, 10868 { "RcfOpcSrcOut", 50, 2 }, 10869 { "CRxError", 49, 1 }, 10870 { "ERxError", 48, 1 }, 10871 { "SanityFailed", 47, 1 }, 10872 { "SpuriousMsg", 46, 1 }, 10873 { "FlushInputMsg", 45, 1 }, 10874 { "FlushInputCpl", 44, 1 }, 10875 { "RssUpBit", 43, 1 }, 10876 { "RssFilterHit", 42, 1 }, 10877 { "Tid", 32, 10 }, 10878 { "InitTcb", 31, 1 }, 10879 { "LineNumber", 24, 7 }, 10880 { "Emsg", 23, 1 }, 10881 { "EdataOut", 22, 1 }, 10882 { "Cmsg", 21, 1 }, 10883 { "CdataOut", 20, 1 }, 10884 { "EreadPdu", 19, 1 }, 10885 { "CreadPdu", 18, 1 }, 10886 { "TunnelPkt", 17, 1 }, 10887 { "RcfPeerFin", 16, 1 }, 10888 { "RcfReasonOut", 12, 4 }, 10889 { "TxCchannel", 10, 2 }, 10890 { "RcfTxChannel", 8, 2 }, 10891 { "RxEchannel", 6, 2 }, 10892 { "RcfRxChannel", 5, 1 }, 10893 { "RcfDataOutSrdy", 4, 1 }, 10894 { "RxDvld", 3, 1 }, 10895 { "RxOoDvld", 2, 1 }, 10896 { "RxCongestion", 1, 1 }, 10897 { "TxCongestion", 0, 1 }, 10898 { NULL } 10899 }; 10900 10901 static const struct field_desc tp_la1[] = { 10902 { "CplCmdIn", 56, 8 }, 10903 { "CplCmdOut", 48, 8 }, 10904 { "ESynOut", 47, 1 }, 10905 { "EAckOut", 46, 1 }, 10906 { "EFinOut", 45, 1 }, 10907 { "ERstOut", 44, 1 }, 10908 { "SynIn", 43, 1 }, 10909 { "AckIn", 42, 1 }, 10910 { "FinIn", 41, 1 }, 10911 { "RstIn", 40, 1 }, 10912 { "DataIn", 39, 1 }, 10913 { "DataInVld", 38, 1 }, 10914 { "PadIn", 37, 1 }, 10915 { "RxBufEmpty", 36, 1 }, 10916 { "RxDdp", 35, 1 }, 10917 { "RxFbCongestion", 34, 1 }, 10918 { "TxFbCongestion", 33, 1 }, 10919 { "TxPktSumSrdy", 32, 1 }, 10920 { "RcfUlpType", 28, 4 }, 10921 { "Eread", 27, 1 }, 10922 { "Ebypass", 26, 1 }, 10923 { "Esave", 25, 1 }, 10924 { "Static0", 24, 1 }, 10925 { "Cread", 23, 1 }, 10926 { "Cbypass", 22, 1 }, 10927 { "Csave", 21, 1 }, 10928 { "CPktOut", 20, 1 }, 10929 { "RxPagePoolFull", 18, 2 }, 10930 { "RxLpbkPkt", 17, 1 }, 10931 { "TxLpbkPkt", 16, 1 }, 10932 { "RxVfValid", 15, 1 }, 10933 { "SynLearned", 14, 1 }, 10934 { "SetDelEntry", 13, 1 }, 10935 { "SetInvEntry", 12, 1 }, 10936 { "CpcmdDvld", 11, 1 }, 10937 { "CpcmdSave", 10, 1 }, 10938 { "RxPstructsFull", 8, 2 }, 10939 { "EpcmdDvld", 7, 1 }, 10940 { "EpcmdFlush", 6, 1 }, 10941 { "EpcmdTrimPrefix", 5, 1 }, 10942 { "EpcmdTrimPostfix", 4, 1 }, 10943 { "ERssIp4Pkt", 3, 1 }, 10944 { "ERssIp6Pkt", 2, 1 }, 10945 { "ERssTcpUdpPkt", 1, 1 }, 10946 { "ERssFceFipPkt", 0, 1 }, 10947 { NULL } 10948 }; 10949 10950 static const struct field_desc tp_la2[] = { 10951 { "CplCmdIn", 56, 8 }, 10952 { "MpsVfVld", 55, 1 }, 10953 { "MpsPf", 52, 3 }, 10954 { "MpsVf", 44, 8 }, 10955 { "SynIn", 43, 1 }, 10956 { "AckIn", 42, 1 }, 10957 { "FinIn", 41, 1 }, 10958 { "RstIn", 40, 1 }, 10959 { "DataIn", 39, 1 }, 10960 { "DataInVld", 38, 1 }, 10961 { "PadIn", 37, 1 }, 10962 { "RxBufEmpty", 36, 1 }, 10963 { "RxDdp", 35, 1 }, 10964 { "RxFbCongestion", 34, 1 }, 10965 { "TxFbCongestion", 33, 1 }, 10966 { "TxPktSumSrdy", 32, 1 }, 10967 { "RcfUlpType", 28, 4 }, 10968 { "Eread", 27, 1 }, 10969 { "Ebypass", 26, 1 }, 10970 { "Esave", 25, 1 }, 10971 { "Static0", 24, 1 }, 10972 { "Cread", 23, 1 }, 10973 { "Cbypass", 22, 1 }, 10974 { "Csave", 21, 1 }, 10975 { "CPktOut", 20, 1 }, 10976 { "RxPagePoolFull", 18, 2 }, 10977 { "RxLpbkPkt", 17, 1 }, 10978 { "TxLpbkPkt", 16, 1 }, 10979 { "RxVfValid", 15, 1 }, 10980 { "SynLearned", 14, 1 }, 10981 { "SetDelEntry", 13, 1 }, 10982 { "SetInvEntry", 12, 1 }, 10983 { "CpcmdDvld", 11, 1 }, 10984 { "CpcmdSave", 10, 1 }, 10985 { "RxPstructsFull", 8, 2 }, 10986 { "EpcmdDvld", 7, 1 }, 10987 { "EpcmdFlush", 6, 1 }, 10988 { "EpcmdTrimPrefix", 5, 1 }, 10989 { "EpcmdTrimPostfix", 4, 1 }, 10990 { "ERssIp4Pkt", 3, 1 }, 10991 { "ERssIp6Pkt", 2, 1 }, 10992 { "ERssTcpUdpPkt", 1, 1 }, 10993 { "ERssFceFipPkt", 0, 1 }, 10994 { NULL } 10995 }; 10996 10997 static void 10998 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10999 { 11000 11001 field_desc_show(sb, *p, tp_la0); 11002 } 11003 11004 static void 11005 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11006 { 11007 11008 if (idx) 11009 sbuf_printf(sb, "\n"); 11010 field_desc_show(sb, p[0], tp_la0); 11011 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11012 field_desc_show(sb, p[1], tp_la0); 11013 } 11014 11015 static void 11016 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11017 { 11018 11019 if (idx) 11020 sbuf_printf(sb, "\n"); 11021 field_desc_show(sb, p[0], tp_la0); 11022 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11023 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11024 } 11025 11026 static int 11027 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11028 { 11029 struct adapter *sc = arg1; 11030 struct sbuf *sb; 11031 uint64_t *buf, *p; 11032 int rc; 11033 u_int i, inc; 11034 void (*show_func)(struct sbuf *, uint64_t *, int); 11035 11036 rc = sysctl_wire_old_buffer(req, 0); 11037 if (rc != 0) 11038 return (rc); 11039 11040 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11041 if (sb == NULL) 11042 return (ENOMEM); 11043 11044 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11045 11046 mtx_lock(&sc->reg_lock); 11047 if (hw_off_limits(sc)) 11048 rc = ENXIO; 11049 else { 11050 t4_tp_read_la(sc, buf, NULL); 11051 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11052 case 2: 11053 inc = 2; 11054 show_func = tp_la_show2; 11055 break; 11056 case 3: 11057 inc = 2; 11058 show_func = tp_la_show3; 11059 break; 11060 default: 11061 inc = 1; 11062 show_func = tp_la_show; 11063 } 11064 } 11065 mtx_unlock(&sc->reg_lock); 11066 if (rc != 0) 11067 goto done; 11068 11069 p = buf; 11070 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11071 (*show_func)(sb, p, i); 11072 rc = sbuf_finish(sb); 11073 done: 11074 sbuf_delete(sb); 11075 free(buf, M_CXGBE); 11076 return (rc); 11077 } 11078 11079 static int 11080 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11081 { 11082 struct adapter *sc = arg1; 11083 struct sbuf *sb; 11084 int rc; 11085 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11086 11087 rc = sysctl_wire_old_buffer(req, 0); 11088 if (rc != 0) 11089 return (rc); 11090 11091 mtx_lock(&sc->reg_lock); 11092 if (hw_off_limits(sc)) 11093 rc = ENXIO; 11094 else 11095 t4_get_chan_txrate(sc, nrate, orate); 11096 mtx_unlock(&sc->reg_lock); 11097 if (rc != 0) 11098 return (rc); 11099 11100 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11101 if (sb == NULL) 11102 return (ENOMEM); 11103 11104 if (sc->chip_params->nchan > 2) { 11105 sbuf_printf(sb, " channel 0 channel 1" 11106 " channel 2 channel 3\n"); 11107 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11108 nrate[0], nrate[1], nrate[2], nrate[3]); 11109 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11110 orate[0], orate[1], orate[2], orate[3]); 11111 } else { 11112 sbuf_printf(sb, " channel 0 channel 1\n"); 11113 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11114 nrate[0], nrate[1]); 11115 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11116 orate[0], orate[1]); 11117 } 11118 11119 rc = sbuf_finish(sb); 11120 sbuf_delete(sb); 11121 11122 return (rc); 11123 } 11124 11125 static int 11126 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11127 { 11128 struct adapter *sc = arg1; 11129 struct sbuf *sb; 11130 uint32_t *buf, *p; 11131 int rc, i; 11132 11133 rc = sysctl_wire_old_buffer(req, 0); 11134 if (rc != 0) 11135 return (rc); 11136 11137 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11138 if (sb == NULL) 11139 return (ENOMEM); 11140 11141 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11142 M_ZERO | M_WAITOK); 11143 11144 mtx_lock(&sc->reg_lock); 11145 if (hw_off_limits(sc)) 11146 rc = ENXIO; 11147 else 11148 t4_ulprx_read_la(sc, buf); 11149 mtx_unlock(&sc->reg_lock); 11150 if (rc != 0) 11151 goto done; 11152 11153 p = buf; 11154 sbuf_printf(sb, " Pcmd Type Message" 11155 " Data"); 11156 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11157 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11158 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11159 } 11160 rc = sbuf_finish(sb); 11161 done: 11162 sbuf_delete(sb); 11163 free(buf, M_CXGBE); 11164 return (rc); 11165 } 11166 11167 static int 11168 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11169 { 11170 struct adapter *sc = arg1; 11171 struct sbuf *sb; 11172 int rc; 11173 uint32_t cfg, s1, s2; 11174 11175 MPASS(chip_id(sc) >= CHELSIO_T5); 11176 11177 rc = sysctl_wire_old_buffer(req, 0); 11178 if (rc != 0) 11179 return (rc); 11180 11181 mtx_lock(&sc->reg_lock); 11182 if (hw_off_limits(sc)) 11183 rc = ENXIO; 11184 else { 11185 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11186 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11187 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11188 } 11189 mtx_unlock(&sc->reg_lock); 11190 if (rc != 0) 11191 return (rc); 11192 11193 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11194 if (sb == NULL) 11195 return (ENOMEM); 11196 11197 if (G_STATSOURCE_T5(cfg) == 7) { 11198 int mode; 11199 11200 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11201 if (mode == 0) 11202 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11203 else if (mode == 1) 11204 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11205 else 11206 sbuf_printf(sb, "unknown mode %d", mode); 11207 } 11208 rc = sbuf_finish(sb); 11209 sbuf_delete(sb); 11210 11211 return (rc); 11212 } 11213 11214 static int 11215 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11216 { 11217 struct adapter *sc = arg1; 11218 enum cpu_sets op = arg2; 11219 cpuset_t cpuset; 11220 struct sbuf *sb; 11221 int i, rc; 11222 11223 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11224 11225 CPU_ZERO(&cpuset); 11226 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11227 if (rc != 0) 11228 return (rc); 11229 11230 rc = sysctl_wire_old_buffer(req, 0); 11231 if (rc != 0) 11232 return (rc); 11233 11234 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11235 if (sb == NULL) 11236 return (ENOMEM); 11237 11238 CPU_FOREACH(i) 11239 sbuf_printf(sb, "%d ", i); 11240 rc = sbuf_finish(sb); 11241 sbuf_delete(sb); 11242 11243 return (rc); 11244 } 11245 11246 static int 11247 sysctl_reset(SYSCTL_HANDLER_ARGS) 11248 { 11249 struct adapter *sc = arg1; 11250 u_int val; 11251 int rc; 11252 11253 val = atomic_load_int(&sc->num_resets); 11254 rc = sysctl_handle_int(oidp, &val, 0, req); 11255 if (rc != 0 || req->newptr == NULL) 11256 return (rc); 11257 11258 if (val == 0) { 11259 /* Zero out the counter that tracks reset. */ 11260 atomic_store_int(&sc->num_resets, 0); 11261 return (0); 11262 } 11263 11264 if (val != 1) 11265 return (EINVAL); /* 0 or 1 are the only legal values */ 11266 11267 if (hw_off_limits(sc)) /* harmless race */ 11268 return (EALREADY); 11269 11270 taskqueue_enqueue(reset_tq, &sc->reset_task); 11271 return (0); 11272 } 11273 11274 #ifdef TCP_OFFLOAD 11275 static int 11276 sysctl_tls(SYSCTL_HANDLER_ARGS) 11277 { 11278 struct adapter *sc = arg1; 11279 int i, j, v, rc; 11280 struct vi_info *vi; 11281 11282 v = sc->tt.tls; 11283 rc = sysctl_handle_int(oidp, &v, 0, req); 11284 if (rc != 0 || req->newptr == NULL) 11285 return (rc); 11286 11287 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11288 return (ENOTSUP); 11289 11290 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11291 if (rc) 11292 return (rc); 11293 if (hw_off_limits(sc)) 11294 rc = ENXIO; 11295 else { 11296 sc->tt.tls = !!v; 11297 for_each_port(sc, i) { 11298 for_each_vi(sc->port[i], j, vi) { 11299 if (vi->flags & VI_INIT_DONE) 11300 t4_update_fl_bufsize(vi->ifp); 11301 } 11302 } 11303 } 11304 end_synchronized_op(sc, 0); 11305 11306 return (rc); 11307 11308 } 11309 11310 static int 11311 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 11312 { 11313 struct adapter *sc = arg1; 11314 int *old_ports, *new_ports; 11315 int i, new_count, rc; 11316 11317 if (req->newptr == NULL && req->oldptr == NULL) 11318 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 11319 sizeof(sc->tt.tls_rx_ports[0]))); 11320 11321 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 11322 if (rc) 11323 return (rc); 11324 11325 if (hw_off_limits(sc)) { 11326 rc = ENXIO; 11327 goto done; 11328 } 11329 11330 if (sc->tt.num_tls_rx_ports == 0) { 11331 i = -1; 11332 rc = SYSCTL_OUT(req, &i, sizeof(i)); 11333 } else 11334 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 11335 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 11336 if (rc == 0 && req->newptr != NULL) { 11337 new_count = req->newlen / sizeof(new_ports[0]); 11338 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 11339 M_WAITOK); 11340 rc = SYSCTL_IN(req, new_ports, new_count * 11341 sizeof(new_ports[0])); 11342 if (rc) 11343 goto err; 11344 11345 /* Allow setting to a single '-1' to clear the list. */ 11346 if (new_count == 1 && new_ports[0] == -1) { 11347 ADAPTER_LOCK(sc); 11348 old_ports = sc->tt.tls_rx_ports; 11349 sc->tt.tls_rx_ports = NULL; 11350 sc->tt.num_tls_rx_ports = 0; 11351 ADAPTER_UNLOCK(sc); 11352 free(old_ports, M_CXGBE); 11353 } else { 11354 for (i = 0; i < new_count; i++) { 11355 if (new_ports[i] < 1 || 11356 new_ports[i] > IPPORT_MAX) { 11357 rc = EINVAL; 11358 goto err; 11359 } 11360 } 11361 11362 ADAPTER_LOCK(sc); 11363 old_ports = sc->tt.tls_rx_ports; 11364 sc->tt.tls_rx_ports = new_ports; 11365 sc->tt.num_tls_rx_ports = new_count; 11366 ADAPTER_UNLOCK(sc); 11367 free(old_ports, M_CXGBE); 11368 new_ports = NULL; 11369 } 11370 err: 11371 free(new_ports, M_CXGBE); 11372 } 11373 done: 11374 end_synchronized_op(sc, 0); 11375 return (rc); 11376 } 11377 11378 static int 11379 sysctl_tls_rx_timeout(SYSCTL_HANDLER_ARGS) 11380 { 11381 struct adapter *sc = arg1; 11382 int v, rc; 11383 11384 v = sc->tt.tls_rx_timeout; 11385 rc = sysctl_handle_int(oidp, &v, 0, req); 11386 if (rc != 0 || req->newptr == NULL) 11387 return (rc); 11388 11389 if (v < 0) 11390 return (EINVAL); 11391 11392 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11393 return (ENOTSUP); 11394 11395 sc->tt.tls_rx_timeout = v; 11396 11397 return (0); 11398 11399 } 11400 11401 static void 11402 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11403 { 11404 u_int rem = val % factor; 11405 11406 if (rem == 0) 11407 snprintf(buf, len, "%u", val / factor); 11408 else { 11409 while (rem % 10 == 0) 11410 rem /= 10; 11411 snprintf(buf, len, "%u.%u", val / factor, rem); 11412 } 11413 } 11414 11415 static int 11416 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11417 { 11418 struct adapter *sc = arg1; 11419 char buf[16]; 11420 u_int res, re; 11421 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11422 11423 mtx_lock(&sc->reg_lock); 11424 if (hw_off_limits(sc)) 11425 res = (u_int)-1; 11426 else 11427 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11428 mtx_unlock(&sc->reg_lock); 11429 if (res == (u_int)-1) 11430 return (ENXIO); 11431 11432 switch (arg2) { 11433 case 0: 11434 /* timer_tick */ 11435 re = G_TIMERRESOLUTION(res); 11436 break; 11437 case 1: 11438 /* TCP timestamp tick */ 11439 re = G_TIMESTAMPRESOLUTION(res); 11440 break; 11441 case 2: 11442 /* DACK tick */ 11443 re = G_DELAYEDACKRESOLUTION(res); 11444 break; 11445 default: 11446 return (EDOOFUS); 11447 } 11448 11449 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11450 11451 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11452 } 11453 11454 static int 11455 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11456 { 11457 struct adapter *sc = arg1; 11458 int rc; 11459 u_int dack_tmr, dack_re, v; 11460 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11461 11462 mtx_lock(&sc->reg_lock); 11463 if (hw_off_limits(sc)) 11464 rc = ENXIO; 11465 else { 11466 rc = 0; 11467 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11468 A_TP_TIMER_RESOLUTION)); 11469 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11470 } 11471 mtx_unlock(&sc->reg_lock); 11472 if (rc != 0) 11473 return (rc); 11474 11475 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11476 11477 return (sysctl_handle_int(oidp, &v, 0, req)); 11478 } 11479 11480 static int 11481 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11482 { 11483 struct adapter *sc = arg1; 11484 int rc, reg = arg2; 11485 u_int tre; 11486 u_long tp_tick_us, v; 11487 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11488 11489 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11490 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11491 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11492 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11493 11494 mtx_lock(&sc->reg_lock); 11495 if (hw_off_limits(sc)) 11496 rc = ENXIO; 11497 else { 11498 rc = 0; 11499 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11500 tp_tick_us = (cclk_ps << tre) / 1000000; 11501 if (reg == A_TP_INIT_SRTT) 11502 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11503 else 11504 v = tp_tick_us * t4_read_reg(sc, reg); 11505 } 11506 mtx_unlock(&sc->reg_lock); 11507 if (rc != 0) 11508 return (rc); 11509 else 11510 return (sysctl_handle_long(oidp, &v, 0, req)); 11511 } 11512 11513 /* 11514 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11515 * passed to this function. 11516 */ 11517 static int 11518 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11519 { 11520 struct adapter *sc = arg1; 11521 int rc, idx = arg2; 11522 u_int v; 11523 11524 MPASS(idx >= 0 && idx <= 24); 11525 11526 mtx_lock(&sc->reg_lock); 11527 if (hw_off_limits(sc)) 11528 rc = ENXIO; 11529 else { 11530 rc = 0; 11531 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11532 } 11533 mtx_unlock(&sc->reg_lock); 11534 if (rc != 0) 11535 return (rc); 11536 else 11537 return (sysctl_handle_int(oidp, &v, 0, req)); 11538 } 11539 11540 static int 11541 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11542 { 11543 struct adapter *sc = arg1; 11544 int rc, idx = arg2; 11545 u_int shift, v, r; 11546 11547 MPASS(idx >= 0 && idx < 16); 11548 11549 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11550 shift = (idx & 3) << 3; 11551 mtx_lock(&sc->reg_lock); 11552 if (hw_off_limits(sc)) 11553 rc = ENXIO; 11554 else { 11555 rc = 0; 11556 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11557 } 11558 mtx_unlock(&sc->reg_lock); 11559 if (rc != 0) 11560 return (rc); 11561 else 11562 return (sysctl_handle_int(oidp, &v, 0, req)); 11563 } 11564 11565 static int 11566 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11567 { 11568 struct vi_info *vi = arg1; 11569 struct adapter *sc = vi->adapter; 11570 int idx, rc, i; 11571 struct sge_ofld_rxq *ofld_rxq; 11572 uint8_t v; 11573 11574 idx = vi->ofld_tmr_idx; 11575 11576 rc = sysctl_handle_int(oidp, &idx, 0, req); 11577 if (rc != 0 || req->newptr == NULL) 11578 return (rc); 11579 11580 if (idx < 0 || idx >= SGE_NTIMERS) 11581 return (EINVAL); 11582 11583 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11584 "t4otmr"); 11585 if (rc) 11586 return (rc); 11587 11588 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11589 for_each_ofld_rxq(vi, i, ofld_rxq) { 11590 #ifdef atomic_store_rel_8 11591 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11592 #else 11593 ofld_rxq->iq.intr_params = v; 11594 #endif 11595 } 11596 vi->ofld_tmr_idx = idx; 11597 11598 end_synchronized_op(sc, LOCK_HELD); 11599 return (0); 11600 } 11601 11602 static int 11603 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11604 { 11605 struct vi_info *vi = arg1; 11606 struct adapter *sc = vi->adapter; 11607 int idx, rc; 11608 11609 idx = vi->ofld_pktc_idx; 11610 11611 rc = sysctl_handle_int(oidp, &idx, 0, req); 11612 if (rc != 0 || req->newptr == NULL) 11613 return (rc); 11614 11615 if (idx < -1 || idx >= SGE_NCOUNTERS) 11616 return (EINVAL); 11617 11618 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11619 "t4opktc"); 11620 if (rc) 11621 return (rc); 11622 11623 if (vi->flags & VI_INIT_DONE) 11624 rc = EBUSY; /* cannot be changed once the queues are created */ 11625 else 11626 vi->ofld_pktc_idx = idx; 11627 11628 end_synchronized_op(sc, LOCK_HELD); 11629 return (rc); 11630 } 11631 #endif 11632 11633 static int 11634 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11635 { 11636 int rc; 11637 11638 if (cntxt->cid > M_CTXTQID) 11639 return (EINVAL); 11640 11641 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11642 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11643 return (EINVAL); 11644 11645 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11646 if (rc) 11647 return (rc); 11648 11649 if (hw_off_limits(sc)) { 11650 rc = ENXIO; 11651 goto done; 11652 } 11653 11654 if (sc->flags & FW_OK) { 11655 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11656 &cntxt->data[0]); 11657 if (rc == 0) 11658 goto done; 11659 } 11660 11661 /* 11662 * Read via firmware failed or wasn't even attempted. Read directly via 11663 * the backdoor. 11664 */ 11665 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11666 done: 11667 end_synchronized_op(sc, 0); 11668 return (rc); 11669 } 11670 11671 static int 11672 load_fw(struct adapter *sc, struct t4_data *fw) 11673 { 11674 int rc; 11675 uint8_t *fw_data; 11676 11677 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11678 if (rc) 11679 return (rc); 11680 11681 if (hw_off_limits(sc)) { 11682 rc = ENXIO; 11683 goto done; 11684 } 11685 11686 /* 11687 * The firmware, with the sole exception of the memory parity error 11688 * handler, runs from memory and not flash. It is almost always safe to 11689 * install a new firmware on a running system. Just set bit 1 in 11690 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11691 */ 11692 if (sc->flags & FULL_INIT_DONE && 11693 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11694 rc = EBUSY; 11695 goto done; 11696 } 11697 11698 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11699 11700 rc = copyin(fw->data, fw_data, fw->len); 11701 if (rc == 0) 11702 rc = -t4_load_fw(sc, fw_data, fw->len); 11703 11704 free(fw_data, M_CXGBE); 11705 done: 11706 end_synchronized_op(sc, 0); 11707 return (rc); 11708 } 11709 11710 static int 11711 load_cfg(struct adapter *sc, struct t4_data *cfg) 11712 { 11713 int rc; 11714 uint8_t *cfg_data = NULL; 11715 11716 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11717 if (rc) 11718 return (rc); 11719 11720 if (hw_off_limits(sc)) { 11721 rc = ENXIO; 11722 goto done; 11723 } 11724 11725 if (cfg->len == 0) { 11726 /* clear */ 11727 rc = -t4_load_cfg(sc, NULL, 0); 11728 goto done; 11729 } 11730 11731 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11732 11733 rc = copyin(cfg->data, cfg_data, cfg->len); 11734 if (rc == 0) 11735 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11736 11737 free(cfg_data, M_CXGBE); 11738 done: 11739 end_synchronized_op(sc, 0); 11740 return (rc); 11741 } 11742 11743 static int 11744 load_boot(struct adapter *sc, struct t4_bootrom *br) 11745 { 11746 int rc; 11747 uint8_t *br_data = NULL; 11748 u_int offset; 11749 11750 if (br->len > 1024 * 1024) 11751 return (EFBIG); 11752 11753 if (br->pf_offset == 0) { 11754 /* pfidx */ 11755 if (br->pfidx_addr > 7) 11756 return (EINVAL); 11757 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11758 A_PCIE_PF_EXPROM_OFST))); 11759 } else if (br->pf_offset == 1) { 11760 /* offset */ 11761 offset = G_OFFSET(br->pfidx_addr); 11762 } else { 11763 return (EINVAL); 11764 } 11765 11766 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11767 if (rc) 11768 return (rc); 11769 11770 if (hw_off_limits(sc)) { 11771 rc = ENXIO; 11772 goto done; 11773 } 11774 11775 if (br->len == 0) { 11776 /* clear */ 11777 rc = -t4_load_boot(sc, NULL, offset, 0); 11778 goto done; 11779 } 11780 11781 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11782 11783 rc = copyin(br->data, br_data, br->len); 11784 if (rc == 0) 11785 rc = -t4_load_boot(sc, br_data, offset, br->len); 11786 11787 free(br_data, M_CXGBE); 11788 done: 11789 end_synchronized_op(sc, 0); 11790 return (rc); 11791 } 11792 11793 static int 11794 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11795 { 11796 int rc; 11797 uint8_t *bc_data = NULL; 11798 11799 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11800 if (rc) 11801 return (rc); 11802 11803 if (hw_off_limits(sc)) { 11804 rc = ENXIO; 11805 goto done; 11806 } 11807 11808 if (bc->len == 0) { 11809 /* clear */ 11810 rc = -t4_load_bootcfg(sc, NULL, 0); 11811 goto done; 11812 } 11813 11814 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11815 11816 rc = copyin(bc->data, bc_data, bc->len); 11817 if (rc == 0) 11818 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11819 11820 free(bc_data, M_CXGBE); 11821 done: 11822 end_synchronized_op(sc, 0); 11823 return (rc); 11824 } 11825 11826 static int 11827 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11828 { 11829 int rc; 11830 struct cudbg_init *cudbg; 11831 void *handle, *buf; 11832 11833 /* buf is large, don't block if no memory is available */ 11834 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11835 if (buf == NULL) 11836 return (ENOMEM); 11837 11838 handle = cudbg_alloc_handle(); 11839 if (handle == NULL) { 11840 rc = ENOMEM; 11841 goto done; 11842 } 11843 11844 cudbg = cudbg_get_init(handle); 11845 cudbg->adap = sc; 11846 cudbg->print = (cudbg_print_cb)printf; 11847 11848 #ifndef notyet 11849 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11850 __func__, dump->wr_flash, dump->len, dump->data); 11851 #endif 11852 11853 if (dump->wr_flash) 11854 cudbg->use_flash = 1; 11855 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11856 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11857 11858 rc = cudbg_collect(handle, buf, &dump->len); 11859 if (rc != 0) 11860 goto done; 11861 11862 rc = copyout(buf, dump->data, dump->len); 11863 done: 11864 cudbg_free_handle(handle); 11865 free(buf, M_CXGBE); 11866 return (rc); 11867 } 11868 11869 static void 11870 free_offload_policy(struct t4_offload_policy *op) 11871 { 11872 struct offload_rule *r; 11873 int i; 11874 11875 if (op == NULL) 11876 return; 11877 11878 r = &op->rule[0]; 11879 for (i = 0; i < op->nrules; i++, r++) { 11880 free(r->bpf_prog.bf_insns, M_CXGBE); 11881 } 11882 free(op->rule, M_CXGBE); 11883 free(op, M_CXGBE); 11884 } 11885 11886 static int 11887 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11888 { 11889 int i, rc, len; 11890 struct t4_offload_policy *op, *old; 11891 struct bpf_program *bf; 11892 const struct offload_settings *s; 11893 struct offload_rule *r; 11894 void *u; 11895 11896 if (!is_offload(sc)) 11897 return (ENODEV); 11898 11899 if (uop->nrules == 0) { 11900 /* Delete installed policies. */ 11901 op = NULL; 11902 goto set_policy; 11903 } else if (uop->nrules > 256) { /* arbitrary */ 11904 return (E2BIG); 11905 } 11906 11907 /* Copy userspace offload policy to kernel */ 11908 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11909 op->nrules = uop->nrules; 11910 len = op->nrules * sizeof(struct offload_rule); 11911 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11912 rc = copyin(uop->rule, op->rule, len); 11913 if (rc) { 11914 free(op->rule, M_CXGBE); 11915 free(op, M_CXGBE); 11916 return (rc); 11917 } 11918 11919 r = &op->rule[0]; 11920 for (i = 0; i < op->nrules; i++, r++) { 11921 11922 /* Validate open_type */ 11923 if (r->open_type != OPEN_TYPE_LISTEN && 11924 r->open_type != OPEN_TYPE_ACTIVE && 11925 r->open_type != OPEN_TYPE_PASSIVE && 11926 r->open_type != OPEN_TYPE_DONTCARE) { 11927 error: 11928 /* 11929 * Rules 0 to i have malloc'd filters that need to be 11930 * freed. Rules i+1 to nrules have userspace pointers 11931 * and should be left alone. 11932 */ 11933 op->nrules = i; 11934 free_offload_policy(op); 11935 return (rc); 11936 } 11937 11938 /* Validate settings */ 11939 s = &r->settings; 11940 if ((s->offload != 0 && s->offload != 1) || 11941 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11942 s->sched_class < -1 || 11943 s->sched_class >= sc->params.nsched_cls) { 11944 rc = EINVAL; 11945 goto error; 11946 } 11947 11948 bf = &r->bpf_prog; 11949 u = bf->bf_insns; /* userspace ptr */ 11950 bf->bf_insns = NULL; 11951 if (bf->bf_len == 0) { 11952 /* legal, matches everything */ 11953 continue; 11954 } 11955 len = bf->bf_len * sizeof(*bf->bf_insns); 11956 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11957 rc = copyin(u, bf->bf_insns, len); 11958 if (rc != 0) 11959 goto error; 11960 11961 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11962 rc = EINVAL; 11963 goto error; 11964 } 11965 } 11966 set_policy: 11967 rw_wlock(&sc->policy_lock); 11968 old = sc->policy; 11969 sc->policy = op; 11970 rw_wunlock(&sc->policy_lock); 11971 free_offload_policy(old); 11972 11973 return (0); 11974 } 11975 11976 #define MAX_READ_BUF_SIZE (128 * 1024) 11977 static int 11978 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11979 { 11980 uint32_t addr, remaining, n; 11981 uint32_t *buf; 11982 int rc; 11983 uint8_t *dst; 11984 11985 mtx_lock(&sc->reg_lock); 11986 if (hw_off_limits(sc)) 11987 rc = ENXIO; 11988 else 11989 rc = validate_mem_range(sc, mr->addr, mr->len); 11990 mtx_unlock(&sc->reg_lock); 11991 if (rc != 0) 11992 return (rc); 11993 11994 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11995 addr = mr->addr; 11996 remaining = mr->len; 11997 dst = (void *)mr->data; 11998 11999 while (remaining) { 12000 n = min(remaining, MAX_READ_BUF_SIZE); 12001 mtx_lock(&sc->reg_lock); 12002 if (hw_off_limits(sc)) 12003 rc = ENXIO; 12004 else 12005 read_via_memwin(sc, 2, addr, buf, n); 12006 mtx_unlock(&sc->reg_lock); 12007 if (rc != 0) 12008 break; 12009 12010 rc = copyout(buf, dst, n); 12011 if (rc != 0) 12012 break; 12013 12014 dst += n; 12015 remaining -= n; 12016 addr += n; 12017 } 12018 12019 free(buf, M_CXGBE); 12020 return (rc); 12021 } 12022 #undef MAX_READ_BUF_SIZE 12023 12024 static int 12025 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 12026 { 12027 int rc; 12028 12029 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 12030 return (EINVAL); 12031 12032 if (i2cd->len > sizeof(i2cd->data)) 12033 return (EFBIG); 12034 12035 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 12036 if (rc) 12037 return (rc); 12038 if (hw_off_limits(sc)) 12039 rc = ENXIO; 12040 else 12041 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 12042 i2cd->offset, i2cd->len, &i2cd->data[0]); 12043 end_synchronized_op(sc, 0); 12044 12045 return (rc); 12046 } 12047 12048 static int 12049 clear_stats(struct adapter *sc, u_int port_id) 12050 { 12051 int i, v, chan_map; 12052 struct port_info *pi; 12053 struct vi_info *vi; 12054 struct sge_rxq *rxq; 12055 struct sge_txq *txq; 12056 struct sge_wrq *wrq; 12057 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12058 struct sge_ofld_txq *ofld_txq; 12059 #endif 12060 #ifdef TCP_OFFLOAD 12061 struct sge_ofld_rxq *ofld_rxq; 12062 #endif 12063 12064 if (port_id >= sc->params.nports) 12065 return (EINVAL); 12066 pi = sc->port[port_id]; 12067 if (pi == NULL) 12068 return (EIO); 12069 12070 mtx_lock(&sc->reg_lock); 12071 if (!hw_off_limits(sc)) { 12072 /* MAC stats */ 12073 t4_clr_port_stats(sc, pi->tx_chan); 12074 if (is_t6(sc)) { 12075 if (pi->fcs_reg != -1) 12076 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12077 else 12078 pi->stats.rx_fcs_err = 0; 12079 } 12080 for_each_vi(pi, v, vi) { 12081 if (vi->flags & VI_INIT_DONE) 12082 t4_clr_vi_stats(sc, vi->vin); 12083 } 12084 chan_map = pi->rx_e_chan_map; 12085 v = 0; /* reuse */ 12086 while (chan_map) { 12087 i = ffs(chan_map) - 1; 12088 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 12089 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 12090 chan_map &= ~(1 << i); 12091 } 12092 } 12093 mtx_unlock(&sc->reg_lock); 12094 pi->tx_parse_error = 0; 12095 pi->tnl_cong_drops = 0; 12096 12097 /* 12098 * Since this command accepts a port, clear stats for 12099 * all VIs on this port. 12100 */ 12101 for_each_vi(pi, v, vi) { 12102 if (vi->flags & VI_INIT_DONE) { 12103 12104 for_each_rxq(vi, i, rxq) { 12105 #if defined(INET) || defined(INET6) 12106 rxq->lro.lro_queued = 0; 12107 rxq->lro.lro_flushed = 0; 12108 #endif 12109 rxq->rxcsum = 0; 12110 rxq->vlan_extraction = 0; 12111 rxq->vxlan_rxcsum = 0; 12112 12113 rxq->fl.cl_allocated = 0; 12114 rxq->fl.cl_recycled = 0; 12115 rxq->fl.cl_fast_recycled = 0; 12116 } 12117 12118 for_each_txq(vi, i, txq) { 12119 txq->txcsum = 0; 12120 txq->tso_wrs = 0; 12121 txq->vlan_insertion = 0; 12122 txq->imm_wrs = 0; 12123 txq->sgl_wrs = 0; 12124 txq->txpkt_wrs = 0; 12125 txq->txpkts0_wrs = 0; 12126 txq->txpkts1_wrs = 0; 12127 txq->txpkts0_pkts = 0; 12128 txq->txpkts1_pkts = 0; 12129 txq->txpkts_flush = 0; 12130 txq->raw_wrs = 0; 12131 txq->vxlan_tso_wrs = 0; 12132 txq->vxlan_txcsum = 0; 12133 txq->kern_tls_records = 0; 12134 txq->kern_tls_short = 0; 12135 txq->kern_tls_partial = 0; 12136 txq->kern_tls_full = 0; 12137 txq->kern_tls_octets = 0; 12138 txq->kern_tls_waste = 0; 12139 txq->kern_tls_options = 0; 12140 txq->kern_tls_header = 0; 12141 txq->kern_tls_fin = 0; 12142 txq->kern_tls_fin_short = 0; 12143 txq->kern_tls_cbc = 0; 12144 txq->kern_tls_gcm = 0; 12145 mp_ring_reset_stats(txq->r); 12146 } 12147 12148 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12149 for_each_ofld_txq(vi, i, ofld_txq) { 12150 ofld_txq->wrq.tx_wrs_direct = 0; 12151 ofld_txq->wrq.tx_wrs_copied = 0; 12152 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12153 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12154 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12155 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12156 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12157 } 12158 #endif 12159 #ifdef TCP_OFFLOAD 12160 for_each_ofld_rxq(vi, i, ofld_rxq) { 12161 ofld_rxq->fl.cl_allocated = 0; 12162 ofld_rxq->fl.cl_recycled = 0; 12163 ofld_rxq->fl.cl_fast_recycled = 0; 12164 counter_u64_zero( 12165 ofld_rxq->rx_iscsi_ddp_setup_ok); 12166 counter_u64_zero( 12167 ofld_rxq->rx_iscsi_ddp_setup_error); 12168 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12169 ofld_rxq->rx_iscsi_ddp_octets = 0; 12170 ofld_rxq->rx_iscsi_fl_pdus = 0; 12171 ofld_rxq->rx_iscsi_fl_octets = 0; 12172 ofld_rxq->rx_toe_tls_records = 0; 12173 ofld_rxq->rx_toe_tls_octets = 0; 12174 } 12175 #endif 12176 12177 if (IS_MAIN_VI(vi)) { 12178 wrq = &sc->sge.ctrlq[pi->port_id]; 12179 wrq->tx_wrs_direct = 0; 12180 wrq->tx_wrs_copied = 0; 12181 } 12182 } 12183 } 12184 12185 return (0); 12186 } 12187 12188 static int 12189 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12190 { 12191 #ifdef INET6 12192 struct in6_addr in6; 12193 12194 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12195 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12196 return (0); 12197 else 12198 return (EIO); 12199 #else 12200 return (ENOTSUP); 12201 #endif 12202 } 12203 12204 static int 12205 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12206 { 12207 #ifdef INET6 12208 struct in6_addr in6; 12209 12210 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12211 return (t4_release_clip_addr(sc, &in6)); 12212 #else 12213 return (ENOTSUP); 12214 #endif 12215 } 12216 12217 int 12218 t4_os_find_pci_capability(struct adapter *sc, int cap) 12219 { 12220 int i; 12221 12222 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12223 } 12224 12225 int 12226 t4_os_pci_save_state(struct adapter *sc) 12227 { 12228 device_t dev; 12229 struct pci_devinfo *dinfo; 12230 12231 dev = sc->dev; 12232 dinfo = device_get_ivars(dev); 12233 12234 pci_cfg_save(dev, dinfo, 0); 12235 return (0); 12236 } 12237 12238 int 12239 t4_os_pci_restore_state(struct adapter *sc) 12240 { 12241 device_t dev; 12242 struct pci_devinfo *dinfo; 12243 12244 dev = sc->dev; 12245 dinfo = device_get_ivars(dev); 12246 12247 pci_cfg_restore(dev, dinfo); 12248 return (0); 12249 } 12250 12251 void 12252 t4_os_portmod_changed(struct port_info *pi) 12253 { 12254 struct adapter *sc = pi->adapter; 12255 struct vi_info *vi; 12256 struct ifnet *ifp; 12257 static const char *mod_str[] = { 12258 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12259 }; 12260 12261 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12262 ("%s: port_type %u", __func__, pi->port_type)); 12263 12264 vi = &pi->vi[0]; 12265 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12266 PORT_LOCK(pi); 12267 build_medialist(pi); 12268 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12269 fixup_link_config(pi); 12270 apply_link_config(pi); 12271 } 12272 PORT_UNLOCK(pi); 12273 end_synchronized_op(sc, LOCK_HELD); 12274 } 12275 12276 ifp = vi->ifp; 12277 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12278 if_printf(ifp, "transceiver unplugged.\n"); 12279 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12280 if_printf(ifp, "unknown transceiver inserted.\n"); 12281 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12282 if_printf(ifp, "unsupported transceiver inserted.\n"); 12283 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12284 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12285 port_top_speed(pi), mod_str[pi->mod_type]); 12286 } else { 12287 if_printf(ifp, "transceiver (type %d) inserted.\n", 12288 pi->mod_type); 12289 } 12290 } 12291 12292 void 12293 t4_os_link_changed(struct port_info *pi) 12294 { 12295 struct vi_info *vi; 12296 struct ifnet *ifp; 12297 struct link_config *lc = &pi->link_cfg; 12298 struct adapter *sc = pi->adapter; 12299 int v; 12300 12301 PORT_LOCK_ASSERT_OWNED(pi); 12302 12303 if (is_t6(sc)) { 12304 if (lc->link_ok) { 12305 if (lc->speed > 25000 || 12306 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12307 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12308 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12309 } else { 12310 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12311 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12312 } 12313 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12314 pi->stats.rx_fcs_err = 0; 12315 } else { 12316 pi->fcs_reg = -1; 12317 } 12318 } else { 12319 MPASS(pi->fcs_reg != -1); 12320 MPASS(pi->fcs_base == 0); 12321 } 12322 12323 for_each_vi(pi, v, vi) { 12324 ifp = vi->ifp; 12325 if (ifp == NULL) 12326 continue; 12327 12328 if (lc->link_ok) { 12329 ifp->if_baudrate = IF_Mbps(lc->speed); 12330 if_link_state_change(ifp, LINK_STATE_UP); 12331 } else { 12332 if_link_state_change(ifp, LINK_STATE_DOWN); 12333 } 12334 } 12335 } 12336 12337 void 12338 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12339 { 12340 struct adapter *sc; 12341 12342 sx_slock(&t4_list_lock); 12343 SLIST_FOREACH(sc, &t4_list, link) { 12344 /* 12345 * func should not make any assumptions about what state sc is 12346 * in - the only guarantee is that sc->sc_lock is a valid lock. 12347 */ 12348 func(sc, arg); 12349 } 12350 sx_sunlock(&t4_list_lock); 12351 } 12352 12353 static int 12354 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12355 struct thread *td) 12356 { 12357 int rc; 12358 struct adapter *sc = dev->si_drv1; 12359 12360 rc = priv_check(td, PRIV_DRIVER); 12361 if (rc != 0) 12362 return (rc); 12363 12364 switch (cmd) { 12365 case CHELSIO_T4_GETREG: { 12366 struct t4_reg *edata = (struct t4_reg *)data; 12367 12368 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12369 return (EFAULT); 12370 12371 mtx_lock(&sc->reg_lock); 12372 if (hw_off_limits(sc)) 12373 rc = ENXIO; 12374 else if (edata->size == 4) 12375 edata->val = t4_read_reg(sc, edata->addr); 12376 else if (edata->size == 8) 12377 edata->val = t4_read_reg64(sc, edata->addr); 12378 else 12379 rc = EINVAL; 12380 mtx_unlock(&sc->reg_lock); 12381 12382 break; 12383 } 12384 case CHELSIO_T4_SETREG: { 12385 struct t4_reg *edata = (struct t4_reg *)data; 12386 12387 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12388 return (EFAULT); 12389 12390 mtx_lock(&sc->reg_lock); 12391 if (hw_off_limits(sc)) 12392 rc = ENXIO; 12393 else if (edata->size == 4) { 12394 if (edata->val & 0xffffffff00000000) 12395 rc = EINVAL; 12396 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12397 } else if (edata->size == 8) 12398 t4_write_reg64(sc, edata->addr, edata->val); 12399 else 12400 rc = EINVAL; 12401 mtx_unlock(&sc->reg_lock); 12402 12403 break; 12404 } 12405 case CHELSIO_T4_REGDUMP: { 12406 struct t4_regdump *regs = (struct t4_regdump *)data; 12407 int reglen = t4_get_regs_len(sc); 12408 uint8_t *buf; 12409 12410 if (regs->len < reglen) { 12411 regs->len = reglen; /* hint to the caller */ 12412 return (ENOBUFS); 12413 } 12414 12415 regs->len = reglen; 12416 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12417 mtx_lock(&sc->reg_lock); 12418 if (hw_off_limits(sc)) 12419 rc = ENXIO; 12420 else 12421 get_regs(sc, regs, buf); 12422 mtx_unlock(&sc->reg_lock); 12423 if (rc == 0) 12424 rc = copyout(buf, regs->data, reglen); 12425 free(buf, M_CXGBE); 12426 break; 12427 } 12428 case CHELSIO_T4_GET_FILTER_MODE: 12429 rc = get_filter_mode(sc, (uint32_t *)data); 12430 break; 12431 case CHELSIO_T4_SET_FILTER_MODE: 12432 rc = set_filter_mode(sc, *(uint32_t *)data); 12433 break; 12434 case CHELSIO_T4_SET_FILTER_MASK: 12435 rc = set_filter_mask(sc, *(uint32_t *)data); 12436 break; 12437 case CHELSIO_T4_GET_FILTER: 12438 rc = get_filter(sc, (struct t4_filter *)data); 12439 break; 12440 case CHELSIO_T4_SET_FILTER: 12441 rc = set_filter(sc, (struct t4_filter *)data); 12442 break; 12443 case CHELSIO_T4_DEL_FILTER: 12444 rc = del_filter(sc, (struct t4_filter *)data); 12445 break; 12446 case CHELSIO_T4_GET_SGE_CONTEXT: 12447 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12448 break; 12449 case CHELSIO_T4_LOAD_FW: 12450 rc = load_fw(sc, (struct t4_data *)data); 12451 break; 12452 case CHELSIO_T4_GET_MEM: 12453 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12454 break; 12455 case CHELSIO_T4_GET_I2C: 12456 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12457 break; 12458 case CHELSIO_T4_CLEAR_STATS: 12459 rc = clear_stats(sc, *(uint32_t *)data); 12460 break; 12461 case CHELSIO_T4_SCHED_CLASS: 12462 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12463 break; 12464 case CHELSIO_T4_SCHED_QUEUE: 12465 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12466 break; 12467 case CHELSIO_T4_GET_TRACER: 12468 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12469 break; 12470 case CHELSIO_T4_SET_TRACER: 12471 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12472 break; 12473 case CHELSIO_T4_LOAD_CFG: 12474 rc = load_cfg(sc, (struct t4_data *)data); 12475 break; 12476 case CHELSIO_T4_LOAD_BOOT: 12477 rc = load_boot(sc, (struct t4_bootrom *)data); 12478 break; 12479 case CHELSIO_T4_LOAD_BOOTCFG: 12480 rc = load_bootcfg(sc, (struct t4_data *)data); 12481 break; 12482 case CHELSIO_T4_CUDBG_DUMP: 12483 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12484 break; 12485 case CHELSIO_T4_SET_OFLD_POLICY: 12486 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12487 break; 12488 case CHELSIO_T4_HOLD_CLIP_ADDR: 12489 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12490 break; 12491 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12492 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12493 break; 12494 default: 12495 rc = ENOTTY; 12496 } 12497 12498 return (rc); 12499 } 12500 12501 #ifdef TCP_OFFLOAD 12502 static int 12503 toe_capability(struct vi_info *vi, bool enable) 12504 { 12505 int rc; 12506 struct port_info *pi = vi->pi; 12507 struct adapter *sc = pi->adapter; 12508 12509 ASSERT_SYNCHRONIZED_OP(sc); 12510 12511 if (!is_offload(sc)) 12512 return (ENODEV); 12513 if (hw_off_limits(sc)) 12514 return (ENXIO); 12515 12516 if (enable) { 12517 #ifdef KERN_TLS 12518 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12519 int i, j, n; 12520 struct port_info *p; 12521 struct vi_info *v; 12522 12523 /* 12524 * Reconfigure hardware for TOE if TXTLS is not enabled 12525 * on any ifnet. 12526 */ 12527 n = 0; 12528 for_each_port(sc, i) { 12529 p = sc->port[i]; 12530 for_each_vi(p, j, v) { 12531 if (v->ifp->if_capenable & IFCAP_TXTLS) { 12532 CH_WARN(sc, 12533 "%s has NIC TLS enabled.\n", 12534 device_get_nameunit(v->dev)); 12535 n++; 12536 } 12537 } 12538 } 12539 if (n > 0) { 12540 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12541 "associated with this adapter before " 12542 "trying to enable TOE.\n"); 12543 return (EAGAIN); 12544 } 12545 rc = t6_config_kern_tls(sc, false); 12546 if (rc) 12547 return (rc); 12548 } 12549 #endif 12550 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 12551 /* TOE is already enabled. */ 12552 return (0); 12553 } 12554 12555 /* 12556 * We need the port's queues around so that we're able to send 12557 * and receive CPLs to/from the TOE even if the ifnet for this 12558 * port has never been UP'd administratively. 12559 */ 12560 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12561 return (rc); 12562 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12563 ((rc = vi_init(&pi->vi[0])) != 0)) 12564 return (rc); 12565 12566 if (isset(&sc->offload_map, pi->port_id)) { 12567 /* TOE is enabled on another VI of this port. */ 12568 pi->uld_vis++; 12569 return (0); 12570 } 12571 12572 if (!uld_active(sc, ULD_TOM)) { 12573 rc = t4_activate_uld(sc, ULD_TOM); 12574 if (rc == EAGAIN) { 12575 log(LOG_WARNING, 12576 "You must kldload t4_tom.ko before trying " 12577 "to enable TOE on a cxgbe interface.\n"); 12578 } 12579 if (rc != 0) 12580 return (rc); 12581 KASSERT(sc->tom_softc != NULL, 12582 ("%s: TOM activated but softc NULL", __func__)); 12583 KASSERT(uld_active(sc, ULD_TOM), 12584 ("%s: TOM activated but flag not set", __func__)); 12585 } 12586 12587 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12588 if (!uld_active(sc, ULD_IWARP)) 12589 (void) t4_activate_uld(sc, ULD_IWARP); 12590 if (!uld_active(sc, ULD_ISCSI)) 12591 (void) t4_activate_uld(sc, ULD_ISCSI); 12592 12593 pi->uld_vis++; 12594 setbit(&sc->offload_map, pi->port_id); 12595 } else { 12596 pi->uld_vis--; 12597 12598 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12599 return (0); 12600 12601 KASSERT(uld_active(sc, ULD_TOM), 12602 ("%s: TOM never initialized?", __func__)); 12603 clrbit(&sc->offload_map, pi->port_id); 12604 } 12605 12606 return (0); 12607 } 12608 12609 /* 12610 * Add an upper layer driver to the global list. 12611 */ 12612 int 12613 t4_register_uld(struct uld_info *ui) 12614 { 12615 int rc = 0; 12616 struct uld_info *u; 12617 12618 sx_xlock(&t4_uld_list_lock); 12619 SLIST_FOREACH(u, &t4_uld_list, link) { 12620 if (u->uld_id == ui->uld_id) { 12621 rc = EEXIST; 12622 goto done; 12623 } 12624 } 12625 12626 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12627 ui->refcount = 0; 12628 done: 12629 sx_xunlock(&t4_uld_list_lock); 12630 return (rc); 12631 } 12632 12633 int 12634 t4_unregister_uld(struct uld_info *ui) 12635 { 12636 int rc = EINVAL; 12637 struct uld_info *u; 12638 12639 sx_xlock(&t4_uld_list_lock); 12640 12641 SLIST_FOREACH(u, &t4_uld_list, link) { 12642 if (u == ui) { 12643 if (ui->refcount > 0) { 12644 rc = EBUSY; 12645 goto done; 12646 } 12647 12648 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12649 rc = 0; 12650 goto done; 12651 } 12652 } 12653 done: 12654 sx_xunlock(&t4_uld_list_lock); 12655 return (rc); 12656 } 12657 12658 int 12659 t4_activate_uld(struct adapter *sc, int id) 12660 { 12661 int rc; 12662 struct uld_info *ui; 12663 12664 ASSERT_SYNCHRONIZED_OP(sc); 12665 12666 if (id < 0 || id > ULD_MAX) 12667 return (EINVAL); 12668 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12669 12670 sx_slock(&t4_uld_list_lock); 12671 12672 SLIST_FOREACH(ui, &t4_uld_list, link) { 12673 if (ui->uld_id == id) { 12674 if (!(sc->flags & FULL_INIT_DONE)) { 12675 rc = adapter_init(sc); 12676 if (rc != 0) 12677 break; 12678 } 12679 12680 rc = ui->activate(sc); 12681 if (rc == 0) { 12682 setbit(&sc->active_ulds, id); 12683 ui->refcount++; 12684 } 12685 break; 12686 } 12687 } 12688 12689 sx_sunlock(&t4_uld_list_lock); 12690 12691 return (rc); 12692 } 12693 12694 int 12695 t4_deactivate_uld(struct adapter *sc, int id) 12696 { 12697 int rc; 12698 struct uld_info *ui; 12699 12700 ASSERT_SYNCHRONIZED_OP(sc); 12701 12702 if (id < 0 || id > ULD_MAX) 12703 return (EINVAL); 12704 rc = ENXIO; 12705 12706 sx_slock(&t4_uld_list_lock); 12707 12708 SLIST_FOREACH(ui, &t4_uld_list, link) { 12709 if (ui->uld_id == id) { 12710 rc = ui->deactivate(sc); 12711 if (rc == 0) { 12712 clrbit(&sc->active_ulds, id); 12713 ui->refcount--; 12714 } 12715 break; 12716 } 12717 } 12718 12719 sx_sunlock(&t4_uld_list_lock); 12720 12721 return (rc); 12722 } 12723 12724 static int 12725 t4_deactivate_all_uld(struct adapter *sc) 12726 { 12727 int rc; 12728 struct uld_info *ui; 12729 12730 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12731 if (rc != 0) 12732 return (ENXIO); 12733 12734 sx_slock(&t4_uld_list_lock); 12735 12736 SLIST_FOREACH(ui, &t4_uld_list, link) { 12737 if (isset(&sc->active_ulds, ui->uld_id)) { 12738 rc = ui->deactivate(sc); 12739 if (rc != 0) 12740 break; 12741 clrbit(&sc->active_ulds, ui->uld_id); 12742 ui->refcount--; 12743 } 12744 } 12745 12746 sx_sunlock(&t4_uld_list_lock); 12747 end_synchronized_op(sc, 0); 12748 12749 return (rc); 12750 } 12751 12752 static void 12753 t4_async_event(struct adapter *sc) 12754 { 12755 struct uld_info *ui; 12756 12757 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12758 return; 12759 sx_slock(&t4_uld_list_lock); 12760 SLIST_FOREACH(ui, &t4_uld_list, link) { 12761 if (ui->uld_id == ULD_IWARP) { 12762 ui->async_event(sc); 12763 break; 12764 } 12765 } 12766 sx_sunlock(&t4_uld_list_lock); 12767 end_synchronized_op(sc, 0); 12768 } 12769 12770 int 12771 uld_active(struct adapter *sc, int uld_id) 12772 { 12773 12774 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12775 12776 return (isset(&sc->active_ulds, uld_id)); 12777 } 12778 #endif 12779 12780 #ifdef KERN_TLS 12781 static int 12782 ktls_capability(struct adapter *sc, bool enable) 12783 { 12784 ASSERT_SYNCHRONIZED_OP(sc); 12785 12786 if (!is_ktls(sc)) 12787 return (ENODEV); 12788 if (!is_t6(sc)) 12789 return (0); 12790 if (hw_off_limits(sc)) 12791 return (ENXIO); 12792 12793 if (enable) { 12794 if (sc->flags & KERN_TLS_ON) 12795 return (0); /* already on */ 12796 if (sc->offload_map != 0) { 12797 CH_WARN(sc, 12798 "Disable TOE on all interfaces associated with " 12799 "this adapter before trying to enable NIC TLS.\n"); 12800 return (EAGAIN); 12801 } 12802 return (t6_config_kern_tls(sc, true)); 12803 } else { 12804 /* 12805 * Nothing to do for disable. If TOE is enabled sometime later 12806 * then toe_capability will reconfigure the hardware. 12807 */ 12808 return (0); 12809 } 12810 } 12811 #endif 12812 12813 /* 12814 * t = ptr to tunable. 12815 * nc = number of CPUs. 12816 * c = compiled in default for that tunable. 12817 */ 12818 static void 12819 calculate_nqueues(int *t, int nc, const int c) 12820 { 12821 int nq; 12822 12823 if (*t > 0) 12824 return; 12825 nq = *t < 0 ? -*t : c; 12826 *t = min(nc, nq); 12827 } 12828 12829 /* 12830 * Come up with reasonable defaults for some of the tunables, provided they're 12831 * not set by the user (in which case we'll use the values as is). 12832 */ 12833 static void 12834 tweak_tunables(void) 12835 { 12836 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12837 12838 if (t4_ntxq < 1) { 12839 #ifdef RSS 12840 t4_ntxq = rss_getnumbuckets(); 12841 #else 12842 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12843 #endif 12844 } 12845 12846 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12847 12848 if (t4_nrxq < 1) { 12849 #ifdef RSS 12850 t4_nrxq = rss_getnumbuckets(); 12851 #else 12852 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12853 #endif 12854 } 12855 12856 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12857 12858 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12859 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12860 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12861 #endif 12862 #ifdef TCP_OFFLOAD 12863 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12864 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12865 #endif 12866 12867 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12868 if (t4_toecaps_allowed == -1) 12869 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12870 #else 12871 if (t4_toecaps_allowed == -1) 12872 t4_toecaps_allowed = 0; 12873 #endif 12874 12875 #ifdef TCP_OFFLOAD 12876 if (t4_rdmacaps_allowed == -1) { 12877 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12878 FW_CAPS_CONFIG_RDMA_RDMAC; 12879 } 12880 12881 if (t4_iscsicaps_allowed == -1) { 12882 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12883 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12884 FW_CAPS_CONFIG_ISCSI_T10DIF; 12885 } 12886 12887 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12888 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12889 12890 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12891 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12892 12893 if (t4_toe_tls_rx_timeout < 0) 12894 t4_toe_tls_rx_timeout = 0; 12895 #else 12896 if (t4_rdmacaps_allowed == -1) 12897 t4_rdmacaps_allowed = 0; 12898 12899 if (t4_iscsicaps_allowed == -1) 12900 t4_iscsicaps_allowed = 0; 12901 #endif 12902 12903 #ifdef DEV_NETMAP 12904 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12905 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12906 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12907 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12908 #endif 12909 12910 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12911 t4_tmr_idx = TMR_IDX; 12912 12913 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12914 t4_pktc_idx = PKTC_IDX; 12915 12916 if (t4_qsize_txq < 128) 12917 t4_qsize_txq = 128; 12918 12919 if (t4_qsize_rxq < 128) 12920 t4_qsize_rxq = 128; 12921 while (t4_qsize_rxq & 7) 12922 t4_qsize_rxq++; 12923 12924 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12925 12926 /* 12927 * Number of VIs to create per-port. The first VI is the "main" regular 12928 * VI for the port. The rest are additional virtual interfaces on the 12929 * same physical port. Note that the main VI does not have native 12930 * netmap support but the extra VIs do. 12931 * 12932 * Limit the number of VIs per port to the number of available 12933 * MAC addresses per port. 12934 */ 12935 if (t4_num_vis < 1) 12936 t4_num_vis = 1; 12937 if (t4_num_vis > nitems(vi_mac_funcs)) { 12938 t4_num_vis = nitems(vi_mac_funcs); 12939 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12940 } 12941 12942 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12943 pcie_relaxed_ordering = 1; 12944 #if defined(__i386__) || defined(__amd64__) 12945 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12946 pcie_relaxed_ordering = 0; 12947 #endif 12948 } 12949 } 12950 12951 #ifdef DDB 12952 static void 12953 t4_dump_tcb(struct adapter *sc, int tid) 12954 { 12955 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12956 12957 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12958 save = t4_read_reg(sc, reg); 12959 base = sc->memwin[2].mw_base; 12960 12961 /* Dump TCB for the tid */ 12962 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12963 tcb_addr += tid * TCB_SIZE; 12964 12965 if (is_t4(sc)) { 12966 pf = 0; 12967 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12968 } else { 12969 pf = V_PFNUM(sc->pf); 12970 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12971 } 12972 t4_write_reg(sc, reg, win_pos | pf); 12973 t4_read_reg(sc, reg); 12974 12975 off = tcb_addr - win_pos; 12976 for (i = 0; i < 4; i++) { 12977 uint32_t buf[8]; 12978 for (j = 0; j < 8; j++, off += 4) 12979 buf[j] = htonl(t4_read_reg(sc, base + off)); 12980 12981 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12982 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12983 buf[7]); 12984 } 12985 12986 t4_write_reg(sc, reg, save); 12987 t4_read_reg(sc, reg); 12988 } 12989 12990 static void 12991 t4_dump_devlog(struct adapter *sc) 12992 { 12993 struct devlog_params *dparams = &sc->params.devlog; 12994 struct fw_devlog_e e; 12995 int i, first, j, m, nentries, rc; 12996 uint64_t ftstamp = UINT64_MAX; 12997 12998 if (dparams->start == 0) { 12999 db_printf("devlog params not valid\n"); 13000 return; 13001 } 13002 13003 nentries = dparams->size / sizeof(struct fw_devlog_e); 13004 m = fwmtype_to_hwmtype(dparams->memtype); 13005 13006 /* Find the first entry. */ 13007 first = -1; 13008 for (i = 0; i < nentries && !db_pager_quit; i++) { 13009 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13010 sizeof(e), (void *)&e); 13011 if (rc != 0) 13012 break; 13013 13014 if (e.timestamp == 0) 13015 break; 13016 13017 e.timestamp = be64toh(e.timestamp); 13018 if (e.timestamp < ftstamp) { 13019 ftstamp = e.timestamp; 13020 first = i; 13021 } 13022 } 13023 13024 if (first == -1) 13025 return; 13026 13027 i = first; 13028 do { 13029 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13030 sizeof(e), (void *)&e); 13031 if (rc != 0) 13032 return; 13033 13034 if (e.timestamp == 0) 13035 return; 13036 13037 e.timestamp = be64toh(e.timestamp); 13038 e.seqno = be32toh(e.seqno); 13039 for (j = 0; j < 8; j++) 13040 e.params[j] = be32toh(e.params[j]); 13041 13042 db_printf("%10d %15ju %8s %8s ", 13043 e.seqno, e.timestamp, 13044 (e.level < nitems(devlog_level_strings) ? 13045 devlog_level_strings[e.level] : "UNKNOWN"), 13046 (e.facility < nitems(devlog_facility_strings) ? 13047 devlog_facility_strings[e.facility] : "UNKNOWN")); 13048 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 13049 e.params[3], e.params[4], e.params[5], e.params[6], 13050 e.params[7]); 13051 13052 if (++i == nentries) 13053 i = 0; 13054 } while (i != first && !db_pager_quit); 13055 } 13056 13057 static struct db_command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 13058 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 13059 13060 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 13061 { 13062 device_t dev; 13063 int t; 13064 bool valid; 13065 13066 valid = false; 13067 t = db_read_token(); 13068 if (t == tIDENT) { 13069 dev = device_lookup_by_name(db_tok_string); 13070 valid = true; 13071 } 13072 db_skip_to_eol(); 13073 if (!valid) { 13074 db_printf("usage: show t4 devlog <nexus>\n"); 13075 return; 13076 } 13077 13078 if (dev == NULL) { 13079 db_printf("device not found\n"); 13080 return; 13081 } 13082 13083 t4_dump_devlog(device_get_softc(dev)); 13084 } 13085 13086 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 13087 { 13088 device_t dev; 13089 int radix, tid, t; 13090 bool valid; 13091 13092 valid = false; 13093 radix = db_radix; 13094 db_radix = 10; 13095 t = db_read_token(); 13096 if (t == tIDENT) { 13097 dev = device_lookup_by_name(db_tok_string); 13098 t = db_read_token(); 13099 if (t == tNUMBER) { 13100 tid = db_tok_number; 13101 valid = true; 13102 } 13103 } 13104 db_radix = radix; 13105 db_skip_to_eol(); 13106 if (!valid) { 13107 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13108 return; 13109 } 13110 13111 if (dev == NULL) { 13112 db_printf("device not found\n"); 13113 return; 13114 } 13115 if (tid < 0) { 13116 db_printf("invalid tid\n"); 13117 return; 13118 } 13119 13120 t4_dump_tcb(device_get_softc(dev), tid); 13121 } 13122 #endif 13123 13124 static eventhandler_tag vxlan_start_evtag; 13125 static eventhandler_tag vxlan_stop_evtag; 13126 13127 struct vxlan_evargs { 13128 struct ifnet *ifp; 13129 uint16_t port; 13130 }; 13131 13132 static void 13133 enable_vxlan_rx(struct adapter *sc) 13134 { 13135 int i, rc; 13136 struct port_info *pi; 13137 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13138 13139 ASSERT_SYNCHRONIZED_OP(sc); 13140 13141 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13142 F_VXLAN_EN); 13143 for_each_port(sc, i) { 13144 pi = sc->port[i]; 13145 if (pi->vxlan_tcam_entry == true) 13146 continue; 13147 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13148 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13149 true); 13150 if (rc < 0) { 13151 rc = -rc; 13152 CH_ERR(&pi->vi[0], 13153 "failed to add VXLAN TCAM entry: %d.\n", rc); 13154 } else { 13155 MPASS(rc == sc->rawf_base + pi->port_id); 13156 pi->vxlan_tcam_entry = true; 13157 } 13158 } 13159 } 13160 13161 static void 13162 t4_vxlan_start(struct adapter *sc, void *arg) 13163 { 13164 struct vxlan_evargs *v = arg; 13165 13166 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13167 return; 13168 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13169 return; 13170 13171 if (sc->vxlan_refcount == 0) { 13172 sc->vxlan_port = v->port; 13173 sc->vxlan_refcount = 1; 13174 if (!hw_off_limits(sc)) 13175 enable_vxlan_rx(sc); 13176 } else if (sc->vxlan_port == v->port) { 13177 sc->vxlan_refcount++; 13178 } else { 13179 CH_ERR(sc, "VXLAN already configured on port %d; " 13180 "ignoring attempt to configure it on port %d\n", 13181 sc->vxlan_port, v->port); 13182 } 13183 end_synchronized_op(sc, 0); 13184 } 13185 13186 static void 13187 t4_vxlan_stop(struct adapter *sc, void *arg) 13188 { 13189 struct vxlan_evargs *v = arg; 13190 13191 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13192 return; 13193 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13194 return; 13195 13196 /* 13197 * VXLANs may have been configured before the driver was loaded so we 13198 * may see more stops than starts. This is not handled cleanly but at 13199 * least we keep the refcount sane. 13200 */ 13201 if (sc->vxlan_port != v->port) 13202 goto done; 13203 if (sc->vxlan_refcount == 0) { 13204 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13205 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13206 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13207 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13208 done: 13209 end_synchronized_op(sc, 0); 13210 } 13211 13212 static void 13213 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 13214 sa_family_t family, u_int port) 13215 { 13216 struct vxlan_evargs v; 13217 13218 MPASS(family == AF_INET || family == AF_INET6); 13219 v.ifp = ifp; 13220 v.port = port; 13221 13222 t4_iterate(t4_vxlan_start, &v); 13223 } 13224 13225 static void 13226 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 13227 u_int port) 13228 { 13229 struct vxlan_evargs v; 13230 13231 MPASS(family == AF_INET || family == AF_INET6); 13232 v.ifp = ifp; 13233 v.port = port; 13234 13235 t4_iterate(t4_vxlan_stop, &v); 13236 } 13237 13238 13239 static struct sx mlu; /* mod load unload */ 13240 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13241 13242 static int 13243 mod_event(module_t mod, int cmd, void *arg) 13244 { 13245 int rc = 0; 13246 static int loaded = 0; 13247 13248 switch (cmd) { 13249 case MOD_LOAD: 13250 sx_xlock(&mlu); 13251 if (loaded++ == 0) { 13252 t4_sge_modload(); 13253 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13254 t4_filter_rpl, CPL_COOKIE_FILTER); 13255 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13256 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13257 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13258 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13259 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13260 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13261 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13262 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13263 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13264 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13265 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13266 do_smt_write_rpl); 13267 sx_init(&t4_list_lock, "T4/T5 adapters"); 13268 SLIST_INIT(&t4_list); 13269 callout_init(&fatal_callout, 1); 13270 #ifdef TCP_OFFLOAD 13271 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13272 SLIST_INIT(&t4_uld_list); 13273 #endif 13274 #ifdef INET6 13275 t4_clip_modload(); 13276 #endif 13277 #ifdef KERN_TLS 13278 t6_ktls_modload(); 13279 #endif 13280 t4_tracer_modload(); 13281 tweak_tunables(); 13282 vxlan_start_evtag = 13283 EVENTHANDLER_REGISTER(vxlan_start, 13284 t4_vxlan_start_handler, NULL, 13285 EVENTHANDLER_PRI_ANY); 13286 vxlan_stop_evtag = 13287 EVENTHANDLER_REGISTER(vxlan_stop, 13288 t4_vxlan_stop_handler, NULL, 13289 EVENTHANDLER_PRI_ANY); 13290 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13291 taskqueue_thread_enqueue, &reset_tq); 13292 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13293 "t4_rst_thr"); 13294 } 13295 sx_xunlock(&mlu); 13296 break; 13297 13298 case MOD_UNLOAD: 13299 sx_xlock(&mlu); 13300 if (--loaded == 0) { 13301 int tries; 13302 13303 taskqueue_free(reset_tq); 13304 sx_slock(&t4_list_lock); 13305 if (!SLIST_EMPTY(&t4_list)) { 13306 rc = EBUSY; 13307 sx_sunlock(&t4_list_lock); 13308 goto done_unload; 13309 } 13310 #ifdef TCP_OFFLOAD 13311 sx_slock(&t4_uld_list_lock); 13312 if (!SLIST_EMPTY(&t4_uld_list)) { 13313 rc = EBUSY; 13314 sx_sunlock(&t4_uld_list_lock); 13315 sx_sunlock(&t4_list_lock); 13316 goto done_unload; 13317 } 13318 #endif 13319 tries = 0; 13320 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13321 uprintf("%ju clusters with custom free routine " 13322 "still is use.\n", t4_sge_extfree_refs()); 13323 pause("t4unload", 2 * hz); 13324 } 13325 #ifdef TCP_OFFLOAD 13326 sx_sunlock(&t4_uld_list_lock); 13327 #endif 13328 sx_sunlock(&t4_list_lock); 13329 13330 if (t4_sge_extfree_refs() == 0) { 13331 EVENTHANDLER_DEREGISTER(vxlan_start, 13332 vxlan_start_evtag); 13333 EVENTHANDLER_DEREGISTER(vxlan_stop, 13334 vxlan_stop_evtag); 13335 t4_tracer_modunload(); 13336 #ifdef KERN_TLS 13337 t6_ktls_modunload(); 13338 #endif 13339 #ifdef INET6 13340 t4_clip_modunload(); 13341 #endif 13342 #ifdef TCP_OFFLOAD 13343 sx_destroy(&t4_uld_list_lock); 13344 #endif 13345 sx_destroy(&t4_list_lock); 13346 t4_sge_modunload(); 13347 loaded = 0; 13348 } else { 13349 rc = EBUSY; 13350 loaded++; /* undo earlier decrement */ 13351 } 13352 } 13353 done_unload: 13354 sx_xunlock(&mlu); 13355 break; 13356 } 13357 13358 return (rc); 13359 } 13360 13361 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13362 MODULE_VERSION(t4nex, 1); 13363 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13364 #ifdef DEV_NETMAP 13365 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13366 #endif /* DEV_NETMAP */ 13367 13368 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13369 MODULE_VERSION(t5nex, 1); 13370 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13371 #ifdef DEV_NETMAP 13372 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13373 #endif /* DEV_NETMAP */ 13374 13375 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13376 MODULE_VERSION(t6nex, 1); 13377 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13378 #ifdef DEV_NETMAP 13379 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13380 #endif /* DEV_NETMAP */ 13381 13382 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13383 MODULE_VERSION(cxgbe, 1); 13384 13385 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13386 MODULE_VERSION(cxl, 1); 13387 13388 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13389 MODULE_VERSION(cc, 1); 13390 13391 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13392 MODULE_VERSION(vcxgbe, 1); 13393 13394 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13395 MODULE_VERSION(vcxl, 1); 13396 13397 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13398 MODULE_VERSION(vcc, 1); 13399