1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 struct uld_info *t4_uld_list[ULD_MAX + 1]; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 608 static int t4_doorbells_allowed = 0xf; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 611 612 static int t4_num_vis = 1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 614 "Number of VIs per port"); 615 616 /* 617 * PCIe Relaxed Ordering. 618 * -1: driver should figure out a good value. 619 * 0: disable RO. 620 * 1: enable RO. 621 * 2: leave RO alone. 622 */ 623 static int pcie_relaxed_ordering = -1; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 625 &pcie_relaxed_ordering, 0, 626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 627 628 static int t4_panic_on_fatal_err = 0; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 630 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 631 632 static int t4_reset_on_fatal_err = 0; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 635 636 static int t4_clock_gate_on_suspend = 0; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 638 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 639 640 static int t4_tx_vm_wr = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 642 "Use VM work requests to transmit packets."); 643 644 /* 645 * Set to non-zero to enable the attack filter. A packet that matches any of 646 * these conditions will get dropped on ingress: 647 * 1) IP && source address == destination address. 648 * 2) TCP/IP && source address is not a unicast address. 649 * 3) TCP/IP && destination address is not a unicast address. 650 * 4) IP && source address is loopback (127.x.y.z). 651 * 5) IP && destination address is loopback (127.x.y.z). 652 * 6) IPv6 && source address == destination address. 653 * 7) IPv6 && source address is not a unicast address. 654 * 8) IPv6 && source address is loopback (::1/128). 655 * 9) IPv6 && destination address is loopback (::1/128). 656 * 10) IPv6 && source address is unspecified (::/128). 657 * 11) IPv6 && destination address is unspecified (::/128). 658 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 659 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 660 */ 661 static int t4_attack_filter = 0; 662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 663 &t4_attack_filter, 0, "Drop suspicious traffic"); 664 665 static int t4_drop_ip_fragments = 0; 666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 667 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 668 669 static int t4_drop_pkts_with_l2_errors = 1; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 671 &t4_drop_pkts_with_l2_errors, 0, 672 "Drop all frames with Layer 2 length or checksum errors"); 673 674 static int t4_drop_pkts_with_l3_errors = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l3_errors, 0, 677 "Drop all frames with IP version, length, or checksum errors"); 678 679 static int t4_drop_pkts_with_l4_errors = 0; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 681 &t4_drop_pkts_with_l4_errors, 0, 682 "Drop all frames with Layer 4 length, checksum, or other errors"); 683 684 #ifdef TCP_OFFLOAD 685 /* 686 * TOE tunables. 687 */ 688 static int t4_cop_managed_offloading = 0; 689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 690 &t4_cop_managed_offloading, 0, 691 "COP (Connection Offload Policy) controls all TOE offload"); 692 #endif 693 694 #ifdef KERN_TLS 695 /* 696 * This enables KERN_TLS for all adapters if set. 697 */ 698 static int t4_kern_tls = 0; 699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 700 "Enable KERN_TLS mode for T6 adapters"); 701 702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 703 "cxgbe(4) KERN_TLS parameters"); 704 705 static int t4_tls_inline_keys = 0; 706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 707 &t4_tls_inline_keys, 0, 708 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 709 "in card memory."); 710 711 static int t4_tls_combo_wrs = 0; 712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 713 0, "Attempt to combine TCB field updates with TLS record work requests."); 714 #endif 715 716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 717 static int vi_mac_funcs[] = { 718 FW_VI_FUNC_ETH, 719 FW_VI_FUNC_OFLD, 720 FW_VI_FUNC_IWARP, 721 FW_VI_FUNC_OPENISCSI, 722 FW_VI_FUNC_OPENFCOE, 723 FW_VI_FUNC_FOISCSI, 724 FW_VI_FUNC_FOFCOE, 725 }; 726 727 struct intrs_and_queues { 728 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 729 uint16_t num_vis; /* number of VIs for each port */ 730 uint16_t nirq; /* Total # of vectors */ 731 uint16_t ntxq; /* # of NIC txq's for each port */ 732 uint16_t nrxq; /* # of NIC rxq's for each port */ 733 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 734 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 735 uint16_t nnmtxq; /* # of netmap txq's */ 736 uint16_t nnmrxq; /* # of netmap rxq's */ 737 738 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 739 uint16_t ntxq_vi; /* # of NIC txq's */ 740 uint16_t nrxq_vi; /* # of NIC rxq's */ 741 uint16_t nofldtxq_vi; /* # of TOE txq's */ 742 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 743 uint16_t nnmtxq_vi; /* # of netmap txq's */ 744 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 745 }; 746 747 static void setup_memwin(struct adapter *); 748 static void position_memwin(struct adapter *, int, uint32_t); 749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 750 static int fwmtype_to_hwmtype(int); 751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 752 uint32_t *); 753 static int fixup_devlog_params(struct adapter *); 754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 755 static int contact_firmware(struct adapter *); 756 static int partition_resources(struct adapter *); 757 static int get_params__pre_init(struct adapter *); 758 static int set_params__pre_init(struct adapter *); 759 static int get_params__post_init(struct adapter *); 760 static int set_params__post_init(struct adapter *); 761 static void t4_set_desc(struct adapter *); 762 static bool fixed_ifmedia(struct port_info *); 763 static void build_medialist(struct port_info *); 764 static void init_link_config(struct port_info *); 765 static int fixup_link_config(struct port_info *); 766 static int apply_link_config(struct port_info *); 767 static int cxgbe_init_synchronized(struct vi_info *); 768 static int cxgbe_uninit_synchronized(struct vi_info *); 769 static int adapter_full_init(struct adapter *); 770 static void adapter_full_uninit(struct adapter *); 771 static int vi_full_init(struct vi_info *); 772 static void vi_full_uninit(struct vi_info *); 773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 774 static void quiesce_txq(struct sge_txq *); 775 static void quiesce_wrq(struct sge_wrq *); 776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 777 static void quiesce_vi(struct vi_info *); 778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 779 driver_intr_t *, void *, char *); 780 static int t4_free_irq(struct adapter *, struct irq *); 781 static void t4_init_atid_table(struct adapter *); 782 static void t4_free_atid_table(struct adapter *); 783 static void stop_atid_allocator(struct adapter *); 784 static void restart_atid_allocator(struct adapter *); 785 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 786 static void vi_refresh_stats(struct vi_info *); 787 static void cxgbe_refresh_stats(struct vi_info *); 788 static void cxgbe_tick(void *); 789 static void vi_tick(void *); 790 static void cxgbe_sysctls(struct port_info *); 791 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 792 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 793 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 794 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 795 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 796 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 797 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 798 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 799 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 800 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 802 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 803 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 804 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 805 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 806 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 807 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 808 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 809 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 810 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 811 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 812 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 813 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 814 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 815 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 817 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 818 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 821 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 822 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 824 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 826 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 827 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 828 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 829 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 830 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 831 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 839 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 840 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 841 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 842 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 843 #ifdef TCP_OFFLOAD 844 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 845 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 846 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 847 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 848 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 849 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 850 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 851 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 852 #endif 853 static int get_sge_context(struct adapter *, struct t4_sge_context *); 854 static int load_fw(struct adapter *, struct t4_data *); 855 static int load_cfg(struct adapter *, struct t4_data *); 856 static int load_boot(struct adapter *, struct t4_bootrom *); 857 static int load_bootcfg(struct adapter *, struct t4_data *); 858 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 859 static void free_offload_policy(struct t4_offload_policy *); 860 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 861 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 862 static int read_i2c(struct adapter *, struct t4_i2c_data *); 863 static int clear_stats(struct adapter *, u_int); 864 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 865 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 866 static inline int stop_adapter(struct adapter *); 867 static inline void set_adapter_hwstatus(struct adapter *, const bool); 868 static int stop_lld(struct adapter *); 869 static inline int restart_adapter(struct adapter *); 870 static int restart_lld(struct adapter *); 871 #ifdef TCP_OFFLOAD 872 static int deactivate_all_uld(struct adapter *); 873 static void stop_all_uld(struct adapter *); 874 static void restart_all_uld(struct adapter *); 875 #endif 876 #ifdef KERN_TLS 877 static int ktls_capability(struct adapter *, bool); 878 #endif 879 static int mod_event(module_t, int, void *); 880 static int notify_siblings(device_t, int); 881 static uint64_t vi_get_counter(if_t, ift_counter); 882 static uint64_t cxgbe_get_counter(if_t, ift_counter); 883 static void enable_vxlan_rx(struct adapter *); 884 static void reset_adapter_task(void *, int); 885 static void fatal_error_task(void *, int); 886 static void dump_devlog(struct adapter *); 887 static void dump_cim_regs(struct adapter *); 888 static void dump_cimla(struct adapter *); 889 890 struct { 891 uint16_t device; 892 char *desc; 893 } t4_pciids[] = { 894 {0xa000, "Chelsio Terminator 4 FPGA"}, 895 {0x4400, "Chelsio T440-dbg"}, 896 {0x4401, "Chelsio T420-CR"}, 897 {0x4402, "Chelsio T422-CR"}, 898 {0x4403, "Chelsio T440-CR"}, 899 {0x4404, "Chelsio T420-BCH"}, 900 {0x4405, "Chelsio T440-BCH"}, 901 {0x4406, "Chelsio T440-CH"}, 902 {0x4407, "Chelsio T420-SO"}, 903 {0x4408, "Chelsio T420-CX"}, 904 {0x4409, "Chelsio T420-BT"}, 905 {0x440a, "Chelsio T404-BT"}, 906 {0x440e, "Chelsio T440-LP-CR"}, 907 }, t5_pciids[] = { 908 {0xb000, "Chelsio Terminator 5 FPGA"}, 909 {0x5400, "Chelsio T580-dbg"}, 910 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 911 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 912 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 913 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 914 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 915 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 916 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 917 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 918 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 919 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 920 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 921 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 922 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 923 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 924 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 925 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 926 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 927 928 /* Custom */ 929 {0x5483, "Custom T540-CR"}, 930 {0x5484, "Custom T540-BT"}, 931 }, t6_pciids[] = { 932 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 933 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 934 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 935 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 936 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 937 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 938 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 939 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 940 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 941 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 942 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 943 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 944 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 945 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 946 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 947 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 948 949 /* Custom */ 950 {0x6480, "Custom T6225-CR"}, 951 {0x6481, "Custom T62100-CR"}, 952 {0x6482, "Custom T6225-CR"}, 953 {0x6483, "Custom T62100-CR"}, 954 {0x6484, "Custom T64100-CR"}, 955 {0x6485, "Custom T6240-SO"}, 956 {0x6486, "Custom T6225-SO-CR"}, 957 {0x6487, "Custom T6225-CR"}, 958 }; 959 960 #ifdef TCP_OFFLOAD 961 /* 962 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 963 * be exactly the same for both rxq and ofld_rxq. 964 */ 965 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 966 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 967 #endif 968 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 969 970 static int 971 t4_probe(device_t dev) 972 { 973 int i; 974 uint16_t v = pci_get_vendor(dev); 975 uint16_t d = pci_get_device(dev); 976 uint8_t f = pci_get_function(dev); 977 978 if (v != PCI_VENDOR_ID_CHELSIO) 979 return (ENXIO); 980 981 /* Attach only to PF0 of the FPGA */ 982 if (d == 0xa000 && f != 0) 983 return (ENXIO); 984 985 for (i = 0; i < nitems(t4_pciids); i++) { 986 if (d == t4_pciids[i].device) { 987 device_set_desc(dev, t4_pciids[i].desc); 988 return (BUS_PROBE_DEFAULT); 989 } 990 } 991 992 return (ENXIO); 993 } 994 995 static int 996 t5_probe(device_t dev) 997 { 998 int i; 999 uint16_t v = pci_get_vendor(dev); 1000 uint16_t d = pci_get_device(dev); 1001 uint8_t f = pci_get_function(dev); 1002 1003 if (v != PCI_VENDOR_ID_CHELSIO) 1004 return (ENXIO); 1005 1006 /* Attach only to PF0 of the FPGA */ 1007 if (d == 0xb000 && f != 0) 1008 return (ENXIO); 1009 1010 for (i = 0; i < nitems(t5_pciids); i++) { 1011 if (d == t5_pciids[i].device) { 1012 device_set_desc(dev, t5_pciids[i].desc); 1013 return (BUS_PROBE_DEFAULT); 1014 } 1015 } 1016 1017 return (ENXIO); 1018 } 1019 1020 static int 1021 t6_probe(device_t dev) 1022 { 1023 int i; 1024 uint16_t v = pci_get_vendor(dev); 1025 uint16_t d = pci_get_device(dev); 1026 1027 if (v != PCI_VENDOR_ID_CHELSIO) 1028 return (ENXIO); 1029 1030 for (i = 0; i < nitems(t6_pciids); i++) { 1031 if (d == t6_pciids[i].device) { 1032 device_set_desc(dev, t6_pciids[i].desc); 1033 return (BUS_PROBE_DEFAULT); 1034 } 1035 } 1036 1037 return (ENXIO); 1038 } 1039 1040 static void 1041 t5_attribute_workaround(device_t dev) 1042 { 1043 device_t root_port; 1044 uint32_t v; 1045 1046 /* 1047 * The T5 chips do not properly echo the No Snoop and Relaxed 1048 * Ordering attributes when replying to a TLP from a Root 1049 * Port. As a workaround, find the parent Root Port and 1050 * disable No Snoop and Relaxed Ordering. Note that this 1051 * affects all devices under this root port. 1052 */ 1053 root_port = pci_find_pcie_root_port(dev); 1054 if (root_port == NULL) { 1055 device_printf(dev, "Unable to find parent root port\n"); 1056 return; 1057 } 1058 1059 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1060 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1061 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1062 0) 1063 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1064 device_get_nameunit(root_port)); 1065 } 1066 1067 static const struct devnames devnames[] = { 1068 { 1069 .nexus_name = "t4nex", 1070 .ifnet_name = "cxgbe", 1071 .vi_ifnet_name = "vcxgbe", 1072 .pf03_drv_name = "t4iov", 1073 .vf_nexus_name = "t4vf", 1074 .vf_ifnet_name = "cxgbev" 1075 }, { 1076 .nexus_name = "t5nex", 1077 .ifnet_name = "cxl", 1078 .vi_ifnet_name = "vcxl", 1079 .pf03_drv_name = "t5iov", 1080 .vf_nexus_name = "t5vf", 1081 .vf_ifnet_name = "cxlv" 1082 }, { 1083 .nexus_name = "t6nex", 1084 .ifnet_name = "cc", 1085 .vi_ifnet_name = "vcc", 1086 .pf03_drv_name = "t6iov", 1087 .vf_nexus_name = "t6vf", 1088 .vf_ifnet_name = "ccv" 1089 } 1090 }; 1091 1092 void 1093 t4_init_devnames(struct adapter *sc) 1094 { 1095 int id; 1096 1097 id = chip_id(sc); 1098 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1099 sc->names = &devnames[id - CHELSIO_T4]; 1100 else { 1101 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1102 sc->names = NULL; 1103 } 1104 } 1105 1106 static int 1107 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1108 { 1109 const char *parent, *name; 1110 long value; 1111 int line, unit; 1112 1113 line = 0; 1114 parent = device_get_nameunit(sc->dev); 1115 name = sc->names->ifnet_name; 1116 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1117 if (resource_long_value(name, unit, "port", &value) == 0 && 1118 value == pi->port_id) 1119 return (unit); 1120 } 1121 return (-1); 1122 } 1123 1124 static void 1125 t4_calibration(void *arg) 1126 { 1127 struct adapter *sc; 1128 struct clock_sync *cur, *nex; 1129 uint64_t hw; 1130 sbintime_t sbt; 1131 int next_up; 1132 1133 sc = (struct adapter *)arg; 1134 1135 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1136 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1137 sbt = sbinuptime(); 1138 1139 cur = &sc->cal_info[sc->cal_current]; 1140 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1141 nex = &sc->cal_info[next_up]; 1142 if (__predict_false(sc->cal_count == 0)) { 1143 /* First time in, just get the values in */ 1144 cur->hw_cur = hw; 1145 cur->sbt_cur = sbt; 1146 sc->cal_count++; 1147 goto done; 1148 } 1149 1150 if (cur->hw_cur == hw) { 1151 /* The clock is not advancing? */ 1152 sc->cal_count = 0; 1153 atomic_store_rel_int(&cur->gen, 0); 1154 goto done; 1155 } 1156 1157 seqc_write_begin(&nex->gen); 1158 nex->hw_prev = cur->hw_cur; 1159 nex->sbt_prev = cur->sbt_cur; 1160 nex->hw_cur = hw; 1161 nex->sbt_cur = sbt; 1162 seqc_write_end(&nex->gen); 1163 sc->cal_current = next_up; 1164 done: 1165 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1166 sc, C_DIRECT_EXEC); 1167 } 1168 1169 static void 1170 t4_calibration_start(struct adapter *sc) 1171 { 1172 /* 1173 * Here if we have not done a calibration 1174 * then do so otherwise start the appropriate 1175 * timer. 1176 */ 1177 int i; 1178 1179 for (i = 0; i < CNT_CAL_INFO; i++) { 1180 sc->cal_info[i].gen = 0; 1181 } 1182 sc->cal_current = 0; 1183 sc->cal_count = 0; 1184 sc->cal_gen = 0; 1185 t4_calibration(sc); 1186 } 1187 1188 static int 1189 t4_attach(device_t dev) 1190 { 1191 struct adapter *sc; 1192 int rc = 0, i, j, rqidx, tqidx, nports; 1193 struct make_dev_args mda; 1194 struct intrs_and_queues iaq; 1195 struct sge *s; 1196 uint32_t *buf; 1197 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1198 int ofld_tqidx; 1199 #endif 1200 #ifdef TCP_OFFLOAD 1201 int ofld_rqidx; 1202 #endif 1203 #ifdef DEV_NETMAP 1204 int nm_rqidx, nm_tqidx; 1205 #endif 1206 int num_vis; 1207 1208 sc = device_get_softc(dev); 1209 sc->dev = dev; 1210 sysctl_ctx_init(&sc->ctx); 1211 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1212 1213 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1214 t5_attribute_workaround(dev); 1215 pci_enable_busmaster(dev); 1216 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1217 uint32_t v; 1218 1219 pci_set_max_read_req(dev, 4096); 1220 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1221 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1222 if (pcie_relaxed_ordering == 0 && 1223 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1224 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1225 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1226 } else if (pcie_relaxed_ordering == 1 && 1227 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1228 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1229 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1230 } 1231 } 1232 1233 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1234 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1235 sc->traceq = -1; 1236 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1237 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1238 device_get_nameunit(dev)); 1239 1240 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1241 device_get_nameunit(dev)); 1242 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1243 t4_add_adapter(sc); 1244 1245 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1246 TAILQ_INIT(&sc->sfl); 1247 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1248 1249 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1250 1251 sc->policy = NULL; 1252 rw_init(&sc->policy_lock, "connection offload policy"); 1253 1254 callout_init(&sc->ktls_tick, 1); 1255 1256 callout_init(&sc->cal_callout, 1); 1257 1258 refcount_init(&sc->vxlan_refcount, 0); 1259 1260 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1261 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1262 1263 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1264 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1265 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1266 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1267 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1268 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1269 1270 rc = t4_map_bars_0_and_4(sc); 1271 if (rc != 0) 1272 goto done; /* error message displayed already */ 1273 1274 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1275 1276 /* Prepare the adapter for operation. */ 1277 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1278 rc = -t4_prep_adapter(sc, buf); 1279 free(buf, M_CXGBE); 1280 if (rc != 0) { 1281 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1282 goto done; 1283 } 1284 1285 /* 1286 * This is the real PF# to which we're attaching. Works from within PCI 1287 * passthrough environments too, where pci_get_function() could return a 1288 * different PF# depending on the passthrough configuration. We need to 1289 * use the real PF# in all our communication with the firmware. 1290 */ 1291 j = t4_read_reg(sc, A_PL_WHOAMI); 1292 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1293 sc->mbox = sc->pf; 1294 1295 t4_init_devnames(sc); 1296 if (sc->names == NULL) { 1297 rc = ENOTSUP; 1298 goto done; /* error message displayed already */ 1299 } 1300 1301 /* 1302 * Do this really early, with the memory windows set up even before the 1303 * character device. The userland tool's register i/o and mem read 1304 * will work even in "recovery mode". 1305 */ 1306 setup_memwin(sc); 1307 if (t4_init_devlog_params(sc, 0) == 0) 1308 fixup_devlog_params(sc); 1309 make_dev_args_init(&mda); 1310 mda.mda_devsw = &t4_cdevsw; 1311 mda.mda_uid = UID_ROOT; 1312 mda.mda_gid = GID_WHEEL; 1313 mda.mda_mode = 0600; 1314 mda.mda_si_drv1 = sc; 1315 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1316 if (rc != 0) 1317 device_printf(dev, "failed to create nexus char device: %d.\n", 1318 rc); 1319 1320 /* Go no further if recovery mode has been requested. */ 1321 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1322 device_printf(dev, "recovery mode.\n"); 1323 goto done; 1324 } 1325 1326 #if defined(__i386__) 1327 if ((cpu_feature & CPUID_CX8) == 0) { 1328 device_printf(dev, "64 bit atomics not available.\n"); 1329 rc = ENOTSUP; 1330 goto done; 1331 } 1332 #endif 1333 1334 /* Contact the firmware and try to become the master driver. */ 1335 rc = contact_firmware(sc); 1336 if (rc != 0) 1337 goto done; /* error message displayed already */ 1338 MPASS(sc->flags & FW_OK); 1339 1340 rc = get_params__pre_init(sc); 1341 if (rc != 0) 1342 goto done; /* error message displayed already */ 1343 1344 if (sc->flags & MASTER_PF) { 1345 rc = partition_resources(sc); 1346 if (rc != 0) 1347 goto done; /* error message displayed already */ 1348 } 1349 1350 rc = get_params__post_init(sc); 1351 if (rc != 0) 1352 goto done; /* error message displayed already */ 1353 1354 rc = set_params__post_init(sc); 1355 if (rc != 0) 1356 goto done; /* error message displayed already */ 1357 1358 rc = t4_map_bar_2(sc); 1359 if (rc != 0) 1360 goto done; /* error message displayed already */ 1361 1362 rc = t4_adj_doorbells(sc); 1363 if (rc != 0) 1364 goto done; /* error message displayed already */ 1365 1366 rc = t4_create_dma_tag(sc); 1367 if (rc != 0) 1368 goto done; /* error message displayed already */ 1369 1370 /* 1371 * First pass over all the ports - allocate VIs and initialize some 1372 * basic parameters like mac address, port type, etc. 1373 */ 1374 for_each_port(sc, i) { 1375 struct port_info *pi; 1376 1377 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1378 sc->port[i] = pi; 1379 1380 /* These must be set before t4_port_init */ 1381 pi->adapter = sc; 1382 pi->port_id = i; 1383 /* 1384 * XXX: vi[0] is special so we can't delay this allocation until 1385 * pi->nvi's final value is known. 1386 */ 1387 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1388 M_ZERO | M_WAITOK); 1389 1390 /* 1391 * Allocate the "main" VI and initialize parameters 1392 * like mac addr. 1393 */ 1394 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1395 if (rc != 0) { 1396 device_printf(dev, "unable to initialize port %d: %d\n", 1397 i, rc); 1398 free(pi->vi, M_CXGBE); 1399 free(pi, M_CXGBE); 1400 sc->port[i] = NULL; 1401 goto done; 1402 } 1403 1404 if (is_bt(pi->port_type)) 1405 setbit(&sc->bt_map, pi->tx_chan); 1406 else 1407 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1408 1409 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1410 device_get_nameunit(dev), i); 1411 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1412 sc->chan_map[pi->tx_chan] = i; 1413 1414 /* 1415 * The MPS counter for FCS errors doesn't work correctly on the 1416 * T6 so we use the MAC counter here. Which MAC is in use 1417 * depends on the link settings which will be known when the 1418 * link comes up. 1419 */ 1420 if (is_t6(sc)) 1421 pi->fcs_reg = -1; 1422 else { 1423 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1424 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1425 } 1426 pi->fcs_base = 0; 1427 1428 /* All VIs on this port share this media. */ 1429 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1430 cxgbe_media_status); 1431 1432 PORT_LOCK(pi); 1433 init_link_config(pi); 1434 fixup_link_config(pi); 1435 build_medialist(pi); 1436 if (fixed_ifmedia(pi)) 1437 pi->flags |= FIXED_IFMEDIA; 1438 PORT_UNLOCK(pi); 1439 1440 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1441 t4_ifnet_unit(sc, pi)); 1442 if (pi->dev == NULL) { 1443 device_printf(dev, 1444 "failed to add device for port %d.\n", i); 1445 rc = ENXIO; 1446 goto done; 1447 } 1448 pi->vi[0].dev = pi->dev; 1449 device_set_softc(pi->dev, pi); 1450 } 1451 1452 /* 1453 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1454 */ 1455 nports = sc->params.nports; 1456 rc = cfg_itype_and_nqueues(sc, &iaq); 1457 if (rc != 0) 1458 goto done; /* error message displayed already */ 1459 1460 num_vis = iaq.num_vis; 1461 sc->intr_type = iaq.intr_type; 1462 sc->intr_count = iaq.nirq; 1463 1464 s = &sc->sge; 1465 s->nrxq = nports * iaq.nrxq; 1466 s->ntxq = nports * iaq.ntxq; 1467 if (num_vis > 1) { 1468 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1469 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1470 } 1471 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1472 s->neq += nports; /* ctrl queues: 1 per port */ 1473 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1474 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1475 if (is_offload(sc) || is_ethoffload(sc)) { 1476 s->nofldtxq = nports * iaq.nofldtxq; 1477 if (num_vis > 1) 1478 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1479 s->neq += s->nofldtxq; 1480 1481 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1482 M_CXGBE, M_ZERO | M_WAITOK); 1483 } 1484 #endif 1485 #ifdef TCP_OFFLOAD 1486 if (is_offload(sc)) { 1487 s->nofldrxq = nports * iaq.nofldrxq; 1488 if (num_vis > 1) 1489 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1490 s->neq += s->nofldrxq; /* free list */ 1491 s->niq += s->nofldrxq; 1492 1493 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1494 M_CXGBE, M_ZERO | M_WAITOK); 1495 } 1496 #endif 1497 #ifdef DEV_NETMAP 1498 s->nnmrxq = 0; 1499 s->nnmtxq = 0; 1500 if (t4_native_netmap & NN_MAIN_VI) { 1501 s->nnmrxq += nports * iaq.nnmrxq; 1502 s->nnmtxq += nports * iaq.nnmtxq; 1503 } 1504 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1505 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1506 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1507 } 1508 s->neq += s->nnmtxq + s->nnmrxq; 1509 s->niq += s->nnmrxq; 1510 1511 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1512 M_CXGBE, M_ZERO | M_WAITOK); 1513 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1514 M_CXGBE, M_ZERO | M_WAITOK); 1515 #endif 1516 MPASS(s->niq <= s->iqmap_sz); 1517 MPASS(s->neq <= s->eqmap_sz); 1518 1519 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1520 M_ZERO | M_WAITOK); 1521 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1522 M_ZERO | M_WAITOK); 1523 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1524 M_ZERO | M_WAITOK); 1525 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1526 M_ZERO | M_WAITOK); 1527 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1528 M_ZERO | M_WAITOK); 1529 1530 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1531 M_ZERO | M_WAITOK); 1532 1533 t4_init_l2t(sc, M_WAITOK); 1534 t4_init_smt(sc, M_WAITOK); 1535 t4_init_tx_sched(sc); 1536 t4_init_atid_table(sc); 1537 #ifdef RATELIMIT 1538 t4_init_etid_table(sc); 1539 #endif 1540 #ifdef INET6 1541 t4_init_clip_table(sc); 1542 #endif 1543 if (sc->vres.key.size != 0) 1544 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1545 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1546 1547 /* 1548 * Second pass over the ports. This time we know the number of rx and 1549 * tx queues that each port should get. 1550 */ 1551 rqidx = tqidx = 0; 1552 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1553 ofld_tqidx = 0; 1554 #endif 1555 #ifdef TCP_OFFLOAD 1556 ofld_rqidx = 0; 1557 #endif 1558 #ifdef DEV_NETMAP 1559 nm_rqidx = nm_tqidx = 0; 1560 #endif 1561 for_each_port(sc, i) { 1562 struct port_info *pi = sc->port[i]; 1563 struct vi_info *vi; 1564 1565 if (pi == NULL) 1566 continue; 1567 1568 pi->nvi = num_vis; 1569 for_each_vi(pi, j, vi) { 1570 vi->pi = pi; 1571 vi->adapter = sc; 1572 vi->first_intr = -1; 1573 vi->qsize_rxq = t4_qsize_rxq; 1574 vi->qsize_txq = t4_qsize_txq; 1575 1576 vi->first_rxq = rqidx; 1577 vi->first_txq = tqidx; 1578 vi->tmr_idx = t4_tmr_idx; 1579 vi->pktc_idx = t4_pktc_idx; 1580 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1581 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1582 1583 rqidx += vi->nrxq; 1584 tqidx += vi->ntxq; 1585 1586 if (j == 0 && vi->ntxq > 1) 1587 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1588 else 1589 vi->rsrv_noflowq = 0; 1590 1591 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1592 vi->first_ofld_txq = ofld_tqidx; 1593 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1594 ofld_tqidx += vi->nofldtxq; 1595 #endif 1596 #ifdef TCP_OFFLOAD 1597 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1598 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1599 vi->first_ofld_rxq = ofld_rqidx; 1600 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1601 1602 ofld_rqidx += vi->nofldrxq; 1603 #endif 1604 #ifdef DEV_NETMAP 1605 vi->first_nm_rxq = nm_rqidx; 1606 vi->first_nm_txq = nm_tqidx; 1607 if (j == 0) { 1608 vi->nnmrxq = iaq.nnmrxq; 1609 vi->nnmtxq = iaq.nnmtxq; 1610 } else { 1611 vi->nnmrxq = iaq.nnmrxq_vi; 1612 vi->nnmtxq = iaq.nnmtxq_vi; 1613 } 1614 nm_rqidx += vi->nnmrxq; 1615 nm_tqidx += vi->nnmtxq; 1616 #endif 1617 } 1618 } 1619 1620 rc = t4_setup_intr_handlers(sc); 1621 if (rc != 0) { 1622 device_printf(dev, 1623 "failed to setup interrupt handlers: %d\n", rc); 1624 goto done; 1625 } 1626 1627 rc = bus_generic_probe(dev); 1628 if (rc != 0) { 1629 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1630 goto done; 1631 } 1632 1633 /* 1634 * Ensure thread-safe mailbox access (in debug builds). 1635 * 1636 * So far this was the only thread accessing the mailbox but various 1637 * ifnets and sysctls are about to be created and their handlers/ioctls 1638 * will access the mailbox from different threads. 1639 */ 1640 sc->flags |= CHK_MBOX_ACCESS; 1641 1642 rc = bus_generic_attach(dev); 1643 if (rc != 0) { 1644 device_printf(dev, 1645 "failed to attach all child ports: %d\n", rc); 1646 goto done; 1647 } 1648 t4_calibration_start(sc); 1649 1650 device_printf(dev, 1651 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1652 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1653 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1654 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1655 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1656 1657 t4_set_desc(sc); 1658 1659 notify_siblings(dev, 0); 1660 1661 done: 1662 if (rc != 0 && sc->cdev) { 1663 /* cdev was created and so cxgbetool works; recover that way. */ 1664 device_printf(dev, 1665 "error during attach, adapter is now in recovery mode.\n"); 1666 rc = 0; 1667 } 1668 1669 if (rc != 0) 1670 t4_detach_common(dev); 1671 else 1672 t4_sysctls(sc); 1673 1674 return (rc); 1675 } 1676 1677 static int 1678 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1679 { 1680 struct adapter *sc; 1681 struct port_info *pi; 1682 int i; 1683 1684 sc = device_get_softc(bus); 1685 for_each_port(sc, i) { 1686 pi = sc->port[i]; 1687 if (pi != NULL && pi->dev == dev) { 1688 sbuf_printf(sb, "port=%d", pi->port_id); 1689 break; 1690 } 1691 } 1692 return (0); 1693 } 1694 1695 static int 1696 t4_ready(device_t dev) 1697 { 1698 struct adapter *sc; 1699 1700 sc = device_get_softc(dev); 1701 if (sc->flags & FW_OK) 1702 return (0); 1703 return (ENXIO); 1704 } 1705 1706 static int 1707 t4_read_port_device(device_t dev, int port, device_t *child) 1708 { 1709 struct adapter *sc; 1710 struct port_info *pi; 1711 1712 sc = device_get_softc(dev); 1713 if (port < 0 || port >= MAX_NPORTS) 1714 return (EINVAL); 1715 pi = sc->port[port]; 1716 if (pi == NULL || pi->dev == NULL) 1717 return (ENXIO); 1718 *child = pi->dev; 1719 return (0); 1720 } 1721 1722 static int 1723 notify_siblings(device_t dev, int detaching) 1724 { 1725 device_t sibling; 1726 int error, i; 1727 1728 error = 0; 1729 for (i = 0; i < PCI_FUNCMAX; i++) { 1730 if (i == pci_get_function(dev)) 1731 continue; 1732 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1733 pci_get_slot(dev), i); 1734 if (sibling == NULL || !device_is_attached(sibling)) 1735 continue; 1736 if (detaching) 1737 error = T4_DETACH_CHILD(sibling); 1738 else 1739 (void)T4_ATTACH_CHILD(sibling); 1740 if (error) 1741 break; 1742 } 1743 return (error); 1744 } 1745 1746 /* 1747 * Idempotent 1748 */ 1749 static int 1750 t4_detach(device_t dev) 1751 { 1752 int rc; 1753 1754 rc = notify_siblings(dev, 1); 1755 if (rc) { 1756 device_printf(dev, 1757 "failed to detach sibling devices: %d\n", rc); 1758 return (rc); 1759 } 1760 1761 return (t4_detach_common(dev)); 1762 } 1763 1764 int 1765 t4_detach_common(device_t dev) 1766 { 1767 struct adapter *sc; 1768 struct port_info *pi; 1769 int i, rc; 1770 1771 sc = device_get_softc(dev); 1772 1773 #ifdef TCP_OFFLOAD 1774 rc = deactivate_all_uld(sc); 1775 if (rc) { 1776 device_printf(dev, 1777 "failed to detach upper layer drivers: %d\n", rc); 1778 return (rc); 1779 } 1780 #endif 1781 1782 if (sc->cdev) { 1783 destroy_dev(sc->cdev); 1784 sc->cdev = NULL; 1785 } 1786 1787 sx_xlock(&t4_list_lock); 1788 SLIST_REMOVE(&t4_list, sc, adapter, link); 1789 sx_xunlock(&t4_list_lock); 1790 1791 sc->flags &= ~CHK_MBOX_ACCESS; 1792 if (sc->flags & FULL_INIT_DONE) { 1793 if (!(sc->flags & IS_VF)) 1794 t4_intr_disable(sc); 1795 } 1796 1797 if (device_is_attached(dev)) { 1798 rc = bus_generic_detach(dev); 1799 if (rc) { 1800 device_printf(dev, 1801 "failed to detach child devices: %d\n", rc); 1802 return (rc); 1803 } 1804 } 1805 1806 for (i = 0; i < sc->intr_count; i++) 1807 t4_free_irq(sc, &sc->irq[i]); 1808 1809 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1810 t4_free_tx_sched(sc); 1811 1812 for (i = 0; i < MAX_NPORTS; i++) { 1813 pi = sc->port[i]; 1814 if (pi) { 1815 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1816 if (pi->dev) 1817 device_delete_child(dev, pi->dev); 1818 1819 mtx_destroy(&pi->pi_lock); 1820 free(pi->vi, M_CXGBE); 1821 free(pi, M_CXGBE); 1822 } 1823 } 1824 callout_stop(&sc->cal_callout); 1825 callout_drain(&sc->cal_callout); 1826 device_delete_children(dev); 1827 sysctl_ctx_free(&sc->ctx); 1828 adapter_full_uninit(sc); 1829 1830 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1831 t4_fw_bye(sc, sc->mbox); 1832 1833 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1834 pci_release_msi(dev); 1835 1836 if (sc->regs_res) 1837 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1838 sc->regs_res); 1839 1840 if (sc->udbs_res) 1841 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1842 sc->udbs_res); 1843 1844 if (sc->msix_res) 1845 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1846 sc->msix_res); 1847 1848 if (sc->l2t) 1849 t4_free_l2t(sc); 1850 if (sc->smt) 1851 t4_free_smt(sc->smt); 1852 t4_free_atid_table(sc); 1853 #ifdef RATELIMIT 1854 t4_free_etid_table(sc); 1855 #endif 1856 if (sc->key_map) 1857 vmem_destroy(sc->key_map); 1858 #ifdef INET6 1859 t4_destroy_clip_table(sc); 1860 #endif 1861 1862 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1863 free(sc->sge.ofld_txq, M_CXGBE); 1864 #endif 1865 #ifdef TCP_OFFLOAD 1866 free(sc->sge.ofld_rxq, M_CXGBE); 1867 #endif 1868 #ifdef DEV_NETMAP 1869 free(sc->sge.nm_rxq, M_CXGBE); 1870 free(sc->sge.nm_txq, M_CXGBE); 1871 #endif 1872 free(sc->irq, M_CXGBE); 1873 free(sc->sge.rxq, M_CXGBE); 1874 free(sc->sge.txq, M_CXGBE); 1875 free(sc->sge.ctrlq, M_CXGBE); 1876 free(sc->sge.iqmap, M_CXGBE); 1877 free(sc->sge.eqmap, M_CXGBE); 1878 free(sc->tids.ftid_tab, M_CXGBE); 1879 free(sc->tids.hpftid_tab, M_CXGBE); 1880 free_hftid_hash(&sc->tids); 1881 free(sc->tids.tid_tab, M_CXGBE); 1882 t4_destroy_dma_tag(sc); 1883 1884 callout_drain(&sc->ktls_tick); 1885 callout_drain(&sc->sfl_callout); 1886 if (mtx_initialized(&sc->tids.ftid_lock)) { 1887 mtx_destroy(&sc->tids.ftid_lock); 1888 cv_destroy(&sc->tids.ftid_cv); 1889 } 1890 if (mtx_initialized(&sc->tids.atid_lock)) 1891 mtx_destroy(&sc->tids.atid_lock); 1892 if (mtx_initialized(&sc->ifp_lock)) 1893 mtx_destroy(&sc->ifp_lock); 1894 1895 if (rw_initialized(&sc->policy_lock)) { 1896 rw_destroy(&sc->policy_lock); 1897 #ifdef TCP_OFFLOAD 1898 if (sc->policy != NULL) 1899 free_offload_policy(sc->policy); 1900 #endif 1901 } 1902 1903 for (i = 0; i < NUM_MEMWIN; i++) { 1904 struct memwin *mw = &sc->memwin[i]; 1905 1906 if (rw_initialized(&mw->mw_lock)) 1907 rw_destroy(&mw->mw_lock); 1908 } 1909 1910 mtx_destroy(&sc->sfl_lock); 1911 mtx_destroy(&sc->reg_lock); 1912 mtx_destroy(&sc->sc_lock); 1913 1914 bzero(sc, sizeof(*sc)); 1915 1916 return (0); 1917 } 1918 1919 static inline int 1920 stop_adapter(struct adapter *sc) 1921 { 1922 struct port_info *pi; 1923 int i; 1924 1925 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1926 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1927 __func__, curthread, sc->flags, sc->error_flags); 1928 return (EALREADY); 1929 } 1930 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1931 sc->flags, sc->error_flags); 1932 t4_shutdown_adapter(sc); 1933 for_each_port(sc, i) { 1934 pi = sc->port[i]; 1935 PORT_LOCK(pi); 1936 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 1937 /* 1938 * t4_shutdown_adapter has already shut down all the 1939 * PHYs but it also disables interrupts and DMA so there 1940 * won't be a link interrupt. Update the state manually 1941 * if the link was up previously and inform the kernel. 1942 */ 1943 pi->link_cfg.link_ok = false; 1944 t4_os_link_changed(pi); 1945 } 1946 PORT_UNLOCK(pi); 1947 } 1948 1949 return (0); 1950 } 1951 1952 static inline int 1953 restart_adapter(struct adapter *sc) 1954 { 1955 uint32_t val; 1956 1957 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1958 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1959 __func__, curthread, sc->flags, sc->error_flags); 1960 return (EALREADY); 1961 } 1962 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1963 sc->flags, sc->error_flags); 1964 1965 MPASS(hw_off_limits(sc)); 1966 MPASS((sc->flags & FW_OK) == 0); 1967 MPASS((sc->flags & MASTER_PF) == 0); 1968 MPASS(sc->reset_thread == NULL); 1969 1970 /* 1971 * The adapter is supposed to be back on PCIE with its config space and 1972 * BARs restored to their state before reset. Register access via 1973 * t4_read_reg BAR0 should just work. 1974 */ 1975 sc->reset_thread = curthread; 1976 val = t4_read_reg(sc, A_PL_WHOAMI); 1977 if (val == 0xffffffff || val == 0xeeeeeeee) { 1978 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 1979 sc->reset_thread = NULL; 1980 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 1981 return (ENXIO); 1982 } 1983 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 1984 atomic_add_int(&sc->incarnation, 1); 1985 atomic_add_int(&sc->num_resets, 1); 1986 1987 return (0); 1988 } 1989 1990 static inline void 1991 set_adapter_hwstatus(struct adapter *sc, const bool usable) 1992 { 1993 if (usable) { 1994 /* Must be marked reusable by the designated thread. */ 1995 ASSERT_SYNCHRONIZED_OP(sc); 1996 MPASS(sc->reset_thread == curthread); 1997 mtx_lock(&sc->reg_lock); 1998 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 1999 mtx_unlock(&sc->reg_lock); 2000 } else { 2001 /* Mark the adapter totally off limits. */ 2002 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 2003 mtx_lock(&sc->reg_lock); 2004 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2005 mtx_unlock(&sc->reg_lock); 2006 sc->flags &= ~(FW_OK | MASTER_PF); 2007 sc->reset_thread = NULL; 2008 end_synchronized_op(sc, 0); 2009 } 2010 } 2011 2012 static int 2013 stop_lld(struct adapter *sc) 2014 { 2015 struct port_info *pi; 2016 struct vi_info *vi; 2017 if_t ifp; 2018 struct sge_rxq *rxq; 2019 struct sge_txq *txq; 2020 struct sge_wrq *wrq; 2021 #ifdef TCP_OFFLOAD 2022 struct sge_ofld_rxq *ofld_rxq; 2023 #endif 2024 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2025 struct sge_ofld_txq *ofld_txq; 2026 #endif 2027 int rc, i, j, k; 2028 2029 /* 2030 * XXX: Can there be a synch_op in progress that will hang because 2031 * hardware has been stopped? We'll hang too and the solution will be 2032 * to use a version of begin_synch_op that wakes up existing synch_op 2033 * with errors. Maybe stop_adapter should do this wakeup? 2034 * 2035 * I don't think any synch_op could get stranded waiting for DMA or 2036 * interrupt so I think we're okay here. Remove this comment block 2037 * after testing. 2038 */ 2039 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2040 if (rc != 0) 2041 return (ENXIO); 2042 2043 /* Quiesce all activity. */ 2044 for_each_port(sc, i) { 2045 pi = sc->port[i]; 2046 pi->vxlan_tcam_entry = false; 2047 for_each_vi(pi, j, vi) { 2048 vi->xact_addr_filt = -1; 2049 mtx_lock(&vi->tick_mtx); 2050 vi->flags |= VI_SKIP_STATS; 2051 mtx_unlock(&vi->tick_mtx); 2052 if (!(vi->flags & VI_INIT_DONE)) 2053 continue; 2054 2055 ifp = vi->ifp; 2056 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2057 mtx_lock(&vi->tick_mtx); 2058 callout_stop(&vi->tick); 2059 mtx_unlock(&vi->tick_mtx); 2060 callout_drain(&vi->tick); 2061 } 2062 2063 /* 2064 * Note that the HW is not available. 2065 */ 2066 for_each_txq(vi, k, txq) { 2067 TXQ_LOCK(txq); 2068 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2069 TXQ_UNLOCK(txq); 2070 } 2071 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2072 for_each_ofld_txq(vi, k, ofld_txq) { 2073 TXQ_LOCK(&ofld_txq->wrq); 2074 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2075 TXQ_UNLOCK(&ofld_txq->wrq); 2076 } 2077 #endif 2078 for_each_rxq(vi, k, rxq) { 2079 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2080 } 2081 #if defined(TCP_OFFLOAD) 2082 for_each_ofld_rxq(vi, k, ofld_rxq) { 2083 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2084 } 2085 #endif 2086 2087 quiesce_vi(vi); 2088 } 2089 2090 if (sc->flags & FULL_INIT_DONE) { 2091 /* Control queue */ 2092 wrq = &sc->sge.ctrlq[i]; 2093 TXQ_LOCK(wrq); 2094 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2095 TXQ_UNLOCK(wrq); 2096 quiesce_wrq(wrq); 2097 } 2098 2099 if (pi->flags & HAS_TRACEQ) { 2100 pi->flags &= ~HAS_TRACEQ; 2101 sc->traceq = -1; 2102 sc->tracer_valid = 0; 2103 sc->tracer_enabled = 0; 2104 } 2105 } 2106 if (sc->flags & FULL_INIT_DONE) { 2107 /* Firmware event queue */ 2108 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2109 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2110 } 2111 2112 /* Stop calibration */ 2113 callout_stop(&sc->cal_callout); 2114 callout_drain(&sc->cal_callout); 2115 2116 if (t4_clock_gate_on_suspend) { 2117 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2118 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2119 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2120 } 2121 2122 end_synchronized_op(sc, 0); 2123 2124 stop_atid_allocator(sc); 2125 t4_stop_l2t(sc); 2126 2127 return (rc); 2128 } 2129 2130 int 2131 suspend_adapter(struct adapter *sc) 2132 { 2133 stop_adapter(sc); 2134 stop_lld(sc); 2135 #ifdef TCP_OFFLOAD 2136 stop_all_uld(sc); 2137 #endif 2138 set_adapter_hwstatus(sc, false); 2139 2140 return (0); 2141 } 2142 2143 static int 2144 t4_suspend(device_t dev) 2145 { 2146 struct adapter *sc = device_get_softc(dev); 2147 int rc; 2148 2149 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2150 rc = suspend_adapter(sc); 2151 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2152 2153 return (rc); 2154 } 2155 2156 struct adapter_pre_reset_state { 2157 u_int flags; 2158 uint16_t nbmcaps; 2159 uint16_t linkcaps; 2160 uint16_t switchcaps; 2161 uint16_t niccaps; 2162 uint16_t toecaps; 2163 uint16_t rdmacaps; 2164 uint16_t cryptocaps; 2165 uint16_t iscsicaps; 2166 uint16_t fcoecaps; 2167 2168 u_int cfcsum; 2169 char cfg_file[32]; 2170 2171 struct adapter_params params; 2172 struct t4_virt_res vres; 2173 struct tid_info tids; 2174 struct sge sge; 2175 2176 int rawf_base; 2177 int nrawf; 2178 2179 }; 2180 2181 static void 2182 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2183 { 2184 2185 ASSERT_SYNCHRONIZED_OP(sc); 2186 2187 o->flags = sc->flags; 2188 2189 o->nbmcaps = sc->nbmcaps; 2190 o->linkcaps = sc->linkcaps; 2191 o->switchcaps = sc->switchcaps; 2192 o->niccaps = sc->niccaps; 2193 o->toecaps = sc->toecaps; 2194 o->rdmacaps = sc->rdmacaps; 2195 o->cryptocaps = sc->cryptocaps; 2196 o->iscsicaps = sc->iscsicaps; 2197 o->fcoecaps = sc->fcoecaps; 2198 2199 o->cfcsum = sc->cfcsum; 2200 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2201 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2202 2203 o->params = sc->params; 2204 o->vres = sc->vres; 2205 o->tids = sc->tids; 2206 o->sge = sc->sge; 2207 2208 o->rawf_base = sc->rawf_base; 2209 o->nrawf = sc->nrawf; 2210 } 2211 2212 static int 2213 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2214 { 2215 int rc = 0; 2216 2217 ASSERT_SYNCHRONIZED_OP(sc); 2218 2219 /* Capabilities */ 2220 #define COMPARE_CAPS(c) do { \ 2221 if (o->c##caps != sc->c##caps) { \ 2222 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2223 sc->c##caps); \ 2224 rc = EINVAL; \ 2225 } \ 2226 } while (0) 2227 COMPARE_CAPS(nbm); 2228 COMPARE_CAPS(link); 2229 COMPARE_CAPS(switch); 2230 COMPARE_CAPS(nic); 2231 COMPARE_CAPS(toe); 2232 COMPARE_CAPS(rdma); 2233 COMPARE_CAPS(crypto); 2234 COMPARE_CAPS(iscsi); 2235 COMPARE_CAPS(fcoe); 2236 #undef COMPARE_CAPS 2237 2238 /* Firmware config file */ 2239 if (o->cfcsum != sc->cfcsum) { 2240 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2241 o->cfcsum, sc->cfg_file, sc->cfcsum); 2242 rc = EINVAL; 2243 } 2244 2245 #define COMPARE_PARAM(p, name) do { \ 2246 if (o->p != sc->p) { \ 2247 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2248 rc = EINVAL; \ 2249 } \ 2250 } while (0) 2251 COMPARE_PARAM(sge.iq_start, iq_start); 2252 COMPARE_PARAM(sge.eq_start, eq_start); 2253 COMPARE_PARAM(tids.ftid_base, ftid_base); 2254 COMPARE_PARAM(tids.ftid_end, ftid_end); 2255 COMPARE_PARAM(tids.nftids, nftids); 2256 COMPARE_PARAM(vres.l2t.start, l2t_start); 2257 COMPARE_PARAM(vres.l2t.size, l2t_size); 2258 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2259 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2260 COMPARE_PARAM(tids.tid_base, tid_base); 2261 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2262 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2263 COMPARE_PARAM(tids.nhpftids, nhpftids); 2264 COMPARE_PARAM(rawf_base, rawf_base); 2265 COMPARE_PARAM(nrawf, nrawf); 2266 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2267 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2268 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2269 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2270 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2271 COMPARE_PARAM(tids.ntids, ntids); 2272 COMPARE_PARAM(tids.etid_base, etid_base); 2273 COMPARE_PARAM(tids.etid_end, etid_end); 2274 COMPARE_PARAM(tids.netids, netids); 2275 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2276 COMPARE_PARAM(params.ethoffload, ethoffload); 2277 COMPARE_PARAM(tids.natids, natids); 2278 COMPARE_PARAM(tids.stid_base, stid_base); 2279 COMPARE_PARAM(vres.ddp.start, ddp_start); 2280 COMPARE_PARAM(vres.ddp.size, ddp_size); 2281 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2282 COMPARE_PARAM(vres.stag.start, stag_start); 2283 COMPARE_PARAM(vres.stag.size, stag_size); 2284 COMPARE_PARAM(vres.rq.start, rq_start); 2285 COMPARE_PARAM(vres.rq.size, rq_size); 2286 COMPARE_PARAM(vres.pbl.start, pbl_start); 2287 COMPARE_PARAM(vres.pbl.size, pbl_size); 2288 COMPARE_PARAM(vres.qp.start, qp_start); 2289 COMPARE_PARAM(vres.qp.size, qp_size); 2290 COMPARE_PARAM(vres.cq.start, cq_start); 2291 COMPARE_PARAM(vres.cq.size, cq_size); 2292 COMPARE_PARAM(vres.ocq.start, ocq_start); 2293 COMPARE_PARAM(vres.ocq.size, ocq_size); 2294 COMPARE_PARAM(vres.srq.start, srq_start); 2295 COMPARE_PARAM(vres.srq.size, srq_size); 2296 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2297 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2298 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2299 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2300 COMPARE_PARAM(vres.key.start, key_start); 2301 COMPARE_PARAM(vres.key.size, key_size); 2302 #undef COMPARE_PARAM 2303 2304 return (rc); 2305 } 2306 2307 static int 2308 restart_lld(struct adapter *sc) 2309 { 2310 struct adapter_pre_reset_state *old_state = NULL; 2311 struct port_info *pi; 2312 struct vi_info *vi; 2313 if_t ifp; 2314 struct sge_txq *txq; 2315 int rc, i, j, k; 2316 2317 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2318 if (rc != 0) 2319 return (ENXIO); 2320 2321 /* Restore memory window. */ 2322 setup_memwin(sc); 2323 2324 /* Go no further if recovery mode has been requested. */ 2325 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2326 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2327 rc = 0; 2328 set_adapter_hwstatus(sc, true); 2329 goto done; 2330 } 2331 2332 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2333 save_caps_and_params(sc, old_state); 2334 2335 /* Reestablish contact with firmware and become the primary PF. */ 2336 rc = contact_firmware(sc); 2337 if (rc != 0) 2338 goto done; /* error message displayed already */ 2339 MPASS(sc->flags & FW_OK); 2340 2341 if (sc->flags & MASTER_PF) { 2342 rc = partition_resources(sc); 2343 if (rc != 0) 2344 goto done; /* error message displayed already */ 2345 } 2346 2347 rc = get_params__post_init(sc); 2348 if (rc != 0) 2349 goto done; /* error message displayed already */ 2350 2351 rc = set_params__post_init(sc); 2352 if (rc != 0) 2353 goto done; /* error message displayed already */ 2354 2355 rc = compare_caps_and_params(sc, old_state); 2356 if (rc != 0) 2357 goto done; /* error message displayed already */ 2358 2359 for_each_port(sc, i) { 2360 pi = sc->port[i]; 2361 MPASS(pi != NULL); 2362 MPASS(pi->vi != NULL); 2363 MPASS(pi->vi[0].dev == pi->dev); 2364 2365 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2366 if (rc != 0) { 2367 CH_ERR(sc, 2368 "failed to re-initialize port %d: %d\n", i, rc); 2369 goto done; 2370 } 2371 MPASS(sc->chan_map[pi->tx_chan] == i); 2372 2373 PORT_LOCK(pi); 2374 fixup_link_config(pi); 2375 build_medialist(pi); 2376 PORT_UNLOCK(pi); 2377 for_each_vi(pi, j, vi) { 2378 if (IS_MAIN_VI(vi)) 2379 continue; 2380 rc = alloc_extra_vi(sc, pi, vi); 2381 if (rc != 0) { 2382 CH_ERR(vi, 2383 "failed to re-allocate extra VI: %d\n", rc); 2384 goto done; 2385 } 2386 } 2387 } 2388 2389 /* 2390 * Interrupts and queues are about to be enabled and other threads will 2391 * want to access the hardware too. It is safe to do so. Note that 2392 * this thread is still in the middle of a synchronized_op. 2393 */ 2394 set_adapter_hwstatus(sc, true); 2395 2396 if (sc->flags & FULL_INIT_DONE) { 2397 rc = adapter_full_init(sc); 2398 if (rc != 0) { 2399 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2400 goto done; 2401 } 2402 2403 if (sc->vxlan_refcount > 0) 2404 enable_vxlan_rx(sc); 2405 2406 for_each_port(sc, i) { 2407 pi = sc->port[i]; 2408 for_each_vi(pi, j, vi) { 2409 mtx_lock(&vi->tick_mtx); 2410 vi->flags &= ~VI_SKIP_STATS; 2411 mtx_unlock(&vi->tick_mtx); 2412 if (!(vi->flags & VI_INIT_DONE)) 2413 continue; 2414 rc = vi_full_init(vi); 2415 if (rc != 0) { 2416 CH_ERR(vi, "failed to re-initialize " 2417 "interface: %d\n", rc); 2418 goto done; 2419 } 2420 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2421 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2422 t4_write_reg(sc, is_t4(sc) ? 2423 A_MPS_TRC_RSS_CONTROL : 2424 A_MPS_T5_TRC_RSS_CONTROL, 2425 V_RSSCONTROL(pi->tx_chan) | 2426 V_QUEUENUMBER(sc->traceq)); 2427 pi->flags |= HAS_TRACEQ; 2428 } 2429 2430 ifp = vi->ifp; 2431 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2432 continue; 2433 /* 2434 * Note that we do not setup multicast addresses 2435 * in the first pass. This ensures that the 2436 * unicast DMACs for all VIs on all ports get an 2437 * MPS TCAM entry. 2438 */ 2439 rc = update_mac_settings(ifp, XGMAC_ALL & 2440 ~XGMAC_MCADDRS); 2441 if (rc != 0) { 2442 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2443 goto done; 2444 } 2445 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2446 true); 2447 if (rc != 0) { 2448 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2449 goto done; 2450 } 2451 for_each_txq(vi, k, txq) { 2452 TXQ_LOCK(txq); 2453 txq->eq.flags |= EQ_ENABLED; 2454 TXQ_UNLOCK(txq); 2455 } 2456 mtx_lock(&vi->tick_mtx); 2457 callout_schedule(&vi->tick, hz); 2458 mtx_unlock(&vi->tick_mtx); 2459 } 2460 PORT_LOCK(pi); 2461 if (pi->up_vis > 0) { 2462 t4_update_port_info(pi); 2463 fixup_link_config(pi); 2464 build_medialist(pi); 2465 apply_link_config(pi); 2466 if (pi->link_cfg.link_ok) 2467 t4_os_link_changed(pi); 2468 } 2469 PORT_UNLOCK(pi); 2470 } 2471 2472 /* Now reprogram the L2 multicast addresses. */ 2473 for_each_port(sc, i) { 2474 pi = sc->port[i]; 2475 for_each_vi(pi, j, vi) { 2476 if (!(vi->flags & VI_INIT_DONE)) 2477 continue; 2478 ifp = vi->ifp; 2479 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2480 continue; 2481 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2482 if (rc != 0) { 2483 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2484 rc = 0; /* carry on */ 2485 } 2486 } 2487 } 2488 } 2489 2490 /* Reset all calibration */ 2491 t4_calibration_start(sc); 2492 done: 2493 end_synchronized_op(sc, 0); 2494 free(old_state, M_CXGBE); 2495 2496 restart_atid_allocator(sc); 2497 t4_restart_l2t(sc); 2498 2499 return (rc); 2500 } 2501 2502 int 2503 resume_adapter(struct adapter *sc) 2504 { 2505 restart_adapter(sc); 2506 restart_lld(sc); 2507 #ifdef TCP_OFFLOAD 2508 restart_all_uld(sc); 2509 #endif 2510 return (0); 2511 } 2512 2513 static int 2514 t4_resume(device_t dev) 2515 { 2516 struct adapter *sc = device_get_softc(dev); 2517 int rc; 2518 2519 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2520 rc = resume_adapter(sc); 2521 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2522 2523 return (rc); 2524 } 2525 2526 static int 2527 t4_reset_prepare(device_t dev, device_t child) 2528 { 2529 struct adapter *sc = device_get_softc(dev); 2530 2531 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2532 return (0); 2533 } 2534 2535 static int 2536 t4_reset_post(device_t dev, device_t child) 2537 { 2538 struct adapter *sc = device_get_softc(dev); 2539 2540 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2541 return (0); 2542 } 2543 2544 static int 2545 reset_adapter_with_pci_bus_reset(struct adapter *sc) 2546 { 2547 int rc; 2548 2549 mtx_lock(&Giant); 2550 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2551 mtx_unlock(&Giant); 2552 return (rc); 2553 } 2554 2555 static int 2556 reset_adapter_with_pl_rst(struct adapter *sc) 2557 { 2558 suspend_adapter(sc); 2559 2560 /* This is a t4_write_reg without the hw_off_limits check. */ 2561 MPASS(sc->error_flags & HW_OFF_LIMITS); 2562 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2563 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2564 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2565 2566 resume_adapter(sc); 2567 2568 return (0); 2569 } 2570 2571 static inline int 2572 reset_adapter(struct adapter *sc) 2573 { 2574 if (vm_guest == 0) 2575 return (reset_adapter_with_pci_bus_reset(sc)); 2576 else 2577 return (reset_adapter_with_pl_rst(sc)); 2578 } 2579 2580 static void 2581 reset_adapter_task(void *arg, int pending) 2582 { 2583 struct adapter *sc = arg; 2584 const int flags = sc->flags; 2585 const int eflags = sc->error_flags; 2586 int rc; 2587 2588 if (pending > 1) 2589 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2590 rc = reset_adapter(sc); 2591 if (rc != 0) { 2592 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2593 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2594 rc, flags, sc->flags, eflags, sc->error_flags); 2595 } 2596 } 2597 2598 static int 2599 cxgbe_probe(device_t dev) 2600 { 2601 struct port_info *pi = device_get_softc(dev); 2602 2603 device_set_descf(dev, "port %d", pi->port_id); 2604 2605 return (BUS_PROBE_DEFAULT); 2606 } 2607 2608 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2609 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2610 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2611 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2612 #define T4_CAP_ENABLE (T4_CAP) 2613 2614 static void 2615 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2616 { 2617 if_t ifp; 2618 struct sbuf *sb; 2619 struct sysctl_ctx_list *ctx = &vi->ctx; 2620 struct sysctl_oid_list *children; 2621 struct pfil_head_args pa; 2622 struct adapter *sc = vi->adapter; 2623 2624 sysctl_ctx_init(ctx); 2625 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2626 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2627 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2628 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2629 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2630 #ifdef DEV_NETMAP 2631 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2632 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2633 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2634 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2635 #endif 2636 #ifdef TCP_OFFLOAD 2637 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2638 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2639 #endif 2640 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2641 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2642 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2643 #endif 2644 2645 vi->xact_addr_filt = -1; 2646 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2647 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2648 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2649 vi->flags |= TX_USES_VM_WR; 2650 2651 /* Allocate an ifnet and set it up */ 2652 ifp = if_alloc_dev(IFT_ETHER, dev); 2653 vi->ifp = ifp; 2654 if_setsoftc(ifp, vi); 2655 2656 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2657 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2658 2659 if_setinitfn(ifp, cxgbe_init); 2660 if_setioctlfn(ifp, cxgbe_ioctl); 2661 if_settransmitfn(ifp, cxgbe_transmit); 2662 if_setqflushfn(ifp, cxgbe_qflush); 2663 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2664 if_setgetcounterfn(ifp, vi_get_counter); 2665 else 2666 if_setgetcounterfn(ifp, cxgbe_get_counter); 2667 #if defined(KERN_TLS) || defined(RATELIMIT) 2668 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2669 #endif 2670 #ifdef RATELIMIT 2671 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2672 #endif 2673 2674 if_setcapabilities(ifp, T4_CAP); 2675 if_setcapenable(ifp, T4_CAP_ENABLE); 2676 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2677 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2678 if (chip_id(sc) >= CHELSIO_T6) { 2679 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2680 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2681 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2682 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2683 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2684 } 2685 2686 #ifdef TCP_OFFLOAD 2687 if (vi->nofldrxq != 0) 2688 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2689 #endif 2690 #ifdef RATELIMIT 2691 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2692 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2693 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2694 } 2695 #endif 2696 2697 if_sethwtsomax(ifp, IP_MAXPACKET); 2698 if (vi->flags & TX_USES_VM_WR) 2699 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2700 else 2701 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2702 #ifdef RATELIMIT 2703 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2704 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2705 #endif 2706 if_sethwtsomaxsegsize(ifp, 65536); 2707 #ifdef KERN_TLS 2708 if (is_ktls(sc)) { 2709 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2710 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2711 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2712 } 2713 #endif 2714 2715 ether_ifattach(ifp, vi->hw_addr); 2716 #ifdef DEV_NETMAP 2717 if (vi->nnmrxq != 0) 2718 cxgbe_nm_attach(vi); 2719 #endif 2720 sb = sbuf_new_auto(); 2721 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2722 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2723 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2724 case IFCAP_TOE: 2725 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2726 break; 2727 case IFCAP_TOE | IFCAP_TXRTLMT: 2728 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2729 break; 2730 case IFCAP_TXRTLMT: 2731 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2732 break; 2733 } 2734 #endif 2735 #ifdef TCP_OFFLOAD 2736 if (if_getcapabilities(ifp) & IFCAP_TOE) 2737 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2738 #endif 2739 #ifdef DEV_NETMAP 2740 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2741 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2742 vi->nnmtxq, vi->nnmrxq); 2743 #endif 2744 sbuf_finish(sb); 2745 device_printf(dev, "%s\n", sbuf_data(sb)); 2746 sbuf_delete(sb); 2747 2748 vi_sysctls(vi); 2749 2750 pa.pa_version = PFIL_VERSION; 2751 pa.pa_flags = PFIL_IN; 2752 pa.pa_type = PFIL_TYPE_ETHERNET; 2753 pa.pa_headname = if_name(ifp); 2754 vi->pfil = pfil_head_register(&pa); 2755 } 2756 2757 static int 2758 cxgbe_attach(device_t dev) 2759 { 2760 struct port_info *pi = device_get_softc(dev); 2761 struct adapter *sc = pi->adapter; 2762 struct vi_info *vi; 2763 int i; 2764 2765 sysctl_ctx_init(&pi->ctx); 2766 2767 cxgbe_vi_attach(dev, &pi->vi[0]); 2768 2769 for_each_vi(pi, i, vi) { 2770 if (i == 0) 2771 continue; 2772 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2773 if (vi->dev == NULL) { 2774 device_printf(dev, "failed to add VI %d\n", i); 2775 continue; 2776 } 2777 device_set_softc(vi->dev, vi); 2778 } 2779 2780 cxgbe_sysctls(pi); 2781 2782 bus_generic_attach(dev); 2783 2784 return (0); 2785 } 2786 2787 static void 2788 cxgbe_vi_detach(struct vi_info *vi) 2789 { 2790 if_t ifp = vi->ifp; 2791 2792 if (vi->pfil != NULL) { 2793 pfil_head_unregister(vi->pfil); 2794 vi->pfil = NULL; 2795 } 2796 2797 ether_ifdetach(ifp); 2798 2799 /* Let detach proceed even if these fail. */ 2800 #ifdef DEV_NETMAP 2801 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2802 cxgbe_nm_detach(vi); 2803 #endif 2804 cxgbe_uninit_synchronized(vi); 2805 callout_drain(&vi->tick); 2806 mtx_destroy(&vi->tick_mtx); 2807 sysctl_ctx_free(&vi->ctx); 2808 vi_full_uninit(vi); 2809 2810 if_free(vi->ifp); 2811 vi->ifp = NULL; 2812 } 2813 2814 static int 2815 cxgbe_detach(device_t dev) 2816 { 2817 struct port_info *pi = device_get_softc(dev); 2818 struct adapter *sc = pi->adapter; 2819 int rc; 2820 2821 /* Detach the extra VIs first. */ 2822 rc = bus_generic_detach(dev); 2823 if (rc) 2824 return (rc); 2825 device_delete_children(dev); 2826 2827 sysctl_ctx_free(&pi->ctx); 2828 begin_vi_detach(sc, &pi->vi[0]); 2829 if (pi->flags & HAS_TRACEQ) { 2830 sc->traceq = -1; /* cloner should not create ifnet */ 2831 t4_tracer_port_detach(sc); 2832 } 2833 cxgbe_vi_detach(&pi->vi[0]); 2834 ifmedia_removeall(&pi->media); 2835 end_vi_detach(sc, &pi->vi[0]); 2836 2837 return (0); 2838 } 2839 2840 static void 2841 cxgbe_init(void *arg) 2842 { 2843 struct vi_info *vi = arg; 2844 struct adapter *sc = vi->adapter; 2845 2846 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2847 return; 2848 cxgbe_init_synchronized(vi); 2849 end_synchronized_op(sc, 0); 2850 } 2851 2852 static int 2853 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2854 { 2855 int rc = 0, mtu, flags; 2856 struct vi_info *vi = if_getsoftc(ifp); 2857 struct port_info *pi = vi->pi; 2858 struct adapter *sc = pi->adapter; 2859 struct ifreq *ifr = (struct ifreq *)data; 2860 uint32_t mask; 2861 2862 switch (cmd) { 2863 case SIOCSIFMTU: 2864 mtu = ifr->ifr_mtu; 2865 if (mtu < ETHERMIN || mtu > MAX_MTU) 2866 return (EINVAL); 2867 2868 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2869 if (rc) 2870 return (rc); 2871 if_setmtu(ifp, mtu); 2872 if (vi->flags & VI_INIT_DONE) { 2873 t4_update_fl_bufsize(ifp); 2874 if (!hw_off_limits(sc) && 2875 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2876 rc = update_mac_settings(ifp, XGMAC_MTU); 2877 } 2878 end_synchronized_op(sc, 0); 2879 break; 2880 2881 case SIOCSIFFLAGS: 2882 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2883 if (rc) 2884 return (rc); 2885 2886 if (hw_off_limits(sc)) { 2887 rc = ENXIO; 2888 goto fail; 2889 } 2890 2891 if (if_getflags(ifp) & IFF_UP) { 2892 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2893 flags = vi->if_flags; 2894 if ((if_getflags(ifp) ^ flags) & 2895 (IFF_PROMISC | IFF_ALLMULTI)) { 2896 rc = update_mac_settings(ifp, 2897 XGMAC_PROMISC | XGMAC_ALLMULTI); 2898 } 2899 } else { 2900 rc = cxgbe_init_synchronized(vi); 2901 } 2902 vi->if_flags = if_getflags(ifp); 2903 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2904 rc = cxgbe_uninit_synchronized(vi); 2905 } 2906 end_synchronized_op(sc, 0); 2907 break; 2908 2909 case SIOCADDMULTI: 2910 case SIOCDELMULTI: 2911 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2912 if (rc) 2913 return (rc); 2914 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2915 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2916 end_synchronized_op(sc, 0); 2917 break; 2918 2919 case SIOCSIFCAP: 2920 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2921 if (rc) 2922 return (rc); 2923 2924 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2925 if (mask & IFCAP_TXCSUM) { 2926 if_togglecapenable(ifp, IFCAP_TXCSUM); 2927 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2928 2929 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2930 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2931 mask &= ~IFCAP_TSO4; 2932 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2933 if_printf(ifp, 2934 "tso4 disabled due to -txcsum.\n"); 2935 } 2936 } 2937 if (mask & IFCAP_TXCSUM_IPV6) { 2938 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2939 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2940 2941 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2942 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2943 mask &= ~IFCAP_TSO6; 2944 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2945 if_printf(ifp, 2946 "tso6 disabled due to -txcsum6.\n"); 2947 } 2948 } 2949 if (mask & IFCAP_RXCSUM) 2950 if_togglecapenable(ifp, IFCAP_RXCSUM); 2951 if (mask & IFCAP_RXCSUM_IPV6) 2952 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2953 2954 /* 2955 * Note that we leave CSUM_TSO alone (it is always set). The 2956 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2957 * sending a TSO request our way, so it's sufficient to toggle 2958 * IFCAP_TSOx only. 2959 */ 2960 if (mask & IFCAP_TSO4) { 2961 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2962 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2963 if_printf(ifp, "enable txcsum first.\n"); 2964 rc = EAGAIN; 2965 goto fail; 2966 } 2967 if_togglecapenable(ifp, IFCAP_TSO4); 2968 } 2969 if (mask & IFCAP_TSO6) { 2970 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2971 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2972 if_printf(ifp, "enable txcsum6 first.\n"); 2973 rc = EAGAIN; 2974 goto fail; 2975 } 2976 if_togglecapenable(ifp, IFCAP_TSO6); 2977 } 2978 if (mask & IFCAP_LRO) { 2979 #if defined(INET) || defined(INET6) 2980 int i; 2981 struct sge_rxq *rxq; 2982 2983 if_togglecapenable(ifp, IFCAP_LRO); 2984 for_each_rxq(vi, i, rxq) { 2985 if (if_getcapenable(ifp) & IFCAP_LRO) 2986 rxq->iq.flags |= IQ_LRO_ENABLED; 2987 else 2988 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2989 } 2990 #endif 2991 } 2992 #ifdef TCP_OFFLOAD 2993 if (mask & IFCAP_TOE) { 2994 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2995 2996 rc = toe_capability(vi, enable); 2997 if (rc != 0) 2998 goto fail; 2999 3000 if_togglecapenable(ifp, mask); 3001 } 3002 #endif 3003 if (mask & IFCAP_VLAN_HWTAGGING) { 3004 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3005 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3006 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3007 } 3008 if (mask & IFCAP_VLAN_MTU) { 3009 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3010 3011 /* Need to find out how to disable auto-mtu-inflation */ 3012 } 3013 if (mask & IFCAP_VLAN_HWTSO) 3014 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3015 if (mask & IFCAP_VLAN_HWCSUM) 3016 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3017 #ifdef RATELIMIT 3018 if (mask & IFCAP_TXRTLMT) 3019 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3020 #endif 3021 if (mask & IFCAP_HWRXTSTMP) { 3022 int i; 3023 struct sge_rxq *rxq; 3024 3025 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3026 for_each_rxq(vi, i, rxq) { 3027 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3028 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3029 else 3030 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3031 } 3032 } 3033 if (mask & IFCAP_MEXTPG) 3034 if_togglecapenable(ifp, IFCAP_MEXTPG); 3035 3036 #ifdef KERN_TLS 3037 if (mask & IFCAP_TXTLS) { 3038 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3039 3040 rc = ktls_capability(sc, enable); 3041 if (rc != 0) 3042 goto fail; 3043 3044 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3045 } 3046 #endif 3047 if (mask & IFCAP_VXLAN_HWCSUM) { 3048 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3049 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3050 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3051 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3052 } 3053 if (mask & IFCAP_VXLAN_HWTSO) { 3054 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3055 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3056 CSUM_INNER_IP_TSO); 3057 } 3058 3059 #ifdef VLAN_CAPABILITIES 3060 VLAN_CAPABILITIES(ifp); 3061 #endif 3062 fail: 3063 end_synchronized_op(sc, 0); 3064 break; 3065 3066 case SIOCSIFMEDIA: 3067 case SIOCGIFMEDIA: 3068 case SIOCGIFXMEDIA: 3069 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3070 break; 3071 3072 case SIOCGI2C: { 3073 struct ifi2creq i2c; 3074 3075 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3076 if (rc != 0) 3077 break; 3078 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3079 rc = EPERM; 3080 break; 3081 } 3082 if (i2c.len > sizeof(i2c.data)) { 3083 rc = EINVAL; 3084 break; 3085 } 3086 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3087 if (rc) 3088 return (rc); 3089 if (hw_off_limits(sc)) 3090 rc = ENXIO; 3091 else 3092 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3093 i2c.offset, i2c.len, &i2c.data[0]); 3094 end_synchronized_op(sc, 0); 3095 if (rc == 0) 3096 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3097 break; 3098 } 3099 3100 default: 3101 rc = ether_ioctl(ifp, cmd, data); 3102 } 3103 3104 return (rc); 3105 } 3106 3107 static int 3108 cxgbe_transmit(if_t ifp, struct mbuf *m) 3109 { 3110 struct vi_info *vi = if_getsoftc(ifp); 3111 struct port_info *pi = vi->pi; 3112 struct adapter *sc; 3113 struct sge_txq *txq; 3114 void *items[1]; 3115 int rc; 3116 3117 M_ASSERTPKTHDR(m); 3118 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3119 #if defined(KERN_TLS) || defined(RATELIMIT) 3120 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3121 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3122 #endif 3123 3124 if (__predict_false(pi->link_cfg.link_ok == false)) { 3125 m_freem(m); 3126 return (ENETDOWN); 3127 } 3128 3129 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3130 if (__predict_false(rc != 0)) { 3131 if (__predict_true(rc == EINPROGRESS)) { 3132 /* queued by parse_pkt */ 3133 MPASS(m != NULL); 3134 return (0); 3135 } 3136 3137 MPASS(m == NULL); /* was freed already */ 3138 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3139 return (rc); 3140 } 3141 3142 /* Select a txq. */ 3143 sc = vi->adapter; 3144 txq = &sc->sge.txq[vi->first_txq]; 3145 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3146 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3147 vi->rsrv_noflowq); 3148 3149 items[0] = m; 3150 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3151 if (__predict_false(rc != 0)) 3152 m_freem(m); 3153 3154 return (rc); 3155 } 3156 3157 static void 3158 cxgbe_qflush(if_t ifp) 3159 { 3160 struct vi_info *vi = if_getsoftc(ifp); 3161 struct sge_txq *txq; 3162 int i; 3163 3164 /* queues do not exist if !VI_INIT_DONE. */ 3165 if (vi->flags & VI_INIT_DONE) { 3166 for_each_txq(vi, i, txq) { 3167 TXQ_LOCK(txq); 3168 txq->eq.flags |= EQ_QFLUSH; 3169 TXQ_UNLOCK(txq); 3170 while (!mp_ring_is_idle(txq->r)) { 3171 mp_ring_check_drainage(txq->r, 4096); 3172 pause("qflush", 1); 3173 } 3174 TXQ_LOCK(txq); 3175 txq->eq.flags &= ~EQ_QFLUSH; 3176 TXQ_UNLOCK(txq); 3177 } 3178 } 3179 if_qflush(ifp); 3180 } 3181 3182 static uint64_t 3183 vi_get_counter(if_t ifp, ift_counter c) 3184 { 3185 struct vi_info *vi = if_getsoftc(ifp); 3186 struct fw_vi_stats_vf *s = &vi->stats; 3187 3188 mtx_lock(&vi->tick_mtx); 3189 vi_refresh_stats(vi); 3190 mtx_unlock(&vi->tick_mtx); 3191 3192 switch (c) { 3193 case IFCOUNTER_IPACKETS: 3194 return (s->rx_bcast_frames + s->rx_mcast_frames + 3195 s->rx_ucast_frames); 3196 case IFCOUNTER_IERRORS: 3197 return (s->rx_err_frames); 3198 case IFCOUNTER_OPACKETS: 3199 return (s->tx_bcast_frames + s->tx_mcast_frames + 3200 s->tx_ucast_frames + s->tx_offload_frames); 3201 case IFCOUNTER_OERRORS: 3202 return (s->tx_drop_frames); 3203 case IFCOUNTER_IBYTES: 3204 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3205 s->rx_ucast_bytes); 3206 case IFCOUNTER_OBYTES: 3207 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3208 s->tx_ucast_bytes + s->tx_offload_bytes); 3209 case IFCOUNTER_IMCASTS: 3210 return (s->rx_mcast_frames); 3211 case IFCOUNTER_OMCASTS: 3212 return (s->tx_mcast_frames); 3213 case IFCOUNTER_OQDROPS: { 3214 uint64_t drops; 3215 3216 drops = 0; 3217 if (vi->flags & VI_INIT_DONE) { 3218 int i; 3219 struct sge_txq *txq; 3220 3221 for_each_txq(vi, i, txq) 3222 drops += counter_u64_fetch(txq->r->dropped); 3223 } 3224 3225 return (drops); 3226 3227 } 3228 3229 default: 3230 return (if_get_counter_default(ifp, c)); 3231 } 3232 } 3233 3234 static uint64_t 3235 cxgbe_get_counter(if_t ifp, ift_counter c) 3236 { 3237 struct vi_info *vi = if_getsoftc(ifp); 3238 struct port_info *pi = vi->pi; 3239 struct port_stats *s = &pi->stats; 3240 3241 mtx_lock(&vi->tick_mtx); 3242 cxgbe_refresh_stats(vi); 3243 mtx_unlock(&vi->tick_mtx); 3244 3245 switch (c) { 3246 case IFCOUNTER_IPACKETS: 3247 return (s->rx_frames); 3248 3249 case IFCOUNTER_IERRORS: 3250 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3251 s->rx_fcs_err + s->rx_len_err); 3252 3253 case IFCOUNTER_OPACKETS: 3254 return (s->tx_frames); 3255 3256 case IFCOUNTER_OERRORS: 3257 return (s->tx_error_frames); 3258 3259 case IFCOUNTER_IBYTES: 3260 return (s->rx_octets); 3261 3262 case IFCOUNTER_OBYTES: 3263 return (s->tx_octets); 3264 3265 case IFCOUNTER_IMCASTS: 3266 return (s->rx_mcast_frames); 3267 3268 case IFCOUNTER_OMCASTS: 3269 return (s->tx_mcast_frames); 3270 3271 case IFCOUNTER_IQDROPS: 3272 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3273 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3274 s->rx_trunc3 + pi->tnl_cong_drops); 3275 3276 case IFCOUNTER_OQDROPS: { 3277 uint64_t drops; 3278 3279 drops = s->tx_drop; 3280 if (vi->flags & VI_INIT_DONE) { 3281 int i; 3282 struct sge_txq *txq; 3283 3284 for_each_txq(vi, i, txq) 3285 drops += counter_u64_fetch(txq->r->dropped); 3286 } 3287 3288 return (drops); 3289 3290 } 3291 3292 default: 3293 return (if_get_counter_default(ifp, c)); 3294 } 3295 } 3296 3297 #if defined(KERN_TLS) || defined(RATELIMIT) 3298 static int 3299 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3300 struct m_snd_tag **pt) 3301 { 3302 int error; 3303 3304 switch (params->hdr.type) { 3305 #ifdef RATELIMIT 3306 case IF_SND_TAG_TYPE_RATE_LIMIT: 3307 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3308 break; 3309 #endif 3310 #ifdef KERN_TLS 3311 case IF_SND_TAG_TYPE_TLS: 3312 { 3313 struct vi_info *vi = if_getsoftc(ifp); 3314 3315 if (is_t6(vi->pi->adapter)) 3316 error = t6_tls_tag_alloc(ifp, params, pt); 3317 else 3318 error = EOPNOTSUPP; 3319 break; 3320 } 3321 #endif 3322 default: 3323 error = EOPNOTSUPP; 3324 } 3325 return (error); 3326 } 3327 #endif 3328 3329 /* 3330 * The kernel picks a media from the list we had provided but we still validate 3331 * the requeste. 3332 */ 3333 int 3334 cxgbe_media_change(if_t ifp) 3335 { 3336 struct vi_info *vi = if_getsoftc(ifp); 3337 struct port_info *pi = vi->pi; 3338 struct ifmedia *ifm = &pi->media; 3339 struct link_config *lc = &pi->link_cfg; 3340 struct adapter *sc = pi->adapter; 3341 int rc; 3342 3343 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3344 if (rc != 0) 3345 return (rc); 3346 PORT_LOCK(pi); 3347 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3348 /* ifconfig .. media autoselect */ 3349 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3350 rc = ENOTSUP; /* AN not supported by transceiver */ 3351 goto done; 3352 } 3353 lc->requested_aneg = AUTONEG_ENABLE; 3354 lc->requested_speed = 0; 3355 lc->requested_fc |= PAUSE_AUTONEG; 3356 } else { 3357 lc->requested_aneg = AUTONEG_DISABLE; 3358 lc->requested_speed = 3359 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3360 lc->requested_fc = 0; 3361 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3362 lc->requested_fc |= PAUSE_RX; 3363 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3364 lc->requested_fc |= PAUSE_TX; 3365 } 3366 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3367 fixup_link_config(pi); 3368 rc = apply_link_config(pi); 3369 } 3370 done: 3371 PORT_UNLOCK(pi); 3372 end_synchronized_op(sc, 0); 3373 return (rc); 3374 } 3375 3376 /* 3377 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3378 * given speed. 3379 */ 3380 static int 3381 port_mword(struct port_info *pi, uint32_t speed) 3382 { 3383 3384 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3385 MPASS(powerof2(speed)); 3386 3387 switch(pi->port_type) { 3388 case FW_PORT_TYPE_BT_SGMII: 3389 case FW_PORT_TYPE_BT_XFI: 3390 case FW_PORT_TYPE_BT_XAUI: 3391 /* BaseT */ 3392 switch (speed) { 3393 case FW_PORT_CAP32_SPEED_100M: 3394 return (IFM_100_T); 3395 case FW_PORT_CAP32_SPEED_1G: 3396 return (IFM_1000_T); 3397 case FW_PORT_CAP32_SPEED_10G: 3398 return (IFM_10G_T); 3399 } 3400 break; 3401 case FW_PORT_TYPE_KX4: 3402 if (speed == FW_PORT_CAP32_SPEED_10G) 3403 return (IFM_10G_KX4); 3404 break; 3405 case FW_PORT_TYPE_CX4: 3406 if (speed == FW_PORT_CAP32_SPEED_10G) 3407 return (IFM_10G_CX4); 3408 break; 3409 case FW_PORT_TYPE_KX: 3410 if (speed == FW_PORT_CAP32_SPEED_1G) 3411 return (IFM_1000_KX); 3412 break; 3413 case FW_PORT_TYPE_KR: 3414 case FW_PORT_TYPE_BP_AP: 3415 case FW_PORT_TYPE_BP4_AP: 3416 case FW_PORT_TYPE_BP40_BA: 3417 case FW_PORT_TYPE_KR4_100G: 3418 case FW_PORT_TYPE_KR_SFP28: 3419 case FW_PORT_TYPE_KR_XLAUI: 3420 switch (speed) { 3421 case FW_PORT_CAP32_SPEED_1G: 3422 return (IFM_1000_KX); 3423 case FW_PORT_CAP32_SPEED_10G: 3424 return (IFM_10G_KR); 3425 case FW_PORT_CAP32_SPEED_25G: 3426 return (IFM_25G_KR); 3427 case FW_PORT_CAP32_SPEED_40G: 3428 return (IFM_40G_KR4); 3429 case FW_PORT_CAP32_SPEED_50G: 3430 return (IFM_50G_KR2); 3431 case FW_PORT_CAP32_SPEED_100G: 3432 return (IFM_100G_KR4); 3433 } 3434 break; 3435 case FW_PORT_TYPE_FIBER_XFI: 3436 case FW_PORT_TYPE_FIBER_XAUI: 3437 case FW_PORT_TYPE_SFP: 3438 case FW_PORT_TYPE_QSFP_10G: 3439 case FW_PORT_TYPE_QSA: 3440 case FW_PORT_TYPE_QSFP: 3441 case FW_PORT_TYPE_CR4_QSFP: 3442 case FW_PORT_TYPE_CR_QSFP: 3443 case FW_PORT_TYPE_CR2_QSFP: 3444 case FW_PORT_TYPE_SFP28: 3445 /* Pluggable transceiver */ 3446 switch (pi->mod_type) { 3447 case FW_PORT_MOD_TYPE_LR: 3448 switch (speed) { 3449 case FW_PORT_CAP32_SPEED_1G: 3450 return (IFM_1000_LX); 3451 case FW_PORT_CAP32_SPEED_10G: 3452 return (IFM_10G_LR); 3453 case FW_PORT_CAP32_SPEED_25G: 3454 return (IFM_25G_LR); 3455 case FW_PORT_CAP32_SPEED_40G: 3456 return (IFM_40G_LR4); 3457 case FW_PORT_CAP32_SPEED_50G: 3458 return (IFM_50G_LR2); 3459 case FW_PORT_CAP32_SPEED_100G: 3460 return (IFM_100G_LR4); 3461 } 3462 break; 3463 case FW_PORT_MOD_TYPE_SR: 3464 switch (speed) { 3465 case FW_PORT_CAP32_SPEED_1G: 3466 return (IFM_1000_SX); 3467 case FW_PORT_CAP32_SPEED_10G: 3468 return (IFM_10G_SR); 3469 case FW_PORT_CAP32_SPEED_25G: 3470 return (IFM_25G_SR); 3471 case FW_PORT_CAP32_SPEED_40G: 3472 return (IFM_40G_SR4); 3473 case FW_PORT_CAP32_SPEED_50G: 3474 return (IFM_50G_SR2); 3475 case FW_PORT_CAP32_SPEED_100G: 3476 return (IFM_100G_SR4); 3477 } 3478 break; 3479 case FW_PORT_MOD_TYPE_ER: 3480 if (speed == FW_PORT_CAP32_SPEED_10G) 3481 return (IFM_10G_ER); 3482 break; 3483 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3484 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3485 switch (speed) { 3486 case FW_PORT_CAP32_SPEED_1G: 3487 return (IFM_1000_CX); 3488 case FW_PORT_CAP32_SPEED_10G: 3489 return (IFM_10G_TWINAX); 3490 case FW_PORT_CAP32_SPEED_25G: 3491 return (IFM_25G_CR); 3492 case FW_PORT_CAP32_SPEED_40G: 3493 return (IFM_40G_CR4); 3494 case FW_PORT_CAP32_SPEED_50G: 3495 return (IFM_50G_CR2); 3496 case FW_PORT_CAP32_SPEED_100G: 3497 return (IFM_100G_CR4); 3498 } 3499 break; 3500 case FW_PORT_MOD_TYPE_LRM: 3501 if (speed == FW_PORT_CAP32_SPEED_10G) 3502 return (IFM_10G_LRM); 3503 break; 3504 case FW_PORT_MOD_TYPE_NA: 3505 MPASS(0); /* Not pluggable? */ 3506 /* fall throough */ 3507 case FW_PORT_MOD_TYPE_ERROR: 3508 case FW_PORT_MOD_TYPE_UNKNOWN: 3509 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3510 break; 3511 case FW_PORT_MOD_TYPE_NONE: 3512 return (IFM_NONE); 3513 } 3514 break; 3515 case FW_PORT_TYPE_NONE: 3516 return (IFM_NONE); 3517 } 3518 3519 return (IFM_UNKNOWN); 3520 } 3521 3522 void 3523 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3524 { 3525 struct vi_info *vi = if_getsoftc(ifp); 3526 struct port_info *pi = vi->pi; 3527 struct adapter *sc = pi->adapter; 3528 struct link_config *lc = &pi->link_cfg; 3529 3530 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3531 return; 3532 PORT_LOCK(pi); 3533 3534 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3535 /* 3536 * If all the interfaces are administratively down the firmware 3537 * does not report transceiver changes. Refresh port info here 3538 * so that ifconfig displays accurate ifmedia at all times. 3539 * This is the only reason we have a synchronized op in this 3540 * function. Just PORT_LOCK would have been enough otherwise. 3541 */ 3542 t4_update_port_info(pi); 3543 build_medialist(pi); 3544 } 3545 3546 /* ifm_status */ 3547 ifmr->ifm_status = IFM_AVALID; 3548 if (lc->link_ok == false) 3549 goto done; 3550 ifmr->ifm_status |= IFM_ACTIVE; 3551 3552 /* ifm_active */ 3553 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3554 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3555 if (lc->fc & PAUSE_RX) 3556 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3557 if (lc->fc & PAUSE_TX) 3558 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3559 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3560 done: 3561 PORT_UNLOCK(pi); 3562 end_synchronized_op(sc, 0); 3563 } 3564 3565 static int 3566 vcxgbe_probe(device_t dev) 3567 { 3568 struct vi_info *vi = device_get_softc(dev); 3569 3570 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3571 vi - vi->pi->vi); 3572 3573 return (BUS_PROBE_DEFAULT); 3574 } 3575 3576 static int 3577 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3578 { 3579 int func, index, rc; 3580 uint32_t param, val; 3581 3582 ASSERT_SYNCHRONIZED_OP(sc); 3583 3584 index = vi - pi->vi; 3585 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3586 KASSERT(index < nitems(vi_mac_funcs), 3587 ("%s: VI %s doesn't have a MAC func", __func__, 3588 device_get_nameunit(vi->dev))); 3589 func = vi_mac_funcs[index]; 3590 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3591 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3592 if (rc < 0) { 3593 CH_ERR(vi, "failed to allocate virtual interface %d" 3594 "for port %d: %d\n", index, pi->port_id, -rc); 3595 return (-rc); 3596 } 3597 vi->viid = rc; 3598 3599 if (vi->rss_size == 1) { 3600 /* 3601 * This VI didn't get a slice of the RSS table. Reduce the 3602 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3603 * configuration file (nvi, rssnvi for this PF) if this is a 3604 * problem. 3605 */ 3606 device_printf(vi->dev, "RSS table not available.\n"); 3607 vi->rss_base = 0xffff; 3608 3609 return (0); 3610 } 3611 3612 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3613 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3614 V_FW_PARAMS_PARAM_YZ(vi->viid); 3615 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3616 if (rc) 3617 vi->rss_base = 0xffff; 3618 else { 3619 MPASS((val >> 16) == vi->rss_size); 3620 vi->rss_base = val & 0xffff; 3621 } 3622 3623 return (0); 3624 } 3625 3626 static int 3627 vcxgbe_attach(device_t dev) 3628 { 3629 struct vi_info *vi; 3630 struct port_info *pi; 3631 struct adapter *sc; 3632 int rc; 3633 3634 vi = device_get_softc(dev); 3635 pi = vi->pi; 3636 sc = pi->adapter; 3637 3638 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3639 if (rc) 3640 return (rc); 3641 rc = alloc_extra_vi(sc, pi, vi); 3642 end_synchronized_op(sc, 0); 3643 if (rc) 3644 return (rc); 3645 3646 cxgbe_vi_attach(dev, vi); 3647 3648 return (0); 3649 } 3650 3651 static int 3652 vcxgbe_detach(device_t dev) 3653 { 3654 struct vi_info *vi; 3655 struct adapter *sc; 3656 3657 vi = device_get_softc(dev); 3658 sc = vi->adapter; 3659 3660 begin_vi_detach(sc, vi); 3661 cxgbe_vi_detach(vi); 3662 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3663 end_vi_detach(sc, vi); 3664 3665 return (0); 3666 } 3667 3668 static struct callout fatal_callout; 3669 static struct taskqueue *reset_tq; 3670 3671 static void 3672 delayed_panic(void *arg) 3673 { 3674 struct adapter *sc = arg; 3675 3676 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3677 } 3678 3679 static void 3680 fatal_error_task(void *arg, int pending) 3681 { 3682 struct adapter *sc = arg; 3683 int rc; 3684 3685 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3686 dump_cim_regs(sc); 3687 dump_cimla(sc); 3688 dump_devlog(sc); 3689 } 3690 3691 if (t4_reset_on_fatal_err) { 3692 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3693 rc = reset_adapter(sc); 3694 if (rc == 0 && t4_panic_on_fatal_err) { 3695 CH_ALERT(sc, "reset was successful, " 3696 "system will NOT panic.\n"); 3697 return; 3698 } 3699 } 3700 3701 if (t4_panic_on_fatal_err) { 3702 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3703 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3704 } 3705 } 3706 3707 void 3708 t4_fatal_err(struct adapter *sc, bool fw_error) 3709 { 3710 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3711 3712 stop_adapter(sc); 3713 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3714 return; 3715 if (fw_error) { 3716 /* 3717 * We are here because of a firmware error/timeout and not 3718 * because of a hardware interrupt. It is possible (although 3719 * not very likely) that an error interrupt was also raised but 3720 * this thread ran first and inhibited t4_intr_err. We walk the 3721 * main INT_CAUSE registers here to make sure we haven't missed 3722 * anything interesting. 3723 */ 3724 t4_slow_intr_handler(sc, verbose); 3725 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3726 } 3727 t4_report_fw_error(sc); 3728 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3729 device_get_nameunit(sc->dev), fw_error); 3730 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3731 } 3732 3733 void 3734 t4_add_adapter(struct adapter *sc) 3735 { 3736 sx_xlock(&t4_list_lock); 3737 SLIST_INSERT_HEAD(&t4_list, sc, link); 3738 sx_xunlock(&t4_list_lock); 3739 } 3740 3741 int 3742 t4_map_bars_0_and_4(struct adapter *sc) 3743 { 3744 sc->regs_rid = PCIR_BAR(0); 3745 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3746 &sc->regs_rid, RF_ACTIVE); 3747 if (sc->regs_res == NULL) { 3748 device_printf(sc->dev, "cannot map registers.\n"); 3749 return (ENXIO); 3750 } 3751 sc->bt = rman_get_bustag(sc->regs_res); 3752 sc->bh = rman_get_bushandle(sc->regs_res); 3753 sc->mmio_len = rman_get_size(sc->regs_res); 3754 setbit(&sc->doorbells, DOORBELL_KDB); 3755 3756 sc->msix_rid = PCIR_BAR(4); 3757 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3758 &sc->msix_rid, RF_ACTIVE); 3759 if (sc->msix_res == NULL) { 3760 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3761 return (ENXIO); 3762 } 3763 3764 return (0); 3765 } 3766 3767 int 3768 t4_map_bar_2(struct adapter *sc) 3769 { 3770 3771 /* 3772 * T4: only iWARP driver uses the userspace doorbells. There is no need 3773 * to map it if RDMA is disabled. 3774 */ 3775 if (is_t4(sc) && sc->rdmacaps == 0) 3776 return (0); 3777 3778 sc->udbs_rid = PCIR_BAR(2); 3779 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3780 &sc->udbs_rid, RF_ACTIVE); 3781 if (sc->udbs_res == NULL) { 3782 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3783 return (ENXIO); 3784 } 3785 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3786 3787 if (chip_id(sc) >= CHELSIO_T5) { 3788 setbit(&sc->doorbells, DOORBELL_UDB); 3789 #if defined(__i386__) || defined(__amd64__) 3790 if (t5_write_combine) { 3791 int rc, mode; 3792 3793 /* 3794 * Enable write combining on BAR2. This is the 3795 * userspace doorbell BAR and is split into 128B 3796 * (UDBS_SEG_SIZE) doorbell regions, each associated 3797 * with an egress queue. The first 64B has the doorbell 3798 * and the second 64B can be used to submit a tx work 3799 * request with an implicit doorbell. 3800 */ 3801 3802 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3803 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3804 if (rc == 0) { 3805 clrbit(&sc->doorbells, DOORBELL_UDB); 3806 setbit(&sc->doorbells, DOORBELL_WCWR); 3807 setbit(&sc->doorbells, DOORBELL_UDBWC); 3808 } else { 3809 device_printf(sc->dev, 3810 "couldn't enable write combining: %d\n", 3811 rc); 3812 } 3813 3814 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3815 t4_write_reg(sc, A_SGE_STAT_CFG, 3816 V_STATSOURCE_T5(7) | mode); 3817 } 3818 #endif 3819 } 3820 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3821 3822 return (0); 3823 } 3824 3825 int 3826 t4_adj_doorbells(struct adapter *sc) 3827 { 3828 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 3829 sc->doorbells &= t4_doorbells_allowed; 3830 return (0); 3831 } 3832 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 3833 sc->doorbells, t4_doorbells_allowed); 3834 return (EINVAL); 3835 } 3836 3837 struct memwin_init { 3838 uint32_t base; 3839 uint32_t aperture; 3840 }; 3841 3842 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3843 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3844 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3845 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3846 }; 3847 3848 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3849 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3850 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3851 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3852 }; 3853 3854 static void 3855 setup_memwin(struct adapter *sc) 3856 { 3857 const struct memwin_init *mw_init; 3858 struct memwin *mw; 3859 int i; 3860 uint32_t bar0; 3861 3862 if (is_t4(sc)) { 3863 /* 3864 * Read low 32b of bar0 indirectly via the hardware backdoor 3865 * mechanism. Works from within PCI passthrough environments 3866 * too, where rman_get_start() can return a different value. We 3867 * need to program the T4 memory window decoders with the actual 3868 * addresses that will be coming across the PCIe link. 3869 */ 3870 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3871 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3872 3873 mw_init = &t4_memwin[0]; 3874 } else { 3875 /* T5+ use the relative offset inside the PCIe BAR */ 3876 bar0 = 0; 3877 3878 mw_init = &t5_memwin[0]; 3879 } 3880 3881 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3882 if (!rw_initialized(&mw->mw_lock)) { 3883 rw_init(&mw->mw_lock, "memory window access"); 3884 mw->mw_base = mw_init->base; 3885 mw->mw_aperture = mw_init->aperture; 3886 mw->mw_curpos = 0; 3887 } 3888 t4_write_reg(sc, 3889 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3890 (mw->mw_base + bar0) | V_BIR(0) | 3891 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3892 rw_wlock(&mw->mw_lock); 3893 position_memwin(sc, i, mw->mw_curpos); 3894 rw_wunlock(&mw->mw_lock); 3895 } 3896 3897 /* flush */ 3898 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3899 } 3900 3901 /* 3902 * Positions the memory window at the given address in the card's address space. 3903 * There are some alignment requirements and the actual position may be at an 3904 * address prior to the requested address. mw->mw_curpos always has the actual 3905 * position of the window. 3906 */ 3907 static void 3908 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3909 { 3910 struct memwin *mw; 3911 uint32_t pf; 3912 uint32_t reg; 3913 3914 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3915 mw = &sc->memwin[idx]; 3916 rw_assert(&mw->mw_lock, RA_WLOCKED); 3917 3918 if (is_t4(sc)) { 3919 pf = 0; 3920 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3921 } else { 3922 pf = V_PFNUM(sc->pf); 3923 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3924 } 3925 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3926 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3927 t4_read_reg(sc, reg); /* flush */ 3928 } 3929 3930 int 3931 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3932 int len, int rw) 3933 { 3934 struct memwin *mw; 3935 uint32_t mw_end, v; 3936 3937 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3938 3939 /* Memory can only be accessed in naturally aligned 4 byte units */ 3940 if (addr & 3 || len & 3 || len <= 0) 3941 return (EINVAL); 3942 3943 mw = &sc->memwin[idx]; 3944 while (len > 0) { 3945 rw_rlock(&mw->mw_lock); 3946 mw_end = mw->mw_curpos + mw->mw_aperture; 3947 if (addr >= mw_end || addr < mw->mw_curpos) { 3948 /* Will need to reposition the window */ 3949 if (!rw_try_upgrade(&mw->mw_lock)) { 3950 rw_runlock(&mw->mw_lock); 3951 rw_wlock(&mw->mw_lock); 3952 } 3953 rw_assert(&mw->mw_lock, RA_WLOCKED); 3954 position_memwin(sc, idx, addr); 3955 rw_downgrade(&mw->mw_lock); 3956 mw_end = mw->mw_curpos + mw->mw_aperture; 3957 } 3958 rw_assert(&mw->mw_lock, RA_RLOCKED); 3959 while (addr < mw_end && len > 0) { 3960 if (rw == 0) { 3961 v = t4_read_reg(sc, mw->mw_base + addr - 3962 mw->mw_curpos); 3963 *val++ = le32toh(v); 3964 } else { 3965 v = *val++; 3966 t4_write_reg(sc, mw->mw_base + addr - 3967 mw->mw_curpos, htole32(v)); 3968 } 3969 addr += 4; 3970 len -= 4; 3971 } 3972 rw_runlock(&mw->mw_lock); 3973 } 3974 3975 return (0); 3976 } 3977 3978 CTASSERT(M_TID_COOKIE == M_COOKIE); 3979 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3980 3981 static void 3982 t4_init_atid_table(struct adapter *sc) 3983 { 3984 struct tid_info *t; 3985 int i; 3986 3987 t = &sc->tids; 3988 if (t->natids == 0) 3989 return; 3990 3991 MPASS(t->atid_tab == NULL); 3992 3993 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3994 M_ZERO | M_WAITOK); 3995 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3996 t->afree = t->atid_tab; 3997 t->atids_in_use = 0; 3998 t->atid_alloc_stopped = false; 3999 for (i = 1; i < t->natids; i++) 4000 t->atid_tab[i - 1].next = &t->atid_tab[i]; 4001 t->atid_tab[t->natids - 1].next = NULL; 4002 } 4003 4004 static void 4005 t4_free_atid_table(struct adapter *sc) 4006 { 4007 struct tid_info *t; 4008 4009 t = &sc->tids; 4010 4011 KASSERT(t->atids_in_use == 0, 4012 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4013 4014 if (mtx_initialized(&t->atid_lock)) 4015 mtx_destroy(&t->atid_lock); 4016 free(t->atid_tab, M_CXGBE); 4017 t->atid_tab = NULL; 4018 } 4019 4020 static void 4021 stop_atid_allocator(struct adapter *sc) 4022 { 4023 struct tid_info *t = &sc->tids; 4024 4025 mtx_lock(&t->atid_lock); 4026 t->atid_alloc_stopped = true; 4027 mtx_unlock(&t->atid_lock); 4028 } 4029 4030 static void 4031 restart_atid_allocator(struct adapter *sc) 4032 { 4033 struct tid_info *t = &sc->tids; 4034 4035 mtx_lock(&t->atid_lock); 4036 KASSERT(t->atids_in_use == 0, 4037 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4038 t->atid_alloc_stopped = false; 4039 mtx_unlock(&t->atid_lock); 4040 } 4041 4042 int 4043 alloc_atid(struct adapter *sc, void *ctx) 4044 { 4045 struct tid_info *t = &sc->tids; 4046 int atid = -1; 4047 4048 mtx_lock(&t->atid_lock); 4049 if (t->afree && !t->atid_alloc_stopped) { 4050 union aopen_entry *p = t->afree; 4051 4052 atid = p - t->atid_tab; 4053 MPASS(atid <= M_TID_TID); 4054 t->afree = p->next; 4055 p->data = ctx; 4056 t->atids_in_use++; 4057 } 4058 mtx_unlock(&t->atid_lock); 4059 return (atid); 4060 } 4061 4062 void * 4063 lookup_atid(struct adapter *sc, int atid) 4064 { 4065 struct tid_info *t = &sc->tids; 4066 4067 return (t->atid_tab[atid].data); 4068 } 4069 4070 void 4071 free_atid(struct adapter *sc, int atid) 4072 { 4073 struct tid_info *t = &sc->tids; 4074 union aopen_entry *p = &t->atid_tab[atid]; 4075 4076 mtx_lock(&t->atid_lock); 4077 p->next = t->afree; 4078 t->afree = p; 4079 t->atids_in_use--; 4080 mtx_unlock(&t->atid_lock); 4081 } 4082 4083 static void 4084 queue_tid_release(struct adapter *sc, int tid) 4085 { 4086 4087 CXGBE_UNIMPLEMENTED("deferred tid release"); 4088 } 4089 4090 void 4091 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4092 { 4093 struct wrqe *wr; 4094 struct cpl_tid_release *req; 4095 4096 wr = alloc_wrqe(sizeof(*req), ctrlq); 4097 if (wr == NULL) { 4098 queue_tid_release(sc, tid); /* defer */ 4099 return; 4100 } 4101 req = wrtod(wr); 4102 4103 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4104 4105 t4_wrq_tx(sc, wr); 4106 } 4107 4108 static int 4109 t4_range_cmp(const void *a, const void *b) 4110 { 4111 return ((const struct t4_range *)a)->start - 4112 ((const struct t4_range *)b)->start; 4113 } 4114 4115 /* 4116 * Verify that the memory range specified by the addr/len pair is valid within 4117 * the card's address space. 4118 */ 4119 static int 4120 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4121 { 4122 struct t4_range mem_ranges[4], *r, *next; 4123 uint32_t em, addr_len; 4124 int i, n, remaining; 4125 4126 /* Memory can only be accessed in naturally aligned 4 byte units */ 4127 if (addr & 3 || len & 3 || len == 0) 4128 return (EINVAL); 4129 4130 /* Enabled memories */ 4131 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4132 4133 r = &mem_ranges[0]; 4134 n = 0; 4135 bzero(r, sizeof(mem_ranges)); 4136 if (em & F_EDRAM0_ENABLE) { 4137 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4138 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4139 if (r->size > 0) { 4140 r->start = G_EDRAM0_BASE(addr_len) << 20; 4141 if (addr >= r->start && 4142 addr + len <= r->start + r->size) 4143 return (0); 4144 r++; 4145 n++; 4146 } 4147 } 4148 if (em & F_EDRAM1_ENABLE) { 4149 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4150 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4151 if (r->size > 0) { 4152 r->start = G_EDRAM1_BASE(addr_len) << 20; 4153 if (addr >= r->start && 4154 addr + len <= r->start + r->size) 4155 return (0); 4156 r++; 4157 n++; 4158 } 4159 } 4160 if (em & F_EXT_MEM_ENABLE) { 4161 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4162 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4163 if (r->size > 0) { 4164 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4165 if (addr >= r->start && 4166 addr + len <= r->start + r->size) 4167 return (0); 4168 r++; 4169 n++; 4170 } 4171 } 4172 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4173 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4174 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4175 if (r->size > 0) { 4176 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4177 if (addr >= r->start && 4178 addr + len <= r->start + r->size) 4179 return (0); 4180 r++; 4181 n++; 4182 } 4183 } 4184 MPASS(n <= nitems(mem_ranges)); 4185 4186 if (n > 1) { 4187 /* Sort and merge the ranges. */ 4188 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4189 4190 /* Start from index 0 and examine the next n - 1 entries. */ 4191 r = &mem_ranges[0]; 4192 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4193 4194 MPASS(r->size > 0); /* r is a valid entry. */ 4195 next = r + 1; 4196 MPASS(next->size > 0); /* and so is the next one. */ 4197 4198 while (r->start + r->size >= next->start) { 4199 /* Merge the next one into the current entry. */ 4200 r->size = max(r->start + r->size, 4201 next->start + next->size) - r->start; 4202 n--; /* One fewer entry in total. */ 4203 if (--remaining == 0) 4204 goto done; /* short circuit */ 4205 next++; 4206 } 4207 if (next != r + 1) { 4208 /* 4209 * Some entries were merged into r and next 4210 * points to the first valid entry that couldn't 4211 * be merged. 4212 */ 4213 MPASS(next->size > 0); /* must be valid */ 4214 memcpy(r + 1, next, remaining * sizeof(*r)); 4215 #ifdef INVARIANTS 4216 /* 4217 * This so that the foo->size assertion in the 4218 * next iteration of the loop do the right 4219 * thing for entries that were pulled up and are 4220 * no longer valid. 4221 */ 4222 MPASS(n < nitems(mem_ranges)); 4223 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4224 sizeof(struct t4_range)); 4225 #endif 4226 } 4227 } 4228 done: 4229 /* Done merging the ranges. */ 4230 MPASS(n > 0); 4231 r = &mem_ranges[0]; 4232 for (i = 0; i < n; i++, r++) { 4233 if (addr >= r->start && 4234 addr + len <= r->start + r->size) 4235 return (0); 4236 } 4237 } 4238 4239 return (EFAULT); 4240 } 4241 4242 static int 4243 fwmtype_to_hwmtype(int mtype) 4244 { 4245 4246 switch (mtype) { 4247 case FW_MEMTYPE_EDC0: 4248 return (MEM_EDC0); 4249 case FW_MEMTYPE_EDC1: 4250 return (MEM_EDC1); 4251 case FW_MEMTYPE_EXTMEM: 4252 return (MEM_MC0); 4253 case FW_MEMTYPE_EXTMEM1: 4254 return (MEM_MC1); 4255 default: 4256 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4257 } 4258 } 4259 4260 /* 4261 * Verify that the memory range specified by the memtype/offset/len pair is 4262 * valid and lies entirely within the memtype specified. The global address of 4263 * the start of the range is returned in addr. 4264 */ 4265 static int 4266 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4267 uint32_t *addr) 4268 { 4269 uint32_t em, addr_len, maddr; 4270 4271 /* Memory can only be accessed in naturally aligned 4 byte units */ 4272 if (off & 3 || len & 3 || len == 0) 4273 return (EINVAL); 4274 4275 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4276 switch (fwmtype_to_hwmtype(mtype)) { 4277 case MEM_EDC0: 4278 if (!(em & F_EDRAM0_ENABLE)) 4279 return (EINVAL); 4280 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4281 maddr = G_EDRAM0_BASE(addr_len) << 20; 4282 break; 4283 case MEM_EDC1: 4284 if (!(em & F_EDRAM1_ENABLE)) 4285 return (EINVAL); 4286 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4287 maddr = G_EDRAM1_BASE(addr_len) << 20; 4288 break; 4289 case MEM_MC: 4290 if (!(em & F_EXT_MEM_ENABLE)) 4291 return (EINVAL); 4292 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4293 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4294 break; 4295 case MEM_MC1: 4296 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4297 return (EINVAL); 4298 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4299 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4300 break; 4301 default: 4302 return (EINVAL); 4303 } 4304 4305 *addr = maddr + off; /* global address */ 4306 return (validate_mem_range(sc, *addr, len)); 4307 } 4308 4309 static int 4310 fixup_devlog_params(struct adapter *sc) 4311 { 4312 struct devlog_params *dparams = &sc->params.devlog; 4313 int rc; 4314 4315 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4316 dparams->size, &dparams->addr); 4317 4318 return (rc); 4319 } 4320 4321 static void 4322 update_nirq(struct intrs_and_queues *iaq, int nports) 4323 { 4324 4325 iaq->nirq = T4_EXTRA_INTR; 4326 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4327 iaq->nirq += nports * iaq->nofldrxq; 4328 iaq->nirq += nports * (iaq->num_vis - 1) * 4329 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4330 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4331 } 4332 4333 /* 4334 * Adjust requirements to fit the number of interrupts available. 4335 */ 4336 static void 4337 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4338 int navail) 4339 { 4340 int old_nirq; 4341 const int nports = sc->params.nports; 4342 4343 MPASS(nports > 0); 4344 MPASS(navail > 0); 4345 4346 bzero(iaq, sizeof(*iaq)); 4347 iaq->intr_type = itype; 4348 iaq->num_vis = t4_num_vis; 4349 iaq->ntxq = t4_ntxq; 4350 iaq->ntxq_vi = t4_ntxq_vi; 4351 iaq->nrxq = t4_nrxq; 4352 iaq->nrxq_vi = t4_nrxq_vi; 4353 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4354 if (is_offload(sc) || is_ethoffload(sc)) { 4355 iaq->nofldtxq = t4_nofldtxq; 4356 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4357 } 4358 #endif 4359 #ifdef TCP_OFFLOAD 4360 if (is_offload(sc)) { 4361 iaq->nofldrxq = t4_nofldrxq; 4362 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4363 } 4364 #endif 4365 #ifdef DEV_NETMAP 4366 if (t4_native_netmap & NN_MAIN_VI) { 4367 iaq->nnmtxq = t4_nnmtxq; 4368 iaq->nnmrxq = t4_nnmrxq; 4369 } 4370 if (t4_native_netmap & NN_EXTRA_VI) { 4371 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4372 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4373 } 4374 #endif 4375 4376 update_nirq(iaq, nports); 4377 if (iaq->nirq <= navail && 4378 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4379 /* 4380 * This is the normal case -- there are enough interrupts for 4381 * everything. 4382 */ 4383 goto done; 4384 } 4385 4386 /* 4387 * If extra VIs have been configured try reducing their count and see if 4388 * that works. 4389 */ 4390 while (iaq->num_vis > 1) { 4391 iaq->num_vis--; 4392 update_nirq(iaq, nports); 4393 if (iaq->nirq <= navail && 4394 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4395 device_printf(sc->dev, "virtual interfaces per port " 4396 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4397 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4398 "itype %d, navail %u, nirq %d.\n", 4399 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4400 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4401 itype, navail, iaq->nirq); 4402 goto done; 4403 } 4404 } 4405 4406 /* 4407 * Extra VIs will not be created. Log a message if they were requested. 4408 */ 4409 MPASS(iaq->num_vis == 1); 4410 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4411 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4412 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4413 if (iaq->num_vis != t4_num_vis) { 4414 device_printf(sc->dev, "extra virtual interfaces disabled. " 4415 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4416 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4417 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4418 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4419 } 4420 4421 /* 4422 * Keep reducing the number of NIC rx queues to the next lower power of 4423 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4424 * if that works. 4425 */ 4426 do { 4427 if (iaq->nrxq > 1) { 4428 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4429 if (iaq->nnmrxq > iaq->nrxq) 4430 iaq->nnmrxq = iaq->nrxq; 4431 } 4432 if (iaq->nofldrxq > 1) 4433 iaq->nofldrxq >>= 1; 4434 4435 old_nirq = iaq->nirq; 4436 update_nirq(iaq, nports); 4437 if (iaq->nirq <= navail && 4438 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4439 device_printf(sc->dev, "running with reduced number of " 4440 "rx queues because of shortage of interrupts. " 4441 "nrxq=%u, nofldrxq=%u. " 4442 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4443 iaq->nofldrxq, itype, navail, iaq->nirq); 4444 goto done; 4445 } 4446 } while (old_nirq != iaq->nirq); 4447 4448 /* One interrupt for everything. Ugh. */ 4449 device_printf(sc->dev, "running with minimal number of queues. " 4450 "itype %d, navail %u.\n", itype, navail); 4451 iaq->nirq = 1; 4452 iaq->nrxq = 1; 4453 iaq->ntxq = 1; 4454 if (iaq->nofldrxq > 0) { 4455 iaq->nofldrxq = 1; 4456 iaq->nofldtxq = 1; 4457 } 4458 iaq->nnmtxq = 0; 4459 iaq->nnmrxq = 0; 4460 done: 4461 MPASS(iaq->num_vis > 0); 4462 if (iaq->num_vis > 1) { 4463 MPASS(iaq->nrxq_vi > 0); 4464 MPASS(iaq->ntxq_vi > 0); 4465 } 4466 MPASS(iaq->nirq > 0); 4467 MPASS(iaq->nrxq > 0); 4468 MPASS(iaq->ntxq > 0); 4469 if (itype == INTR_MSI) { 4470 MPASS(powerof2(iaq->nirq)); 4471 } 4472 } 4473 4474 static int 4475 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4476 { 4477 int rc, itype, navail, nalloc; 4478 4479 for (itype = INTR_MSIX; itype; itype >>= 1) { 4480 4481 if ((itype & t4_intr_types) == 0) 4482 continue; /* not allowed */ 4483 4484 if (itype == INTR_MSIX) 4485 navail = pci_msix_count(sc->dev); 4486 else if (itype == INTR_MSI) 4487 navail = pci_msi_count(sc->dev); 4488 else 4489 navail = 1; 4490 restart: 4491 if (navail == 0) 4492 continue; 4493 4494 calculate_iaq(sc, iaq, itype, navail); 4495 nalloc = iaq->nirq; 4496 rc = 0; 4497 if (itype == INTR_MSIX) 4498 rc = pci_alloc_msix(sc->dev, &nalloc); 4499 else if (itype == INTR_MSI) 4500 rc = pci_alloc_msi(sc->dev, &nalloc); 4501 4502 if (rc == 0 && nalloc > 0) { 4503 if (nalloc == iaq->nirq) 4504 return (0); 4505 4506 /* 4507 * Didn't get the number requested. Use whatever number 4508 * the kernel is willing to allocate. 4509 */ 4510 device_printf(sc->dev, "fewer vectors than requested, " 4511 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4512 itype, iaq->nirq, nalloc); 4513 pci_release_msi(sc->dev); 4514 navail = nalloc; 4515 goto restart; 4516 } 4517 4518 device_printf(sc->dev, 4519 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4520 itype, rc, iaq->nirq, nalloc); 4521 } 4522 4523 device_printf(sc->dev, 4524 "failed to find a usable interrupt type. " 4525 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4526 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4527 4528 return (ENXIO); 4529 } 4530 4531 #define FW_VERSION(chip) ( \ 4532 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4533 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4534 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4535 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4536 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4537 4538 /* Just enough of fw_hdr to cover all version info. */ 4539 struct fw_h { 4540 __u8 ver; 4541 __u8 chip; 4542 __be16 len512; 4543 __be32 fw_ver; 4544 __be32 tp_microcode_ver; 4545 __u8 intfver_nic; 4546 __u8 intfver_vnic; 4547 __u8 intfver_ofld; 4548 __u8 intfver_ri; 4549 __u8 intfver_iscsipdu; 4550 __u8 intfver_iscsi; 4551 __u8 intfver_fcoepdu; 4552 __u8 intfver_fcoe; 4553 }; 4554 /* Spot check a couple of fields. */ 4555 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4556 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4557 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4558 4559 struct fw_info { 4560 uint8_t chip; 4561 char *kld_name; 4562 char *fw_mod_name; 4563 struct fw_h fw_h; 4564 } fw_info[] = { 4565 { 4566 .chip = CHELSIO_T4, 4567 .kld_name = "t4fw_cfg", 4568 .fw_mod_name = "t4fw", 4569 .fw_h = { 4570 .chip = FW_HDR_CHIP_T4, 4571 .fw_ver = htobe32(FW_VERSION(T4)), 4572 .intfver_nic = FW_INTFVER(T4, NIC), 4573 .intfver_vnic = FW_INTFVER(T4, VNIC), 4574 .intfver_ofld = FW_INTFVER(T4, OFLD), 4575 .intfver_ri = FW_INTFVER(T4, RI), 4576 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4577 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4578 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4579 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4580 }, 4581 }, { 4582 .chip = CHELSIO_T5, 4583 .kld_name = "t5fw_cfg", 4584 .fw_mod_name = "t5fw", 4585 .fw_h = { 4586 .chip = FW_HDR_CHIP_T5, 4587 .fw_ver = htobe32(FW_VERSION(T5)), 4588 .intfver_nic = FW_INTFVER(T5, NIC), 4589 .intfver_vnic = FW_INTFVER(T5, VNIC), 4590 .intfver_ofld = FW_INTFVER(T5, OFLD), 4591 .intfver_ri = FW_INTFVER(T5, RI), 4592 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4593 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4594 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4595 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4596 }, 4597 }, { 4598 .chip = CHELSIO_T6, 4599 .kld_name = "t6fw_cfg", 4600 .fw_mod_name = "t6fw", 4601 .fw_h = { 4602 .chip = FW_HDR_CHIP_T6, 4603 .fw_ver = htobe32(FW_VERSION(T6)), 4604 .intfver_nic = FW_INTFVER(T6, NIC), 4605 .intfver_vnic = FW_INTFVER(T6, VNIC), 4606 .intfver_ofld = FW_INTFVER(T6, OFLD), 4607 .intfver_ri = FW_INTFVER(T6, RI), 4608 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4609 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4610 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4611 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4612 }, 4613 } 4614 }; 4615 4616 static struct fw_info * 4617 find_fw_info(int chip) 4618 { 4619 int i; 4620 4621 for (i = 0; i < nitems(fw_info); i++) { 4622 if (fw_info[i].chip == chip) 4623 return (&fw_info[i]); 4624 } 4625 return (NULL); 4626 } 4627 4628 /* 4629 * Is the given firmware API compatible with the one the driver was compiled 4630 * with? 4631 */ 4632 static int 4633 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4634 { 4635 4636 /* short circuit if it's the exact same firmware version */ 4637 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4638 return (1); 4639 4640 /* 4641 * XXX: Is this too conservative? Perhaps I should limit this to the 4642 * features that are supported in the driver. 4643 */ 4644 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4645 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4646 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4647 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4648 return (1); 4649 #undef SAME_INTF 4650 4651 return (0); 4652 } 4653 4654 static int 4655 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4656 const struct firmware **fw) 4657 { 4658 struct fw_info *fw_info; 4659 4660 *dcfg = NULL; 4661 if (fw != NULL) 4662 *fw = NULL; 4663 4664 fw_info = find_fw_info(chip_id(sc)); 4665 if (fw_info == NULL) { 4666 device_printf(sc->dev, 4667 "unable to look up firmware information for chip %d.\n", 4668 chip_id(sc)); 4669 return (EINVAL); 4670 } 4671 4672 *dcfg = firmware_get(fw_info->kld_name); 4673 if (*dcfg != NULL) { 4674 if (fw != NULL) 4675 *fw = firmware_get(fw_info->fw_mod_name); 4676 return (0); 4677 } 4678 4679 return (ENOENT); 4680 } 4681 4682 static void 4683 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4684 const struct firmware *fw) 4685 { 4686 4687 if (fw != NULL) 4688 firmware_put(fw, FIRMWARE_UNLOAD); 4689 if (dcfg != NULL) 4690 firmware_put(dcfg, FIRMWARE_UNLOAD); 4691 } 4692 4693 /* 4694 * Return values: 4695 * 0 means no firmware install attempted. 4696 * ERESTART means a firmware install was attempted and was successful. 4697 * +ve errno means a firmware install was attempted but failed. 4698 */ 4699 static int 4700 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4701 const struct fw_h *drv_fw, const char *reason, int *already) 4702 { 4703 const struct firmware *cfg, *fw; 4704 const uint32_t c = be32toh(card_fw->fw_ver); 4705 uint32_t d, k; 4706 int rc, fw_install; 4707 struct fw_h bundled_fw; 4708 bool load_attempted; 4709 4710 cfg = fw = NULL; 4711 load_attempted = false; 4712 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4713 4714 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4715 if (t4_fw_install < 0) { 4716 rc = load_fw_module(sc, &cfg, &fw); 4717 if (rc != 0 || fw == NULL) { 4718 device_printf(sc->dev, 4719 "failed to load firmware module: %d. cfg %p, fw %p;" 4720 " will use compiled-in firmware version for" 4721 "hw.cxgbe.fw_install checks.\n", 4722 rc, cfg, fw); 4723 } else { 4724 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4725 } 4726 load_attempted = true; 4727 } 4728 d = be32toh(bundled_fw.fw_ver); 4729 4730 if (reason != NULL) 4731 goto install; 4732 4733 if ((sc->flags & FW_OK) == 0) { 4734 4735 if (c == 0xffffffff) { 4736 reason = "missing"; 4737 goto install; 4738 } 4739 4740 rc = 0; 4741 goto done; 4742 } 4743 4744 if (!fw_compatible(card_fw, &bundled_fw)) { 4745 reason = "incompatible or unusable"; 4746 goto install; 4747 } 4748 4749 if (d > c) { 4750 reason = "older than the version bundled with this driver"; 4751 goto install; 4752 } 4753 4754 if (fw_install == 2 && d != c) { 4755 reason = "different than the version bundled with this driver"; 4756 goto install; 4757 } 4758 4759 /* No reason to do anything to the firmware already on the card. */ 4760 rc = 0; 4761 goto done; 4762 4763 install: 4764 rc = 0; 4765 if ((*already)++) 4766 goto done; 4767 4768 if (fw_install == 0) { 4769 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4770 "but the driver is prohibited from installing a firmware " 4771 "on the card.\n", 4772 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4773 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4774 4775 goto done; 4776 } 4777 4778 /* 4779 * We'll attempt to install a firmware. Load the module first (if it 4780 * hasn't been loaded already). 4781 */ 4782 if (!load_attempted) { 4783 rc = load_fw_module(sc, &cfg, &fw); 4784 if (rc != 0 || fw == NULL) { 4785 device_printf(sc->dev, 4786 "failed to load firmware module: %d. cfg %p, fw %p\n", 4787 rc, cfg, fw); 4788 /* carry on */ 4789 } 4790 } 4791 if (fw == NULL) { 4792 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4793 "but the driver cannot take corrective action because it " 4794 "is unable to load the firmware module.\n", 4795 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4796 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4797 rc = sc->flags & FW_OK ? 0 : ENOENT; 4798 goto done; 4799 } 4800 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4801 if (k != d) { 4802 MPASS(t4_fw_install > 0); 4803 device_printf(sc->dev, 4804 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4805 "expecting (%u.%u.%u.%u) and will not be used.\n", 4806 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4807 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4808 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4809 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4810 rc = sc->flags & FW_OK ? 0 : EINVAL; 4811 goto done; 4812 } 4813 4814 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4815 "installing firmware %u.%u.%u.%u on card.\n", 4816 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4817 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4818 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4819 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4820 4821 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4822 if (rc != 0) { 4823 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4824 } else { 4825 /* Installed successfully, update the cached header too. */ 4826 rc = ERESTART; 4827 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4828 } 4829 done: 4830 unload_fw_module(sc, cfg, fw); 4831 4832 return (rc); 4833 } 4834 4835 /* 4836 * Establish contact with the firmware and attempt to become the master driver. 4837 * 4838 * A firmware will be installed to the card if needed (if the driver is allowed 4839 * to do so). 4840 */ 4841 static int 4842 contact_firmware(struct adapter *sc) 4843 { 4844 int rc, already = 0; 4845 enum dev_state state; 4846 struct fw_info *fw_info; 4847 struct fw_hdr *card_fw; /* fw on the card */ 4848 const struct fw_h *drv_fw; 4849 4850 fw_info = find_fw_info(chip_id(sc)); 4851 if (fw_info == NULL) { 4852 device_printf(sc->dev, 4853 "unable to look up firmware information for chip %d.\n", 4854 chip_id(sc)); 4855 return (EINVAL); 4856 } 4857 drv_fw = &fw_info->fw_h; 4858 4859 /* Read the header of the firmware on the card */ 4860 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4861 restart: 4862 rc = -t4_get_fw_hdr(sc, card_fw); 4863 if (rc != 0) { 4864 device_printf(sc->dev, 4865 "unable to read firmware header from card's flash: %d\n", 4866 rc); 4867 goto done; 4868 } 4869 4870 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4871 &already); 4872 if (rc == ERESTART) 4873 goto restart; 4874 if (rc != 0) 4875 goto done; 4876 4877 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4878 if (rc < 0 || state == DEV_STATE_ERR) { 4879 rc = -rc; 4880 device_printf(sc->dev, 4881 "failed to connect to the firmware: %d, %d. " 4882 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4883 #if 0 4884 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4885 "not responding properly to HELLO", &already) == ERESTART) 4886 goto restart; 4887 #endif 4888 goto done; 4889 } 4890 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4891 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4892 4893 if (rc == sc->pf) { 4894 sc->flags |= MASTER_PF; 4895 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4896 NULL, &already); 4897 if (rc == ERESTART) 4898 rc = 0; 4899 else if (rc != 0) 4900 goto done; 4901 } else if (state == DEV_STATE_UNINIT) { 4902 /* 4903 * We didn't get to be the master so we definitely won't be 4904 * configuring the chip. It's a bug if someone else hasn't 4905 * configured it already. 4906 */ 4907 device_printf(sc->dev, "couldn't be master(%d), " 4908 "device not already initialized either(%d). " 4909 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4910 rc = EPROTO; 4911 goto done; 4912 } else { 4913 /* 4914 * Some other PF is the master and has configured the chip. 4915 * This is allowed but untested. 4916 */ 4917 device_printf(sc->dev, "PF%d is master, device state %d. " 4918 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4919 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4920 sc->cfcsum = 0; 4921 rc = 0; 4922 } 4923 done: 4924 if (rc != 0 && sc->flags & FW_OK) { 4925 t4_fw_bye(sc, sc->mbox); 4926 sc->flags &= ~FW_OK; 4927 } 4928 free(card_fw, M_CXGBE); 4929 return (rc); 4930 } 4931 4932 static int 4933 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4934 uint32_t mtype, uint32_t moff) 4935 { 4936 struct fw_info *fw_info; 4937 const struct firmware *dcfg, *rcfg = NULL; 4938 const uint32_t *cfdata; 4939 uint32_t cflen, addr; 4940 int rc; 4941 4942 load_fw_module(sc, &dcfg, NULL); 4943 4944 /* Card specific interpretation of "default". */ 4945 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4946 if (pci_get_device(sc->dev) == 0x440a) 4947 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4948 if (is_fpga(sc)) 4949 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4950 } 4951 4952 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4953 if (dcfg == NULL) { 4954 device_printf(sc->dev, 4955 "KLD with default config is not available.\n"); 4956 rc = ENOENT; 4957 goto done; 4958 } 4959 cfdata = dcfg->data; 4960 cflen = dcfg->datasize & ~3; 4961 } else { 4962 char s[32]; 4963 4964 fw_info = find_fw_info(chip_id(sc)); 4965 if (fw_info == NULL) { 4966 device_printf(sc->dev, 4967 "unable to look up firmware information for chip %d.\n", 4968 chip_id(sc)); 4969 rc = EINVAL; 4970 goto done; 4971 } 4972 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4973 4974 rcfg = firmware_get(s); 4975 if (rcfg == NULL) { 4976 device_printf(sc->dev, 4977 "unable to load module \"%s\" for configuration " 4978 "profile \"%s\".\n", s, cfg_file); 4979 rc = ENOENT; 4980 goto done; 4981 } 4982 cfdata = rcfg->data; 4983 cflen = rcfg->datasize & ~3; 4984 } 4985 4986 if (cflen > FLASH_CFG_MAX_SIZE) { 4987 device_printf(sc->dev, 4988 "config file too long (%d, max allowed is %d).\n", 4989 cflen, FLASH_CFG_MAX_SIZE); 4990 rc = EINVAL; 4991 goto done; 4992 } 4993 4994 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4995 if (rc != 0) { 4996 device_printf(sc->dev, 4997 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4998 __func__, mtype, moff, cflen, rc); 4999 rc = EINVAL; 5000 goto done; 5001 } 5002 write_via_memwin(sc, 2, addr, cfdata, cflen); 5003 done: 5004 if (rcfg != NULL) 5005 firmware_put(rcfg, FIRMWARE_UNLOAD); 5006 unload_fw_module(sc, dcfg, NULL); 5007 return (rc); 5008 } 5009 5010 struct caps_allowed { 5011 uint16_t nbmcaps; 5012 uint16_t linkcaps; 5013 uint16_t switchcaps; 5014 uint16_t niccaps; 5015 uint16_t toecaps; 5016 uint16_t rdmacaps; 5017 uint16_t cryptocaps; 5018 uint16_t iscsicaps; 5019 uint16_t fcoecaps; 5020 }; 5021 5022 #define FW_PARAM_DEV(param) \ 5023 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5024 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5025 #define FW_PARAM_PFVF(param) \ 5026 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5027 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5028 5029 /* 5030 * Provide a configuration profile to the firmware and have it initialize the 5031 * chip accordingly. This may involve uploading a configuration file to the 5032 * card. 5033 */ 5034 static int 5035 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5036 const struct caps_allowed *caps_allowed) 5037 { 5038 int rc; 5039 struct fw_caps_config_cmd caps; 5040 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5041 5042 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5043 if (rc != 0) { 5044 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5045 return (rc); 5046 } 5047 5048 bzero(&caps, sizeof(caps)); 5049 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5050 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5051 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5052 mtype = 0; 5053 moff = 0; 5054 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5055 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5056 mtype = FW_MEMTYPE_FLASH; 5057 moff = t4_flash_cfg_addr(sc); 5058 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5059 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5060 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5061 FW_LEN16(caps)); 5062 } else { 5063 /* 5064 * Ask the firmware where it wants us to upload the config file. 5065 */ 5066 param = FW_PARAM_DEV(CF); 5067 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5068 if (rc != 0) { 5069 /* No support for config file? Shouldn't happen. */ 5070 device_printf(sc->dev, 5071 "failed to query config file location: %d.\n", rc); 5072 goto done; 5073 } 5074 mtype = G_FW_PARAMS_PARAM_Y(val); 5075 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5076 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5077 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5078 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5079 FW_LEN16(caps)); 5080 5081 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5082 if (rc != 0) { 5083 device_printf(sc->dev, 5084 "failed to upload config file to card: %d.\n", rc); 5085 goto done; 5086 } 5087 } 5088 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5089 if (rc != 0) { 5090 device_printf(sc->dev, "failed to pre-process config file: %d " 5091 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5092 goto done; 5093 } 5094 5095 finicsum = be32toh(caps.finicsum); 5096 cfcsum = be32toh(caps.cfcsum); /* actual */ 5097 if (finicsum != cfcsum) { 5098 device_printf(sc->dev, 5099 "WARNING: config file checksum mismatch: %08x %08x\n", 5100 finicsum, cfcsum); 5101 } 5102 sc->cfcsum = cfcsum; 5103 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5104 5105 /* 5106 * Let the firmware know what features will (not) be used so it can tune 5107 * things accordingly. 5108 */ 5109 #define LIMIT_CAPS(x) do { \ 5110 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5111 } while (0) 5112 LIMIT_CAPS(nbm); 5113 LIMIT_CAPS(link); 5114 LIMIT_CAPS(switch); 5115 LIMIT_CAPS(nic); 5116 LIMIT_CAPS(toe); 5117 LIMIT_CAPS(rdma); 5118 LIMIT_CAPS(crypto); 5119 LIMIT_CAPS(iscsi); 5120 LIMIT_CAPS(fcoe); 5121 #undef LIMIT_CAPS 5122 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5123 /* 5124 * TOE and hashfilters are mutually exclusive. It is a config 5125 * file or firmware bug if both are reported as available. Try 5126 * to cope with the situation in non-debug builds by disabling 5127 * TOE. 5128 */ 5129 MPASS(caps.toecaps == 0); 5130 5131 caps.toecaps = 0; 5132 caps.rdmacaps = 0; 5133 caps.iscsicaps = 0; 5134 } 5135 5136 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5137 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5138 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5139 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5140 if (rc != 0) { 5141 device_printf(sc->dev, 5142 "failed to process config file: %d.\n", rc); 5143 goto done; 5144 } 5145 5146 t4_tweak_chip_settings(sc); 5147 set_params__pre_init(sc); 5148 5149 /* get basic stuff going */ 5150 rc = -t4_fw_initialize(sc, sc->mbox); 5151 if (rc != 0) { 5152 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5153 goto done; 5154 } 5155 done: 5156 return (rc); 5157 } 5158 5159 /* 5160 * Partition chip resources for use between various PFs, VFs, etc. 5161 */ 5162 static int 5163 partition_resources(struct adapter *sc) 5164 { 5165 char cfg_file[sizeof(t4_cfg_file)]; 5166 struct caps_allowed caps_allowed; 5167 int rc; 5168 bool fallback; 5169 5170 /* Only the master driver gets to configure the chip resources. */ 5171 MPASS(sc->flags & MASTER_PF); 5172 5173 #define COPY_CAPS(x) do { \ 5174 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5175 } while (0) 5176 bzero(&caps_allowed, sizeof(caps_allowed)); 5177 COPY_CAPS(nbm); 5178 COPY_CAPS(link); 5179 COPY_CAPS(switch); 5180 COPY_CAPS(nic); 5181 COPY_CAPS(toe); 5182 COPY_CAPS(rdma); 5183 COPY_CAPS(crypto); 5184 COPY_CAPS(iscsi); 5185 COPY_CAPS(fcoe); 5186 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5187 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5188 retry: 5189 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5190 if (rc != 0 && fallback) { 5191 dump_devlog(sc); 5192 device_printf(sc->dev, 5193 "failed (%d) to configure card with \"%s\" profile, " 5194 "will fall back to a basic configuration and retry.\n", 5195 rc, cfg_file); 5196 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5197 bzero(&caps_allowed, sizeof(caps_allowed)); 5198 COPY_CAPS(switch); 5199 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5200 fallback = false; 5201 goto retry; 5202 } 5203 #undef COPY_CAPS 5204 return (rc); 5205 } 5206 5207 /* 5208 * Retrieve parameters that are needed (or nice to have) very early. 5209 */ 5210 static int 5211 get_params__pre_init(struct adapter *sc) 5212 { 5213 int rc; 5214 uint32_t param[2], val[2]; 5215 5216 t4_get_version_info(sc); 5217 5218 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5219 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5220 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5221 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5222 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5223 5224 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5225 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5226 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5227 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5228 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5229 5230 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5231 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5232 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5233 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5234 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5235 5236 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5237 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5238 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5239 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5240 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5241 5242 param[0] = FW_PARAM_DEV(PORTVEC); 5243 param[1] = FW_PARAM_DEV(CCLK); 5244 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5245 if (rc != 0) { 5246 device_printf(sc->dev, 5247 "failed to query parameters (pre_init): %d.\n", rc); 5248 return (rc); 5249 } 5250 5251 sc->params.portvec = val[0]; 5252 sc->params.nports = bitcount32(val[0]); 5253 sc->params.vpd.cclk = val[1]; 5254 5255 /* Read device log parameters. */ 5256 rc = -t4_init_devlog_params(sc, 1); 5257 if (rc == 0) 5258 fixup_devlog_params(sc); 5259 else { 5260 device_printf(sc->dev, 5261 "failed to get devlog parameters: %d.\n", rc); 5262 rc = 0; /* devlog isn't critical for device operation */ 5263 } 5264 5265 return (rc); 5266 } 5267 5268 /* 5269 * Any params that need to be set before FW_INITIALIZE. 5270 */ 5271 static int 5272 set_params__pre_init(struct adapter *sc) 5273 { 5274 int rc = 0; 5275 uint32_t param, val; 5276 5277 if (chip_id(sc) >= CHELSIO_T6) { 5278 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5279 val = 1; 5280 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5281 /* firmwares < 1.20.1.0 do not have this param. */ 5282 if (rc == FW_EINVAL && 5283 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5284 rc = 0; 5285 } 5286 if (rc != 0) { 5287 device_printf(sc->dev, 5288 "failed to enable high priority filters :%d.\n", 5289 rc); 5290 } 5291 5292 param = FW_PARAM_DEV(PPOD_EDRAM); 5293 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5294 if (rc == 0 && val == 1) { 5295 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5296 &val); 5297 if (rc != 0) { 5298 device_printf(sc->dev, 5299 "failed to set PPOD_EDRAM: %d.\n", rc); 5300 } 5301 } 5302 } 5303 5304 /* Enable opaque VIIDs with firmwares that support it. */ 5305 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5306 val = 1; 5307 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5308 if (rc == 0 && val == 1) 5309 sc->params.viid_smt_extn_support = true; 5310 else 5311 sc->params.viid_smt_extn_support = false; 5312 5313 return (rc); 5314 } 5315 5316 /* 5317 * Retrieve various parameters that are of interest to the driver. The device 5318 * has been initialized by the firmware at this point. 5319 */ 5320 static int 5321 get_params__post_init(struct adapter *sc) 5322 { 5323 int rc; 5324 uint32_t param[7], val[7]; 5325 struct fw_caps_config_cmd caps; 5326 5327 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5328 param[1] = FW_PARAM_PFVF(EQ_START); 5329 param[2] = FW_PARAM_PFVF(FILTER_START); 5330 param[3] = FW_PARAM_PFVF(FILTER_END); 5331 param[4] = FW_PARAM_PFVF(L2T_START); 5332 param[5] = FW_PARAM_PFVF(L2T_END); 5333 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5334 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5335 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5336 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5337 if (rc != 0) { 5338 device_printf(sc->dev, 5339 "failed to query parameters (post_init): %d.\n", rc); 5340 return (rc); 5341 } 5342 5343 sc->sge.iq_start = val[0]; 5344 sc->sge.eq_start = val[1]; 5345 if ((int)val[3] > (int)val[2]) { 5346 sc->tids.ftid_base = val[2]; 5347 sc->tids.ftid_end = val[3]; 5348 sc->tids.nftids = val[3] - val[2] + 1; 5349 } 5350 sc->vres.l2t.start = val[4]; 5351 sc->vres.l2t.size = val[5] - val[4] + 1; 5352 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5353 if (sc->vres.l2t.size > 0) 5354 MPASS(fls(val[5]) <= S_SYNC_WR); 5355 sc->params.core_vdd = val[6]; 5356 5357 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5358 param[1] = FW_PARAM_PFVF(EQ_END); 5359 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5360 if (rc != 0) { 5361 device_printf(sc->dev, 5362 "failed to query parameters (post_init2): %d.\n", rc); 5363 return (rc); 5364 } 5365 MPASS((int)val[0] >= sc->sge.iq_start); 5366 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5367 MPASS((int)val[1] >= sc->sge.eq_start); 5368 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5369 5370 if (chip_id(sc) >= CHELSIO_T6) { 5371 5372 sc->tids.tid_base = t4_read_reg(sc, 5373 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5374 5375 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5376 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5377 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5378 if (rc != 0) { 5379 device_printf(sc->dev, 5380 "failed to query hpfilter parameters: %d.\n", rc); 5381 return (rc); 5382 } 5383 if ((int)val[1] > (int)val[0]) { 5384 sc->tids.hpftid_base = val[0]; 5385 sc->tids.hpftid_end = val[1]; 5386 sc->tids.nhpftids = val[1] - val[0] + 1; 5387 5388 /* 5389 * These should go off if the layout changes and the 5390 * driver needs to catch up. 5391 */ 5392 MPASS(sc->tids.hpftid_base == 0); 5393 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5394 } 5395 5396 param[0] = FW_PARAM_PFVF(RAWF_START); 5397 param[1] = FW_PARAM_PFVF(RAWF_END); 5398 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5399 if (rc != 0) { 5400 device_printf(sc->dev, 5401 "failed to query rawf parameters: %d.\n", rc); 5402 return (rc); 5403 } 5404 if ((int)val[1] > (int)val[0]) { 5405 sc->rawf_base = val[0]; 5406 sc->nrawf = val[1] - val[0] + 1; 5407 } 5408 } 5409 5410 /* 5411 * The parameters that follow may not be available on all firmwares. We 5412 * query them individually rather than in a compound query because old 5413 * firmwares fail the entire query if an unknown parameter is queried. 5414 */ 5415 5416 /* 5417 * MPS buffer group configuration. 5418 */ 5419 param[0] = FW_PARAM_DEV(MPSBGMAP); 5420 val[0] = 0; 5421 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5422 if (rc == 0) 5423 sc->params.mps_bg_map = val[0]; 5424 else 5425 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5426 5427 param[0] = FW_PARAM_DEV(TPCHMAP); 5428 val[0] = 0; 5429 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5430 if (rc == 0) 5431 sc->params.tp_ch_map = val[0]; 5432 else 5433 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5434 5435 /* 5436 * Determine whether the firmware supports the filter2 work request. 5437 */ 5438 param[0] = FW_PARAM_DEV(FILTER2_WR); 5439 val[0] = 0; 5440 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5441 if (rc == 0) 5442 sc->params.filter2_wr_support = val[0] != 0; 5443 else 5444 sc->params.filter2_wr_support = 0; 5445 5446 /* 5447 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5448 */ 5449 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5450 val[0] = 0; 5451 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5452 if (rc == 0) 5453 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5454 else 5455 sc->params.ulptx_memwrite_dsgl = false; 5456 5457 /* FW_RI_FR_NSMR_TPTE_WR support */ 5458 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5459 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5460 if (rc == 0) 5461 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5462 else 5463 sc->params.fr_nsmr_tpte_wr_support = false; 5464 5465 /* Support for 512 SGL entries per FR MR. */ 5466 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5467 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5468 if (rc == 0) 5469 sc->params.dev_512sgl_mr = val[0] != 0; 5470 else 5471 sc->params.dev_512sgl_mr = false; 5472 5473 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5474 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5475 if (rc == 0) 5476 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5477 else 5478 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5479 5480 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5481 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5482 if (rc == 0) { 5483 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5484 sc->params.nsched_cls = val[0]; 5485 } else 5486 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5487 5488 /* get capabilites */ 5489 bzero(&caps, sizeof(caps)); 5490 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5491 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5492 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5493 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5494 if (rc != 0) { 5495 device_printf(sc->dev, 5496 "failed to get card capabilities: %d.\n", rc); 5497 return (rc); 5498 } 5499 5500 #define READ_CAPS(x) do { \ 5501 sc->x = htobe16(caps.x); \ 5502 } while (0) 5503 READ_CAPS(nbmcaps); 5504 READ_CAPS(linkcaps); 5505 READ_CAPS(switchcaps); 5506 READ_CAPS(niccaps); 5507 READ_CAPS(toecaps); 5508 READ_CAPS(rdmacaps); 5509 READ_CAPS(cryptocaps); 5510 READ_CAPS(iscsicaps); 5511 READ_CAPS(fcoecaps); 5512 5513 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5514 MPASS(chip_id(sc) > CHELSIO_T4); 5515 MPASS(sc->toecaps == 0); 5516 sc->toecaps = 0; 5517 5518 param[0] = FW_PARAM_DEV(NTID); 5519 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5520 if (rc != 0) { 5521 device_printf(sc->dev, 5522 "failed to query HASHFILTER parameters: %d.\n", rc); 5523 return (rc); 5524 } 5525 sc->tids.ntids = val[0]; 5526 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5527 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5528 sc->tids.ntids -= sc->tids.nhpftids; 5529 } 5530 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5531 sc->params.hash_filter = 1; 5532 } 5533 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5534 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5535 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5536 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5537 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5538 if (rc != 0) { 5539 device_printf(sc->dev, 5540 "failed to query NIC parameters: %d.\n", rc); 5541 return (rc); 5542 } 5543 if ((int)val[1] > (int)val[0]) { 5544 sc->tids.etid_base = val[0]; 5545 sc->tids.etid_end = val[1]; 5546 sc->tids.netids = val[1] - val[0] + 1; 5547 sc->params.eo_wr_cred = val[2]; 5548 sc->params.ethoffload = 1; 5549 } 5550 } 5551 if (sc->toecaps) { 5552 /* query offload-related parameters */ 5553 param[0] = FW_PARAM_DEV(NTID); 5554 param[1] = FW_PARAM_PFVF(SERVER_START); 5555 param[2] = FW_PARAM_PFVF(SERVER_END); 5556 param[3] = FW_PARAM_PFVF(TDDP_START); 5557 param[4] = FW_PARAM_PFVF(TDDP_END); 5558 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5559 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5560 if (rc != 0) { 5561 device_printf(sc->dev, 5562 "failed to query TOE parameters: %d.\n", rc); 5563 return (rc); 5564 } 5565 sc->tids.ntids = val[0]; 5566 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5567 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5568 sc->tids.ntids -= sc->tids.nhpftids; 5569 } 5570 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5571 if ((int)val[2] > (int)val[1]) { 5572 sc->tids.stid_base = val[1]; 5573 sc->tids.nstids = val[2] - val[1] + 1; 5574 } 5575 sc->vres.ddp.start = val[3]; 5576 sc->vres.ddp.size = val[4] - val[3] + 1; 5577 sc->params.ofldq_wr_cred = val[5]; 5578 sc->params.offload = 1; 5579 } else { 5580 /* 5581 * The firmware attempts memfree TOE configuration for -SO cards 5582 * and will report toecaps=0 if it runs out of resources (this 5583 * depends on the config file). It may not report 0 for other 5584 * capabilities dependent on the TOE in this case. Set them to 5585 * 0 here so that the driver doesn't bother tracking resources 5586 * that will never be used. 5587 */ 5588 sc->iscsicaps = 0; 5589 sc->rdmacaps = 0; 5590 } 5591 if (sc->rdmacaps) { 5592 param[0] = FW_PARAM_PFVF(STAG_START); 5593 param[1] = FW_PARAM_PFVF(STAG_END); 5594 param[2] = FW_PARAM_PFVF(RQ_START); 5595 param[3] = FW_PARAM_PFVF(RQ_END); 5596 param[4] = FW_PARAM_PFVF(PBL_START); 5597 param[5] = FW_PARAM_PFVF(PBL_END); 5598 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5599 if (rc != 0) { 5600 device_printf(sc->dev, 5601 "failed to query RDMA parameters(1): %d.\n", rc); 5602 return (rc); 5603 } 5604 sc->vres.stag.start = val[0]; 5605 sc->vres.stag.size = val[1] - val[0] + 1; 5606 sc->vres.rq.start = val[2]; 5607 sc->vres.rq.size = val[3] - val[2] + 1; 5608 sc->vres.pbl.start = val[4]; 5609 sc->vres.pbl.size = val[5] - val[4] + 1; 5610 5611 param[0] = FW_PARAM_PFVF(SQRQ_START); 5612 param[1] = FW_PARAM_PFVF(SQRQ_END); 5613 param[2] = FW_PARAM_PFVF(CQ_START); 5614 param[3] = FW_PARAM_PFVF(CQ_END); 5615 param[4] = FW_PARAM_PFVF(OCQ_START); 5616 param[5] = FW_PARAM_PFVF(OCQ_END); 5617 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5618 if (rc != 0) { 5619 device_printf(sc->dev, 5620 "failed to query RDMA parameters(2): %d.\n", rc); 5621 return (rc); 5622 } 5623 sc->vres.qp.start = val[0]; 5624 sc->vres.qp.size = val[1] - val[0] + 1; 5625 sc->vres.cq.start = val[2]; 5626 sc->vres.cq.size = val[3] - val[2] + 1; 5627 sc->vres.ocq.start = val[4]; 5628 sc->vres.ocq.size = val[5] - val[4] + 1; 5629 5630 param[0] = FW_PARAM_PFVF(SRQ_START); 5631 param[1] = FW_PARAM_PFVF(SRQ_END); 5632 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5633 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5634 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5635 if (rc != 0) { 5636 device_printf(sc->dev, 5637 "failed to query RDMA parameters(3): %d.\n", rc); 5638 return (rc); 5639 } 5640 sc->vres.srq.start = val[0]; 5641 sc->vres.srq.size = val[1] - val[0] + 1; 5642 sc->params.max_ordird_qp = val[2]; 5643 sc->params.max_ird_adapter = val[3]; 5644 } 5645 if (sc->iscsicaps) { 5646 param[0] = FW_PARAM_PFVF(ISCSI_START); 5647 param[1] = FW_PARAM_PFVF(ISCSI_END); 5648 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5649 if (rc != 0) { 5650 device_printf(sc->dev, 5651 "failed to query iSCSI parameters: %d.\n", rc); 5652 return (rc); 5653 } 5654 sc->vres.iscsi.start = val[0]; 5655 sc->vres.iscsi.size = val[1] - val[0] + 1; 5656 } 5657 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5658 param[0] = FW_PARAM_PFVF(TLS_START); 5659 param[1] = FW_PARAM_PFVF(TLS_END); 5660 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5661 if (rc != 0) { 5662 device_printf(sc->dev, 5663 "failed to query TLS parameters: %d.\n", rc); 5664 return (rc); 5665 } 5666 sc->vres.key.start = val[0]; 5667 sc->vres.key.size = val[1] - val[0] + 1; 5668 } 5669 5670 /* 5671 * We've got the params we wanted to query directly from the firmware. 5672 * Grab some others via other means. 5673 */ 5674 t4_init_sge_params(sc); 5675 t4_init_tp_params(sc); 5676 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5677 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5678 5679 rc = t4_verify_chip_settings(sc); 5680 if (rc != 0) 5681 return (rc); 5682 t4_init_rx_buf_info(sc); 5683 5684 return (rc); 5685 } 5686 5687 #ifdef KERN_TLS 5688 static void 5689 ktls_tick(void *arg) 5690 { 5691 struct adapter *sc; 5692 uint32_t tstamp; 5693 5694 sc = arg; 5695 tstamp = tcp_ts_getticks(); 5696 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5697 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5698 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5699 } 5700 5701 static int 5702 t6_config_kern_tls(struct adapter *sc, bool enable) 5703 { 5704 int rc; 5705 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5706 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5707 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5708 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5709 5710 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5711 if (rc != 0) { 5712 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5713 enable ? "enable" : "disable", rc); 5714 return (rc); 5715 } 5716 5717 if (enable) { 5718 sc->flags |= KERN_TLS_ON; 5719 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5720 C_HARDCLOCK); 5721 } else { 5722 sc->flags &= ~KERN_TLS_ON; 5723 callout_stop(&sc->ktls_tick); 5724 } 5725 5726 return (rc); 5727 } 5728 #endif 5729 5730 static int 5731 set_params__post_init(struct adapter *sc) 5732 { 5733 uint32_t mask, param, val; 5734 #ifdef TCP_OFFLOAD 5735 int i, v, shift; 5736 #endif 5737 5738 /* ask for encapsulated CPLs */ 5739 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5740 val = 1; 5741 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5742 5743 /* Enable 32b port caps if the firmware supports it. */ 5744 param = FW_PARAM_PFVF(PORT_CAPS32); 5745 val = 1; 5746 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5747 sc->params.port_caps32 = 1; 5748 5749 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5750 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5751 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5752 V_MASKFILTER(val - 1)); 5753 5754 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5755 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5756 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5757 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5758 val = 0; 5759 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5760 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5761 F_ATTACKFILTERENABLE); 5762 val |= F_DROPERRORATTACK; 5763 } 5764 if (t4_drop_ip_fragments != 0) { 5765 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5766 F_FRAGMENTDROP); 5767 val |= F_DROPERRORFRAG; 5768 } 5769 if (t4_drop_pkts_with_l2_errors != 0) 5770 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5771 if (t4_drop_pkts_with_l3_errors != 0) { 5772 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5773 F_DROPERRORCSUMIP; 5774 } 5775 if (t4_drop_pkts_with_l4_errors != 0) { 5776 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5777 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5778 } 5779 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5780 5781 #ifdef TCP_OFFLOAD 5782 /* 5783 * Override the TOE timers with user provided tunables. This is not the 5784 * recommended way to change the timers (the firmware config file is) so 5785 * these tunables are not documented. 5786 * 5787 * All the timer tunables are in microseconds. 5788 */ 5789 if (t4_toe_keepalive_idle != 0) { 5790 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5791 v &= M_KEEPALIVEIDLE; 5792 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5793 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5794 } 5795 if (t4_toe_keepalive_interval != 0) { 5796 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5797 v &= M_KEEPALIVEINTVL; 5798 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5799 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5800 } 5801 if (t4_toe_keepalive_count != 0) { 5802 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5803 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5804 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5805 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5806 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5807 } 5808 if (t4_toe_rexmt_min != 0) { 5809 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5810 v &= M_RXTMIN; 5811 t4_set_reg_field(sc, A_TP_RXT_MIN, 5812 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5813 } 5814 if (t4_toe_rexmt_max != 0) { 5815 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5816 v &= M_RXTMAX; 5817 t4_set_reg_field(sc, A_TP_RXT_MAX, 5818 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5819 } 5820 if (t4_toe_rexmt_count != 0) { 5821 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5822 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5823 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5824 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5825 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5826 } 5827 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5828 if (t4_toe_rexmt_backoff[i] != -1) { 5829 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5830 shift = (i & 3) << 3; 5831 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5832 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5833 } 5834 } 5835 #endif 5836 5837 /* 5838 * Limit TOE connections to 2 reassembly "islands". This is 5839 * required to permit migrating TOE connections to either 5840 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5841 */ 5842 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5843 V_PASSMODE(2)); 5844 5845 #ifdef KERN_TLS 5846 if (is_ktls(sc)) { 5847 sc->tlst.inline_keys = t4_tls_inline_keys; 5848 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5849 if (t4_kern_tls != 0 && is_t6(sc)) 5850 t6_config_kern_tls(sc, true); 5851 } 5852 #endif 5853 return (0); 5854 } 5855 5856 #undef FW_PARAM_PFVF 5857 #undef FW_PARAM_DEV 5858 5859 static void 5860 t4_set_desc(struct adapter *sc) 5861 { 5862 struct adapter_params *p = &sc->params; 5863 5864 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5865 } 5866 5867 static inline void 5868 ifmedia_add4(struct ifmedia *ifm, int m) 5869 { 5870 5871 ifmedia_add(ifm, m, 0, NULL); 5872 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5873 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5874 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5875 } 5876 5877 /* 5878 * This is the selected media, which is not quite the same as the active media. 5879 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5880 * and active are not the same, and "media: Ethernet selected" otherwise. 5881 */ 5882 static void 5883 set_current_media(struct port_info *pi) 5884 { 5885 struct link_config *lc; 5886 struct ifmedia *ifm; 5887 int mword; 5888 u_int speed; 5889 5890 PORT_LOCK_ASSERT_OWNED(pi); 5891 5892 /* Leave current media alone if it's already set to IFM_NONE. */ 5893 ifm = &pi->media; 5894 if (ifm->ifm_cur != NULL && 5895 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5896 return; 5897 5898 lc = &pi->link_cfg; 5899 if (lc->requested_aneg != AUTONEG_DISABLE && 5900 lc->pcaps & FW_PORT_CAP32_ANEG) { 5901 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5902 return; 5903 } 5904 mword = IFM_ETHER | IFM_FDX; 5905 if (lc->requested_fc & PAUSE_TX) 5906 mword |= IFM_ETH_TXPAUSE; 5907 if (lc->requested_fc & PAUSE_RX) 5908 mword |= IFM_ETH_RXPAUSE; 5909 if (lc->requested_speed == 0) 5910 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5911 else 5912 speed = lc->requested_speed; 5913 mword |= port_mword(pi, speed_to_fwcap(speed)); 5914 ifmedia_set(ifm, mword); 5915 } 5916 5917 /* 5918 * Returns true if the ifmedia list for the port cannot change. 5919 */ 5920 static bool 5921 fixed_ifmedia(struct port_info *pi) 5922 { 5923 5924 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5925 pi->port_type == FW_PORT_TYPE_BT_XFI || 5926 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5927 pi->port_type == FW_PORT_TYPE_KX4 || 5928 pi->port_type == FW_PORT_TYPE_KX || 5929 pi->port_type == FW_PORT_TYPE_KR || 5930 pi->port_type == FW_PORT_TYPE_BP_AP || 5931 pi->port_type == FW_PORT_TYPE_BP4_AP || 5932 pi->port_type == FW_PORT_TYPE_BP40_BA || 5933 pi->port_type == FW_PORT_TYPE_KR4_100G || 5934 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5935 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5936 } 5937 5938 static void 5939 build_medialist(struct port_info *pi) 5940 { 5941 uint32_t ss, speed; 5942 int unknown, mword, bit; 5943 struct link_config *lc; 5944 struct ifmedia *ifm; 5945 5946 PORT_LOCK_ASSERT_OWNED(pi); 5947 5948 if (pi->flags & FIXED_IFMEDIA) 5949 return; 5950 5951 /* 5952 * Rebuild the ifmedia list. 5953 */ 5954 ifm = &pi->media; 5955 ifmedia_removeall(ifm); 5956 lc = &pi->link_cfg; 5957 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5958 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5959 MPASS(ss != 0); 5960 no_media: 5961 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5962 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5963 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5964 return; 5965 } 5966 5967 unknown = 0; 5968 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5969 speed = 1 << bit; 5970 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5971 if (ss & speed) { 5972 mword = port_mword(pi, speed); 5973 if (mword == IFM_NONE) { 5974 goto no_media; 5975 } else if (mword == IFM_UNKNOWN) 5976 unknown++; 5977 else 5978 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5979 } 5980 } 5981 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5982 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5983 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5984 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5985 5986 set_current_media(pi); 5987 } 5988 5989 /* 5990 * Initialize the requested fields in the link config based on driver tunables. 5991 */ 5992 static void 5993 init_link_config(struct port_info *pi) 5994 { 5995 struct link_config *lc = &pi->link_cfg; 5996 5997 PORT_LOCK_ASSERT_OWNED(pi); 5998 5999 lc->requested_caps = 0; 6000 lc->requested_speed = 0; 6001 6002 if (t4_autoneg == 0) 6003 lc->requested_aneg = AUTONEG_DISABLE; 6004 else if (t4_autoneg == 1) 6005 lc->requested_aneg = AUTONEG_ENABLE; 6006 else 6007 lc->requested_aneg = AUTONEG_AUTO; 6008 6009 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6010 PAUSE_AUTONEG); 6011 6012 if (t4_fec & FEC_AUTO) 6013 lc->requested_fec = FEC_AUTO; 6014 else if (t4_fec == 0) 6015 lc->requested_fec = FEC_NONE; 6016 else { 6017 /* -1 is handled by the FEC_AUTO block above and not here. */ 6018 lc->requested_fec = t4_fec & 6019 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6020 if (lc->requested_fec == 0) 6021 lc->requested_fec = FEC_AUTO; 6022 } 6023 if (t4_force_fec < 0) 6024 lc->force_fec = -1; 6025 else if (t4_force_fec > 0) 6026 lc->force_fec = 1; 6027 else 6028 lc->force_fec = 0; 6029 } 6030 6031 /* 6032 * Makes sure that all requested settings comply with what's supported by the 6033 * port. Returns the number of settings that were invalid and had to be fixed. 6034 */ 6035 static int 6036 fixup_link_config(struct port_info *pi) 6037 { 6038 int n = 0; 6039 struct link_config *lc = &pi->link_cfg; 6040 uint32_t fwspeed; 6041 6042 PORT_LOCK_ASSERT_OWNED(pi); 6043 6044 /* Speed (when not autonegotiating) */ 6045 if (lc->requested_speed != 0) { 6046 fwspeed = speed_to_fwcap(lc->requested_speed); 6047 if ((fwspeed & lc->pcaps) == 0) { 6048 n++; 6049 lc->requested_speed = 0; 6050 } 6051 } 6052 6053 /* Link autonegotiation */ 6054 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6055 lc->requested_aneg == AUTONEG_DISABLE || 6056 lc->requested_aneg == AUTONEG_AUTO); 6057 if (lc->requested_aneg == AUTONEG_ENABLE && 6058 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6059 n++; 6060 lc->requested_aneg = AUTONEG_AUTO; 6061 } 6062 6063 /* Flow control */ 6064 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6065 if (lc->requested_fc & PAUSE_TX && 6066 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6067 n++; 6068 lc->requested_fc &= ~PAUSE_TX; 6069 } 6070 if (lc->requested_fc & PAUSE_RX && 6071 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6072 n++; 6073 lc->requested_fc &= ~PAUSE_RX; 6074 } 6075 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6076 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6077 n++; 6078 lc->requested_fc |= PAUSE_AUTONEG; 6079 } 6080 6081 /* FEC */ 6082 if ((lc->requested_fec & FEC_RS && 6083 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6084 (lc->requested_fec & FEC_BASER_RS && 6085 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6086 n++; 6087 lc->requested_fec = FEC_AUTO; 6088 } 6089 6090 return (n); 6091 } 6092 6093 /* 6094 * Apply the requested L1 settings, which are expected to be valid, to the 6095 * hardware. 6096 */ 6097 static int 6098 apply_link_config(struct port_info *pi) 6099 { 6100 struct adapter *sc = pi->adapter; 6101 struct link_config *lc = &pi->link_cfg; 6102 int rc; 6103 6104 #ifdef INVARIANTS 6105 ASSERT_SYNCHRONIZED_OP(sc); 6106 PORT_LOCK_ASSERT_OWNED(pi); 6107 6108 if (lc->requested_aneg == AUTONEG_ENABLE) 6109 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6110 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6111 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6112 if (lc->requested_fc & PAUSE_TX) 6113 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6114 if (lc->requested_fc & PAUSE_RX) 6115 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6116 if (lc->requested_fec & FEC_RS) 6117 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6118 if (lc->requested_fec & FEC_BASER_RS) 6119 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6120 #endif 6121 if (!(sc->flags & IS_VF)) { 6122 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6123 if (rc != 0) { 6124 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6125 return (rc); 6126 } 6127 } 6128 6129 /* 6130 * An L1_CFG will almost always result in a link-change event if the 6131 * link is up, and the driver will refresh the actual fec/fc/etc. when 6132 * the notification is processed. If the link is down then the actual 6133 * settings are meaningless. 6134 * 6135 * This takes care of the case where a change in the L1 settings may not 6136 * result in a notification. 6137 */ 6138 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6139 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6140 6141 return (0); 6142 } 6143 6144 #define FW_MAC_EXACT_CHUNK 7 6145 struct mcaddr_ctx { 6146 if_t ifp; 6147 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6148 uint64_t hash; 6149 int i; 6150 int del; 6151 int rc; 6152 }; 6153 6154 static u_int 6155 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6156 { 6157 struct mcaddr_ctx *ctx = arg; 6158 struct vi_info *vi = if_getsoftc(ctx->ifp); 6159 struct port_info *pi = vi->pi; 6160 struct adapter *sc = pi->adapter; 6161 6162 if (ctx->rc < 0) 6163 return (0); 6164 6165 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6166 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6167 ctx->i++; 6168 6169 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6170 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6171 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6172 if (ctx->rc < 0) { 6173 int j; 6174 6175 for (j = 0; j < ctx->i; j++) { 6176 if_printf(ctx->ifp, 6177 "failed to add mc address" 6178 " %02x:%02x:%02x:" 6179 "%02x:%02x:%02x rc=%d\n", 6180 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6181 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6182 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6183 -ctx->rc); 6184 } 6185 return (0); 6186 } 6187 ctx->del = 0; 6188 ctx->i = 0; 6189 } 6190 6191 return (1); 6192 } 6193 6194 /* 6195 * Program the port's XGMAC based on parameters in ifnet. The caller also 6196 * indicates which parameters should be programmed (the rest are left alone). 6197 */ 6198 int 6199 update_mac_settings(if_t ifp, int flags) 6200 { 6201 int rc = 0; 6202 struct vi_info *vi = if_getsoftc(ifp); 6203 struct port_info *pi = vi->pi; 6204 struct adapter *sc = pi->adapter; 6205 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6206 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6207 6208 ASSERT_SYNCHRONIZED_OP(sc); 6209 KASSERT(flags, ("%s: not told what to update.", __func__)); 6210 6211 if (flags & XGMAC_MTU) 6212 mtu = if_getmtu(ifp); 6213 6214 if (flags & XGMAC_PROMISC) 6215 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6216 6217 if (flags & XGMAC_ALLMULTI) 6218 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6219 6220 if (flags & XGMAC_VLANEX) 6221 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6222 6223 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6224 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6225 allmulti, 1, vlanex, false); 6226 if (rc) { 6227 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6228 rc); 6229 return (rc); 6230 } 6231 } 6232 6233 if (flags & XGMAC_UCADDR) { 6234 uint8_t ucaddr[ETHER_ADDR_LEN]; 6235 6236 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6237 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6238 ucaddr, true, &vi->smt_idx); 6239 if (rc < 0) { 6240 rc = -rc; 6241 if_printf(ifp, "change_mac failed: %d\n", rc); 6242 return (rc); 6243 } else { 6244 vi->xact_addr_filt = rc; 6245 rc = 0; 6246 } 6247 } 6248 6249 if (flags & XGMAC_MCADDRS) { 6250 struct epoch_tracker et; 6251 struct mcaddr_ctx ctx; 6252 int j; 6253 6254 ctx.ifp = ifp; 6255 ctx.hash = 0; 6256 ctx.i = 0; 6257 ctx.del = 1; 6258 ctx.rc = 0; 6259 /* 6260 * Unlike other drivers, we accumulate list of pointers into 6261 * interface address lists and we need to keep it safe even 6262 * after if_foreach_llmaddr() returns, thus we must enter the 6263 * network epoch. 6264 */ 6265 NET_EPOCH_ENTER(et); 6266 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6267 if (ctx.rc < 0) { 6268 NET_EPOCH_EXIT(et); 6269 rc = -ctx.rc; 6270 return (rc); 6271 } 6272 if (ctx.i > 0) { 6273 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6274 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6275 NET_EPOCH_EXIT(et); 6276 if (rc < 0) { 6277 rc = -rc; 6278 for (j = 0; j < ctx.i; j++) { 6279 if_printf(ifp, 6280 "failed to add mcast address" 6281 " %02x:%02x:%02x:" 6282 "%02x:%02x:%02x rc=%d\n", 6283 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6284 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6285 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6286 rc); 6287 } 6288 return (rc); 6289 } 6290 ctx.del = 0; 6291 } else 6292 NET_EPOCH_EXIT(et); 6293 6294 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6295 if (rc != 0) 6296 if_printf(ifp, "failed to set mcast address hash: %d\n", 6297 rc); 6298 if (ctx.del == 0) { 6299 /* We clobbered the VXLAN entry if there was one. */ 6300 pi->vxlan_tcam_entry = false; 6301 } 6302 } 6303 6304 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6305 pi->vxlan_tcam_entry == false) { 6306 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6307 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6308 true); 6309 if (rc < 0) { 6310 rc = -rc; 6311 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6312 rc); 6313 } else { 6314 MPASS(rc == sc->rawf_base + pi->port_id); 6315 rc = 0; 6316 pi->vxlan_tcam_entry = true; 6317 } 6318 } 6319 6320 return (rc); 6321 } 6322 6323 /* 6324 * {begin|end}_synchronized_op must be called from the same thread. 6325 */ 6326 int 6327 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6328 char *wmesg) 6329 { 6330 int rc, pri; 6331 6332 #ifdef WITNESS 6333 /* the caller thinks it's ok to sleep, but is it really? */ 6334 if (flags & SLEEP_OK) 6335 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6336 "begin_synchronized_op"); 6337 #endif 6338 6339 if (INTR_OK) 6340 pri = PCATCH; 6341 else 6342 pri = 0; 6343 6344 ADAPTER_LOCK(sc); 6345 for (;;) { 6346 6347 if (vi && IS_DETACHING(vi)) { 6348 rc = ENXIO; 6349 goto done; 6350 } 6351 6352 if (!IS_BUSY(sc)) { 6353 rc = 0; 6354 break; 6355 } 6356 6357 if (!(flags & SLEEP_OK)) { 6358 rc = EBUSY; 6359 goto done; 6360 } 6361 6362 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6363 rc = EINTR; 6364 goto done; 6365 } 6366 } 6367 6368 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6369 SET_BUSY(sc); 6370 #ifdef INVARIANTS 6371 sc->last_op = wmesg; 6372 sc->last_op_thr = curthread; 6373 sc->last_op_flags = flags; 6374 #endif 6375 6376 done: 6377 if (!(flags & HOLD_LOCK) || rc) 6378 ADAPTER_UNLOCK(sc); 6379 6380 return (rc); 6381 } 6382 6383 /* 6384 * Tell if_ioctl and if_init that the VI is going away. This is 6385 * special variant of begin_synchronized_op and must be paired with a 6386 * call to end_vi_detach. 6387 */ 6388 void 6389 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6390 { 6391 ADAPTER_LOCK(sc); 6392 SET_DETACHING(vi); 6393 wakeup(&sc->flags); 6394 while (IS_BUSY(sc)) 6395 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6396 SET_BUSY(sc); 6397 #ifdef INVARIANTS 6398 sc->last_op = "t4detach"; 6399 sc->last_op_thr = curthread; 6400 sc->last_op_flags = 0; 6401 #endif 6402 ADAPTER_UNLOCK(sc); 6403 } 6404 6405 void 6406 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6407 { 6408 ADAPTER_LOCK(sc); 6409 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6410 CLR_BUSY(sc); 6411 CLR_DETACHING(vi); 6412 wakeup(&sc->flags); 6413 ADAPTER_UNLOCK(sc); 6414 } 6415 6416 /* 6417 * {begin|end}_synchronized_op must be called from the same thread. 6418 */ 6419 void 6420 end_synchronized_op(struct adapter *sc, int flags) 6421 { 6422 6423 if (flags & LOCK_HELD) 6424 ADAPTER_LOCK_ASSERT_OWNED(sc); 6425 else 6426 ADAPTER_LOCK(sc); 6427 6428 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6429 CLR_BUSY(sc); 6430 wakeup(&sc->flags); 6431 ADAPTER_UNLOCK(sc); 6432 } 6433 6434 static int 6435 cxgbe_init_synchronized(struct vi_info *vi) 6436 { 6437 struct port_info *pi = vi->pi; 6438 struct adapter *sc = pi->adapter; 6439 if_t ifp = vi->ifp; 6440 int rc = 0, i; 6441 struct sge_txq *txq; 6442 6443 ASSERT_SYNCHRONIZED_OP(sc); 6444 6445 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6446 return (0); /* already running */ 6447 6448 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6449 return (rc); /* error message displayed already */ 6450 6451 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6452 return (rc); /* error message displayed already */ 6453 6454 rc = update_mac_settings(ifp, XGMAC_ALL); 6455 if (rc) 6456 goto done; /* error message displayed already */ 6457 6458 PORT_LOCK(pi); 6459 if (pi->up_vis == 0) { 6460 t4_update_port_info(pi); 6461 fixup_link_config(pi); 6462 build_medialist(pi); 6463 apply_link_config(pi); 6464 } 6465 6466 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6467 if (rc != 0) { 6468 if_printf(ifp, "enable_vi failed: %d\n", rc); 6469 PORT_UNLOCK(pi); 6470 goto done; 6471 } 6472 6473 /* 6474 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6475 * if this changes. 6476 */ 6477 6478 for_each_txq(vi, i, txq) { 6479 TXQ_LOCK(txq); 6480 txq->eq.flags |= EQ_ENABLED; 6481 TXQ_UNLOCK(txq); 6482 } 6483 6484 /* 6485 * The first iq of the first port to come up is used for tracing. 6486 */ 6487 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6488 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6489 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6490 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6491 V_QUEUENUMBER(sc->traceq)); 6492 pi->flags |= HAS_TRACEQ; 6493 } 6494 6495 /* all ok */ 6496 pi->up_vis++; 6497 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6498 if (pi->link_cfg.link_ok) 6499 t4_os_link_changed(pi); 6500 PORT_UNLOCK(pi); 6501 6502 mtx_lock(&vi->tick_mtx); 6503 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6504 callout_reset(&vi->tick, hz, vi_tick, vi); 6505 else 6506 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6507 mtx_unlock(&vi->tick_mtx); 6508 done: 6509 if (rc != 0) 6510 cxgbe_uninit_synchronized(vi); 6511 6512 return (rc); 6513 } 6514 6515 /* 6516 * Idempotent. 6517 */ 6518 static int 6519 cxgbe_uninit_synchronized(struct vi_info *vi) 6520 { 6521 struct port_info *pi = vi->pi; 6522 struct adapter *sc = pi->adapter; 6523 if_t ifp = vi->ifp; 6524 int rc, i; 6525 struct sge_txq *txq; 6526 6527 ASSERT_SYNCHRONIZED_OP(sc); 6528 6529 if (!(vi->flags & VI_INIT_DONE)) { 6530 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6531 KASSERT(0, ("uninited VI is running")); 6532 if_printf(ifp, "uninited VI with running ifnet. " 6533 "vi->flags 0x%016lx, if_flags 0x%08x, " 6534 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6535 if_getdrvflags(ifp)); 6536 } 6537 return (0); 6538 } 6539 6540 /* 6541 * Disable the VI so that all its data in either direction is discarded 6542 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6543 * tick) intact as the TP can deliver negative advice or data that it's 6544 * holding in its RAM (for an offloaded connection) even after the VI is 6545 * disabled. 6546 */ 6547 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6548 if (rc) { 6549 if_printf(ifp, "disable_vi failed: %d\n", rc); 6550 return (rc); 6551 } 6552 6553 for_each_txq(vi, i, txq) { 6554 TXQ_LOCK(txq); 6555 txq->eq.flags &= ~EQ_ENABLED; 6556 TXQ_UNLOCK(txq); 6557 } 6558 6559 mtx_lock(&vi->tick_mtx); 6560 callout_stop(&vi->tick); 6561 mtx_unlock(&vi->tick_mtx); 6562 6563 PORT_LOCK(pi); 6564 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6565 PORT_UNLOCK(pi); 6566 return (0); 6567 } 6568 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6569 pi->up_vis--; 6570 if (pi->up_vis > 0) { 6571 PORT_UNLOCK(pi); 6572 return (0); 6573 } 6574 6575 pi->link_cfg.link_ok = false; 6576 pi->link_cfg.speed = 0; 6577 pi->link_cfg.link_down_rc = 255; 6578 t4_os_link_changed(pi); 6579 PORT_UNLOCK(pi); 6580 6581 return (0); 6582 } 6583 6584 /* 6585 * It is ok for this function to fail midway and return right away. t4_detach 6586 * will walk the entire sc->irq list and clean up whatever is valid. 6587 */ 6588 int 6589 t4_setup_intr_handlers(struct adapter *sc) 6590 { 6591 int rc, rid, p, q, v; 6592 char s[8]; 6593 struct irq *irq; 6594 struct port_info *pi; 6595 struct vi_info *vi; 6596 struct sge *sge = &sc->sge; 6597 struct sge_rxq *rxq; 6598 #ifdef TCP_OFFLOAD 6599 struct sge_ofld_rxq *ofld_rxq; 6600 #endif 6601 #ifdef DEV_NETMAP 6602 struct sge_nm_rxq *nm_rxq; 6603 #endif 6604 #ifdef RSS 6605 int nbuckets = rss_getnumbuckets(); 6606 #endif 6607 6608 /* 6609 * Setup interrupts. 6610 */ 6611 irq = &sc->irq[0]; 6612 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6613 if (forwarding_intr_to_fwq(sc)) 6614 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6615 6616 /* Multiple interrupts. */ 6617 if (sc->flags & IS_VF) 6618 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6619 ("%s: too few intr.", __func__)); 6620 else 6621 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6622 ("%s: too few intr.", __func__)); 6623 6624 /* The first one is always error intr on PFs */ 6625 if (!(sc->flags & IS_VF)) { 6626 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6627 if (rc != 0) 6628 return (rc); 6629 irq++; 6630 rid++; 6631 } 6632 6633 /* The second one is always the firmware event queue (first on VFs) */ 6634 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6635 if (rc != 0) 6636 return (rc); 6637 irq++; 6638 rid++; 6639 6640 for_each_port(sc, p) { 6641 pi = sc->port[p]; 6642 for_each_vi(pi, v, vi) { 6643 vi->first_intr = rid - 1; 6644 6645 if (vi->nnmrxq > 0) { 6646 int n = max(vi->nrxq, vi->nnmrxq); 6647 6648 rxq = &sge->rxq[vi->first_rxq]; 6649 #ifdef DEV_NETMAP 6650 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6651 #endif 6652 for (q = 0; q < n; q++) { 6653 snprintf(s, sizeof(s), "%x%c%x", p, 6654 'a' + v, q); 6655 if (q < vi->nrxq) 6656 irq->rxq = rxq++; 6657 #ifdef DEV_NETMAP 6658 if (q < vi->nnmrxq) 6659 irq->nm_rxq = nm_rxq++; 6660 6661 if (irq->nm_rxq != NULL && 6662 irq->rxq == NULL) { 6663 /* Netmap rx only */ 6664 rc = t4_alloc_irq(sc, irq, rid, 6665 t4_nm_intr, irq->nm_rxq, s); 6666 } 6667 if (irq->nm_rxq != NULL && 6668 irq->rxq != NULL) { 6669 /* NIC and Netmap rx */ 6670 rc = t4_alloc_irq(sc, irq, rid, 6671 t4_vi_intr, irq, s); 6672 } 6673 #endif 6674 if (irq->rxq != NULL && 6675 irq->nm_rxq == NULL) { 6676 /* NIC rx only */ 6677 rc = t4_alloc_irq(sc, irq, rid, 6678 t4_intr, irq->rxq, s); 6679 } 6680 if (rc != 0) 6681 return (rc); 6682 #ifdef RSS 6683 if (q < vi->nrxq) { 6684 bus_bind_intr(sc->dev, irq->res, 6685 rss_getcpu(q % nbuckets)); 6686 } 6687 #endif 6688 irq++; 6689 rid++; 6690 vi->nintr++; 6691 } 6692 } else { 6693 for_each_rxq(vi, q, rxq) { 6694 snprintf(s, sizeof(s), "%x%c%x", p, 6695 'a' + v, q); 6696 rc = t4_alloc_irq(sc, irq, rid, 6697 t4_intr, rxq, s); 6698 if (rc != 0) 6699 return (rc); 6700 #ifdef RSS 6701 bus_bind_intr(sc->dev, irq->res, 6702 rss_getcpu(q % nbuckets)); 6703 #endif 6704 irq++; 6705 rid++; 6706 vi->nintr++; 6707 } 6708 } 6709 #ifdef TCP_OFFLOAD 6710 for_each_ofld_rxq(vi, q, ofld_rxq) { 6711 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6712 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6713 ofld_rxq, s); 6714 if (rc != 0) 6715 return (rc); 6716 irq++; 6717 rid++; 6718 vi->nintr++; 6719 } 6720 #endif 6721 } 6722 } 6723 MPASS(irq == &sc->irq[sc->intr_count]); 6724 6725 return (0); 6726 } 6727 6728 static void 6729 write_global_rss_key(struct adapter *sc) 6730 { 6731 #ifdef RSS 6732 int i; 6733 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6734 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6735 6736 CTASSERT(RSS_KEYSIZE == 40); 6737 6738 rss_getkey((void *)&raw_rss_key[0]); 6739 for (i = 0; i < nitems(rss_key); i++) { 6740 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6741 } 6742 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6743 #endif 6744 } 6745 6746 /* 6747 * Idempotent. 6748 */ 6749 static int 6750 adapter_full_init(struct adapter *sc) 6751 { 6752 int rc, i; 6753 6754 ASSERT_SYNCHRONIZED_OP(sc); 6755 6756 /* 6757 * queues that belong to the adapter (not any particular port). 6758 */ 6759 rc = t4_setup_adapter_queues(sc); 6760 if (rc != 0) 6761 return (rc); 6762 6763 MPASS(sc->params.nports <= nitems(sc->tq)); 6764 for (i = 0; i < sc->params.nports; i++) { 6765 if (sc->tq[i] != NULL) 6766 continue; 6767 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6768 taskqueue_thread_enqueue, &sc->tq[i]); 6769 if (sc->tq[i] == NULL) { 6770 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6771 return (ENOMEM); 6772 } 6773 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6774 device_get_nameunit(sc->dev), i); 6775 } 6776 6777 if (!(sc->flags & IS_VF)) { 6778 write_global_rss_key(sc); 6779 t4_intr_enable(sc); 6780 } 6781 return (0); 6782 } 6783 6784 int 6785 adapter_init(struct adapter *sc) 6786 { 6787 int rc; 6788 6789 ASSERT_SYNCHRONIZED_OP(sc); 6790 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6791 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6792 ("%s: FULL_INIT_DONE already", __func__)); 6793 6794 rc = adapter_full_init(sc); 6795 if (rc != 0) 6796 adapter_full_uninit(sc); 6797 else 6798 sc->flags |= FULL_INIT_DONE; 6799 6800 return (rc); 6801 } 6802 6803 /* 6804 * Idempotent. 6805 */ 6806 static void 6807 adapter_full_uninit(struct adapter *sc) 6808 { 6809 int i; 6810 6811 t4_teardown_adapter_queues(sc); 6812 6813 for (i = 0; i < nitems(sc->tq); i++) { 6814 if (sc->tq[i] == NULL) 6815 continue; 6816 taskqueue_free(sc->tq[i]); 6817 sc->tq[i] = NULL; 6818 } 6819 6820 sc->flags &= ~FULL_INIT_DONE; 6821 } 6822 6823 #ifdef RSS 6824 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6825 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6826 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6827 RSS_HASHTYPE_RSS_UDP_IPV6) 6828 6829 /* Translates kernel hash types to hardware. */ 6830 static int 6831 hashconfig_to_hashen(int hashconfig) 6832 { 6833 int hashen = 0; 6834 6835 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6836 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6837 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6838 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6839 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6840 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6841 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6842 } 6843 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6844 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6845 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6846 } 6847 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6848 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6849 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6850 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6851 6852 return (hashen); 6853 } 6854 6855 /* Translates hardware hash types to kernel. */ 6856 static int 6857 hashen_to_hashconfig(int hashen) 6858 { 6859 int hashconfig = 0; 6860 6861 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6862 /* 6863 * If UDP hashing was enabled it must have been enabled for 6864 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6865 * enabling any 4-tuple hash is nonsense configuration. 6866 */ 6867 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6868 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6869 6870 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6871 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6872 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6873 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6874 } 6875 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6876 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6877 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6878 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6879 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6880 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6881 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6882 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6883 6884 return (hashconfig); 6885 } 6886 #endif 6887 6888 /* 6889 * Idempotent. 6890 */ 6891 static int 6892 vi_full_init(struct vi_info *vi) 6893 { 6894 struct adapter *sc = vi->adapter; 6895 struct sge_rxq *rxq; 6896 int rc, i, j; 6897 #ifdef RSS 6898 int nbuckets = rss_getnumbuckets(); 6899 int hashconfig = rss_gethashconfig(); 6900 int extra; 6901 #endif 6902 6903 ASSERT_SYNCHRONIZED_OP(sc); 6904 6905 /* 6906 * Allocate tx/rx/fl queues for this VI. 6907 */ 6908 rc = t4_setup_vi_queues(vi); 6909 if (rc != 0) 6910 return (rc); 6911 6912 /* 6913 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6914 */ 6915 if (vi->nrxq > vi->rss_size) { 6916 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6917 "some queues will never receive traffic.\n", vi->nrxq, 6918 vi->rss_size); 6919 } else if (vi->rss_size % vi->nrxq) { 6920 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6921 "expect uneven traffic distribution.\n", vi->nrxq, 6922 vi->rss_size); 6923 } 6924 #ifdef RSS 6925 if (vi->nrxq != nbuckets) { 6926 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6927 "performance will be impacted.\n", vi->nrxq, nbuckets); 6928 } 6929 #endif 6930 if (vi->rss == NULL) 6931 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6932 M_ZERO | M_WAITOK); 6933 for (i = 0; i < vi->rss_size;) { 6934 #ifdef RSS 6935 j = rss_get_indirection_to_bucket(i); 6936 j %= vi->nrxq; 6937 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6938 vi->rss[i++] = rxq->iq.abs_id; 6939 #else 6940 for_each_rxq(vi, j, rxq) { 6941 vi->rss[i++] = rxq->iq.abs_id; 6942 if (i == vi->rss_size) 6943 break; 6944 } 6945 #endif 6946 } 6947 6948 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6949 vi->rss, vi->rss_size); 6950 if (rc != 0) { 6951 CH_ERR(vi, "rss_config failed: %d\n", rc); 6952 return (rc); 6953 } 6954 6955 #ifdef RSS 6956 vi->hashen = hashconfig_to_hashen(hashconfig); 6957 6958 /* 6959 * We may have had to enable some hashes even though the global config 6960 * wants them disabled. This is a potential problem that must be 6961 * reported to the user. 6962 */ 6963 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6964 6965 /* 6966 * If we consider only the supported hash types, then the enabled hashes 6967 * are a superset of the requested hashes. In other words, there cannot 6968 * be any supported hash that was requested but not enabled, but there 6969 * can be hashes that were not requested but had to be enabled. 6970 */ 6971 extra &= SUPPORTED_RSS_HASHTYPES; 6972 MPASS((extra & hashconfig) == 0); 6973 6974 if (extra) { 6975 CH_ALERT(vi, 6976 "global RSS config (0x%x) cannot be accommodated.\n", 6977 hashconfig); 6978 } 6979 if (extra & RSS_HASHTYPE_RSS_IPV4) 6980 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6981 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6982 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6983 if (extra & RSS_HASHTYPE_RSS_IPV6) 6984 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6985 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6986 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6987 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6988 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6989 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6990 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6991 #else 6992 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6993 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6994 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6995 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6996 #endif 6997 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6998 0, 0); 6999 if (rc != 0) { 7000 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 7001 return (rc); 7002 } 7003 7004 return (0); 7005 } 7006 7007 int 7008 vi_init(struct vi_info *vi) 7009 { 7010 int rc; 7011 7012 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7013 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7014 ("%s: VI_INIT_DONE already", __func__)); 7015 7016 rc = vi_full_init(vi); 7017 if (rc != 0) 7018 vi_full_uninit(vi); 7019 else 7020 vi->flags |= VI_INIT_DONE; 7021 7022 return (rc); 7023 } 7024 7025 /* 7026 * Idempotent. 7027 */ 7028 static void 7029 vi_full_uninit(struct vi_info *vi) 7030 { 7031 7032 if (vi->flags & VI_INIT_DONE) { 7033 quiesce_vi(vi); 7034 free(vi->rss, M_CXGBE); 7035 free(vi->nm_rss, M_CXGBE); 7036 } 7037 7038 t4_teardown_vi_queues(vi); 7039 vi->flags &= ~VI_INIT_DONE; 7040 } 7041 7042 static void 7043 quiesce_txq(struct sge_txq *txq) 7044 { 7045 struct sge_eq *eq = &txq->eq; 7046 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7047 7048 MPASS(eq->flags & EQ_SW_ALLOCATED); 7049 MPASS(!(eq->flags & EQ_ENABLED)); 7050 7051 /* Wait for the mp_ring to empty. */ 7052 while (!mp_ring_is_idle(txq->r)) { 7053 mp_ring_check_drainage(txq->r, 4096); 7054 pause("rquiesce", 1); 7055 } 7056 MPASS(txq->txp.npkt == 0); 7057 7058 if (eq->flags & EQ_HW_ALLOCATED) { 7059 /* 7060 * Hardware is alive and working normally. Wait for it to 7061 * finish and then wait for the driver to catch up and reclaim 7062 * all descriptors. 7063 */ 7064 while (spg->cidx != htobe16(eq->pidx)) 7065 pause("equiesce", 1); 7066 while (eq->cidx != eq->pidx) 7067 pause("dquiesce", 1); 7068 } else { 7069 /* 7070 * Hardware is unavailable. Discard all pending tx and reclaim 7071 * descriptors directly. 7072 */ 7073 TXQ_LOCK(txq); 7074 while (eq->cidx != eq->pidx) { 7075 struct mbuf *m, *nextpkt; 7076 struct tx_sdesc *txsd; 7077 7078 txsd = &txq->sdesc[eq->cidx]; 7079 for (m = txsd->m; m != NULL; m = nextpkt) { 7080 nextpkt = m->m_nextpkt; 7081 m->m_nextpkt = NULL; 7082 m_freem(m); 7083 } 7084 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7085 } 7086 spg->pidx = spg->cidx = htobe16(eq->cidx); 7087 TXQ_UNLOCK(txq); 7088 } 7089 } 7090 7091 static void 7092 quiesce_wrq(struct sge_wrq *wrq) 7093 { 7094 struct wrqe *wr; 7095 7096 TXQ_LOCK(wrq); 7097 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7098 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7099 #ifdef INVARIANTS 7100 wrq->nwr_pending--; 7101 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7102 #endif 7103 free(wr, M_CXGBE); 7104 } 7105 MPASS(wrq->nwr_pending == 0); 7106 MPASS(wrq->ndesc_needed == 0); 7107 wrq->nwr_pending = 0; 7108 wrq->ndesc_needed = 0; 7109 TXQ_UNLOCK(wrq); 7110 } 7111 7112 static void 7113 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7114 { 7115 /* Synchronize with the interrupt handler */ 7116 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7117 pause("iqfree", 1); 7118 7119 if (fl != NULL) { 7120 MPASS(iq->flags & IQ_HAS_FL); 7121 7122 mtx_lock(&sc->sfl_lock); 7123 FL_LOCK(fl); 7124 fl->flags |= FL_DOOMED; 7125 FL_UNLOCK(fl); 7126 callout_stop(&sc->sfl_callout); 7127 mtx_unlock(&sc->sfl_lock); 7128 7129 KASSERT((fl->flags & FL_STARVING) == 0, 7130 ("%s: still starving", __func__)); 7131 7132 /* Release all buffers if hardware is no longer available. */ 7133 if (!(iq->flags & IQ_HW_ALLOCATED)) 7134 free_fl_buffers(sc, fl); 7135 } 7136 } 7137 7138 /* 7139 * Wait for all activity on all the queues of the VI to complete. It is assumed 7140 * that no new work is being enqueued by the hardware or the driver. That part 7141 * should be arranged before calling this function. 7142 */ 7143 static void 7144 quiesce_vi(struct vi_info *vi) 7145 { 7146 int i; 7147 struct adapter *sc = vi->adapter; 7148 struct sge_rxq *rxq; 7149 struct sge_txq *txq; 7150 #ifdef TCP_OFFLOAD 7151 struct sge_ofld_rxq *ofld_rxq; 7152 #endif 7153 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7154 struct sge_ofld_txq *ofld_txq; 7155 #endif 7156 7157 if (!(vi->flags & VI_INIT_DONE)) 7158 return; 7159 7160 for_each_txq(vi, i, txq) { 7161 quiesce_txq(txq); 7162 } 7163 7164 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7165 for_each_ofld_txq(vi, i, ofld_txq) { 7166 quiesce_wrq(&ofld_txq->wrq); 7167 } 7168 #endif 7169 7170 for_each_rxq(vi, i, rxq) { 7171 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7172 } 7173 7174 #ifdef TCP_OFFLOAD 7175 for_each_ofld_rxq(vi, i, ofld_rxq) { 7176 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7177 } 7178 #endif 7179 } 7180 7181 static int 7182 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7183 driver_intr_t *handler, void *arg, char *name) 7184 { 7185 int rc; 7186 7187 irq->rid = rid; 7188 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7189 RF_SHAREABLE | RF_ACTIVE); 7190 if (irq->res == NULL) { 7191 device_printf(sc->dev, 7192 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7193 return (ENOMEM); 7194 } 7195 7196 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7197 NULL, handler, arg, &irq->tag); 7198 if (rc != 0) { 7199 device_printf(sc->dev, 7200 "failed to setup interrupt for rid %d, name %s: %d\n", 7201 rid, name, rc); 7202 } else if (name) 7203 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7204 7205 return (rc); 7206 } 7207 7208 static int 7209 t4_free_irq(struct adapter *sc, struct irq *irq) 7210 { 7211 if (irq->tag) 7212 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7213 if (irq->res) 7214 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7215 7216 bzero(irq, sizeof(*irq)); 7217 7218 return (0); 7219 } 7220 7221 static void 7222 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7223 { 7224 7225 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7226 t4_get_regs(sc, buf, regs->len); 7227 } 7228 7229 #define A_PL_INDIR_CMD 0x1f8 7230 7231 #define S_PL_AUTOINC 31 7232 #define M_PL_AUTOINC 0x1U 7233 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7234 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7235 7236 #define S_PL_VFID 20 7237 #define M_PL_VFID 0xffU 7238 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7239 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7240 7241 #define S_PL_ADDR 0 7242 #define M_PL_ADDR 0xfffffU 7243 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7244 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7245 7246 #define A_PL_INDIR_DATA 0x1fc 7247 7248 static uint64_t 7249 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7250 { 7251 u32 stats[2]; 7252 7253 if (sc->flags & IS_VF) { 7254 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7255 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7256 } else { 7257 mtx_assert(&sc->reg_lock, MA_OWNED); 7258 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7259 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7260 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7261 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7262 } 7263 return (((uint64_t)stats[1]) << 32 | stats[0]); 7264 } 7265 7266 static void 7267 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7268 { 7269 7270 #define GET_STAT(name) \ 7271 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7272 7273 if (!(sc->flags & IS_VF)) 7274 mtx_lock(&sc->reg_lock); 7275 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7276 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7277 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7278 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7279 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7280 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7281 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7282 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7283 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7284 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7285 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7286 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7287 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7288 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7289 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7290 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7291 if (!(sc->flags & IS_VF)) 7292 mtx_unlock(&sc->reg_lock); 7293 7294 #undef GET_STAT 7295 } 7296 7297 static void 7298 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7299 { 7300 int reg; 7301 7302 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7303 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7304 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7305 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7306 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7307 } 7308 7309 static void 7310 vi_refresh_stats(struct vi_info *vi) 7311 { 7312 struct timeval tv; 7313 const struct timeval interval = {0, 250000}; /* 250ms */ 7314 7315 mtx_assert(&vi->tick_mtx, MA_OWNED); 7316 7317 if (vi->flags & VI_SKIP_STATS) 7318 return; 7319 7320 getmicrotime(&tv); 7321 timevalsub(&tv, &interval); 7322 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7323 return; 7324 7325 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7326 getmicrotime(&vi->last_refreshed); 7327 } 7328 7329 static void 7330 cxgbe_refresh_stats(struct vi_info *vi) 7331 { 7332 u_int i, v, tnl_cong_drops, chan_map; 7333 struct timeval tv; 7334 const struct timeval interval = {0, 250000}; /* 250ms */ 7335 struct port_info *pi; 7336 struct adapter *sc; 7337 7338 mtx_assert(&vi->tick_mtx, MA_OWNED); 7339 7340 if (vi->flags & VI_SKIP_STATS) 7341 return; 7342 7343 getmicrotime(&tv); 7344 timevalsub(&tv, &interval); 7345 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7346 return; 7347 7348 pi = vi->pi; 7349 sc = vi->adapter; 7350 tnl_cong_drops = 0; 7351 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7352 chan_map = pi->rx_e_chan_map; 7353 while (chan_map) { 7354 i = ffs(chan_map) - 1; 7355 mtx_lock(&sc->reg_lock); 7356 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7357 A_TP_MIB_TNL_CNG_DROP_0 + i); 7358 mtx_unlock(&sc->reg_lock); 7359 tnl_cong_drops += v; 7360 chan_map &= ~(1 << i); 7361 } 7362 pi->tnl_cong_drops = tnl_cong_drops; 7363 getmicrotime(&vi->last_refreshed); 7364 } 7365 7366 static void 7367 cxgbe_tick(void *arg) 7368 { 7369 struct vi_info *vi = arg; 7370 7371 MPASS(IS_MAIN_VI(vi)); 7372 mtx_assert(&vi->tick_mtx, MA_OWNED); 7373 7374 cxgbe_refresh_stats(vi); 7375 callout_schedule(&vi->tick, hz); 7376 } 7377 7378 static void 7379 vi_tick(void *arg) 7380 { 7381 struct vi_info *vi = arg; 7382 7383 mtx_assert(&vi->tick_mtx, MA_OWNED); 7384 7385 vi_refresh_stats(vi); 7386 callout_schedule(&vi->tick, hz); 7387 } 7388 7389 /* 7390 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7391 */ 7392 static char *caps_decoder[] = { 7393 "\20\001IPMI\002NCSI", /* 0: NBM */ 7394 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7395 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7396 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7397 "\006HASHFILTER\007ETHOFLD", 7398 "\20\001TOE", /* 4: TOE */ 7399 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7400 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7401 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7402 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7403 "\007T10DIF" 7404 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7405 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7406 "\004TLS_HW", 7407 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7408 "\004PO_INITIATOR\005PO_TARGET", 7409 }; 7410 7411 void 7412 t4_sysctls(struct adapter *sc) 7413 { 7414 struct sysctl_ctx_list *ctx = &sc->ctx; 7415 struct sysctl_oid *oid; 7416 struct sysctl_oid_list *children, *c0; 7417 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7418 7419 /* 7420 * dev.t4nex.X. 7421 */ 7422 oid = device_get_sysctl_tree(sc->dev); 7423 c0 = children = SYSCTL_CHILDREN(oid); 7424 7425 sc->sc_do_rxcopy = 1; 7426 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7427 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7428 7429 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7430 sc->params.nports, "# of ports"); 7431 7432 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7433 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7434 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7435 "available doorbells"); 7436 7437 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7438 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7439 7440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7441 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7442 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7443 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7444 7445 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7446 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7447 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7448 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7449 7450 t4_sge_sysctls(sc, ctx, children); 7451 7452 sc->lro_timeout = 100; 7453 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7454 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7455 7456 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7457 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7458 7459 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7460 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7461 7462 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7463 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7464 7465 if (sc->flags & IS_VF) 7466 return; 7467 7468 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7469 NULL, chip_rev(sc), "chip hardware revision"); 7470 7471 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7472 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7473 7474 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7475 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7476 7477 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7478 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7479 7480 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7481 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7482 7483 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7484 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7485 7486 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7487 sc->er_version, 0, "expansion ROM version"); 7488 7489 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7490 sc->bs_version, 0, "bootstrap firmware version"); 7491 7492 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7493 NULL, sc->params.scfg_vers, "serial config version"); 7494 7495 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7496 NULL, sc->params.vpd_vers, "VPD version"); 7497 7498 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7499 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7500 7501 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7502 sc->cfcsum, "config file checksum"); 7503 7504 #define SYSCTL_CAP(name, n, text) \ 7505 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7506 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7507 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7508 "available " text " capabilities") 7509 7510 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7511 SYSCTL_CAP(linkcaps, 1, "link"); 7512 SYSCTL_CAP(switchcaps, 2, "switch"); 7513 SYSCTL_CAP(niccaps, 3, "NIC"); 7514 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7515 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7516 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7517 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7518 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7519 #undef SYSCTL_CAP 7520 7521 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7522 NULL, sc->tids.nftids, "number of filters"); 7523 7524 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7525 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7526 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7528 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7529 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7530 7531 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7532 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7533 sysctl_loadavg, "A", 7534 "microprocessor load averages (debug firmwares only)"); 7535 7536 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7537 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7538 "I", "core Vdd (in mV)"); 7539 7540 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7541 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7542 sysctl_cpus, "A", "local CPUs"); 7543 7544 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7545 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7546 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7547 7548 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7549 &sc->swintr, 0, "software triggered interrupts"); 7550 7551 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7552 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7553 "1 = reset adapter, 0 = zero reset counter"); 7554 7555 /* 7556 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7557 */ 7558 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7559 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7560 "logs and miscellaneous information"); 7561 children = SYSCTL_CHILDREN(oid); 7562 7563 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7564 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7565 sysctl_cctrl, "A", "congestion control"); 7566 7567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7568 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7569 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7570 7571 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7572 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7573 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7574 7575 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7576 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7577 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7578 7579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7581 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7582 7583 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7584 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7585 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7586 7587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7588 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7589 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7590 7591 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7592 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7593 sysctl_cim_la, "A", "CIM logic analyzer"); 7594 7595 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7596 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7597 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7598 7599 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7600 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7601 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7602 7603 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7604 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7605 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7606 7607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7608 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7609 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7610 7611 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7612 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7613 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7614 7615 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7616 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7617 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7618 7619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7620 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7621 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7622 7623 if (chip_id(sc) > CHELSIO_T4) { 7624 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7625 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7626 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7627 "CIM OBQ 6 (SGE0-RX)"); 7628 7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7630 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7631 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7632 "CIM OBQ 7 (SGE1-RX)"); 7633 } 7634 7635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7636 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7637 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7638 7639 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7640 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7641 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7642 7643 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7644 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7645 sysctl_cpl_stats, "A", "CPL statistics"); 7646 7647 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7648 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7649 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7650 7651 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7652 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7653 sysctl_tid_stats, "A", "tid stats"); 7654 7655 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7656 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7657 sysctl_devlog, "A", "firmware's device log"); 7658 7659 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7660 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7661 sysctl_fcoe_stats, "A", "FCoE statistics"); 7662 7663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7664 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7665 sysctl_hw_sched, "A", "hardware scheduler "); 7666 7667 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7668 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7669 sysctl_l2t, "A", "hardware L2 table"); 7670 7671 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7672 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7673 sysctl_smt, "A", "hardware source MAC table"); 7674 7675 #ifdef INET6 7676 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7677 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7678 sysctl_clip, "A", "active CLIP table entries"); 7679 #endif 7680 7681 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7682 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7683 sysctl_lb_stats, "A", "loopback statistics"); 7684 7685 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7686 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7687 sysctl_meminfo, "A", "memory regions"); 7688 7689 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7690 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7691 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7692 "A", "MPS TCAM entries"); 7693 7694 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7695 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7696 sysctl_path_mtus, "A", "path MTUs"); 7697 7698 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7699 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7700 sysctl_pm_stats, "A", "PM statistics"); 7701 7702 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7703 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7704 sysctl_rdma_stats, "A", "RDMA statistics"); 7705 7706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7707 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7708 sysctl_tcp_stats, "A", "TCP statistics"); 7709 7710 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7711 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7712 sysctl_tids, "A", "TID information"); 7713 7714 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7715 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7716 sysctl_tp_err_stats, "A", "TP error statistics"); 7717 7718 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7719 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7720 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7721 7722 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7723 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7724 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7725 7726 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7727 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7728 sysctl_tp_la, "A", "TP logic analyzer"); 7729 7730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7731 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7732 sysctl_tx_rate, "A", "Tx rate"); 7733 7734 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7735 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7736 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7737 7738 if (chip_id(sc) >= CHELSIO_T5) { 7739 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7740 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7741 sysctl_wcwr_stats, "A", "write combined work requests"); 7742 } 7743 7744 #ifdef KERN_TLS 7745 if (is_ktls(sc)) { 7746 /* 7747 * dev.t4nex.0.tls. 7748 */ 7749 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7750 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7751 children = SYSCTL_CHILDREN(oid); 7752 7753 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7754 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7755 "keys in work requests (1) or attempt to store TLS keys " 7756 "in card memory."); 7757 7758 if (is_t6(sc)) 7759 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7760 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7761 "combine TCB field updates with TLS record work " 7762 "requests."); 7763 } 7764 #endif 7765 7766 #ifdef TCP_OFFLOAD 7767 if (is_offload(sc)) { 7768 int i; 7769 char s[4]; 7770 7771 /* 7772 * dev.t4nex.X.toe. 7773 */ 7774 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7775 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7776 children = SYSCTL_CHILDREN(oid); 7777 7778 sc->tt.cong_algorithm = -1; 7779 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7780 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7781 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7782 "3 = highspeed)"); 7783 7784 sc->tt.sndbuf = -1; 7785 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7786 &sc->tt.sndbuf, 0, "hardware send buffer"); 7787 7788 sc->tt.ddp = 0; 7789 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7790 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7791 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7792 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7793 7794 sc->tt.rx_coalesce = -1; 7795 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7796 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7797 7798 sc->tt.tls = 0; 7799 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7800 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7801 "Inline TLS allowed"); 7802 7803 sc->tt.tx_align = -1; 7804 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7805 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7806 7807 sc->tt.tx_zcopy = 0; 7808 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7809 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7810 "Enable zero-copy aio_write(2)"); 7811 7812 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7813 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7814 "cop_managed_offloading", CTLFLAG_RW, 7815 &sc->tt.cop_managed_offloading, 0, 7816 "COP (Connection Offload Policy) controls all TOE offload"); 7817 7818 sc->tt.autorcvbuf_inc = 16 * 1024; 7819 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7820 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7821 "autorcvbuf increment"); 7822 7823 sc->tt.update_hc_on_pmtu_change = 1; 7824 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7825 "update_hc_on_pmtu_change", CTLFLAG_RW, 7826 &sc->tt.update_hc_on_pmtu_change, 0, 7827 "Update hostcache entry if the PMTU changes"); 7828 7829 sc->tt.iso = 1; 7830 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7831 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7832 7833 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7834 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7835 sysctl_tp_tick, "A", "TP timer tick (us)"); 7836 7837 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7838 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7839 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7840 7841 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7842 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7843 sysctl_tp_tick, "A", "DACK tick (us)"); 7844 7845 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7846 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7847 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7848 7849 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7850 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7851 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7852 "Minimum retransmit interval (us)"); 7853 7854 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7855 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7856 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7857 "Maximum retransmit interval (us)"); 7858 7859 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7860 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7861 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7862 "Persist timer min (us)"); 7863 7864 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7865 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7866 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7867 "Persist timer max (us)"); 7868 7869 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7870 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7871 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7872 "Keepalive idle timer (us)"); 7873 7874 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7875 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7876 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7877 "Keepalive interval timer (us)"); 7878 7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7880 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7881 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7882 7883 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7884 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7885 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7886 "FINWAIT2 timer (us)"); 7887 7888 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7889 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7890 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7891 "Number of SYN retransmissions before abort"); 7892 7893 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7894 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7895 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7896 "Number of retransmissions before abort"); 7897 7898 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7899 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7900 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7901 "Number of keepalive probes before abort"); 7902 7903 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7904 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7905 "TOE retransmit backoffs"); 7906 children = SYSCTL_CHILDREN(oid); 7907 for (i = 0; i < 16; i++) { 7908 snprintf(s, sizeof(s), "%u", i); 7909 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7910 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7911 i, sysctl_tp_backoff, "IU", 7912 "TOE retransmit backoff"); 7913 } 7914 } 7915 #endif 7916 } 7917 7918 void 7919 vi_sysctls(struct vi_info *vi) 7920 { 7921 struct sysctl_ctx_list *ctx = &vi->ctx; 7922 struct sysctl_oid *oid; 7923 struct sysctl_oid_list *children; 7924 7925 /* 7926 * dev.v?(cxgbe|cxl).X. 7927 */ 7928 oid = device_get_sysctl_tree(vi->dev); 7929 children = SYSCTL_CHILDREN(oid); 7930 7931 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7932 vi->viid, "VI identifer"); 7933 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7934 &vi->nrxq, 0, "# of rx queues"); 7935 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7936 &vi->ntxq, 0, "# of tx queues"); 7937 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7938 &vi->first_rxq, 0, "index of first rx queue"); 7939 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7940 &vi->first_txq, 0, "index of first tx queue"); 7941 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7942 vi->rss_base, "start of RSS indirection table"); 7943 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7944 vi->rss_size, "size of RSS indirection table"); 7945 7946 if (IS_MAIN_VI(vi)) { 7947 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7948 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7949 sysctl_noflowq, "IU", 7950 "Reserve queue 0 for non-flowid packets"); 7951 } 7952 7953 if (vi->adapter->flags & IS_VF) { 7954 MPASS(vi->flags & TX_USES_VM_WR); 7955 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7956 NULL, 1, "use VM work requests for transmit"); 7957 } else { 7958 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7959 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7960 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7961 } 7962 7963 #ifdef TCP_OFFLOAD 7964 if (vi->nofldrxq != 0) { 7965 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7966 &vi->nofldrxq, 0, 7967 "# of rx queues for offloaded TCP connections"); 7968 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7969 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7970 "index of first TOE rx queue"); 7971 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7972 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7973 sysctl_holdoff_tmr_idx_ofld, "I", 7974 "holdoff timer index for TOE queues"); 7975 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7976 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7977 sysctl_holdoff_pktc_idx_ofld, "I", 7978 "holdoff packet counter index for TOE queues"); 7979 } 7980 #endif 7981 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7982 if (vi->nofldtxq != 0) { 7983 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7984 &vi->nofldtxq, 0, 7985 "# of tx queues for TOE/ETHOFLD"); 7986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7987 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7988 "index of first TOE/ETHOFLD tx queue"); 7989 } 7990 #endif 7991 #ifdef DEV_NETMAP 7992 if (vi->nnmrxq != 0) { 7993 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7994 &vi->nnmrxq, 0, "# of netmap rx queues"); 7995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7996 &vi->nnmtxq, 0, "# of netmap tx queues"); 7997 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7998 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7999 "index of first netmap rx queue"); 8000 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 8001 CTLFLAG_RD, &vi->first_nm_txq, 0, 8002 "index of first netmap tx queue"); 8003 } 8004 #endif 8005 8006 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8007 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8008 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8009 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8010 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8011 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8012 8013 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8014 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8015 sysctl_qsize_rxq, "I", "rx queue size"); 8016 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8017 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8018 sysctl_qsize_txq, "I", "tx queue size"); 8019 } 8020 8021 static void 8022 cxgbe_sysctls(struct port_info *pi) 8023 { 8024 struct sysctl_ctx_list *ctx = &pi->ctx; 8025 struct sysctl_oid *oid; 8026 struct sysctl_oid_list *children, *children2; 8027 struct adapter *sc = pi->adapter; 8028 int i; 8029 char name[16]; 8030 static char *tc_flags = {"\20\1USER"}; 8031 8032 /* 8033 * dev.cxgbe.X. 8034 */ 8035 oid = device_get_sysctl_tree(pi->dev); 8036 children = SYSCTL_CHILDREN(oid); 8037 8038 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8039 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8040 sysctl_linkdnrc, "A", "reason why link is down"); 8041 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8043 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8044 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8046 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8047 sysctl_btphy, "I", "PHY firmware version"); 8048 } 8049 8050 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8051 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8052 sysctl_pause_settings, "A", 8053 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8054 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8055 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8056 "FEC in use on the link"); 8057 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8058 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8059 sysctl_requested_fec, "A", 8060 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8061 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8062 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8063 "FEC recommended by the cable/transceiver"); 8064 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8065 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8066 sysctl_autoneg, "I", 8067 "autonegotiation (-1 = not supported)"); 8068 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8069 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8070 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8071 8072 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8073 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8074 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8075 &pi->link_cfg.pcaps, 0, "port capabilities"); 8076 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8077 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8078 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8079 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8080 8081 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8082 port_top_speed(pi), "max speed (in Gbps)"); 8083 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8084 pi->mps_bg_map, "MPS buffer group map"); 8085 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8086 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8087 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8088 pi->tx_chan, "TP tx c-channel"); 8089 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8090 pi->rx_chan, "TP rx c-channel"); 8091 8092 if (sc->flags & IS_VF) 8093 return; 8094 8095 /* 8096 * dev.(cxgbe|cxl).X.tc. 8097 */ 8098 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8099 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8100 "Tx scheduler traffic classes (cl_rl)"); 8101 children2 = SYSCTL_CHILDREN(oid); 8102 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8103 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8104 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8105 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8106 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8107 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8108 for (i = 0; i < sc->params.nsched_cls; i++) { 8109 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8110 8111 snprintf(name, sizeof(name), "%d", i); 8112 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8113 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8114 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8115 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8116 CTLFLAG_RD, &tc->state, 0, "current state"); 8117 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8118 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8119 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8120 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8121 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8122 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8123 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8124 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8125 "traffic class parameters"); 8126 } 8127 8128 /* 8129 * dev.cxgbe.X.stats. 8130 */ 8131 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8132 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8133 children = SYSCTL_CHILDREN(oid); 8134 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8135 &pi->tx_parse_error, 0, 8136 "# of tx packets with invalid length or # of segments"); 8137 8138 #define T4_REGSTAT(name, stat, desc) \ 8139 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8140 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8141 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8142 sysctl_handle_t4_reg64, "QU", desc) 8143 8144 /* We get these from port_stats and they may be stale by up to 1s */ 8145 #define T4_PORTSTAT(name, desc) \ 8146 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8147 &pi->stats.name, desc) 8148 8149 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8150 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8151 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8152 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8153 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8154 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8155 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8156 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8157 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8158 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8159 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8160 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8161 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8162 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8163 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8164 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8165 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8166 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8167 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8168 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8169 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8170 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8171 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8172 8173 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8174 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8175 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8176 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8177 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8178 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8179 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8180 if (is_t6(sc)) { 8181 T4_PORTSTAT(rx_fcs_err, 8182 "# of frames received with bad FCS since last link up"); 8183 } else { 8184 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8185 "# of frames received with bad FCS"); 8186 } 8187 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8188 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8189 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8190 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8191 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8192 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8193 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8194 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8195 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8196 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8197 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8198 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8199 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8200 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8201 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8202 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8203 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8204 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8205 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8206 8207 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8208 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8209 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8210 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8211 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8212 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8213 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8214 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8215 8216 #undef T4_REGSTAT 8217 #undef T4_PORTSTAT 8218 } 8219 8220 static int 8221 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8222 { 8223 int rc, *i, space = 0; 8224 struct sbuf sb; 8225 8226 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8227 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8228 if (space) 8229 sbuf_printf(&sb, " "); 8230 sbuf_printf(&sb, "%d", *i); 8231 space = 1; 8232 } 8233 rc = sbuf_finish(&sb); 8234 sbuf_delete(&sb); 8235 return (rc); 8236 } 8237 8238 static int 8239 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8240 { 8241 int rc; 8242 struct sbuf *sb; 8243 8244 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8245 if (sb == NULL) 8246 return (ENOMEM); 8247 8248 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8249 rc = sbuf_finish(sb); 8250 sbuf_delete(sb); 8251 8252 return (rc); 8253 } 8254 8255 static int 8256 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8257 { 8258 int rc; 8259 struct sbuf *sb; 8260 8261 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8262 if (sb == NULL) 8263 return (ENOMEM); 8264 8265 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8266 rc = sbuf_finish(sb); 8267 sbuf_delete(sb); 8268 8269 return (rc); 8270 } 8271 8272 static int 8273 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8274 { 8275 struct port_info *pi = arg1; 8276 int op = arg2; 8277 struct adapter *sc = pi->adapter; 8278 u_int v; 8279 int rc; 8280 8281 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8282 if (rc) 8283 return (rc); 8284 if (hw_off_limits(sc)) 8285 rc = ENXIO; 8286 else { 8287 /* XXX: magic numbers */ 8288 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8289 op ? 0x20 : 0xc820, &v); 8290 } 8291 end_synchronized_op(sc, 0); 8292 if (rc) 8293 return (rc); 8294 if (op == 0) 8295 v /= 256; 8296 8297 rc = sysctl_handle_int(oidp, &v, 0, req); 8298 return (rc); 8299 } 8300 8301 static int 8302 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8303 { 8304 struct vi_info *vi = arg1; 8305 int rc, val; 8306 8307 val = vi->rsrv_noflowq; 8308 rc = sysctl_handle_int(oidp, &val, 0, req); 8309 if (rc != 0 || req->newptr == NULL) 8310 return (rc); 8311 8312 if ((val >= 1) && (vi->ntxq > 1)) 8313 vi->rsrv_noflowq = 1; 8314 else 8315 vi->rsrv_noflowq = 0; 8316 8317 return (rc); 8318 } 8319 8320 static int 8321 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8322 { 8323 struct vi_info *vi = arg1; 8324 struct adapter *sc = vi->adapter; 8325 int rc, val, i; 8326 8327 MPASS(!(sc->flags & IS_VF)); 8328 8329 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8330 rc = sysctl_handle_int(oidp, &val, 0, req); 8331 if (rc != 0 || req->newptr == NULL) 8332 return (rc); 8333 8334 if (val != 0 && val != 1) 8335 return (EINVAL); 8336 8337 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8338 "t4txvm"); 8339 if (rc) 8340 return (rc); 8341 if (hw_off_limits(sc)) 8342 rc = ENXIO; 8343 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8344 /* 8345 * We don't want parse_pkt to run with one setting (VF or PF) 8346 * and then eth_tx to see a different setting but still use 8347 * stale information calculated by parse_pkt. 8348 */ 8349 rc = EBUSY; 8350 } else { 8351 struct port_info *pi = vi->pi; 8352 struct sge_txq *txq; 8353 uint32_t ctrl0; 8354 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8355 8356 if (val) { 8357 vi->flags |= TX_USES_VM_WR; 8358 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8359 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8360 V_TXPKT_INTF(pi->tx_chan)); 8361 if (!(sc->flags & IS_VF)) 8362 npkt--; 8363 } else { 8364 vi->flags &= ~TX_USES_VM_WR; 8365 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8366 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8367 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8368 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8369 } 8370 for_each_txq(vi, i, txq) { 8371 txq->cpl_ctrl0 = ctrl0; 8372 txq->txp.max_npkt = npkt; 8373 } 8374 } 8375 end_synchronized_op(sc, LOCK_HELD); 8376 return (rc); 8377 } 8378 8379 static int 8380 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8381 { 8382 struct vi_info *vi = arg1; 8383 struct adapter *sc = vi->adapter; 8384 int idx, rc, i; 8385 struct sge_rxq *rxq; 8386 uint8_t v; 8387 8388 idx = vi->tmr_idx; 8389 8390 rc = sysctl_handle_int(oidp, &idx, 0, req); 8391 if (rc != 0 || req->newptr == NULL) 8392 return (rc); 8393 8394 if (idx < 0 || idx >= SGE_NTIMERS) 8395 return (EINVAL); 8396 8397 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8398 "t4tmr"); 8399 if (rc) 8400 return (rc); 8401 8402 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8403 for_each_rxq(vi, i, rxq) { 8404 #ifdef atomic_store_rel_8 8405 atomic_store_rel_8(&rxq->iq.intr_params, v); 8406 #else 8407 rxq->iq.intr_params = v; 8408 #endif 8409 } 8410 vi->tmr_idx = idx; 8411 8412 end_synchronized_op(sc, LOCK_HELD); 8413 return (0); 8414 } 8415 8416 static int 8417 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8418 { 8419 struct vi_info *vi = arg1; 8420 struct adapter *sc = vi->adapter; 8421 int idx, rc; 8422 8423 idx = vi->pktc_idx; 8424 8425 rc = sysctl_handle_int(oidp, &idx, 0, req); 8426 if (rc != 0 || req->newptr == NULL) 8427 return (rc); 8428 8429 if (idx < -1 || idx >= SGE_NCOUNTERS) 8430 return (EINVAL); 8431 8432 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8433 "t4pktc"); 8434 if (rc) 8435 return (rc); 8436 8437 if (vi->flags & VI_INIT_DONE) 8438 rc = EBUSY; /* cannot be changed once the queues are created */ 8439 else 8440 vi->pktc_idx = idx; 8441 8442 end_synchronized_op(sc, LOCK_HELD); 8443 return (rc); 8444 } 8445 8446 static int 8447 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8448 { 8449 struct vi_info *vi = arg1; 8450 struct adapter *sc = vi->adapter; 8451 int qsize, rc; 8452 8453 qsize = vi->qsize_rxq; 8454 8455 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8456 if (rc != 0 || req->newptr == NULL) 8457 return (rc); 8458 8459 if (qsize < 128 || (qsize & 7)) 8460 return (EINVAL); 8461 8462 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8463 "t4rxqs"); 8464 if (rc) 8465 return (rc); 8466 8467 if (vi->flags & VI_INIT_DONE) 8468 rc = EBUSY; /* cannot be changed once the queues are created */ 8469 else 8470 vi->qsize_rxq = qsize; 8471 8472 end_synchronized_op(sc, LOCK_HELD); 8473 return (rc); 8474 } 8475 8476 static int 8477 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8478 { 8479 struct vi_info *vi = arg1; 8480 struct adapter *sc = vi->adapter; 8481 int qsize, rc; 8482 8483 qsize = vi->qsize_txq; 8484 8485 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8486 if (rc != 0 || req->newptr == NULL) 8487 return (rc); 8488 8489 if (qsize < 128 || qsize > 65536) 8490 return (EINVAL); 8491 8492 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8493 "t4txqs"); 8494 if (rc) 8495 return (rc); 8496 8497 if (vi->flags & VI_INIT_DONE) 8498 rc = EBUSY; /* cannot be changed once the queues are created */ 8499 else 8500 vi->qsize_txq = qsize; 8501 8502 end_synchronized_op(sc, LOCK_HELD); 8503 return (rc); 8504 } 8505 8506 static int 8507 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8508 { 8509 struct port_info *pi = arg1; 8510 struct adapter *sc = pi->adapter; 8511 struct link_config *lc = &pi->link_cfg; 8512 int rc; 8513 8514 if (req->newptr == NULL) { 8515 struct sbuf *sb; 8516 static char *bits = "\20\1RX\2TX\3AUTO"; 8517 8518 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8519 if (sb == NULL) 8520 return (ENOMEM); 8521 8522 if (lc->link_ok) { 8523 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8524 (lc->requested_fc & PAUSE_AUTONEG), bits); 8525 } else { 8526 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8527 PAUSE_RX | PAUSE_AUTONEG), bits); 8528 } 8529 rc = sbuf_finish(sb); 8530 sbuf_delete(sb); 8531 } else { 8532 char s[2]; 8533 int n; 8534 8535 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8536 PAUSE_AUTONEG)); 8537 s[1] = 0; 8538 8539 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8540 if (rc != 0) 8541 return(rc); 8542 8543 if (s[1] != 0) 8544 return (EINVAL); 8545 if (s[0] < '0' || s[0] > '9') 8546 return (EINVAL); /* not a number */ 8547 n = s[0] - '0'; 8548 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8549 return (EINVAL); /* some other bit is set too */ 8550 8551 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8552 "t4PAUSE"); 8553 if (rc) 8554 return (rc); 8555 if (!hw_off_limits(sc)) { 8556 PORT_LOCK(pi); 8557 lc->requested_fc = n; 8558 fixup_link_config(pi); 8559 if (pi->up_vis > 0) 8560 rc = apply_link_config(pi); 8561 set_current_media(pi); 8562 PORT_UNLOCK(pi); 8563 } 8564 end_synchronized_op(sc, 0); 8565 } 8566 8567 return (rc); 8568 } 8569 8570 static int 8571 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8572 { 8573 struct port_info *pi = arg1; 8574 struct link_config *lc = &pi->link_cfg; 8575 int rc; 8576 struct sbuf *sb; 8577 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8578 8579 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8580 if (sb == NULL) 8581 return (ENOMEM); 8582 if (lc->link_ok) 8583 sbuf_printf(sb, "%b", lc->fec, bits); 8584 else 8585 sbuf_printf(sb, "no link"); 8586 rc = sbuf_finish(sb); 8587 sbuf_delete(sb); 8588 8589 return (rc); 8590 } 8591 8592 static int 8593 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8594 { 8595 struct port_info *pi = arg1; 8596 struct adapter *sc = pi->adapter; 8597 struct link_config *lc = &pi->link_cfg; 8598 int rc; 8599 int8_t old; 8600 8601 if (req->newptr == NULL) { 8602 struct sbuf *sb; 8603 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8604 "\5RSVD3\6auto\7module"; 8605 8606 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8607 if (sb == NULL) 8608 return (ENOMEM); 8609 8610 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8611 rc = sbuf_finish(sb); 8612 sbuf_delete(sb); 8613 } else { 8614 char s[8]; 8615 int n; 8616 8617 snprintf(s, sizeof(s), "%d", 8618 lc->requested_fec == FEC_AUTO ? -1 : 8619 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8620 8621 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8622 if (rc != 0) 8623 return(rc); 8624 8625 n = strtol(&s[0], NULL, 0); 8626 if (n < 0 || n & FEC_AUTO) 8627 n = FEC_AUTO; 8628 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8629 return (EINVAL);/* some other bit is set too */ 8630 8631 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8632 "t4reqf"); 8633 if (rc) 8634 return (rc); 8635 PORT_LOCK(pi); 8636 old = lc->requested_fec; 8637 if (n == FEC_AUTO) 8638 lc->requested_fec = FEC_AUTO; 8639 else if (n == 0 || n == FEC_NONE) 8640 lc->requested_fec = FEC_NONE; 8641 else { 8642 if ((lc->pcaps | 8643 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8644 lc->pcaps) { 8645 rc = ENOTSUP; 8646 goto done; 8647 } 8648 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8649 FEC_MODULE); 8650 } 8651 if (!hw_off_limits(sc)) { 8652 fixup_link_config(pi); 8653 if (pi->up_vis > 0) { 8654 rc = apply_link_config(pi); 8655 if (rc != 0) { 8656 lc->requested_fec = old; 8657 if (rc == FW_EPROTO) 8658 rc = ENOTSUP; 8659 } 8660 } 8661 } 8662 done: 8663 PORT_UNLOCK(pi); 8664 end_synchronized_op(sc, 0); 8665 } 8666 8667 return (rc); 8668 } 8669 8670 static int 8671 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8672 { 8673 struct port_info *pi = arg1; 8674 struct adapter *sc = pi->adapter; 8675 struct link_config *lc = &pi->link_cfg; 8676 int rc; 8677 int8_t fec; 8678 struct sbuf *sb; 8679 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8680 8681 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8682 if (sb == NULL) 8683 return (ENOMEM); 8684 8685 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8686 rc = EBUSY; 8687 goto done; 8688 } 8689 if (hw_off_limits(sc)) { 8690 rc = ENXIO; 8691 goto done; 8692 } 8693 PORT_LOCK(pi); 8694 if (pi->up_vis == 0) { 8695 /* 8696 * If all the interfaces are administratively down the firmware 8697 * does not report transceiver changes. Refresh port info here. 8698 * This is the only reason we have a synchronized op in this 8699 * function. Just PORT_LOCK would have been enough otherwise. 8700 */ 8701 t4_update_port_info(pi); 8702 } 8703 8704 fec = lc->fec_hint; 8705 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8706 !fec_supported(lc->pcaps)) { 8707 PORT_UNLOCK(pi); 8708 sbuf_printf(sb, "n/a"); 8709 } else { 8710 if (fec == 0) 8711 fec = FEC_NONE; 8712 PORT_UNLOCK(pi); 8713 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8714 } 8715 rc = sbuf_finish(sb); 8716 done: 8717 sbuf_delete(sb); 8718 end_synchronized_op(sc, 0); 8719 8720 return (rc); 8721 } 8722 8723 static int 8724 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8725 { 8726 struct port_info *pi = arg1; 8727 struct adapter *sc = pi->adapter; 8728 struct link_config *lc = &pi->link_cfg; 8729 int rc, val; 8730 8731 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8732 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8733 else 8734 val = -1; 8735 rc = sysctl_handle_int(oidp, &val, 0, req); 8736 if (rc != 0 || req->newptr == NULL) 8737 return (rc); 8738 if (val == 0) 8739 val = AUTONEG_DISABLE; 8740 else if (val == 1) 8741 val = AUTONEG_ENABLE; 8742 else 8743 val = AUTONEG_AUTO; 8744 8745 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8746 "t4aneg"); 8747 if (rc) 8748 return (rc); 8749 PORT_LOCK(pi); 8750 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8751 rc = ENOTSUP; 8752 goto done; 8753 } 8754 lc->requested_aneg = val; 8755 if (!hw_off_limits(sc)) { 8756 fixup_link_config(pi); 8757 if (pi->up_vis > 0) 8758 rc = apply_link_config(pi); 8759 set_current_media(pi); 8760 } 8761 done: 8762 PORT_UNLOCK(pi); 8763 end_synchronized_op(sc, 0); 8764 return (rc); 8765 } 8766 8767 static int 8768 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8769 { 8770 struct port_info *pi = arg1; 8771 struct adapter *sc = pi->adapter; 8772 struct link_config *lc = &pi->link_cfg; 8773 int rc, val; 8774 8775 val = lc->force_fec; 8776 MPASS(val >= -1 && val <= 1); 8777 rc = sysctl_handle_int(oidp, &val, 0, req); 8778 if (rc != 0 || req->newptr == NULL) 8779 return (rc); 8780 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8781 return (ENOTSUP); 8782 if (val < -1 || val > 1) 8783 return (EINVAL); 8784 8785 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8786 if (rc) 8787 return (rc); 8788 PORT_LOCK(pi); 8789 lc->force_fec = val; 8790 if (!hw_off_limits(sc)) { 8791 fixup_link_config(pi); 8792 if (pi->up_vis > 0) 8793 rc = apply_link_config(pi); 8794 } 8795 PORT_UNLOCK(pi); 8796 end_synchronized_op(sc, 0); 8797 return (rc); 8798 } 8799 8800 static int 8801 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8802 { 8803 struct adapter *sc = arg1; 8804 int rc, reg = arg2; 8805 uint64_t val; 8806 8807 mtx_lock(&sc->reg_lock); 8808 if (hw_off_limits(sc)) 8809 rc = ENXIO; 8810 else { 8811 rc = 0; 8812 val = t4_read_reg64(sc, reg); 8813 } 8814 mtx_unlock(&sc->reg_lock); 8815 if (rc == 0) 8816 rc = sysctl_handle_64(oidp, &val, 0, req); 8817 return (rc); 8818 } 8819 8820 static int 8821 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8822 { 8823 struct adapter *sc = arg1; 8824 int rc, t; 8825 uint32_t param, val; 8826 8827 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8828 if (rc) 8829 return (rc); 8830 if (hw_off_limits(sc)) 8831 rc = ENXIO; 8832 else { 8833 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8834 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8835 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8836 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8837 } 8838 end_synchronized_op(sc, 0); 8839 if (rc) 8840 return (rc); 8841 8842 /* unknown is returned as 0 but we display -1 in that case */ 8843 t = val == 0 ? -1 : val; 8844 8845 rc = sysctl_handle_int(oidp, &t, 0, req); 8846 return (rc); 8847 } 8848 8849 static int 8850 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8851 { 8852 struct adapter *sc = arg1; 8853 int rc; 8854 uint32_t param, val; 8855 8856 if (sc->params.core_vdd == 0) { 8857 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8858 "t4vdd"); 8859 if (rc) 8860 return (rc); 8861 if (hw_off_limits(sc)) 8862 rc = ENXIO; 8863 else { 8864 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8865 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8866 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8867 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8868 ¶m, &val); 8869 } 8870 end_synchronized_op(sc, 0); 8871 if (rc) 8872 return (rc); 8873 sc->params.core_vdd = val; 8874 } 8875 8876 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8877 } 8878 8879 static int 8880 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8881 { 8882 struct adapter *sc = arg1; 8883 int rc, v; 8884 uint32_t param, val; 8885 8886 v = sc->sensor_resets; 8887 rc = sysctl_handle_int(oidp, &v, 0, req); 8888 if (rc != 0 || req->newptr == NULL || v <= 0) 8889 return (rc); 8890 8891 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8892 chip_id(sc) < CHELSIO_T5) 8893 return (ENOTSUP); 8894 8895 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8896 if (rc) 8897 return (rc); 8898 if (hw_off_limits(sc)) 8899 rc = ENXIO; 8900 else { 8901 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8902 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8903 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8904 val = 1; 8905 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8906 } 8907 end_synchronized_op(sc, 0); 8908 if (rc == 0) 8909 sc->sensor_resets++; 8910 return (rc); 8911 } 8912 8913 static int 8914 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8915 { 8916 struct adapter *sc = arg1; 8917 struct sbuf *sb; 8918 int rc; 8919 uint32_t param, val; 8920 8921 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8922 if (rc) 8923 return (rc); 8924 if (hw_off_limits(sc)) 8925 rc = ENXIO; 8926 else { 8927 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8928 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8929 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8930 } 8931 end_synchronized_op(sc, 0); 8932 if (rc) 8933 return (rc); 8934 8935 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8936 if (sb == NULL) 8937 return (ENOMEM); 8938 8939 if (val == 0xffffffff) { 8940 /* Only debug and custom firmwares report load averages. */ 8941 sbuf_printf(sb, "not available"); 8942 } else { 8943 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8944 (val >> 16) & 0xff); 8945 } 8946 rc = sbuf_finish(sb); 8947 sbuf_delete(sb); 8948 8949 return (rc); 8950 } 8951 8952 static int 8953 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8954 { 8955 struct adapter *sc = arg1; 8956 struct sbuf *sb; 8957 int rc, i; 8958 uint16_t incr[NMTUS][NCCTRL_WIN]; 8959 static const char *dec_fac[] = { 8960 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8961 "0.9375" 8962 }; 8963 8964 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8965 if (sb == NULL) 8966 return (ENOMEM); 8967 8968 rc = 0; 8969 mtx_lock(&sc->reg_lock); 8970 if (hw_off_limits(sc)) 8971 rc = ENXIO; 8972 else 8973 t4_read_cong_tbl(sc, incr); 8974 mtx_unlock(&sc->reg_lock); 8975 if (rc) 8976 goto done; 8977 8978 for (i = 0; i < NCCTRL_WIN; ++i) { 8979 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8980 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8981 incr[5][i], incr[6][i], incr[7][i]); 8982 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8983 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8984 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8985 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8986 } 8987 8988 rc = sbuf_finish(sb); 8989 done: 8990 sbuf_delete(sb); 8991 return (rc); 8992 } 8993 8994 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8995 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8996 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8997 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8998 }; 8999 9000 static int 9001 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 9002 { 9003 struct adapter *sc = arg1; 9004 struct sbuf *sb; 9005 int rc, i, n, qid = arg2; 9006 uint32_t *buf, *p; 9007 char *qtype; 9008 u_int cim_num_obq = sc->chip_params->cim_num_obq; 9009 9010 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 9011 ("%s: bad qid %d\n", __func__, qid)); 9012 9013 if (qid < CIM_NUM_IBQ) { 9014 /* inbound queue */ 9015 qtype = "IBQ"; 9016 n = 4 * CIM_IBQ_SIZE; 9017 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9018 mtx_lock(&sc->reg_lock); 9019 if (hw_off_limits(sc)) 9020 rc = -ENXIO; 9021 else 9022 rc = t4_read_cim_ibq(sc, qid, buf, n); 9023 mtx_unlock(&sc->reg_lock); 9024 } else { 9025 /* outbound queue */ 9026 qtype = "OBQ"; 9027 qid -= CIM_NUM_IBQ; 9028 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 9029 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9030 mtx_lock(&sc->reg_lock); 9031 if (hw_off_limits(sc)) 9032 rc = -ENXIO; 9033 else 9034 rc = t4_read_cim_obq(sc, qid, buf, n); 9035 mtx_unlock(&sc->reg_lock); 9036 } 9037 9038 if (rc < 0) { 9039 rc = -rc; 9040 goto done; 9041 } 9042 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9043 9044 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9045 if (sb == NULL) { 9046 rc = ENOMEM; 9047 goto done; 9048 } 9049 9050 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 9051 for (i = 0, p = buf; i < n; i += 16, p += 4) 9052 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9053 p[2], p[3]); 9054 9055 rc = sbuf_finish(sb); 9056 sbuf_delete(sb); 9057 done: 9058 free(buf, M_CXGBE); 9059 return (rc); 9060 } 9061 9062 static void 9063 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9064 { 9065 uint32_t *p; 9066 9067 sbuf_printf(sb, "Status Data PC%s", 9068 cfg & F_UPDBGLACAPTPCONLY ? "" : 9069 " LS0Stat LS0Addr LS0Data"); 9070 9071 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9072 if (cfg & F_UPDBGLACAPTPCONLY) { 9073 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9074 p[6], p[7]); 9075 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9076 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9077 p[4] & 0xff, p[5] >> 8); 9078 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9079 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9080 p[1] & 0xf, p[2] >> 4); 9081 } else { 9082 sbuf_printf(sb, 9083 "\n %02x %x%07x %x%07x %08x %08x " 9084 "%08x%08x%08x%08x", 9085 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9086 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9087 p[6], p[7]); 9088 } 9089 } 9090 } 9091 9092 static void 9093 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9094 { 9095 uint32_t *p; 9096 9097 sbuf_printf(sb, "Status Inst Data PC%s", 9098 cfg & F_UPDBGLACAPTPCONLY ? "" : 9099 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9100 9101 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9102 if (cfg & F_UPDBGLACAPTPCONLY) { 9103 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9104 p[3] & 0xff, p[2], p[1], p[0]); 9105 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9106 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9107 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9108 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9109 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9110 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9111 p[6] >> 16); 9112 } else { 9113 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9114 "%08x %08x %08x %08x %08x %08x", 9115 (p[9] >> 16) & 0xff, 9116 p[9] & 0xffff, p[8] >> 16, 9117 p[8] & 0xffff, p[7] >> 16, 9118 p[7] & 0xffff, p[6] >> 16, 9119 p[2], p[1], p[0], p[5], p[4], p[3]); 9120 } 9121 } 9122 } 9123 9124 static int 9125 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9126 { 9127 uint32_t cfg, *buf; 9128 int rc; 9129 9130 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9131 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9132 M_ZERO | flags); 9133 if (buf == NULL) 9134 return (ENOMEM); 9135 9136 mtx_lock(&sc->reg_lock); 9137 if (hw_off_limits(sc)) 9138 rc = ENXIO; 9139 else { 9140 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9141 if (rc == 0) 9142 rc = -t4_cim_read_la(sc, buf, NULL); 9143 } 9144 mtx_unlock(&sc->reg_lock); 9145 if (rc == 0) { 9146 if (chip_id(sc) < CHELSIO_T6) 9147 sbuf_cim_la4(sc, sb, buf, cfg); 9148 else 9149 sbuf_cim_la6(sc, sb, buf, cfg); 9150 } 9151 free(buf, M_CXGBE); 9152 return (rc); 9153 } 9154 9155 static int 9156 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9157 { 9158 struct adapter *sc = arg1; 9159 struct sbuf *sb; 9160 int rc; 9161 9162 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9163 if (sb == NULL) 9164 return (ENOMEM); 9165 9166 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9167 if (rc == 0) 9168 rc = sbuf_finish(sb); 9169 sbuf_delete(sb); 9170 return (rc); 9171 } 9172 9173 static void 9174 dump_cim_regs(struct adapter *sc) 9175 { 9176 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9177 device_get_nameunit(sc->dev), 9178 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9179 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9180 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9181 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9182 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9183 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9184 device_get_nameunit(sc->dev), 9185 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9186 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9187 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9188 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9189 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9190 } 9191 9192 static void 9193 dump_cimla(struct adapter *sc) 9194 { 9195 struct sbuf sb; 9196 int rc; 9197 9198 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9199 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9200 device_get_nameunit(sc->dev)); 9201 return; 9202 } 9203 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9204 if (rc == 0) { 9205 rc = sbuf_finish(&sb); 9206 if (rc == 0) { 9207 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9208 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9209 } 9210 } 9211 sbuf_delete(&sb); 9212 } 9213 9214 void 9215 t4_os_cim_err(struct adapter *sc) 9216 { 9217 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9218 } 9219 9220 static int 9221 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9222 { 9223 struct adapter *sc = arg1; 9224 u_int i; 9225 struct sbuf *sb; 9226 uint32_t *buf, *p; 9227 int rc; 9228 9229 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9230 if (sb == NULL) 9231 return (ENOMEM); 9232 9233 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9234 M_ZERO | M_WAITOK); 9235 9236 rc = 0; 9237 mtx_lock(&sc->reg_lock); 9238 if (hw_off_limits(sc)) 9239 rc = ENXIO; 9240 else 9241 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9242 mtx_unlock(&sc->reg_lock); 9243 if (rc) 9244 goto done; 9245 9246 p = buf; 9247 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9248 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9249 p[1], p[0]); 9250 } 9251 9252 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9253 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9254 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9255 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9256 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9257 (p[1] >> 2) | ((p[2] & 3) << 30), 9258 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9259 p[0] & 1); 9260 } 9261 rc = sbuf_finish(sb); 9262 done: 9263 sbuf_delete(sb); 9264 free(buf, M_CXGBE); 9265 return (rc); 9266 } 9267 9268 static int 9269 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9270 { 9271 struct adapter *sc = arg1; 9272 u_int i; 9273 struct sbuf *sb; 9274 uint32_t *buf, *p; 9275 int rc; 9276 9277 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9278 if (sb == NULL) 9279 return (ENOMEM); 9280 9281 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9282 M_ZERO | M_WAITOK); 9283 9284 rc = 0; 9285 mtx_lock(&sc->reg_lock); 9286 if (hw_off_limits(sc)) 9287 rc = ENXIO; 9288 else 9289 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9290 mtx_unlock(&sc->reg_lock); 9291 if (rc) 9292 goto done; 9293 9294 p = buf; 9295 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9296 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9297 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9298 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9299 p[4], p[3], p[2], p[1], p[0]); 9300 } 9301 9302 sbuf_printf(sb, "\n\nCntl ID Data"); 9303 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9304 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9305 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9306 } 9307 9308 rc = sbuf_finish(sb); 9309 done: 9310 sbuf_delete(sb); 9311 free(buf, M_CXGBE); 9312 return (rc); 9313 } 9314 9315 static int 9316 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9317 { 9318 struct adapter *sc = arg1; 9319 struct sbuf *sb; 9320 int rc, i; 9321 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9322 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9323 uint16_t thres[CIM_NUM_IBQ]; 9324 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9325 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9326 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9327 9328 cim_num_obq = sc->chip_params->cim_num_obq; 9329 if (is_t4(sc)) { 9330 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9331 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9332 } else { 9333 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9334 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9335 } 9336 nq = CIM_NUM_IBQ + cim_num_obq; 9337 9338 mtx_lock(&sc->reg_lock); 9339 if (hw_off_limits(sc)) 9340 rc = ENXIO; 9341 else { 9342 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9343 if (rc == 0) { 9344 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9345 obq_wr); 9346 if (rc == 0) 9347 t4_read_cimq_cfg(sc, base, size, thres); 9348 } 9349 } 9350 mtx_unlock(&sc->reg_lock); 9351 if (rc) 9352 return (rc); 9353 9354 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9355 if (sb == NULL) 9356 return (ENOMEM); 9357 9358 sbuf_printf(sb, 9359 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9360 9361 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9362 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9363 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9364 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9365 G_QUEREMFLITS(p[2]) * 16); 9366 for ( ; i < nq; i++, p += 4, wr += 2) 9367 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9368 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9369 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9370 G_QUEREMFLITS(p[2]) * 16); 9371 9372 rc = sbuf_finish(sb); 9373 sbuf_delete(sb); 9374 9375 return (rc); 9376 } 9377 9378 static int 9379 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9380 { 9381 struct adapter *sc = arg1; 9382 struct sbuf *sb; 9383 int rc; 9384 struct tp_cpl_stats stats; 9385 9386 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9387 if (sb == NULL) 9388 return (ENOMEM); 9389 9390 rc = 0; 9391 mtx_lock(&sc->reg_lock); 9392 if (hw_off_limits(sc)) 9393 rc = ENXIO; 9394 else 9395 t4_tp_get_cpl_stats(sc, &stats, 0); 9396 mtx_unlock(&sc->reg_lock); 9397 if (rc) 9398 goto done; 9399 9400 if (sc->chip_params->nchan > 2) { 9401 sbuf_printf(sb, " channel 0 channel 1" 9402 " channel 2 channel 3"); 9403 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9404 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9405 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9406 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9407 } else { 9408 sbuf_printf(sb, " channel 0 channel 1"); 9409 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9410 stats.req[0], stats.req[1]); 9411 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9412 stats.rsp[0], stats.rsp[1]); 9413 } 9414 9415 rc = sbuf_finish(sb); 9416 done: 9417 sbuf_delete(sb); 9418 return (rc); 9419 } 9420 9421 static int 9422 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9423 { 9424 struct adapter *sc = arg1; 9425 struct sbuf *sb; 9426 int rc; 9427 struct tp_usm_stats stats; 9428 9429 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9430 if (sb == NULL) 9431 return (ENOMEM); 9432 9433 rc = 0; 9434 mtx_lock(&sc->reg_lock); 9435 if (hw_off_limits(sc)) 9436 rc = ENXIO; 9437 else 9438 t4_get_usm_stats(sc, &stats, 1); 9439 mtx_unlock(&sc->reg_lock); 9440 if (rc == 0) { 9441 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9442 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9443 sbuf_printf(sb, "Drops: %u", stats.drops); 9444 rc = sbuf_finish(sb); 9445 } 9446 sbuf_delete(sb); 9447 9448 return (rc); 9449 } 9450 9451 static int 9452 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9453 { 9454 struct adapter *sc = arg1; 9455 struct sbuf *sb; 9456 int rc; 9457 struct tp_tid_stats stats; 9458 9459 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9460 if (sb == NULL) 9461 return (ENOMEM); 9462 9463 rc = 0; 9464 mtx_lock(&sc->reg_lock); 9465 if (hw_off_limits(sc)) 9466 rc = ENXIO; 9467 else 9468 t4_tp_get_tid_stats(sc, &stats, 1); 9469 mtx_unlock(&sc->reg_lock); 9470 if (rc == 0) { 9471 sbuf_printf(sb, "Delete: %u\n", stats.del); 9472 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9473 sbuf_printf(sb, "Active: %u\n", stats.act); 9474 sbuf_printf(sb, "Passive: %u", stats.pas); 9475 rc = sbuf_finish(sb); 9476 } 9477 sbuf_delete(sb); 9478 9479 return (rc); 9480 } 9481 9482 static const char * const devlog_level_strings[] = { 9483 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9484 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9485 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9486 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9487 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9488 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9489 }; 9490 9491 static const char * const devlog_facility_strings[] = { 9492 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9493 [FW_DEVLOG_FACILITY_CF] = "CF", 9494 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9495 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9496 [FW_DEVLOG_FACILITY_RES] = "RES", 9497 [FW_DEVLOG_FACILITY_HW] = "HW", 9498 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9499 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9500 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9501 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9502 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9503 [FW_DEVLOG_FACILITY_VI] = "VI", 9504 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9505 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9506 [FW_DEVLOG_FACILITY_TM] = "TM", 9507 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9508 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9509 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9510 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9511 [FW_DEVLOG_FACILITY_RI] = "RI", 9512 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9513 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9514 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9515 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9516 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9517 }; 9518 9519 static int 9520 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9521 { 9522 int i, j, rc, nentries, first = 0; 9523 struct devlog_params *dparams = &sc->params.devlog; 9524 struct fw_devlog_e *buf, *e; 9525 uint64_t ftstamp = UINT64_MAX; 9526 9527 if (dparams->addr == 0) 9528 return (ENXIO); 9529 9530 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9531 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9532 if (buf == NULL) 9533 return (ENOMEM); 9534 9535 mtx_lock(&sc->reg_lock); 9536 if (hw_off_limits(sc)) 9537 rc = ENXIO; 9538 else 9539 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9540 dparams->size); 9541 mtx_unlock(&sc->reg_lock); 9542 if (rc != 0) 9543 goto done; 9544 9545 nentries = dparams->size / sizeof(struct fw_devlog_e); 9546 for (i = 0; i < nentries; i++) { 9547 e = &buf[i]; 9548 9549 if (e->timestamp == 0) 9550 break; /* end */ 9551 9552 e->timestamp = be64toh(e->timestamp); 9553 e->seqno = be32toh(e->seqno); 9554 for (j = 0; j < 8; j++) 9555 e->params[j] = be32toh(e->params[j]); 9556 9557 if (e->timestamp < ftstamp) { 9558 ftstamp = e->timestamp; 9559 first = i; 9560 } 9561 } 9562 9563 if (buf[first].timestamp == 0) 9564 goto done; /* nothing in the log */ 9565 9566 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9567 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9568 9569 i = first; 9570 do { 9571 e = &buf[i]; 9572 if (e->timestamp == 0) 9573 break; /* end */ 9574 9575 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9576 e->seqno, e->timestamp, 9577 (e->level < nitems(devlog_level_strings) ? 9578 devlog_level_strings[e->level] : "UNKNOWN"), 9579 (e->facility < nitems(devlog_facility_strings) ? 9580 devlog_facility_strings[e->facility] : "UNKNOWN")); 9581 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9582 e->params[2], e->params[3], e->params[4], 9583 e->params[5], e->params[6], e->params[7]); 9584 9585 if (++i == nentries) 9586 i = 0; 9587 } while (i != first); 9588 done: 9589 free(buf, M_CXGBE); 9590 return (rc); 9591 } 9592 9593 static int 9594 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9595 { 9596 struct adapter *sc = arg1; 9597 int rc; 9598 struct sbuf *sb; 9599 9600 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9601 if (sb == NULL) 9602 return (ENOMEM); 9603 9604 rc = sbuf_devlog(sc, sb, M_WAITOK); 9605 if (rc == 0) 9606 rc = sbuf_finish(sb); 9607 sbuf_delete(sb); 9608 return (rc); 9609 } 9610 9611 static void 9612 dump_devlog(struct adapter *sc) 9613 { 9614 int rc; 9615 struct sbuf sb; 9616 9617 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9618 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9619 device_get_nameunit(sc->dev)); 9620 return; 9621 } 9622 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9623 if (rc == 0) { 9624 rc = sbuf_finish(&sb); 9625 if (rc == 0) { 9626 log(LOG_DEBUG, "%s: device log follows.\n%s", 9627 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9628 } 9629 } 9630 sbuf_delete(&sb); 9631 } 9632 9633 static int 9634 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9635 { 9636 struct adapter *sc = arg1; 9637 struct sbuf *sb; 9638 int rc; 9639 struct tp_fcoe_stats stats[MAX_NCHAN]; 9640 int i, nchan = sc->chip_params->nchan; 9641 9642 rc = 0; 9643 mtx_lock(&sc->reg_lock); 9644 if (hw_off_limits(sc)) 9645 rc = ENXIO; 9646 else { 9647 for (i = 0; i < nchan; i++) 9648 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9649 } 9650 mtx_unlock(&sc->reg_lock); 9651 if (rc != 0) 9652 return (rc); 9653 9654 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9655 if (sb == NULL) 9656 return (ENOMEM); 9657 9658 if (nchan > 2) { 9659 sbuf_printf(sb, " channel 0 channel 1" 9660 " channel 2 channel 3"); 9661 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9662 stats[0].octets_ddp, stats[1].octets_ddp, 9663 stats[2].octets_ddp, stats[3].octets_ddp); 9664 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9665 stats[0].frames_ddp, stats[1].frames_ddp, 9666 stats[2].frames_ddp, stats[3].frames_ddp); 9667 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9668 stats[0].frames_drop, stats[1].frames_drop, 9669 stats[2].frames_drop, stats[3].frames_drop); 9670 } else { 9671 sbuf_printf(sb, " channel 0 channel 1"); 9672 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9673 stats[0].octets_ddp, stats[1].octets_ddp); 9674 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9675 stats[0].frames_ddp, stats[1].frames_ddp); 9676 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9677 stats[0].frames_drop, stats[1].frames_drop); 9678 } 9679 9680 rc = sbuf_finish(sb); 9681 sbuf_delete(sb); 9682 9683 return (rc); 9684 } 9685 9686 static int 9687 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9688 { 9689 struct adapter *sc = arg1; 9690 struct sbuf *sb; 9691 int rc, i; 9692 unsigned int map, kbps, ipg, mode; 9693 unsigned int pace_tab[NTX_SCHED]; 9694 9695 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9696 if (sb == NULL) 9697 return (ENOMEM); 9698 9699 mtx_lock(&sc->reg_lock); 9700 if (hw_off_limits(sc)) { 9701 mtx_unlock(&sc->reg_lock); 9702 rc = ENXIO; 9703 goto done; 9704 } 9705 9706 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9707 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9708 t4_read_pace_tbl(sc, pace_tab); 9709 mtx_unlock(&sc->reg_lock); 9710 9711 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9712 "Class IPG (0.1 ns) Flow IPG (us)"); 9713 9714 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9715 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9716 sbuf_printf(sb, "\n %u %-5s %u ", i, 9717 (mode & (1 << i)) ? "flow" : "class", map & 3); 9718 if (kbps) 9719 sbuf_printf(sb, "%9u ", kbps); 9720 else 9721 sbuf_printf(sb, " disabled "); 9722 9723 if (ipg) 9724 sbuf_printf(sb, "%13u ", ipg); 9725 else 9726 sbuf_printf(sb, " disabled "); 9727 9728 if (pace_tab[i]) 9729 sbuf_printf(sb, "%10u", pace_tab[i]); 9730 else 9731 sbuf_printf(sb, " disabled"); 9732 } 9733 rc = sbuf_finish(sb); 9734 done: 9735 sbuf_delete(sb); 9736 return (rc); 9737 } 9738 9739 static int 9740 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9741 { 9742 struct adapter *sc = arg1; 9743 struct sbuf *sb; 9744 int rc, i, j; 9745 uint64_t *p0, *p1; 9746 struct lb_port_stats s[2]; 9747 static const char *stat_name[] = { 9748 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9749 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9750 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9751 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9752 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9753 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9754 "BG2FramesTrunc:", "BG3FramesTrunc:" 9755 }; 9756 9757 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9758 if (sb == NULL) 9759 return (ENOMEM); 9760 9761 memset(s, 0, sizeof(s)); 9762 9763 rc = 0; 9764 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9765 mtx_lock(&sc->reg_lock); 9766 if (hw_off_limits(sc)) 9767 rc = ENXIO; 9768 else { 9769 t4_get_lb_stats(sc, i, &s[0]); 9770 t4_get_lb_stats(sc, i + 1, &s[1]); 9771 } 9772 mtx_unlock(&sc->reg_lock); 9773 if (rc != 0) 9774 break; 9775 9776 p0 = &s[0].octets; 9777 p1 = &s[1].octets; 9778 sbuf_printf(sb, "%s Loopback %u" 9779 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9780 9781 for (j = 0; j < nitems(stat_name); j++) 9782 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9783 *p0++, *p1++); 9784 } 9785 9786 if (rc == 0) 9787 rc = sbuf_finish(sb); 9788 sbuf_delete(sb); 9789 9790 return (rc); 9791 } 9792 9793 static int 9794 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9795 { 9796 int rc = 0; 9797 struct port_info *pi = arg1; 9798 struct link_config *lc = &pi->link_cfg; 9799 struct sbuf *sb; 9800 9801 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9802 if (sb == NULL) 9803 return (ENOMEM); 9804 9805 if (lc->link_ok || lc->link_down_rc == 255) 9806 sbuf_printf(sb, "n/a"); 9807 else 9808 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9809 9810 rc = sbuf_finish(sb); 9811 sbuf_delete(sb); 9812 9813 return (rc); 9814 } 9815 9816 struct mem_desc { 9817 u_int base; 9818 u_int limit; 9819 u_int idx; 9820 }; 9821 9822 static int 9823 mem_desc_cmp(const void *a, const void *b) 9824 { 9825 const u_int v1 = ((const struct mem_desc *)a)->base; 9826 const u_int v2 = ((const struct mem_desc *)b)->base; 9827 9828 if (v1 < v2) 9829 return (-1); 9830 else if (v1 > v2) 9831 return (1); 9832 9833 return (0); 9834 } 9835 9836 static void 9837 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9838 unsigned int to) 9839 { 9840 unsigned int size; 9841 9842 if (from == to) 9843 return; 9844 9845 size = to - from + 1; 9846 if (size == 0) 9847 return; 9848 9849 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9850 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9851 } 9852 9853 static int 9854 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9855 { 9856 struct adapter *sc = arg1; 9857 struct sbuf *sb; 9858 int rc, i, n; 9859 uint32_t lo, hi, used, free, alloc; 9860 static const char *memory[] = { 9861 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9862 }; 9863 static const char *region[] = { 9864 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9865 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9866 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9867 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9868 "RQUDP region:", "PBL region:", "TXPBL region:", 9869 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9870 "ULPTX state:", "On-chip queues:", 9871 }; 9872 struct mem_desc avail[4]; 9873 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9874 struct mem_desc *md = mem; 9875 9876 rc = sysctl_wire_old_buffer(req, 0); 9877 if (rc != 0) 9878 return (rc); 9879 9880 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9881 if (sb == NULL) 9882 return (ENOMEM); 9883 9884 for (i = 0; i < nitems(mem); i++) { 9885 mem[i].limit = 0; 9886 mem[i].idx = i; 9887 } 9888 9889 mtx_lock(&sc->reg_lock); 9890 if (hw_off_limits(sc)) { 9891 rc = ENXIO; 9892 goto done; 9893 } 9894 9895 /* Find and sort the populated memory ranges */ 9896 i = 0; 9897 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9898 if (lo & F_EDRAM0_ENABLE) { 9899 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9900 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9901 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9902 avail[i].idx = 0; 9903 i++; 9904 } 9905 if (lo & F_EDRAM1_ENABLE) { 9906 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9907 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9908 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9909 avail[i].idx = 1; 9910 i++; 9911 } 9912 if (lo & F_EXT_MEM_ENABLE) { 9913 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9914 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9915 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9916 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9917 i++; 9918 } 9919 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9920 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9921 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9922 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9923 avail[i].idx = 4; 9924 i++; 9925 } 9926 if (is_t6(sc) && lo & F_HMA_MUX) { 9927 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9928 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9929 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9930 avail[i].idx = 5; 9931 i++; 9932 } 9933 MPASS(i <= nitems(avail)); 9934 if (!i) /* no memory available */ 9935 goto done; 9936 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9937 9938 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9939 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9940 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9941 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9942 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9943 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9944 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9945 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9946 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9947 9948 /* the next few have explicit upper bounds */ 9949 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9950 md->limit = md->base - 1 + 9951 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9952 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9953 md++; 9954 9955 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9956 md->limit = md->base - 1 + 9957 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9958 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9959 md++; 9960 9961 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9962 if (chip_id(sc) <= CHELSIO_T5) 9963 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9964 else 9965 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9966 md->limit = 0; 9967 } else { 9968 md->base = 0; 9969 md->idx = nitems(region); /* hide it */ 9970 } 9971 md++; 9972 9973 #define ulp_region(reg) \ 9974 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9975 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9976 9977 ulp_region(RX_ISCSI); 9978 ulp_region(RX_TDDP); 9979 ulp_region(TX_TPT); 9980 ulp_region(RX_STAG); 9981 ulp_region(RX_RQ); 9982 ulp_region(RX_RQUDP); 9983 ulp_region(RX_PBL); 9984 ulp_region(TX_PBL); 9985 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9986 ulp_region(RX_TLS_KEY); 9987 } 9988 #undef ulp_region 9989 9990 md->base = 0; 9991 if (is_t4(sc)) 9992 md->idx = nitems(region); 9993 else { 9994 uint32_t size = 0; 9995 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9996 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9997 9998 if (is_t5(sc)) { 9999 if (sge_ctrl & F_VFIFO_ENABLE) 10000 size = fifo_size << 2; 10001 } else 10002 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 10003 10004 if (size) { 10005 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10006 md->limit = md->base + size - 1; 10007 } else 10008 md->idx = nitems(region); 10009 } 10010 md++; 10011 10012 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10013 md->limit = 0; 10014 md++; 10015 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10016 md->limit = 0; 10017 md++; 10018 10019 md->base = sc->vres.ocq.start; 10020 if (sc->vres.ocq.size) 10021 md->limit = md->base + sc->vres.ocq.size - 1; 10022 else 10023 md->idx = nitems(region); /* hide it */ 10024 md++; 10025 10026 /* add any address-space holes, there can be up to 3 */ 10027 for (n = 0; n < i - 1; n++) 10028 if (avail[n].limit < avail[n + 1].base) 10029 (md++)->base = avail[n].limit; 10030 if (avail[n].limit) 10031 (md++)->base = avail[n].limit; 10032 10033 n = md - mem; 10034 MPASS(n <= nitems(mem)); 10035 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10036 10037 for (lo = 0; lo < i; lo++) 10038 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10039 avail[lo].limit - 1); 10040 10041 sbuf_printf(sb, "\n"); 10042 for (i = 0; i < n; i++) { 10043 if (mem[i].idx >= nitems(region)) 10044 continue; /* skip holes */ 10045 if (!mem[i].limit) 10046 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10047 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10048 mem[i].limit); 10049 } 10050 10051 sbuf_printf(sb, "\n"); 10052 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10053 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10054 mem_region_show(sb, "uP RAM:", lo, hi); 10055 10056 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10057 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10058 mem_region_show(sb, "uP Extmem2:", lo, hi); 10059 10060 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10061 for (i = 0, free = 0; i < 2; i++) 10062 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10063 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10064 G_PMRXMAXPAGE(lo), free, 10065 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10066 (lo & F_PMRXNUMCHN) ? 2 : 1); 10067 10068 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10069 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10070 for (i = 0, free = 0; i < 4; i++) 10071 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10072 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10073 G_PMTXMAXPAGE(lo), free, 10074 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10075 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10076 sbuf_printf(sb, "%u p-structs (%u free)\n", 10077 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10078 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10079 10080 for (i = 0; i < 4; i++) { 10081 if (chip_id(sc) > CHELSIO_T5) 10082 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10083 else 10084 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10085 if (is_t5(sc)) { 10086 used = G_T5_USED(lo); 10087 alloc = G_T5_ALLOC(lo); 10088 } else { 10089 used = G_USED(lo); 10090 alloc = G_ALLOC(lo); 10091 } 10092 /* For T6 these are MAC buffer groups */ 10093 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10094 i, used, alloc); 10095 } 10096 for (i = 0; i < sc->chip_params->nchan; i++) { 10097 if (chip_id(sc) > CHELSIO_T5) 10098 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10099 else 10100 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10101 if (is_t5(sc)) { 10102 used = G_T5_USED(lo); 10103 alloc = G_T5_ALLOC(lo); 10104 } else { 10105 used = G_USED(lo); 10106 alloc = G_ALLOC(lo); 10107 } 10108 /* For T6 these are MAC buffer groups */ 10109 sbuf_printf(sb, 10110 "\nLoopback %d using %u pages out of %u allocated", 10111 i, used, alloc); 10112 } 10113 done: 10114 mtx_unlock(&sc->reg_lock); 10115 if (rc == 0) 10116 rc = sbuf_finish(sb); 10117 sbuf_delete(sb); 10118 return (rc); 10119 } 10120 10121 static inline void 10122 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10123 { 10124 *mask = x | y; 10125 y = htobe64(y); 10126 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10127 } 10128 10129 static int 10130 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10131 { 10132 struct adapter *sc = arg1; 10133 struct sbuf *sb; 10134 int rc, i; 10135 10136 MPASS(chip_id(sc) <= CHELSIO_T5); 10137 10138 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10139 if (sb == NULL) 10140 return (ENOMEM); 10141 10142 sbuf_printf(sb, 10143 "Idx Ethernet address Mask Vld Ports PF" 10144 " VF Replication P0 P1 P2 P3 ML"); 10145 rc = 0; 10146 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10147 uint64_t tcamx, tcamy, mask; 10148 uint32_t cls_lo, cls_hi; 10149 uint8_t addr[ETHER_ADDR_LEN]; 10150 10151 mtx_lock(&sc->reg_lock); 10152 if (hw_off_limits(sc)) 10153 rc = ENXIO; 10154 else { 10155 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10156 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10157 } 10158 mtx_unlock(&sc->reg_lock); 10159 if (rc != 0) 10160 break; 10161 if (tcamx & tcamy) 10162 continue; 10163 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10164 mtx_lock(&sc->reg_lock); 10165 if (hw_off_limits(sc)) 10166 rc = ENXIO; 10167 else { 10168 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10169 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10170 } 10171 mtx_unlock(&sc->reg_lock); 10172 if (rc != 0) 10173 break; 10174 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10175 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10176 addr[3], addr[4], addr[5], (uintmax_t)mask, 10177 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10178 G_PORTMAP(cls_hi), G_PF(cls_lo), 10179 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10180 10181 if (cls_lo & F_REPLICATE) { 10182 struct fw_ldst_cmd ldst_cmd; 10183 10184 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10185 ldst_cmd.op_to_addrspace = 10186 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10187 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10188 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10189 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10190 ldst_cmd.u.mps.rplc.fid_idx = 10191 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10192 V_FW_LDST_CMD_IDX(i)); 10193 10194 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10195 "t4mps"); 10196 if (rc) 10197 break; 10198 if (hw_off_limits(sc)) 10199 rc = ENXIO; 10200 else 10201 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10202 sizeof(ldst_cmd), &ldst_cmd); 10203 end_synchronized_op(sc, 0); 10204 if (rc != 0) 10205 break; 10206 else { 10207 sbuf_printf(sb, " %08x %08x %08x %08x", 10208 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10209 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10210 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10211 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10212 } 10213 } else 10214 sbuf_printf(sb, "%36s", ""); 10215 10216 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10217 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10218 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10219 } 10220 10221 if (rc) 10222 (void) sbuf_finish(sb); 10223 else 10224 rc = sbuf_finish(sb); 10225 sbuf_delete(sb); 10226 10227 return (rc); 10228 } 10229 10230 static int 10231 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10232 { 10233 struct adapter *sc = arg1; 10234 struct sbuf *sb; 10235 int rc, i; 10236 10237 MPASS(chip_id(sc) > CHELSIO_T5); 10238 10239 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10240 if (sb == NULL) 10241 return (ENOMEM); 10242 10243 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10244 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10245 " Replication" 10246 " P0 P1 P2 P3 ML\n"); 10247 10248 rc = 0; 10249 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10250 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10251 uint16_t ivlan; 10252 uint64_t tcamx, tcamy, val, mask; 10253 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10254 uint8_t addr[ETHER_ADDR_LEN]; 10255 10256 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10257 if (i < 256) 10258 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10259 else 10260 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10261 mtx_lock(&sc->reg_lock); 10262 if (hw_off_limits(sc)) 10263 rc = ENXIO; 10264 else { 10265 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10266 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10267 tcamy = G_DMACH(val) << 32; 10268 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10269 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10270 } 10271 mtx_unlock(&sc->reg_lock); 10272 if (rc != 0) 10273 break; 10274 10275 lookup_type = G_DATALKPTYPE(data2); 10276 port_num = G_DATAPORTNUM(data2); 10277 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10278 /* Inner header VNI */ 10279 vniy = ((data2 & F_DATAVIDH2) << 23) | 10280 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10281 dip_hit = data2 & F_DATADIPHIT; 10282 vlan_vld = 0; 10283 } else { 10284 vniy = 0; 10285 dip_hit = 0; 10286 vlan_vld = data2 & F_DATAVIDH2; 10287 ivlan = G_VIDL(val); 10288 } 10289 10290 ctl |= V_CTLXYBITSEL(1); 10291 mtx_lock(&sc->reg_lock); 10292 if (hw_off_limits(sc)) 10293 rc = ENXIO; 10294 else { 10295 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10296 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10297 tcamx = G_DMACH(val) << 32; 10298 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10299 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10300 } 10301 mtx_unlock(&sc->reg_lock); 10302 if (rc != 0) 10303 break; 10304 10305 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10306 /* Inner header VNI mask */ 10307 vnix = ((data2 & F_DATAVIDH2) << 23) | 10308 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10309 } else 10310 vnix = 0; 10311 10312 if (tcamx & tcamy) 10313 continue; 10314 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10315 10316 mtx_lock(&sc->reg_lock); 10317 if (hw_off_limits(sc)) 10318 rc = ENXIO; 10319 else { 10320 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10321 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10322 } 10323 mtx_unlock(&sc->reg_lock); 10324 if (rc != 0) 10325 break; 10326 10327 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10328 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10329 "%012jx %06x %06x - - %3c" 10330 " I %4x %3c %#x%4u%4d", i, addr[0], 10331 addr[1], addr[2], addr[3], addr[4], addr[5], 10332 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10333 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10334 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10335 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10336 } else { 10337 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10338 "%012jx - - ", i, addr[0], addr[1], 10339 addr[2], addr[3], addr[4], addr[5], 10340 (uintmax_t)mask); 10341 10342 if (vlan_vld) 10343 sbuf_printf(sb, "%4u Y ", ivlan); 10344 else 10345 sbuf_printf(sb, " - N "); 10346 10347 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10348 lookup_type ? 'I' : 'O', port_num, 10349 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10350 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10351 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10352 } 10353 10354 10355 if (cls_lo & F_T6_REPLICATE) { 10356 struct fw_ldst_cmd ldst_cmd; 10357 10358 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10359 ldst_cmd.op_to_addrspace = 10360 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10361 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10362 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10363 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10364 ldst_cmd.u.mps.rplc.fid_idx = 10365 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10366 V_FW_LDST_CMD_IDX(i)); 10367 10368 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10369 "t6mps"); 10370 if (rc) 10371 break; 10372 if (hw_off_limits(sc)) 10373 rc = ENXIO; 10374 else 10375 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10376 sizeof(ldst_cmd), &ldst_cmd); 10377 end_synchronized_op(sc, 0); 10378 if (rc != 0) 10379 break; 10380 else { 10381 sbuf_printf(sb, " %08x %08x %08x %08x" 10382 " %08x %08x %08x %08x", 10383 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10384 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10385 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10386 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10387 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10388 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10389 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10390 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10391 } 10392 } else 10393 sbuf_printf(sb, "%72s", ""); 10394 10395 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10396 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10397 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10398 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10399 } 10400 10401 if (rc) 10402 (void) sbuf_finish(sb); 10403 else 10404 rc = sbuf_finish(sb); 10405 sbuf_delete(sb); 10406 10407 return (rc); 10408 } 10409 10410 static int 10411 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10412 { 10413 struct adapter *sc = arg1; 10414 struct sbuf *sb; 10415 int rc; 10416 uint16_t mtus[NMTUS]; 10417 10418 rc = 0; 10419 mtx_lock(&sc->reg_lock); 10420 if (hw_off_limits(sc)) 10421 rc = ENXIO; 10422 else 10423 t4_read_mtu_tbl(sc, mtus, NULL); 10424 mtx_unlock(&sc->reg_lock); 10425 if (rc != 0) 10426 return (rc); 10427 10428 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10429 if (sb == NULL) 10430 return (ENOMEM); 10431 10432 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10433 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10434 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10435 mtus[14], mtus[15]); 10436 10437 rc = sbuf_finish(sb); 10438 sbuf_delete(sb); 10439 10440 return (rc); 10441 } 10442 10443 static int 10444 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10445 { 10446 struct adapter *sc = arg1; 10447 struct sbuf *sb; 10448 int rc, i; 10449 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10450 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10451 static const char *tx_stats[MAX_PM_NSTATS] = { 10452 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10453 "Tx FIFO wait", NULL, "Tx latency" 10454 }; 10455 static const char *rx_stats[MAX_PM_NSTATS] = { 10456 "Read:", "Write bypass:", "Write mem:", "Flush:", 10457 "Rx FIFO wait", NULL, "Rx latency" 10458 }; 10459 10460 rc = 0; 10461 mtx_lock(&sc->reg_lock); 10462 if (hw_off_limits(sc)) 10463 rc = ENXIO; 10464 else { 10465 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10466 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10467 } 10468 mtx_unlock(&sc->reg_lock); 10469 if (rc != 0) 10470 return (rc); 10471 10472 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10473 if (sb == NULL) 10474 return (ENOMEM); 10475 10476 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10477 for (i = 0; i < 4; i++) { 10478 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10479 tx_cyc[i]); 10480 } 10481 10482 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10483 for (i = 0; i < 4; i++) { 10484 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10485 rx_cyc[i]); 10486 } 10487 10488 if (chip_id(sc) > CHELSIO_T5) { 10489 sbuf_printf(sb, 10490 "\n Total wait Total occupancy"); 10491 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10492 tx_cyc[i]); 10493 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10494 rx_cyc[i]); 10495 10496 i += 2; 10497 MPASS(i < nitems(tx_stats)); 10498 10499 sbuf_printf(sb, 10500 "\n Reads Total wait"); 10501 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10502 tx_cyc[i]); 10503 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10504 rx_cyc[i]); 10505 } 10506 10507 rc = sbuf_finish(sb); 10508 sbuf_delete(sb); 10509 10510 return (rc); 10511 } 10512 10513 static int 10514 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10515 { 10516 struct adapter *sc = arg1; 10517 struct sbuf *sb; 10518 int rc; 10519 struct tp_rdma_stats stats; 10520 10521 rc = 0; 10522 mtx_lock(&sc->reg_lock); 10523 if (hw_off_limits(sc)) 10524 rc = ENXIO; 10525 else 10526 t4_tp_get_rdma_stats(sc, &stats, 0); 10527 mtx_unlock(&sc->reg_lock); 10528 if (rc != 0) 10529 return (rc); 10530 10531 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10532 if (sb == NULL) 10533 return (ENOMEM); 10534 10535 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10536 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10537 10538 rc = sbuf_finish(sb); 10539 sbuf_delete(sb); 10540 10541 return (rc); 10542 } 10543 10544 static int 10545 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10546 { 10547 struct adapter *sc = arg1; 10548 struct sbuf *sb; 10549 int rc; 10550 struct tp_tcp_stats v4, v6; 10551 10552 rc = 0; 10553 mtx_lock(&sc->reg_lock); 10554 if (hw_off_limits(sc)) 10555 rc = ENXIO; 10556 else 10557 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10558 mtx_unlock(&sc->reg_lock); 10559 if (rc != 0) 10560 return (rc); 10561 10562 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10563 if (sb == NULL) 10564 return (ENOMEM); 10565 10566 sbuf_printf(sb, 10567 " IP IPv6\n"); 10568 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10569 v4.tcp_out_rsts, v6.tcp_out_rsts); 10570 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10571 v4.tcp_in_segs, v6.tcp_in_segs); 10572 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10573 v4.tcp_out_segs, v6.tcp_out_segs); 10574 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10575 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10576 10577 rc = sbuf_finish(sb); 10578 sbuf_delete(sb); 10579 10580 return (rc); 10581 } 10582 10583 static int 10584 sysctl_tids(SYSCTL_HANDLER_ARGS) 10585 { 10586 struct adapter *sc = arg1; 10587 struct sbuf *sb; 10588 int rc; 10589 uint32_t x, y; 10590 struct tid_info *t = &sc->tids; 10591 10592 rc = 0; 10593 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10594 if (sb == NULL) 10595 return (ENOMEM); 10596 10597 if (t->natids) { 10598 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10599 t->atids_in_use); 10600 } 10601 10602 if (t->nhpftids) { 10603 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10604 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10605 } 10606 10607 if (t->ntids) { 10608 bool hashen = false; 10609 10610 mtx_lock(&sc->reg_lock); 10611 if (hw_off_limits(sc)) 10612 rc = ENXIO; 10613 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10614 hashen = true; 10615 if (chip_id(sc) <= CHELSIO_T5) { 10616 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10617 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10618 } else { 10619 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10620 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10621 } 10622 } 10623 mtx_unlock(&sc->reg_lock); 10624 if (rc != 0) 10625 goto done; 10626 10627 sbuf_printf(sb, "TID range: "); 10628 if (hashen) { 10629 if (x) 10630 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10631 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10632 } else { 10633 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10634 t->ntids - 1); 10635 } 10636 sbuf_printf(sb, ", in use: %u\n", 10637 atomic_load_acq_int(&t->tids_in_use)); 10638 } 10639 10640 if (t->nstids) { 10641 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10642 t->stid_base + t->nstids - 1, t->stids_in_use); 10643 } 10644 10645 if (t->nftids) { 10646 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10647 t->ftid_end, t->ftids_in_use); 10648 } 10649 10650 if (t->netids) { 10651 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10652 t->etid_base + t->netids - 1, t->etids_in_use); 10653 } 10654 10655 mtx_lock(&sc->reg_lock); 10656 if (hw_off_limits(sc)) 10657 rc = ENXIO; 10658 else { 10659 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10660 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10661 } 10662 mtx_unlock(&sc->reg_lock); 10663 if (rc != 0) 10664 goto done; 10665 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10666 done: 10667 if (rc == 0) 10668 rc = sbuf_finish(sb); 10669 else 10670 (void)sbuf_finish(sb); 10671 sbuf_delete(sb); 10672 10673 return (rc); 10674 } 10675 10676 static int 10677 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10678 { 10679 struct adapter *sc = arg1; 10680 struct sbuf *sb; 10681 int rc; 10682 struct tp_err_stats stats; 10683 10684 rc = 0; 10685 mtx_lock(&sc->reg_lock); 10686 if (hw_off_limits(sc)) 10687 rc = ENXIO; 10688 else 10689 t4_tp_get_err_stats(sc, &stats, 0); 10690 mtx_unlock(&sc->reg_lock); 10691 if (rc != 0) 10692 return (rc); 10693 10694 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10695 if (sb == NULL) 10696 return (ENOMEM); 10697 10698 if (sc->chip_params->nchan > 2) { 10699 sbuf_printf(sb, " channel 0 channel 1" 10700 " channel 2 channel 3\n"); 10701 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10702 stats.mac_in_errs[0], stats.mac_in_errs[1], 10703 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10704 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10705 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10706 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10707 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10708 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10709 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10710 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10711 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10712 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10713 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10714 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10715 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10716 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10717 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10718 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10719 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10720 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10721 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10722 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10723 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10724 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10725 } else { 10726 sbuf_printf(sb, " channel 0 channel 1\n"); 10727 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10728 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10729 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10730 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10731 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10732 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10733 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10734 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10735 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10736 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10737 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10738 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10739 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10740 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10741 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10742 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10743 } 10744 10745 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10746 stats.ofld_no_neigh, stats.ofld_cong_defer); 10747 10748 rc = sbuf_finish(sb); 10749 sbuf_delete(sb); 10750 10751 return (rc); 10752 } 10753 10754 static int 10755 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10756 { 10757 struct adapter *sc = arg1; 10758 struct sbuf *sb; 10759 int rc; 10760 struct tp_tnl_stats stats; 10761 10762 rc = 0; 10763 mtx_lock(&sc->reg_lock); 10764 if (hw_off_limits(sc)) 10765 rc = ENXIO; 10766 else 10767 t4_tp_get_tnl_stats(sc, &stats, 1); 10768 mtx_unlock(&sc->reg_lock); 10769 if (rc != 0) 10770 return (rc); 10771 10772 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10773 if (sb == NULL) 10774 return (ENOMEM); 10775 10776 if (sc->chip_params->nchan > 2) { 10777 sbuf_printf(sb, " channel 0 channel 1" 10778 " channel 2 channel 3\n"); 10779 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10780 stats.out_pkt[0], stats.out_pkt[1], 10781 stats.out_pkt[2], stats.out_pkt[3]); 10782 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10783 stats.in_pkt[0], stats.in_pkt[1], 10784 stats.in_pkt[2], stats.in_pkt[3]); 10785 } else { 10786 sbuf_printf(sb, " channel 0 channel 1\n"); 10787 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10788 stats.out_pkt[0], stats.out_pkt[1]); 10789 sbuf_printf(sb, "InPkts: %10u %10u", 10790 stats.in_pkt[0], stats.in_pkt[1]); 10791 } 10792 10793 rc = sbuf_finish(sb); 10794 sbuf_delete(sb); 10795 10796 return (rc); 10797 } 10798 10799 static int 10800 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10801 { 10802 struct adapter *sc = arg1; 10803 struct tp_params *tpp = &sc->params.tp; 10804 u_int mask; 10805 int rc; 10806 10807 mask = tpp->la_mask >> 16; 10808 rc = sysctl_handle_int(oidp, &mask, 0, req); 10809 if (rc != 0 || req->newptr == NULL) 10810 return (rc); 10811 if (mask > 0xffff) 10812 return (EINVAL); 10813 mtx_lock(&sc->reg_lock); 10814 if (hw_off_limits(sc)) 10815 rc = ENXIO; 10816 else { 10817 tpp->la_mask = mask << 16; 10818 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10819 tpp->la_mask); 10820 } 10821 mtx_unlock(&sc->reg_lock); 10822 10823 return (rc); 10824 } 10825 10826 struct field_desc { 10827 const char *name; 10828 u_int start; 10829 u_int width; 10830 }; 10831 10832 static void 10833 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10834 { 10835 char buf[32]; 10836 int line_size = 0; 10837 10838 while (f->name) { 10839 uint64_t mask = (1ULL << f->width) - 1; 10840 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10841 ((uintmax_t)v >> f->start) & mask); 10842 10843 if (line_size + len >= 79) { 10844 line_size = 8; 10845 sbuf_printf(sb, "\n "); 10846 } 10847 sbuf_printf(sb, "%s ", buf); 10848 line_size += len + 1; 10849 f++; 10850 } 10851 sbuf_printf(sb, "\n"); 10852 } 10853 10854 static const struct field_desc tp_la0[] = { 10855 { "RcfOpCodeOut", 60, 4 }, 10856 { "State", 56, 4 }, 10857 { "WcfState", 52, 4 }, 10858 { "RcfOpcSrcOut", 50, 2 }, 10859 { "CRxError", 49, 1 }, 10860 { "ERxError", 48, 1 }, 10861 { "SanityFailed", 47, 1 }, 10862 { "SpuriousMsg", 46, 1 }, 10863 { "FlushInputMsg", 45, 1 }, 10864 { "FlushInputCpl", 44, 1 }, 10865 { "RssUpBit", 43, 1 }, 10866 { "RssFilterHit", 42, 1 }, 10867 { "Tid", 32, 10 }, 10868 { "InitTcb", 31, 1 }, 10869 { "LineNumber", 24, 7 }, 10870 { "Emsg", 23, 1 }, 10871 { "EdataOut", 22, 1 }, 10872 { "Cmsg", 21, 1 }, 10873 { "CdataOut", 20, 1 }, 10874 { "EreadPdu", 19, 1 }, 10875 { "CreadPdu", 18, 1 }, 10876 { "TunnelPkt", 17, 1 }, 10877 { "RcfPeerFin", 16, 1 }, 10878 { "RcfReasonOut", 12, 4 }, 10879 { "TxCchannel", 10, 2 }, 10880 { "RcfTxChannel", 8, 2 }, 10881 { "RxEchannel", 6, 2 }, 10882 { "RcfRxChannel", 5, 1 }, 10883 { "RcfDataOutSrdy", 4, 1 }, 10884 { "RxDvld", 3, 1 }, 10885 { "RxOoDvld", 2, 1 }, 10886 { "RxCongestion", 1, 1 }, 10887 { "TxCongestion", 0, 1 }, 10888 { NULL } 10889 }; 10890 10891 static const struct field_desc tp_la1[] = { 10892 { "CplCmdIn", 56, 8 }, 10893 { "CplCmdOut", 48, 8 }, 10894 { "ESynOut", 47, 1 }, 10895 { "EAckOut", 46, 1 }, 10896 { "EFinOut", 45, 1 }, 10897 { "ERstOut", 44, 1 }, 10898 { "SynIn", 43, 1 }, 10899 { "AckIn", 42, 1 }, 10900 { "FinIn", 41, 1 }, 10901 { "RstIn", 40, 1 }, 10902 { "DataIn", 39, 1 }, 10903 { "DataInVld", 38, 1 }, 10904 { "PadIn", 37, 1 }, 10905 { "RxBufEmpty", 36, 1 }, 10906 { "RxDdp", 35, 1 }, 10907 { "RxFbCongestion", 34, 1 }, 10908 { "TxFbCongestion", 33, 1 }, 10909 { "TxPktSumSrdy", 32, 1 }, 10910 { "RcfUlpType", 28, 4 }, 10911 { "Eread", 27, 1 }, 10912 { "Ebypass", 26, 1 }, 10913 { "Esave", 25, 1 }, 10914 { "Static0", 24, 1 }, 10915 { "Cread", 23, 1 }, 10916 { "Cbypass", 22, 1 }, 10917 { "Csave", 21, 1 }, 10918 { "CPktOut", 20, 1 }, 10919 { "RxPagePoolFull", 18, 2 }, 10920 { "RxLpbkPkt", 17, 1 }, 10921 { "TxLpbkPkt", 16, 1 }, 10922 { "RxVfValid", 15, 1 }, 10923 { "SynLearned", 14, 1 }, 10924 { "SetDelEntry", 13, 1 }, 10925 { "SetInvEntry", 12, 1 }, 10926 { "CpcmdDvld", 11, 1 }, 10927 { "CpcmdSave", 10, 1 }, 10928 { "RxPstructsFull", 8, 2 }, 10929 { "EpcmdDvld", 7, 1 }, 10930 { "EpcmdFlush", 6, 1 }, 10931 { "EpcmdTrimPrefix", 5, 1 }, 10932 { "EpcmdTrimPostfix", 4, 1 }, 10933 { "ERssIp4Pkt", 3, 1 }, 10934 { "ERssIp6Pkt", 2, 1 }, 10935 { "ERssTcpUdpPkt", 1, 1 }, 10936 { "ERssFceFipPkt", 0, 1 }, 10937 { NULL } 10938 }; 10939 10940 static const struct field_desc tp_la2[] = { 10941 { "CplCmdIn", 56, 8 }, 10942 { "MpsVfVld", 55, 1 }, 10943 { "MpsPf", 52, 3 }, 10944 { "MpsVf", 44, 8 }, 10945 { "SynIn", 43, 1 }, 10946 { "AckIn", 42, 1 }, 10947 { "FinIn", 41, 1 }, 10948 { "RstIn", 40, 1 }, 10949 { "DataIn", 39, 1 }, 10950 { "DataInVld", 38, 1 }, 10951 { "PadIn", 37, 1 }, 10952 { "RxBufEmpty", 36, 1 }, 10953 { "RxDdp", 35, 1 }, 10954 { "RxFbCongestion", 34, 1 }, 10955 { "TxFbCongestion", 33, 1 }, 10956 { "TxPktSumSrdy", 32, 1 }, 10957 { "RcfUlpType", 28, 4 }, 10958 { "Eread", 27, 1 }, 10959 { "Ebypass", 26, 1 }, 10960 { "Esave", 25, 1 }, 10961 { "Static0", 24, 1 }, 10962 { "Cread", 23, 1 }, 10963 { "Cbypass", 22, 1 }, 10964 { "Csave", 21, 1 }, 10965 { "CPktOut", 20, 1 }, 10966 { "RxPagePoolFull", 18, 2 }, 10967 { "RxLpbkPkt", 17, 1 }, 10968 { "TxLpbkPkt", 16, 1 }, 10969 { "RxVfValid", 15, 1 }, 10970 { "SynLearned", 14, 1 }, 10971 { "SetDelEntry", 13, 1 }, 10972 { "SetInvEntry", 12, 1 }, 10973 { "CpcmdDvld", 11, 1 }, 10974 { "CpcmdSave", 10, 1 }, 10975 { "RxPstructsFull", 8, 2 }, 10976 { "EpcmdDvld", 7, 1 }, 10977 { "EpcmdFlush", 6, 1 }, 10978 { "EpcmdTrimPrefix", 5, 1 }, 10979 { "EpcmdTrimPostfix", 4, 1 }, 10980 { "ERssIp4Pkt", 3, 1 }, 10981 { "ERssIp6Pkt", 2, 1 }, 10982 { "ERssTcpUdpPkt", 1, 1 }, 10983 { "ERssFceFipPkt", 0, 1 }, 10984 { NULL } 10985 }; 10986 10987 static void 10988 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10989 { 10990 10991 field_desc_show(sb, *p, tp_la0); 10992 } 10993 10994 static void 10995 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10996 { 10997 10998 if (idx) 10999 sbuf_printf(sb, "\n"); 11000 field_desc_show(sb, p[0], tp_la0); 11001 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11002 field_desc_show(sb, p[1], tp_la0); 11003 } 11004 11005 static void 11006 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11007 { 11008 11009 if (idx) 11010 sbuf_printf(sb, "\n"); 11011 field_desc_show(sb, p[0], tp_la0); 11012 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11013 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11014 } 11015 11016 static int 11017 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11018 { 11019 struct adapter *sc = arg1; 11020 struct sbuf *sb; 11021 uint64_t *buf, *p; 11022 int rc; 11023 u_int i, inc; 11024 void (*show_func)(struct sbuf *, uint64_t *, int); 11025 11026 rc = 0; 11027 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11028 if (sb == NULL) 11029 return (ENOMEM); 11030 11031 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11032 11033 mtx_lock(&sc->reg_lock); 11034 if (hw_off_limits(sc)) 11035 rc = ENXIO; 11036 else { 11037 t4_tp_read_la(sc, buf, NULL); 11038 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11039 case 2: 11040 inc = 2; 11041 show_func = tp_la_show2; 11042 break; 11043 case 3: 11044 inc = 2; 11045 show_func = tp_la_show3; 11046 break; 11047 default: 11048 inc = 1; 11049 show_func = tp_la_show; 11050 } 11051 } 11052 mtx_unlock(&sc->reg_lock); 11053 if (rc != 0) 11054 goto done; 11055 11056 p = buf; 11057 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11058 (*show_func)(sb, p, i); 11059 rc = sbuf_finish(sb); 11060 done: 11061 sbuf_delete(sb); 11062 free(buf, M_CXGBE); 11063 return (rc); 11064 } 11065 11066 static int 11067 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11068 { 11069 struct adapter *sc = arg1; 11070 struct sbuf *sb; 11071 int rc; 11072 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11073 11074 rc = 0; 11075 mtx_lock(&sc->reg_lock); 11076 if (hw_off_limits(sc)) 11077 rc = ENXIO; 11078 else 11079 t4_get_chan_txrate(sc, nrate, orate); 11080 mtx_unlock(&sc->reg_lock); 11081 if (rc != 0) 11082 return (rc); 11083 11084 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11085 if (sb == NULL) 11086 return (ENOMEM); 11087 11088 if (sc->chip_params->nchan > 2) { 11089 sbuf_printf(sb, " channel 0 channel 1" 11090 " channel 2 channel 3\n"); 11091 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11092 nrate[0], nrate[1], nrate[2], nrate[3]); 11093 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11094 orate[0], orate[1], orate[2], orate[3]); 11095 } else { 11096 sbuf_printf(sb, " channel 0 channel 1\n"); 11097 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11098 nrate[0], nrate[1]); 11099 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11100 orate[0], orate[1]); 11101 } 11102 11103 rc = sbuf_finish(sb); 11104 sbuf_delete(sb); 11105 11106 return (rc); 11107 } 11108 11109 static int 11110 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11111 { 11112 struct adapter *sc = arg1; 11113 struct sbuf *sb; 11114 uint32_t *buf, *p; 11115 int rc, i; 11116 11117 rc = 0; 11118 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11119 if (sb == NULL) 11120 return (ENOMEM); 11121 11122 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11123 M_ZERO | M_WAITOK); 11124 11125 mtx_lock(&sc->reg_lock); 11126 if (hw_off_limits(sc)) 11127 rc = ENXIO; 11128 else 11129 t4_ulprx_read_la(sc, buf); 11130 mtx_unlock(&sc->reg_lock); 11131 if (rc != 0) 11132 goto done; 11133 11134 p = buf; 11135 sbuf_printf(sb, " Pcmd Type Message" 11136 " Data"); 11137 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11138 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11139 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11140 } 11141 rc = sbuf_finish(sb); 11142 done: 11143 sbuf_delete(sb); 11144 free(buf, M_CXGBE); 11145 return (rc); 11146 } 11147 11148 static int 11149 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11150 { 11151 struct adapter *sc = arg1; 11152 struct sbuf *sb; 11153 int rc; 11154 uint32_t cfg, s1, s2; 11155 11156 MPASS(chip_id(sc) >= CHELSIO_T5); 11157 11158 rc = 0; 11159 mtx_lock(&sc->reg_lock); 11160 if (hw_off_limits(sc)) 11161 rc = ENXIO; 11162 else { 11163 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11164 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11165 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11166 } 11167 mtx_unlock(&sc->reg_lock); 11168 if (rc != 0) 11169 return (rc); 11170 11171 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11172 if (sb == NULL) 11173 return (ENOMEM); 11174 11175 if (G_STATSOURCE_T5(cfg) == 7) { 11176 int mode; 11177 11178 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11179 if (mode == 0) 11180 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11181 else if (mode == 1) 11182 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11183 else 11184 sbuf_printf(sb, "unknown mode %d", mode); 11185 } 11186 rc = sbuf_finish(sb); 11187 sbuf_delete(sb); 11188 11189 return (rc); 11190 } 11191 11192 static int 11193 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11194 { 11195 struct adapter *sc = arg1; 11196 enum cpu_sets op = arg2; 11197 cpuset_t cpuset; 11198 struct sbuf *sb; 11199 int i, rc; 11200 11201 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11202 11203 CPU_ZERO(&cpuset); 11204 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11205 if (rc != 0) 11206 return (rc); 11207 11208 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11209 if (sb == NULL) 11210 return (ENOMEM); 11211 11212 CPU_FOREACH(i) 11213 sbuf_printf(sb, "%d ", i); 11214 rc = sbuf_finish(sb); 11215 sbuf_delete(sb); 11216 11217 return (rc); 11218 } 11219 11220 static int 11221 sysctl_reset(SYSCTL_HANDLER_ARGS) 11222 { 11223 struct adapter *sc = arg1; 11224 u_int val; 11225 int rc; 11226 11227 val = atomic_load_int(&sc->num_resets); 11228 rc = sysctl_handle_int(oidp, &val, 0, req); 11229 if (rc != 0 || req->newptr == NULL) 11230 return (rc); 11231 11232 if (val == 0) { 11233 /* Zero out the counter that tracks reset. */ 11234 atomic_store_int(&sc->num_resets, 0); 11235 return (0); 11236 } 11237 11238 if (val != 1) 11239 return (EINVAL); /* 0 or 1 are the only legal values */ 11240 11241 if (hw_off_limits(sc)) /* harmless race */ 11242 return (EALREADY); 11243 11244 taskqueue_enqueue(reset_tq, &sc->reset_task); 11245 return (0); 11246 } 11247 11248 #ifdef TCP_OFFLOAD 11249 static int 11250 sysctl_tls(SYSCTL_HANDLER_ARGS) 11251 { 11252 struct adapter *sc = arg1; 11253 int i, j, v, rc; 11254 struct vi_info *vi; 11255 11256 v = sc->tt.tls; 11257 rc = sysctl_handle_int(oidp, &v, 0, req); 11258 if (rc != 0 || req->newptr == NULL) 11259 return (rc); 11260 11261 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11262 return (ENOTSUP); 11263 11264 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11265 if (rc) 11266 return (rc); 11267 if (hw_off_limits(sc)) 11268 rc = ENXIO; 11269 else { 11270 sc->tt.tls = !!v; 11271 for_each_port(sc, i) { 11272 for_each_vi(sc->port[i], j, vi) { 11273 if (vi->flags & VI_INIT_DONE) 11274 t4_update_fl_bufsize(vi->ifp); 11275 } 11276 } 11277 } 11278 end_synchronized_op(sc, 0); 11279 11280 return (rc); 11281 11282 } 11283 11284 static void 11285 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11286 { 11287 u_int rem = val % factor; 11288 11289 if (rem == 0) 11290 snprintf(buf, len, "%u", val / factor); 11291 else { 11292 while (rem % 10 == 0) 11293 rem /= 10; 11294 snprintf(buf, len, "%u.%u", val / factor, rem); 11295 } 11296 } 11297 11298 static int 11299 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11300 { 11301 struct adapter *sc = arg1; 11302 char buf[16]; 11303 u_int res, re; 11304 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11305 11306 mtx_lock(&sc->reg_lock); 11307 if (hw_off_limits(sc)) 11308 res = (u_int)-1; 11309 else 11310 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11311 mtx_unlock(&sc->reg_lock); 11312 if (res == (u_int)-1) 11313 return (ENXIO); 11314 11315 switch (arg2) { 11316 case 0: 11317 /* timer_tick */ 11318 re = G_TIMERRESOLUTION(res); 11319 break; 11320 case 1: 11321 /* TCP timestamp tick */ 11322 re = G_TIMESTAMPRESOLUTION(res); 11323 break; 11324 case 2: 11325 /* DACK tick */ 11326 re = G_DELAYEDACKRESOLUTION(res); 11327 break; 11328 default: 11329 return (EDOOFUS); 11330 } 11331 11332 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11333 11334 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11335 } 11336 11337 static int 11338 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11339 { 11340 struct adapter *sc = arg1; 11341 int rc; 11342 u_int dack_tmr, dack_re, v; 11343 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11344 11345 mtx_lock(&sc->reg_lock); 11346 if (hw_off_limits(sc)) 11347 rc = ENXIO; 11348 else { 11349 rc = 0; 11350 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11351 A_TP_TIMER_RESOLUTION)); 11352 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11353 } 11354 mtx_unlock(&sc->reg_lock); 11355 if (rc != 0) 11356 return (rc); 11357 11358 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11359 11360 return (sysctl_handle_int(oidp, &v, 0, req)); 11361 } 11362 11363 static int 11364 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11365 { 11366 struct adapter *sc = arg1; 11367 int rc, reg = arg2; 11368 u_int tre; 11369 u_long tp_tick_us, v; 11370 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11371 11372 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11373 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11374 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11375 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11376 11377 mtx_lock(&sc->reg_lock); 11378 if (hw_off_limits(sc)) 11379 rc = ENXIO; 11380 else { 11381 rc = 0; 11382 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11383 tp_tick_us = (cclk_ps << tre) / 1000000; 11384 if (reg == A_TP_INIT_SRTT) 11385 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11386 else 11387 v = tp_tick_us * t4_read_reg(sc, reg); 11388 } 11389 mtx_unlock(&sc->reg_lock); 11390 if (rc != 0) 11391 return (rc); 11392 else 11393 return (sysctl_handle_long(oidp, &v, 0, req)); 11394 } 11395 11396 /* 11397 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11398 * passed to this function. 11399 */ 11400 static int 11401 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11402 { 11403 struct adapter *sc = arg1; 11404 int rc, idx = arg2; 11405 u_int v; 11406 11407 MPASS(idx >= 0 && idx <= 24); 11408 11409 mtx_lock(&sc->reg_lock); 11410 if (hw_off_limits(sc)) 11411 rc = ENXIO; 11412 else { 11413 rc = 0; 11414 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11415 } 11416 mtx_unlock(&sc->reg_lock); 11417 if (rc != 0) 11418 return (rc); 11419 else 11420 return (sysctl_handle_int(oidp, &v, 0, req)); 11421 } 11422 11423 static int 11424 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11425 { 11426 struct adapter *sc = arg1; 11427 int rc, idx = arg2; 11428 u_int shift, v, r; 11429 11430 MPASS(idx >= 0 && idx < 16); 11431 11432 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11433 shift = (idx & 3) << 3; 11434 mtx_lock(&sc->reg_lock); 11435 if (hw_off_limits(sc)) 11436 rc = ENXIO; 11437 else { 11438 rc = 0; 11439 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11440 } 11441 mtx_unlock(&sc->reg_lock); 11442 if (rc != 0) 11443 return (rc); 11444 else 11445 return (sysctl_handle_int(oidp, &v, 0, req)); 11446 } 11447 11448 static int 11449 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11450 { 11451 struct vi_info *vi = arg1; 11452 struct adapter *sc = vi->adapter; 11453 int idx, rc, i; 11454 struct sge_ofld_rxq *ofld_rxq; 11455 uint8_t v; 11456 11457 idx = vi->ofld_tmr_idx; 11458 11459 rc = sysctl_handle_int(oidp, &idx, 0, req); 11460 if (rc != 0 || req->newptr == NULL) 11461 return (rc); 11462 11463 if (idx < 0 || idx >= SGE_NTIMERS) 11464 return (EINVAL); 11465 11466 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11467 "t4otmr"); 11468 if (rc) 11469 return (rc); 11470 11471 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11472 for_each_ofld_rxq(vi, i, ofld_rxq) { 11473 #ifdef atomic_store_rel_8 11474 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11475 #else 11476 ofld_rxq->iq.intr_params = v; 11477 #endif 11478 } 11479 vi->ofld_tmr_idx = idx; 11480 11481 end_synchronized_op(sc, LOCK_HELD); 11482 return (0); 11483 } 11484 11485 static int 11486 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11487 { 11488 struct vi_info *vi = arg1; 11489 struct adapter *sc = vi->adapter; 11490 int idx, rc; 11491 11492 idx = vi->ofld_pktc_idx; 11493 11494 rc = sysctl_handle_int(oidp, &idx, 0, req); 11495 if (rc != 0 || req->newptr == NULL) 11496 return (rc); 11497 11498 if (idx < -1 || idx >= SGE_NCOUNTERS) 11499 return (EINVAL); 11500 11501 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11502 "t4opktc"); 11503 if (rc) 11504 return (rc); 11505 11506 if (vi->flags & VI_INIT_DONE) 11507 rc = EBUSY; /* cannot be changed once the queues are created */ 11508 else 11509 vi->ofld_pktc_idx = idx; 11510 11511 end_synchronized_op(sc, LOCK_HELD); 11512 return (rc); 11513 } 11514 #endif 11515 11516 static int 11517 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11518 { 11519 int rc; 11520 11521 if (cntxt->cid > M_CTXTQID) 11522 return (EINVAL); 11523 11524 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11525 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11526 return (EINVAL); 11527 11528 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11529 if (rc) 11530 return (rc); 11531 11532 if (hw_off_limits(sc)) { 11533 rc = ENXIO; 11534 goto done; 11535 } 11536 11537 if (sc->flags & FW_OK) { 11538 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11539 &cntxt->data[0]); 11540 if (rc == 0) 11541 goto done; 11542 } 11543 11544 /* 11545 * Read via firmware failed or wasn't even attempted. Read directly via 11546 * the backdoor. 11547 */ 11548 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11549 done: 11550 end_synchronized_op(sc, 0); 11551 return (rc); 11552 } 11553 11554 static int 11555 load_fw(struct adapter *sc, struct t4_data *fw) 11556 { 11557 int rc; 11558 uint8_t *fw_data; 11559 11560 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11561 if (rc) 11562 return (rc); 11563 11564 if (hw_off_limits(sc)) { 11565 rc = ENXIO; 11566 goto done; 11567 } 11568 11569 /* 11570 * The firmware, with the sole exception of the memory parity error 11571 * handler, runs from memory and not flash. It is almost always safe to 11572 * install a new firmware on a running system. Just set bit 1 in 11573 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11574 */ 11575 if (sc->flags & FULL_INIT_DONE && 11576 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11577 rc = EBUSY; 11578 goto done; 11579 } 11580 11581 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11582 11583 rc = copyin(fw->data, fw_data, fw->len); 11584 if (rc == 0) 11585 rc = -t4_load_fw(sc, fw_data, fw->len); 11586 11587 free(fw_data, M_CXGBE); 11588 done: 11589 end_synchronized_op(sc, 0); 11590 return (rc); 11591 } 11592 11593 static int 11594 load_cfg(struct adapter *sc, struct t4_data *cfg) 11595 { 11596 int rc; 11597 uint8_t *cfg_data = NULL; 11598 11599 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11600 if (rc) 11601 return (rc); 11602 11603 if (hw_off_limits(sc)) { 11604 rc = ENXIO; 11605 goto done; 11606 } 11607 11608 if (cfg->len == 0) { 11609 /* clear */ 11610 rc = -t4_load_cfg(sc, NULL, 0); 11611 goto done; 11612 } 11613 11614 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11615 11616 rc = copyin(cfg->data, cfg_data, cfg->len); 11617 if (rc == 0) 11618 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11619 11620 free(cfg_data, M_CXGBE); 11621 done: 11622 end_synchronized_op(sc, 0); 11623 return (rc); 11624 } 11625 11626 static int 11627 load_boot(struct adapter *sc, struct t4_bootrom *br) 11628 { 11629 int rc; 11630 uint8_t *br_data = NULL; 11631 u_int offset; 11632 11633 if (br->len > 1024 * 1024) 11634 return (EFBIG); 11635 11636 if (br->pf_offset == 0) { 11637 /* pfidx */ 11638 if (br->pfidx_addr > 7) 11639 return (EINVAL); 11640 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11641 A_PCIE_PF_EXPROM_OFST))); 11642 } else if (br->pf_offset == 1) { 11643 /* offset */ 11644 offset = G_OFFSET(br->pfidx_addr); 11645 } else { 11646 return (EINVAL); 11647 } 11648 11649 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11650 if (rc) 11651 return (rc); 11652 11653 if (hw_off_limits(sc)) { 11654 rc = ENXIO; 11655 goto done; 11656 } 11657 11658 if (br->len == 0) { 11659 /* clear */ 11660 rc = -t4_load_boot(sc, NULL, offset, 0); 11661 goto done; 11662 } 11663 11664 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11665 11666 rc = copyin(br->data, br_data, br->len); 11667 if (rc == 0) 11668 rc = -t4_load_boot(sc, br_data, offset, br->len); 11669 11670 free(br_data, M_CXGBE); 11671 done: 11672 end_synchronized_op(sc, 0); 11673 return (rc); 11674 } 11675 11676 static int 11677 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11678 { 11679 int rc; 11680 uint8_t *bc_data = NULL; 11681 11682 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11683 if (rc) 11684 return (rc); 11685 11686 if (hw_off_limits(sc)) { 11687 rc = ENXIO; 11688 goto done; 11689 } 11690 11691 if (bc->len == 0) { 11692 /* clear */ 11693 rc = -t4_load_bootcfg(sc, NULL, 0); 11694 goto done; 11695 } 11696 11697 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11698 11699 rc = copyin(bc->data, bc_data, bc->len); 11700 if (rc == 0) 11701 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11702 11703 free(bc_data, M_CXGBE); 11704 done: 11705 end_synchronized_op(sc, 0); 11706 return (rc); 11707 } 11708 11709 static int 11710 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11711 { 11712 int rc; 11713 struct cudbg_init *cudbg; 11714 void *handle, *buf; 11715 11716 /* buf is large, don't block if no memory is available */ 11717 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11718 if (buf == NULL) 11719 return (ENOMEM); 11720 11721 handle = cudbg_alloc_handle(); 11722 if (handle == NULL) { 11723 rc = ENOMEM; 11724 goto done; 11725 } 11726 11727 cudbg = cudbg_get_init(handle); 11728 cudbg->adap = sc; 11729 cudbg->print = (cudbg_print_cb)printf; 11730 11731 #ifndef notyet 11732 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11733 __func__, dump->wr_flash, dump->len, dump->data); 11734 #endif 11735 11736 if (dump->wr_flash) 11737 cudbg->use_flash = 1; 11738 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11739 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11740 11741 rc = cudbg_collect(handle, buf, &dump->len); 11742 if (rc != 0) 11743 goto done; 11744 11745 rc = copyout(buf, dump->data, dump->len); 11746 done: 11747 cudbg_free_handle(handle); 11748 free(buf, M_CXGBE); 11749 return (rc); 11750 } 11751 11752 static void 11753 free_offload_policy(struct t4_offload_policy *op) 11754 { 11755 struct offload_rule *r; 11756 int i; 11757 11758 if (op == NULL) 11759 return; 11760 11761 r = &op->rule[0]; 11762 for (i = 0; i < op->nrules; i++, r++) { 11763 free(r->bpf_prog.bf_insns, M_CXGBE); 11764 } 11765 free(op->rule, M_CXGBE); 11766 free(op, M_CXGBE); 11767 } 11768 11769 static int 11770 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11771 { 11772 int i, rc, len; 11773 struct t4_offload_policy *op, *old; 11774 struct bpf_program *bf; 11775 const struct offload_settings *s; 11776 struct offload_rule *r; 11777 void *u; 11778 11779 if (!is_offload(sc)) 11780 return (ENODEV); 11781 11782 if (uop->nrules == 0) { 11783 /* Delete installed policies. */ 11784 op = NULL; 11785 goto set_policy; 11786 } else if (uop->nrules > 256) { /* arbitrary */ 11787 return (E2BIG); 11788 } 11789 11790 /* Copy userspace offload policy to kernel */ 11791 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11792 op->nrules = uop->nrules; 11793 len = op->nrules * sizeof(struct offload_rule); 11794 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11795 rc = copyin(uop->rule, op->rule, len); 11796 if (rc) { 11797 free(op->rule, M_CXGBE); 11798 free(op, M_CXGBE); 11799 return (rc); 11800 } 11801 11802 r = &op->rule[0]; 11803 for (i = 0; i < op->nrules; i++, r++) { 11804 11805 /* Validate open_type */ 11806 if (r->open_type != OPEN_TYPE_LISTEN && 11807 r->open_type != OPEN_TYPE_ACTIVE && 11808 r->open_type != OPEN_TYPE_PASSIVE && 11809 r->open_type != OPEN_TYPE_DONTCARE) { 11810 error: 11811 /* 11812 * Rules 0 to i have malloc'd filters that need to be 11813 * freed. Rules i+1 to nrules have userspace pointers 11814 * and should be left alone. 11815 */ 11816 op->nrules = i; 11817 free_offload_policy(op); 11818 return (rc); 11819 } 11820 11821 /* Validate settings */ 11822 s = &r->settings; 11823 if ((s->offload != 0 && s->offload != 1) || 11824 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11825 s->sched_class < -1 || 11826 s->sched_class >= sc->params.nsched_cls) { 11827 rc = EINVAL; 11828 goto error; 11829 } 11830 11831 bf = &r->bpf_prog; 11832 u = bf->bf_insns; /* userspace ptr */ 11833 bf->bf_insns = NULL; 11834 if (bf->bf_len == 0) { 11835 /* legal, matches everything */ 11836 continue; 11837 } 11838 len = bf->bf_len * sizeof(*bf->bf_insns); 11839 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11840 rc = copyin(u, bf->bf_insns, len); 11841 if (rc != 0) 11842 goto error; 11843 11844 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11845 rc = EINVAL; 11846 goto error; 11847 } 11848 } 11849 set_policy: 11850 rw_wlock(&sc->policy_lock); 11851 old = sc->policy; 11852 sc->policy = op; 11853 rw_wunlock(&sc->policy_lock); 11854 free_offload_policy(old); 11855 11856 return (0); 11857 } 11858 11859 #define MAX_READ_BUF_SIZE (128 * 1024) 11860 static int 11861 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11862 { 11863 uint32_t addr, remaining, n; 11864 uint32_t *buf; 11865 int rc; 11866 uint8_t *dst; 11867 11868 mtx_lock(&sc->reg_lock); 11869 if (hw_off_limits(sc)) 11870 rc = ENXIO; 11871 else 11872 rc = validate_mem_range(sc, mr->addr, mr->len); 11873 mtx_unlock(&sc->reg_lock); 11874 if (rc != 0) 11875 return (rc); 11876 11877 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11878 addr = mr->addr; 11879 remaining = mr->len; 11880 dst = (void *)mr->data; 11881 11882 while (remaining) { 11883 n = min(remaining, MAX_READ_BUF_SIZE); 11884 mtx_lock(&sc->reg_lock); 11885 if (hw_off_limits(sc)) 11886 rc = ENXIO; 11887 else 11888 read_via_memwin(sc, 2, addr, buf, n); 11889 mtx_unlock(&sc->reg_lock); 11890 if (rc != 0) 11891 break; 11892 11893 rc = copyout(buf, dst, n); 11894 if (rc != 0) 11895 break; 11896 11897 dst += n; 11898 remaining -= n; 11899 addr += n; 11900 } 11901 11902 free(buf, M_CXGBE); 11903 return (rc); 11904 } 11905 #undef MAX_READ_BUF_SIZE 11906 11907 static int 11908 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11909 { 11910 int rc; 11911 11912 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11913 return (EINVAL); 11914 11915 if (i2cd->len > sizeof(i2cd->data)) 11916 return (EFBIG); 11917 11918 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11919 if (rc) 11920 return (rc); 11921 if (hw_off_limits(sc)) 11922 rc = ENXIO; 11923 else 11924 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11925 i2cd->offset, i2cd->len, &i2cd->data[0]); 11926 end_synchronized_op(sc, 0); 11927 11928 return (rc); 11929 } 11930 11931 static int 11932 clear_stats(struct adapter *sc, u_int port_id) 11933 { 11934 int i, v, chan_map; 11935 struct port_info *pi; 11936 struct vi_info *vi; 11937 struct sge_rxq *rxq; 11938 struct sge_txq *txq; 11939 struct sge_wrq *wrq; 11940 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11941 struct sge_ofld_txq *ofld_txq; 11942 #endif 11943 #ifdef TCP_OFFLOAD 11944 struct sge_ofld_rxq *ofld_rxq; 11945 #endif 11946 11947 if (port_id >= sc->params.nports) 11948 return (EINVAL); 11949 pi = sc->port[port_id]; 11950 if (pi == NULL) 11951 return (EIO); 11952 11953 mtx_lock(&sc->reg_lock); 11954 if (!hw_off_limits(sc)) { 11955 /* MAC stats */ 11956 t4_clr_port_stats(sc, pi->tx_chan); 11957 if (is_t6(sc)) { 11958 if (pi->fcs_reg != -1) 11959 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11960 else 11961 pi->stats.rx_fcs_err = 0; 11962 } 11963 for_each_vi(pi, v, vi) { 11964 if (vi->flags & VI_INIT_DONE) 11965 t4_clr_vi_stats(sc, vi->vin); 11966 } 11967 chan_map = pi->rx_e_chan_map; 11968 v = 0; /* reuse */ 11969 while (chan_map) { 11970 i = ffs(chan_map) - 1; 11971 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11972 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11973 chan_map &= ~(1 << i); 11974 } 11975 } 11976 mtx_unlock(&sc->reg_lock); 11977 pi->tx_parse_error = 0; 11978 pi->tnl_cong_drops = 0; 11979 11980 /* 11981 * Since this command accepts a port, clear stats for 11982 * all VIs on this port. 11983 */ 11984 for_each_vi(pi, v, vi) { 11985 if (vi->flags & VI_INIT_DONE) { 11986 11987 for_each_rxq(vi, i, rxq) { 11988 #if defined(INET) || defined(INET6) 11989 rxq->lro.lro_queued = 0; 11990 rxq->lro.lro_flushed = 0; 11991 #endif 11992 rxq->rxcsum = 0; 11993 rxq->vlan_extraction = 0; 11994 rxq->vxlan_rxcsum = 0; 11995 11996 rxq->fl.cl_allocated = 0; 11997 rxq->fl.cl_recycled = 0; 11998 rxq->fl.cl_fast_recycled = 0; 11999 } 12000 12001 for_each_txq(vi, i, txq) { 12002 txq->txcsum = 0; 12003 txq->tso_wrs = 0; 12004 txq->vlan_insertion = 0; 12005 txq->imm_wrs = 0; 12006 txq->sgl_wrs = 0; 12007 txq->txpkt_wrs = 0; 12008 txq->txpkts0_wrs = 0; 12009 txq->txpkts1_wrs = 0; 12010 txq->txpkts0_pkts = 0; 12011 txq->txpkts1_pkts = 0; 12012 txq->txpkts_flush = 0; 12013 txq->raw_wrs = 0; 12014 txq->vxlan_tso_wrs = 0; 12015 txq->vxlan_txcsum = 0; 12016 txq->kern_tls_records = 0; 12017 txq->kern_tls_short = 0; 12018 txq->kern_tls_partial = 0; 12019 txq->kern_tls_full = 0; 12020 txq->kern_tls_octets = 0; 12021 txq->kern_tls_waste = 0; 12022 txq->kern_tls_options = 0; 12023 txq->kern_tls_header = 0; 12024 txq->kern_tls_fin = 0; 12025 txq->kern_tls_fin_short = 0; 12026 txq->kern_tls_cbc = 0; 12027 txq->kern_tls_gcm = 0; 12028 mp_ring_reset_stats(txq->r); 12029 } 12030 12031 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12032 for_each_ofld_txq(vi, i, ofld_txq) { 12033 ofld_txq->wrq.tx_wrs_direct = 0; 12034 ofld_txq->wrq.tx_wrs_copied = 0; 12035 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12036 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12037 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12038 counter_u64_zero(ofld_txq->tx_aio_jobs); 12039 counter_u64_zero(ofld_txq->tx_aio_octets); 12040 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12041 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12042 } 12043 #endif 12044 #ifdef TCP_OFFLOAD 12045 for_each_ofld_rxq(vi, i, ofld_rxq) { 12046 ofld_rxq->fl.cl_allocated = 0; 12047 ofld_rxq->fl.cl_recycled = 0; 12048 ofld_rxq->fl.cl_fast_recycled = 0; 12049 counter_u64_zero( 12050 ofld_rxq->rx_iscsi_ddp_setup_ok); 12051 counter_u64_zero( 12052 ofld_rxq->rx_iscsi_ddp_setup_error); 12053 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12054 ofld_rxq->rx_iscsi_ddp_octets = 0; 12055 ofld_rxq->rx_iscsi_fl_pdus = 0; 12056 ofld_rxq->rx_iscsi_fl_octets = 0; 12057 ofld_rxq->rx_aio_ddp_jobs = 0; 12058 ofld_rxq->rx_aio_ddp_octets = 0; 12059 ofld_rxq->rx_toe_tls_records = 0; 12060 ofld_rxq->rx_toe_tls_octets = 0; 12061 ofld_rxq->rx_toe_ddp_octets = 0; 12062 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12063 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12064 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12065 } 12066 #endif 12067 12068 if (IS_MAIN_VI(vi)) { 12069 wrq = &sc->sge.ctrlq[pi->port_id]; 12070 wrq->tx_wrs_direct = 0; 12071 wrq->tx_wrs_copied = 0; 12072 } 12073 } 12074 } 12075 12076 return (0); 12077 } 12078 12079 static int 12080 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12081 { 12082 #ifdef INET6 12083 struct in6_addr in6; 12084 12085 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12086 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12087 return (0); 12088 else 12089 return (EIO); 12090 #else 12091 return (ENOTSUP); 12092 #endif 12093 } 12094 12095 static int 12096 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12097 { 12098 #ifdef INET6 12099 struct in6_addr in6; 12100 12101 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12102 return (t4_release_clip_addr(sc, &in6)); 12103 #else 12104 return (ENOTSUP); 12105 #endif 12106 } 12107 12108 int 12109 t4_os_find_pci_capability(struct adapter *sc, int cap) 12110 { 12111 int i; 12112 12113 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12114 } 12115 12116 int 12117 t4_os_pci_save_state(struct adapter *sc) 12118 { 12119 device_t dev; 12120 struct pci_devinfo *dinfo; 12121 12122 dev = sc->dev; 12123 dinfo = device_get_ivars(dev); 12124 12125 pci_cfg_save(dev, dinfo, 0); 12126 return (0); 12127 } 12128 12129 int 12130 t4_os_pci_restore_state(struct adapter *sc) 12131 { 12132 device_t dev; 12133 struct pci_devinfo *dinfo; 12134 12135 dev = sc->dev; 12136 dinfo = device_get_ivars(dev); 12137 12138 pci_cfg_restore(dev, dinfo); 12139 return (0); 12140 } 12141 12142 void 12143 t4_os_portmod_changed(struct port_info *pi) 12144 { 12145 struct adapter *sc = pi->adapter; 12146 struct vi_info *vi; 12147 if_t ifp; 12148 static const char *mod_str[] = { 12149 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12150 }; 12151 12152 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12153 ("%s: port_type %u", __func__, pi->port_type)); 12154 12155 vi = &pi->vi[0]; 12156 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12157 PORT_LOCK(pi); 12158 build_medialist(pi); 12159 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12160 fixup_link_config(pi); 12161 apply_link_config(pi); 12162 } 12163 PORT_UNLOCK(pi); 12164 end_synchronized_op(sc, LOCK_HELD); 12165 } 12166 12167 ifp = vi->ifp; 12168 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12169 if_printf(ifp, "transceiver unplugged.\n"); 12170 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12171 if_printf(ifp, "unknown transceiver inserted.\n"); 12172 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12173 if_printf(ifp, "unsupported transceiver inserted.\n"); 12174 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12175 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12176 port_top_speed(pi), mod_str[pi->mod_type]); 12177 } else { 12178 if_printf(ifp, "transceiver (type %d) inserted.\n", 12179 pi->mod_type); 12180 } 12181 } 12182 12183 void 12184 t4_os_link_changed(struct port_info *pi) 12185 { 12186 struct vi_info *vi; 12187 if_t ifp; 12188 struct link_config *lc = &pi->link_cfg; 12189 struct adapter *sc = pi->adapter; 12190 int v; 12191 12192 PORT_LOCK_ASSERT_OWNED(pi); 12193 12194 if (is_t6(sc)) { 12195 if (lc->link_ok) { 12196 if (lc->speed > 25000 || 12197 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12198 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12199 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12200 } else { 12201 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12202 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12203 } 12204 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12205 pi->stats.rx_fcs_err = 0; 12206 } else { 12207 pi->fcs_reg = -1; 12208 } 12209 } else { 12210 MPASS(pi->fcs_reg != -1); 12211 MPASS(pi->fcs_base == 0); 12212 } 12213 12214 for_each_vi(pi, v, vi) { 12215 ifp = vi->ifp; 12216 if (ifp == NULL || IS_DETACHING(vi)) 12217 continue; 12218 12219 if (lc->link_ok) { 12220 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12221 if_link_state_change(ifp, LINK_STATE_UP); 12222 } else { 12223 if_link_state_change(ifp, LINK_STATE_DOWN); 12224 } 12225 } 12226 } 12227 12228 void 12229 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12230 { 12231 struct adapter *sc; 12232 12233 sx_slock(&t4_list_lock); 12234 SLIST_FOREACH(sc, &t4_list, link) { 12235 /* 12236 * func should not make any assumptions about what state sc is 12237 * in - the only guarantee is that sc->sc_lock is a valid lock. 12238 */ 12239 func(sc, arg); 12240 } 12241 sx_sunlock(&t4_list_lock); 12242 } 12243 12244 static int 12245 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12246 struct thread *td) 12247 { 12248 int rc; 12249 struct adapter *sc = dev->si_drv1; 12250 12251 rc = priv_check(td, PRIV_DRIVER); 12252 if (rc != 0) 12253 return (rc); 12254 12255 switch (cmd) { 12256 case CHELSIO_T4_GETREG: { 12257 struct t4_reg *edata = (struct t4_reg *)data; 12258 12259 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12260 return (EFAULT); 12261 12262 mtx_lock(&sc->reg_lock); 12263 if (hw_off_limits(sc)) 12264 rc = ENXIO; 12265 else if (edata->size == 4) 12266 edata->val = t4_read_reg(sc, edata->addr); 12267 else if (edata->size == 8) 12268 edata->val = t4_read_reg64(sc, edata->addr); 12269 else 12270 rc = EINVAL; 12271 mtx_unlock(&sc->reg_lock); 12272 12273 break; 12274 } 12275 case CHELSIO_T4_SETREG: { 12276 struct t4_reg *edata = (struct t4_reg *)data; 12277 12278 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12279 return (EFAULT); 12280 12281 mtx_lock(&sc->reg_lock); 12282 if (hw_off_limits(sc)) 12283 rc = ENXIO; 12284 else if (edata->size == 4) { 12285 if (edata->val & 0xffffffff00000000) 12286 rc = EINVAL; 12287 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12288 } else if (edata->size == 8) 12289 t4_write_reg64(sc, edata->addr, edata->val); 12290 else 12291 rc = EINVAL; 12292 mtx_unlock(&sc->reg_lock); 12293 12294 break; 12295 } 12296 case CHELSIO_T4_REGDUMP: { 12297 struct t4_regdump *regs = (struct t4_regdump *)data; 12298 int reglen = t4_get_regs_len(sc); 12299 uint8_t *buf; 12300 12301 if (regs->len < reglen) { 12302 regs->len = reglen; /* hint to the caller */ 12303 return (ENOBUFS); 12304 } 12305 12306 regs->len = reglen; 12307 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12308 mtx_lock(&sc->reg_lock); 12309 if (hw_off_limits(sc)) 12310 rc = ENXIO; 12311 else 12312 get_regs(sc, regs, buf); 12313 mtx_unlock(&sc->reg_lock); 12314 if (rc == 0) 12315 rc = copyout(buf, regs->data, reglen); 12316 free(buf, M_CXGBE); 12317 break; 12318 } 12319 case CHELSIO_T4_GET_FILTER_MODE: 12320 rc = get_filter_mode(sc, (uint32_t *)data); 12321 break; 12322 case CHELSIO_T4_SET_FILTER_MODE: 12323 rc = set_filter_mode(sc, *(uint32_t *)data); 12324 break; 12325 case CHELSIO_T4_SET_FILTER_MASK: 12326 rc = set_filter_mask(sc, *(uint32_t *)data); 12327 break; 12328 case CHELSIO_T4_GET_FILTER: 12329 rc = get_filter(sc, (struct t4_filter *)data); 12330 break; 12331 case CHELSIO_T4_SET_FILTER: 12332 rc = set_filter(sc, (struct t4_filter *)data); 12333 break; 12334 case CHELSIO_T4_DEL_FILTER: 12335 rc = del_filter(sc, (struct t4_filter *)data); 12336 break; 12337 case CHELSIO_T4_GET_SGE_CONTEXT: 12338 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12339 break; 12340 case CHELSIO_T4_LOAD_FW: 12341 rc = load_fw(sc, (struct t4_data *)data); 12342 break; 12343 case CHELSIO_T4_GET_MEM: 12344 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12345 break; 12346 case CHELSIO_T4_GET_I2C: 12347 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12348 break; 12349 case CHELSIO_T4_CLEAR_STATS: 12350 rc = clear_stats(sc, *(uint32_t *)data); 12351 break; 12352 case CHELSIO_T4_SCHED_CLASS: 12353 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12354 break; 12355 case CHELSIO_T4_SCHED_QUEUE: 12356 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12357 break; 12358 case CHELSIO_T4_GET_TRACER: 12359 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12360 break; 12361 case CHELSIO_T4_SET_TRACER: 12362 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12363 break; 12364 case CHELSIO_T4_LOAD_CFG: 12365 rc = load_cfg(sc, (struct t4_data *)data); 12366 break; 12367 case CHELSIO_T4_LOAD_BOOT: 12368 rc = load_boot(sc, (struct t4_bootrom *)data); 12369 break; 12370 case CHELSIO_T4_LOAD_BOOTCFG: 12371 rc = load_bootcfg(sc, (struct t4_data *)data); 12372 break; 12373 case CHELSIO_T4_CUDBG_DUMP: 12374 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12375 break; 12376 case CHELSIO_T4_SET_OFLD_POLICY: 12377 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12378 break; 12379 case CHELSIO_T4_HOLD_CLIP_ADDR: 12380 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12381 break; 12382 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12383 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12384 break; 12385 default: 12386 rc = ENOTTY; 12387 } 12388 12389 return (rc); 12390 } 12391 12392 #ifdef TCP_OFFLOAD 12393 int 12394 toe_capability(struct vi_info *vi, bool enable) 12395 { 12396 int rc; 12397 struct port_info *pi = vi->pi; 12398 struct adapter *sc = pi->adapter; 12399 12400 ASSERT_SYNCHRONIZED_OP(sc); 12401 12402 if (!is_offload(sc)) 12403 return (ENODEV); 12404 if (hw_off_limits(sc)) 12405 return (ENXIO); 12406 12407 if (enable) { 12408 #ifdef KERN_TLS 12409 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12410 int i, j, n; 12411 struct port_info *p; 12412 struct vi_info *v; 12413 12414 /* 12415 * Reconfigure hardware for TOE if TXTLS is not enabled 12416 * on any ifnet. 12417 */ 12418 n = 0; 12419 for_each_port(sc, i) { 12420 p = sc->port[i]; 12421 for_each_vi(p, j, v) { 12422 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12423 CH_WARN(sc, 12424 "%s has NIC TLS enabled.\n", 12425 device_get_nameunit(v->dev)); 12426 n++; 12427 } 12428 } 12429 } 12430 if (n > 0) { 12431 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12432 "associated with this adapter before " 12433 "trying to enable TOE.\n"); 12434 return (EAGAIN); 12435 } 12436 rc = t6_config_kern_tls(sc, false); 12437 if (rc) 12438 return (rc); 12439 } 12440 #endif 12441 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12442 /* TOE is already enabled. */ 12443 return (0); 12444 } 12445 12446 /* 12447 * We need the port's queues around so that we're able to send 12448 * and receive CPLs to/from the TOE even if the ifnet for this 12449 * port has never been UP'd administratively. 12450 */ 12451 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12452 return (rc); 12453 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12454 ((rc = vi_init(&pi->vi[0])) != 0)) 12455 return (rc); 12456 12457 if (isset(&sc->offload_map, pi->port_id)) { 12458 /* TOE is enabled on another VI of this port. */ 12459 MPASS(pi->uld_vis > 0); 12460 pi->uld_vis++; 12461 return (0); 12462 } 12463 12464 if (!uld_active(sc, ULD_TOM)) { 12465 rc = t4_activate_uld(sc, ULD_TOM); 12466 if (rc == EAGAIN) { 12467 log(LOG_WARNING, 12468 "You must kldload t4_tom.ko before trying " 12469 "to enable TOE on a cxgbe interface.\n"); 12470 } 12471 if (rc != 0) 12472 return (rc); 12473 KASSERT(sc->tom_softc != NULL, 12474 ("%s: TOM activated but softc NULL", __func__)); 12475 KASSERT(uld_active(sc, ULD_TOM), 12476 ("%s: TOM activated but flag not set", __func__)); 12477 } 12478 12479 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12480 if (!uld_active(sc, ULD_IWARP)) 12481 (void) t4_activate_uld(sc, ULD_IWARP); 12482 if (!uld_active(sc, ULD_ISCSI)) 12483 (void) t4_activate_uld(sc, ULD_ISCSI); 12484 12485 if (pi->uld_vis++ == 0) 12486 setbit(&sc->offload_map, pi->port_id); 12487 } else { 12488 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 12489 /* TOE is already disabled. */ 12490 return (0); 12491 } 12492 MPASS(isset(&sc->offload_map, pi->port_id)); 12493 MPASS(pi->uld_vis > 0); 12494 if (--pi->uld_vis == 0) 12495 clrbit(&sc->offload_map, pi->port_id); 12496 } 12497 12498 return (0); 12499 } 12500 12501 /* 12502 * Add an upper layer driver to the global list. 12503 */ 12504 int 12505 t4_register_uld(struct uld_info *ui, int id) 12506 { 12507 int rc; 12508 12509 if (id < 0 || id > ULD_MAX) 12510 return (EINVAL); 12511 sx_xlock(&t4_uld_list_lock); 12512 if (t4_uld_list[id] != NULL) 12513 rc = EEXIST; 12514 else { 12515 t4_uld_list[id] = ui; 12516 rc = 0; 12517 } 12518 sx_xunlock(&t4_uld_list_lock); 12519 return (rc); 12520 } 12521 12522 int 12523 t4_unregister_uld(struct uld_info *ui, int id) 12524 { 12525 12526 if (id < 0 || id > ULD_MAX) 12527 return (EINVAL); 12528 sx_xlock(&t4_uld_list_lock); 12529 MPASS(t4_uld_list[id] == ui); 12530 t4_uld_list[id] = NULL; 12531 sx_xunlock(&t4_uld_list_lock); 12532 return (0); 12533 } 12534 12535 int 12536 t4_activate_uld(struct adapter *sc, int id) 12537 { 12538 int rc; 12539 12540 ASSERT_SYNCHRONIZED_OP(sc); 12541 12542 if (id < 0 || id > ULD_MAX) 12543 return (EINVAL); 12544 12545 /* Adapter needs to be initialized before any ULD can be activated. */ 12546 if (!(sc->flags & FULL_INIT_DONE)) { 12547 rc = adapter_init(sc); 12548 if (rc != 0) 12549 return (rc); 12550 } 12551 12552 sx_slock(&t4_uld_list_lock); 12553 if (t4_uld_list[id] == NULL) 12554 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 12555 else { 12556 rc = t4_uld_list[id]->uld_activate(sc); 12557 if (rc == 0) 12558 setbit(&sc->active_ulds, id); 12559 } 12560 sx_sunlock(&t4_uld_list_lock); 12561 12562 return (rc); 12563 } 12564 12565 int 12566 t4_deactivate_uld(struct adapter *sc, int id) 12567 { 12568 int rc; 12569 12570 ASSERT_SYNCHRONIZED_OP(sc); 12571 12572 if (id < 0 || id > ULD_MAX) 12573 return (EINVAL); 12574 12575 sx_slock(&t4_uld_list_lock); 12576 if (t4_uld_list[id] == NULL) 12577 rc = ENXIO; 12578 else { 12579 rc = t4_uld_list[id]->uld_deactivate(sc); 12580 if (rc == 0) 12581 clrbit(&sc->active_ulds, id); 12582 } 12583 sx_sunlock(&t4_uld_list_lock); 12584 12585 return (rc); 12586 } 12587 12588 static int 12589 deactivate_all_uld(struct adapter *sc) 12590 { 12591 int i, rc; 12592 12593 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12594 if (rc != 0) 12595 return (ENXIO); 12596 sx_slock(&t4_uld_list_lock); 12597 for (i = 0; i <= ULD_MAX; i++) { 12598 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 12599 continue; 12600 rc = t4_uld_list[i]->uld_deactivate(sc); 12601 if (rc != 0) 12602 break; 12603 clrbit(&sc->active_ulds, i); 12604 } 12605 sx_sunlock(&t4_uld_list_lock); 12606 end_synchronized_op(sc, 0); 12607 12608 return (rc); 12609 } 12610 12611 static void 12612 stop_all_uld(struct adapter *sc) 12613 { 12614 int i; 12615 12616 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 12617 return; 12618 sx_slock(&t4_uld_list_lock); 12619 for (i = 0; i <= ULD_MAX; i++) { 12620 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12621 t4_uld_list[i]->uld_stop == NULL) 12622 continue; 12623 (void) t4_uld_list[i]->uld_stop(sc); 12624 } 12625 sx_sunlock(&t4_uld_list_lock); 12626 end_synchronized_op(sc, 0); 12627 } 12628 12629 static void 12630 restart_all_uld(struct adapter *sc) 12631 { 12632 int i; 12633 12634 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 12635 return; 12636 sx_slock(&t4_uld_list_lock); 12637 for (i = 0; i <= ULD_MAX; i++) { 12638 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12639 t4_uld_list[i]->uld_restart == NULL) 12640 continue; 12641 (void) t4_uld_list[i]->uld_restart(sc); 12642 } 12643 sx_sunlock(&t4_uld_list_lock); 12644 end_synchronized_op(sc, 0); 12645 } 12646 12647 int 12648 uld_active(struct adapter *sc, int id) 12649 { 12650 12651 MPASS(id >= 0 && id <= ULD_MAX); 12652 12653 return (isset(&sc->active_ulds, id)); 12654 } 12655 #endif 12656 12657 #ifdef KERN_TLS 12658 static int 12659 ktls_capability(struct adapter *sc, bool enable) 12660 { 12661 ASSERT_SYNCHRONIZED_OP(sc); 12662 12663 if (!is_ktls(sc)) 12664 return (ENODEV); 12665 if (!is_t6(sc)) 12666 return (0); 12667 if (hw_off_limits(sc)) 12668 return (ENXIO); 12669 12670 if (enable) { 12671 if (sc->flags & KERN_TLS_ON) 12672 return (0); /* already on */ 12673 if (sc->offload_map != 0) { 12674 CH_WARN(sc, 12675 "Disable TOE on all interfaces associated with " 12676 "this adapter before trying to enable NIC TLS.\n"); 12677 return (EAGAIN); 12678 } 12679 return (t6_config_kern_tls(sc, true)); 12680 } else { 12681 /* 12682 * Nothing to do for disable. If TOE is enabled sometime later 12683 * then toe_capability will reconfigure the hardware. 12684 */ 12685 return (0); 12686 } 12687 } 12688 #endif 12689 12690 /* 12691 * t = ptr to tunable. 12692 * nc = number of CPUs. 12693 * c = compiled in default for that tunable. 12694 */ 12695 static void 12696 calculate_nqueues(int *t, int nc, const int c) 12697 { 12698 int nq; 12699 12700 if (*t > 0) 12701 return; 12702 nq = *t < 0 ? -*t : c; 12703 *t = min(nc, nq); 12704 } 12705 12706 /* 12707 * Come up with reasonable defaults for some of the tunables, provided they're 12708 * not set by the user (in which case we'll use the values as is). 12709 */ 12710 static void 12711 tweak_tunables(void) 12712 { 12713 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12714 12715 if (t4_ntxq < 1) { 12716 #ifdef RSS 12717 t4_ntxq = rss_getnumbuckets(); 12718 #else 12719 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12720 #endif 12721 } 12722 12723 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12724 12725 if (t4_nrxq < 1) { 12726 #ifdef RSS 12727 t4_nrxq = rss_getnumbuckets(); 12728 #else 12729 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12730 #endif 12731 } 12732 12733 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12734 12735 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12736 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12737 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12738 #endif 12739 #ifdef TCP_OFFLOAD 12740 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12741 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12742 #endif 12743 12744 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12745 if (t4_toecaps_allowed == -1) 12746 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12747 #else 12748 if (t4_toecaps_allowed == -1) 12749 t4_toecaps_allowed = 0; 12750 #endif 12751 12752 #ifdef TCP_OFFLOAD 12753 if (t4_rdmacaps_allowed == -1) { 12754 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12755 FW_CAPS_CONFIG_RDMA_RDMAC; 12756 } 12757 12758 if (t4_iscsicaps_allowed == -1) { 12759 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12760 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12761 FW_CAPS_CONFIG_ISCSI_T10DIF; 12762 } 12763 12764 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12765 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12766 12767 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12768 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12769 #else 12770 if (t4_rdmacaps_allowed == -1) 12771 t4_rdmacaps_allowed = 0; 12772 12773 if (t4_iscsicaps_allowed == -1) 12774 t4_iscsicaps_allowed = 0; 12775 #endif 12776 12777 #ifdef DEV_NETMAP 12778 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12779 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12780 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12781 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12782 #endif 12783 12784 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12785 t4_tmr_idx = TMR_IDX; 12786 12787 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12788 t4_pktc_idx = PKTC_IDX; 12789 12790 if (t4_qsize_txq < 128) 12791 t4_qsize_txq = 128; 12792 12793 if (t4_qsize_rxq < 128) 12794 t4_qsize_rxq = 128; 12795 while (t4_qsize_rxq & 7) 12796 t4_qsize_rxq++; 12797 12798 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12799 12800 /* 12801 * Number of VIs to create per-port. The first VI is the "main" regular 12802 * VI for the port. The rest are additional virtual interfaces on the 12803 * same physical port. Note that the main VI does not have native 12804 * netmap support but the extra VIs do. 12805 * 12806 * Limit the number of VIs per port to the number of available 12807 * MAC addresses per port. 12808 */ 12809 if (t4_num_vis < 1) 12810 t4_num_vis = 1; 12811 if (t4_num_vis > nitems(vi_mac_funcs)) { 12812 t4_num_vis = nitems(vi_mac_funcs); 12813 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12814 } 12815 12816 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12817 pcie_relaxed_ordering = 1; 12818 #if defined(__i386__) || defined(__amd64__) 12819 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12820 pcie_relaxed_ordering = 0; 12821 #endif 12822 } 12823 } 12824 12825 #ifdef DDB 12826 static void 12827 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 12828 { 12829 uint32_t base, j, off, pf, reg, save, win_pos; 12830 12831 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12832 save = t4_read_reg(sc, reg); 12833 base = sc->memwin[2].mw_base; 12834 12835 if (is_t4(sc)) { 12836 pf = 0; 12837 win_pos = addr & ~0xf; /* start must be 16B aligned */ 12838 } else { 12839 pf = V_PFNUM(sc->pf); 12840 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 12841 } 12842 off = addr - win_pos; 12843 t4_write_reg(sc, reg, win_pos | pf); 12844 t4_read_reg(sc, reg); 12845 12846 while (len > 0 && !db_pager_quit) { 12847 uint32_t buf[8]; 12848 for (j = 0; j < 8; j++, off += 4) 12849 buf[j] = htonl(t4_read_reg(sc, base + off)); 12850 12851 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12852 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12853 buf[7]); 12854 if (len <= sizeof(buf)) 12855 len = 0; 12856 else 12857 len -= sizeof(buf); 12858 } 12859 12860 t4_write_reg(sc, reg, save); 12861 t4_read_reg(sc, reg); 12862 } 12863 12864 static void 12865 t4_dump_tcb(struct adapter *sc, int tid) 12866 { 12867 uint32_t tcb_addr; 12868 12869 /* Dump TCB for the tid */ 12870 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12871 tcb_addr += tid * TCB_SIZE; 12872 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 12873 } 12874 12875 static void 12876 t4_dump_devlog(struct adapter *sc) 12877 { 12878 struct devlog_params *dparams = &sc->params.devlog; 12879 struct fw_devlog_e e; 12880 int i, first, j, m, nentries, rc; 12881 uint64_t ftstamp = UINT64_MAX; 12882 12883 if (dparams->start == 0) { 12884 db_printf("devlog params not valid\n"); 12885 return; 12886 } 12887 12888 nentries = dparams->size / sizeof(struct fw_devlog_e); 12889 m = fwmtype_to_hwmtype(dparams->memtype); 12890 12891 /* Find the first entry. */ 12892 first = -1; 12893 for (i = 0; i < nentries && !db_pager_quit; i++) { 12894 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12895 sizeof(e), (void *)&e); 12896 if (rc != 0) 12897 break; 12898 12899 if (e.timestamp == 0) 12900 break; 12901 12902 e.timestamp = be64toh(e.timestamp); 12903 if (e.timestamp < ftstamp) { 12904 ftstamp = e.timestamp; 12905 first = i; 12906 } 12907 } 12908 12909 if (first == -1) 12910 return; 12911 12912 i = first; 12913 do { 12914 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12915 sizeof(e), (void *)&e); 12916 if (rc != 0) 12917 return; 12918 12919 if (e.timestamp == 0) 12920 return; 12921 12922 e.timestamp = be64toh(e.timestamp); 12923 e.seqno = be32toh(e.seqno); 12924 for (j = 0; j < 8; j++) 12925 e.params[j] = be32toh(e.params[j]); 12926 12927 db_printf("%10d %15ju %8s %8s ", 12928 e.seqno, e.timestamp, 12929 (e.level < nitems(devlog_level_strings) ? 12930 devlog_level_strings[e.level] : "UNKNOWN"), 12931 (e.facility < nitems(devlog_facility_strings) ? 12932 devlog_facility_strings[e.facility] : "UNKNOWN")); 12933 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12934 e.params[3], e.params[4], e.params[5], e.params[6], 12935 e.params[7]); 12936 12937 if (++i == nentries) 12938 i = 0; 12939 } while (i != first && !db_pager_quit); 12940 } 12941 12942 static DB_DEFINE_TABLE(show, t4, show_t4); 12943 12944 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12945 { 12946 device_t dev; 12947 int t; 12948 bool valid; 12949 12950 valid = false; 12951 t = db_read_token(); 12952 if (t == tIDENT) { 12953 dev = device_lookup_by_name(db_tok_string); 12954 valid = true; 12955 } 12956 db_skip_to_eol(); 12957 if (!valid) { 12958 db_printf("usage: show t4 devlog <nexus>\n"); 12959 return; 12960 } 12961 12962 if (dev == NULL) { 12963 db_printf("device not found\n"); 12964 return; 12965 } 12966 12967 t4_dump_devlog(device_get_softc(dev)); 12968 } 12969 12970 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12971 { 12972 device_t dev; 12973 int radix, tid, t; 12974 bool valid; 12975 12976 valid = false; 12977 radix = db_radix; 12978 db_radix = 10; 12979 t = db_read_token(); 12980 if (t == tIDENT) { 12981 dev = device_lookup_by_name(db_tok_string); 12982 t = db_read_token(); 12983 if (t == tNUMBER) { 12984 tid = db_tok_number; 12985 valid = true; 12986 } 12987 } 12988 db_radix = radix; 12989 db_skip_to_eol(); 12990 if (!valid) { 12991 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12992 return; 12993 } 12994 12995 if (dev == NULL) { 12996 db_printf("device not found\n"); 12997 return; 12998 } 12999 if (tid < 0) { 13000 db_printf("invalid tid\n"); 13001 return; 13002 } 13003 13004 t4_dump_tcb(device_get_softc(dev), tid); 13005 } 13006 13007 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13008 { 13009 device_t dev; 13010 int radix, t; 13011 bool valid; 13012 13013 valid = false; 13014 radix = db_radix; 13015 db_radix = 10; 13016 t = db_read_token(); 13017 if (t == tIDENT) { 13018 dev = device_lookup_by_name(db_tok_string); 13019 t = db_read_token(); 13020 if (t == tNUMBER) { 13021 addr = db_tok_number; 13022 t = db_read_token(); 13023 if (t == tNUMBER) { 13024 count = db_tok_number; 13025 valid = true; 13026 } 13027 } 13028 } 13029 db_radix = radix; 13030 db_skip_to_eol(); 13031 if (!valid) { 13032 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 13033 return; 13034 } 13035 13036 if (dev == NULL) { 13037 db_printf("device not found\n"); 13038 return; 13039 } 13040 if (addr < 0) { 13041 db_printf("invalid address\n"); 13042 return; 13043 } 13044 if (count <= 0) { 13045 db_printf("invalid length\n"); 13046 return; 13047 } 13048 13049 t4_dump_mem(device_get_softc(dev), addr, count); 13050 } 13051 #endif 13052 13053 static eventhandler_tag vxlan_start_evtag; 13054 static eventhandler_tag vxlan_stop_evtag; 13055 13056 struct vxlan_evargs { 13057 if_t ifp; 13058 uint16_t port; 13059 }; 13060 13061 static void 13062 enable_vxlan_rx(struct adapter *sc) 13063 { 13064 int i, rc; 13065 struct port_info *pi; 13066 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13067 13068 ASSERT_SYNCHRONIZED_OP(sc); 13069 13070 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13071 F_VXLAN_EN); 13072 for_each_port(sc, i) { 13073 pi = sc->port[i]; 13074 if (pi->vxlan_tcam_entry == true) 13075 continue; 13076 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13077 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13078 true); 13079 if (rc < 0) { 13080 rc = -rc; 13081 CH_ERR(&pi->vi[0], 13082 "failed to add VXLAN TCAM entry: %d.\n", rc); 13083 } else { 13084 MPASS(rc == sc->rawf_base + pi->port_id); 13085 pi->vxlan_tcam_entry = true; 13086 } 13087 } 13088 } 13089 13090 static void 13091 t4_vxlan_start(struct adapter *sc, void *arg) 13092 { 13093 struct vxlan_evargs *v = arg; 13094 13095 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13096 return; 13097 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13098 return; 13099 13100 if (sc->vxlan_refcount == 0) { 13101 sc->vxlan_port = v->port; 13102 sc->vxlan_refcount = 1; 13103 if (!hw_off_limits(sc)) 13104 enable_vxlan_rx(sc); 13105 } else if (sc->vxlan_port == v->port) { 13106 sc->vxlan_refcount++; 13107 } else { 13108 CH_ERR(sc, "VXLAN already configured on port %d; " 13109 "ignoring attempt to configure it on port %d\n", 13110 sc->vxlan_port, v->port); 13111 } 13112 end_synchronized_op(sc, 0); 13113 } 13114 13115 static void 13116 t4_vxlan_stop(struct adapter *sc, void *arg) 13117 { 13118 struct vxlan_evargs *v = arg; 13119 13120 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13121 return; 13122 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13123 return; 13124 13125 /* 13126 * VXLANs may have been configured before the driver was loaded so we 13127 * may see more stops than starts. This is not handled cleanly but at 13128 * least we keep the refcount sane. 13129 */ 13130 if (sc->vxlan_port != v->port) 13131 goto done; 13132 if (sc->vxlan_refcount == 0) { 13133 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13134 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13135 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13136 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13137 done: 13138 end_synchronized_op(sc, 0); 13139 } 13140 13141 static void 13142 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13143 sa_family_t family, u_int port) 13144 { 13145 struct vxlan_evargs v; 13146 13147 MPASS(family == AF_INET || family == AF_INET6); 13148 v.ifp = ifp; 13149 v.port = port; 13150 13151 t4_iterate(t4_vxlan_start, &v); 13152 } 13153 13154 static void 13155 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13156 u_int port) 13157 { 13158 struct vxlan_evargs v; 13159 13160 MPASS(family == AF_INET || family == AF_INET6); 13161 v.ifp = ifp; 13162 v.port = port; 13163 13164 t4_iterate(t4_vxlan_stop, &v); 13165 } 13166 13167 13168 static struct sx mlu; /* mod load unload */ 13169 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13170 13171 static int 13172 mod_event(module_t mod, int cmd, void *arg) 13173 { 13174 int rc = 0; 13175 static int loaded = 0; 13176 13177 switch (cmd) { 13178 case MOD_LOAD: 13179 sx_xlock(&mlu); 13180 if (loaded++ == 0) { 13181 t4_sge_modload(); 13182 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13183 t4_filter_rpl, CPL_COOKIE_FILTER); 13184 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13185 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13186 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13187 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13188 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13189 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13190 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13191 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13192 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13193 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13194 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13195 do_smt_write_rpl); 13196 sx_init(&t4_list_lock, "T4/T5 adapters"); 13197 SLIST_INIT(&t4_list); 13198 callout_init(&fatal_callout, 1); 13199 #ifdef TCP_OFFLOAD 13200 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13201 #endif 13202 #ifdef INET6 13203 t4_clip_modload(); 13204 #endif 13205 #ifdef KERN_TLS 13206 t6_ktls_modload(); 13207 #endif 13208 t4_tracer_modload(); 13209 tweak_tunables(); 13210 vxlan_start_evtag = 13211 EVENTHANDLER_REGISTER(vxlan_start, 13212 t4_vxlan_start_handler, NULL, 13213 EVENTHANDLER_PRI_ANY); 13214 vxlan_stop_evtag = 13215 EVENTHANDLER_REGISTER(vxlan_stop, 13216 t4_vxlan_stop_handler, NULL, 13217 EVENTHANDLER_PRI_ANY); 13218 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13219 taskqueue_thread_enqueue, &reset_tq); 13220 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13221 "t4_rst_thr"); 13222 } 13223 sx_xunlock(&mlu); 13224 break; 13225 13226 case MOD_UNLOAD: 13227 sx_xlock(&mlu); 13228 if (--loaded == 0) { 13229 #ifdef TCP_OFFLOAD 13230 int i; 13231 #endif 13232 int tries; 13233 13234 taskqueue_free(reset_tq); 13235 13236 tries = 0; 13237 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13238 uprintf("%ju clusters with custom free routine " 13239 "still is use.\n", t4_sge_extfree_refs()); 13240 pause("t4unload", 2 * hz); 13241 } 13242 13243 sx_slock(&t4_list_lock); 13244 if (!SLIST_EMPTY(&t4_list)) { 13245 rc = EBUSY; 13246 sx_sunlock(&t4_list_lock); 13247 goto done_unload; 13248 } 13249 #ifdef TCP_OFFLOAD 13250 sx_slock(&t4_uld_list_lock); 13251 for (i = 0; i <= ULD_MAX; i++) { 13252 if (t4_uld_list[i] != NULL) { 13253 rc = EBUSY; 13254 sx_sunlock(&t4_uld_list_lock); 13255 sx_sunlock(&t4_list_lock); 13256 goto done_unload; 13257 } 13258 } 13259 sx_sunlock(&t4_uld_list_lock); 13260 #endif 13261 sx_sunlock(&t4_list_lock); 13262 13263 if (t4_sge_extfree_refs() == 0) { 13264 EVENTHANDLER_DEREGISTER(vxlan_start, 13265 vxlan_start_evtag); 13266 EVENTHANDLER_DEREGISTER(vxlan_stop, 13267 vxlan_stop_evtag); 13268 t4_tracer_modunload(); 13269 #ifdef KERN_TLS 13270 t6_ktls_modunload(); 13271 #endif 13272 #ifdef INET6 13273 t4_clip_modunload(); 13274 #endif 13275 #ifdef TCP_OFFLOAD 13276 sx_destroy(&t4_uld_list_lock); 13277 #endif 13278 sx_destroy(&t4_list_lock); 13279 t4_sge_modunload(); 13280 loaded = 0; 13281 } else { 13282 rc = EBUSY; 13283 loaded++; /* undo earlier decrement */ 13284 } 13285 } 13286 done_unload: 13287 sx_xunlock(&mlu); 13288 break; 13289 } 13290 13291 return (rc); 13292 } 13293 13294 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13295 MODULE_VERSION(t4nex, 1); 13296 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13297 #ifdef DEV_NETMAP 13298 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13299 #endif /* DEV_NETMAP */ 13300 13301 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13302 MODULE_VERSION(t5nex, 1); 13303 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13304 #ifdef DEV_NETMAP 13305 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13306 #endif /* DEV_NETMAP */ 13307 13308 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13309 MODULE_VERSION(t6nex, 1); 13310 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13311 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13312 #ifdef DEV_NETMAP 13313 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13314 #endif /* DEV_NETMAP */ 13315 13316 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13317 MODULE_VERSION(cxgbe, 1); 13318 13319 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13320 MODULE_VERSION(cxl, 1); 13321 13322 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13323 MODULE_VERSION(cc, 1); 13324 13325 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13326 MODULE_VERSION(vcxgbe, 1); 13327 13328 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13329 MODULE_VERSION(vcxl, 1); 13330 13331 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13332 MODULE_VERSION(vcc, 1); 13333